Annales de l'institut Fourier

BAHMAN SAFFARI
 R.C. VaUGHAN
 On the fractional parts of x / n and related sequences. III

Annales de l'institut Fourier, tome 27, no 2 (1977), p. 31-36
http://www.numdam.org/item?id=AIF_1977__27_2_31_0
© Annales de l'institut Fourier, 1977, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE FRACTIONAL PARTS OF x / n AND RELATED SEQUENCES. III
 by B. SAFFARI and R.-G. VAUGHAN

1. Introduction.

The object of this paper is to investigate the behaviour of $\Phi_{x, y}(\alpha, h)$ (for notation see [2] and [3]) when

$$
h(n)=\frac{1}{\log n}(n>1)
$$

and $h(n)=\log n$. In contradistinction to the case $h(n)=1 / n$ it is immediately apparent that the behaviour of $\Phi_{x, y}$ is non-trivial even when y is a large as e^{x}. For simplicity we only investigate the situation when \mathscr{A} is the Toeplitz transformation formed from the simple Riesz means (R, λ_{n}) with $\lambda_{n}=1$.

Theorems 1 and 2 deal with the case $h(n)=1 / \log n$, whereas Theorem 3 deals with $h(n)=\log n$. While it is well known ([1], Example 2.4, p. 8) that the sequence $\log n$ is not uniformly distributed modulo 1, Theorem 3 shows that it is uniformly distributed in the present context.

2. Theorems and proofs.

2.1. Let

$$
\begin{equation*}
\Xi_{x, y}(\alpha)=y^{-1} \sum_{2 \leqslant n \leqslant y} c_{\alpha}(x / \log n) . \tag{2.1}
\end{equation*}
$$

Theorem 1. - Suppose that $0<\alpha<1$ and $\log y \ll x^{\frac{1}{2}}$. Then

$$
\Xi_{x, y}(\alpha)=\alpha+\mathrm{O}\left(x y^{-1}(\log x)^{-1}\right)+\mathrm{O}\left(x^{-1} \log ^{2} y\right)
$$

Corollary 1.1. - Suppose that $x=\mathrm{o}(y \log x)$ and $\log y=\mathrm{o}\left(x^{\frac{1}{2}}\right)$ as $x \rightarrow \infty$. Then

$$
\Xi_{x, y}(\alpha) \rightarrow \alpha \quad \text { as } \quad x \rightarrow \infty
$$

Proof. - Clearly by (2.1),

$$
\begin{equation*}
y \Xi_{x, y}(\alpha)=\mathrm{S}(0)-\mathrm{S}(\alpha) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{S}(\beta)=\sum_{m=1}^{\infty} \sum_{\substack{2 \leq n \leq \gamma \\ n \leq e^{2}(m+\beta)}} 1 \tag{2.3}
\end{equation*}
$$

and $0 \leqslant \beta<1$. Let

$$
\begin{equation*}
\mathrm{M}_{\beta}=\left[\frac{x}{\log y}-\beta\right] \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}(\beta)=\sum_{M_{\mathrm{s}}<m \leqslant \frac{x}{\log 2}-\beta} \sum_{2 \leqslant n \leqslant e^{\pi /(m+\beta)}} 1 . \tag{2.5}
\end{equation*}
$$

Then, by (2.3),

$$
\begin{equation*}
\mathrm{S}(\beta)=\mathrm{T}(\beta)+([y]-1) \mathrm{M}_{\beta} . \tag{2.6}
\end{equation*}
$$

By (2.5),

$$
\mathrm{T}(\beta)=\sum_{\mathrm{M}_{\beta}<m \leqslant \mathrm{H}-\beta} e^{x /(m+\beta)}+\sum_{2 \leqslant n \leqslant e^{x / \mathrm{H}}} \frac{x}{\log n}-\mathrm{He}^{x / \mathrm{H}}+\mathrm{O}(\mathrm{H})+\mathrm{O}\left(e^{x / \mathrm{H}}\right)
$$

where H is a real number at our disposal. Hence, by (2.4),

$$
\begin{aligned}
\text { (2.7) } \mathrm{T}(0)-\mathrm{T}(\alpha)=\sum_{\mathrm{m}_{0}<m \leqslant \mathrm{H}} e^{x / m}-\sum_{\mathrm{m}_{\alpha}<m \leqslant \mathrm{H}-\alpha} e^{x,(m+\alpha)} \\
+\mathrm{O}(\mathrm{H})+\mathrm{O}\left(e^{x / \mathrm{H}}\right)
\end{aligned}
$$

whenever $H \geqslant M_{0}+1$. Thus

$$
\text { (2.8) } \mathrm{T}(0)-\mathrm{T}(\alpha)=\mathrm{I}(0)-\mathrm{I}(\alpha)+\mathrm{O}(\mathrm{H})+\mathrm{O}\left(e^{x / \mathrm{H}}\right),
$$

where

$$
\begin{equation*}
\mathrm{I}(\beta)=\int_{\mathrm{M}_{\beta}}^{\mathrm{H}-\beta}\left([u]-\mathrm{M}_{\beta}\right) e^{x /(u+\beta)} \frac{x d u}{(u+\beta)^{2}} . \tag{2.9}
\end{equation*}
$$

Let $b(u)$ denote the first Bernoulli polynomial modulo one,
$b(u)=\{u\}-1 / 2$. Then, by (2.9),
$(2.10) \quad \mathrm{I}(\beta)=\int_{\mathbf{M}_{3}+\beta}^{\mathrm{H}}\left(\rho-\mathrm{M}_{\beta}-\beta-1 / 2\right) e^{x / v} x \varphi^{-2} d \varphi$

$$
-\int_{M_{9}+\beta}^{\mathrm{H}} b(u-\beta) e^{x / v} x v^{-2} d \varphi
$$

The argument now divides into two cases according as $\mathrm{M}_{0}=\mathrm{M}_{\alpha}$ or $\mathrm{M}_{0}=\mathrm{M}_{\alpha}+1$.

The case $\mathrm{M}_{0}=\mathrm{M}_{\alpha}$. Write M for the common value. Then, by (2.10),

$$
\begin{aligned}
\mathrm{I}(0)-\mathrm{I}(\alpha) & =\int_{\mathrm{M}}^{\mathrm{M}+\alpha}\left(v-\mathrm{M}-\frac{1}{2}\right) e^{x / v} x v^{-2} d v+\alpha \int_{\mathrm{M}+\alpha}^{\mathrm{H}} e^{x / v} x v^{-2} d v \\
& -\int_{\mathrm{M}}^{\mathrm{H}} b(\varphi) e^{x / v} x v^{-2} d v+\int_{\mathrm{M}+\alpha}^{\mathrm{H}} b(\varphi-\alpha) e^{x / v} x v^{-2} d \varphi
\end{aligned}
$$

The first integral contributes $<e^{x / M} x \mathrm{M}^{-2}$, the second is $\alpha\left(e^{x /(\mathbf{M}+\alpha)}-e^{x / \mathbf{H}}\right)$ and by partial integration the last two are easily seen to contribute $\ll e^{x / \mathrm{M}} x \mathrm{M}^{-2}$. Hence, by (2.8),
(2.11) $\mathrm{T}(0)-\mathrm{T}(\alpha)=\alpha e^{\alpha /(\mathrm{M}+\alpha)}+\mathrm{O}(\mathrm{H})$

$$
+\mathrm{O}\left(e^{x / \mathbf{H}}\right)+\mathrm{O}\left(e^{x / \mathbf{M}} x \mathbf{M}^{-2}\right)
$$

Recall that $\mathrm{M}=\mathrm{M}_{0}=[x / \log y] \quad$ and $\log y \ll x^{1 / 2}$. Thus $e^{x /(\mathrm{M}+\alpha)}=\exp \left(\log y+\mathrm{O}\left(x^{-1} \log ^{2} y\right)\right)=y\left(1+\mathrm{O}\left(x^{-1} \log ^{2} y\right)\right)$ and $e^{x / M} x \mathrm{M}^{-2}=\mathrm{O}\left(y x^{-1} \log ^{2} y\right)$. Hence, by (2.2), (2.6) and (2.11)

$$
y \Xi_{x, y}(\alpha)=\alpha y+\mathrm{O}(\mathrm{H})+\mathrm{O}\left(e^{x / \mathbf{H}}\right)+\mathrm{O}\left(y x^{-1} \log ^{2} y\right)
$$

The choice $\mathrm{H}=\frac{x}{\log (x / \log x)}$ now gives the desired conclusion.
The case $\mathrm{M}_{0}=\mathrm{M}_{\alpha}+1$. Write M for M_{α}. Then, by (2.10),

$$
\begin{aligned}
\mathbf{I}(0)-\mathrm{I}(\alpha) & =(\alpha-1) \int_{\mathrm{M}+1}^{\mathrm{H}} e^{x^{\prime / v}} x v^{-2} d v \\
& -\int_{\mathrm{M}+\alpha}^{\mathrm{M}+1}\left(\vartheta-\mathbf{M}-\alpha-\frac{1}{2}\right) e^{x / v} x v^{-2} d v \\
& +\mathrm{O}\left(e^{x(\mathbf{M}+\alpha)} x(\mathbf{M}+\alpha)^{-2}\right)
\end{aligned}
$$

Now proceeding as in the previous case we obtain

$$
\mathrm{T}(0)-\mathrm{T}(\alpha)=(\alpha-1) y+\mathrm{O}(\mathrm{H})+\mathrm{O}\left(e^{x / \mathrm{H}}\right)+\mathrm{O}\left(y x^{-1} \log _{3}^{2} y\right)
$$

Since $\mathrm{M}_{0}=\mathrm{M}_{\alpha}+1$, this with (2.6) and (2.2) and the choice $\mathrm{H}=\frac{x}{\log (x / \log x)}$ gives the required result once more.
2.2. One might expect that the theorem holds even when y is close to e^{x}, but this is false. In fact the next theorem indicates that Theorem 1 is essentially best possible, at least as for as the upper bound on y is concerned.

Theorem 2. - Suppose that $0<\alpha<1, \frac{1}{2}<\theta<1$ and $y=\exp \left(x^{\theta}\right)$. Then $\limsup _{\alpha>\infty} \Xi_{x, y}(\alpha)=1$ and

$$
\liminf _{x>0} \Xi_{x, y}(\alpha)=0 .
$$

Proof. - We begin by following the proof of Theorem 1 as far as (2.7). Suppose that $0<\beta<1$,

$$
\begin{equation*}
y=\exp \left(x^{\theta}\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}=x . \tag{2.13}
\end{equation*}
$$

Then, by (2.4),

$$
\frac{x}{\left(\mathbf{M}_{\beta}+2\right)\left(\mathbf{M}_{\beta}+3\right)} \gg x^{-1}(\log y)^{2}=x^{2 u-,}
$$

Thus, by (2.13),

$$
\sum_{M_{\xi}+1<m \leqslant \mathrm{H}-\beta} e^{x /(m+\beta)} \ll x e^{x /\left(\mathrm{N}_{\mathrm{s}}+1+\beta\right)} \exp \left(-\mathrm{C}_{1} x^{2 \theta-1}\right) .
$$

Hence, by (2.7) and (2.13),

$$
\text { (2.14) } \quad \mathrm{T}(0)-\mathrm{T}(\alpha)=\left(e^{x ;\left(\mathrm{N}_{0}+1\right)}-e^{x /\left(\mathrm{N}_{\alpha}+1+\alpha\right)}\right)
$$

$$
\left(1+\mathrm{O}\left(x^{-1}\right)\right)+\mathrm{O}(x) .
$$

To obtain the inferior limit, let N be a large natural number and let

$$
\begin{equation*}
x=x_{\mathrm{x}}=(\mathrm{N}+\alpha)^{\frac{1}{1-\theta}} . \tag{2.15}
\end{equation*}
$$

Then, by (2.4) and (2.12), $\mathrm{M}_{0}=\mathrm{M}_{\alpha}=\mathrm{N}$. Hence, by (2.2), (2.6), (2.12), (2.14) and (2.15),

$$
y \Xi_{x, y}(\alpha)=e^{x /(\mathbb{Y}+1)}=o(y)
$$

as $\mathrm{N} \rightarrow \infty$.

For the superior limit, take instead

$$
\begin{equation*}
x=x_{\mathrm{N}}=\mathrm{N}^{\frac{1}{1-\theta}} \tag{2.16}
\end{equation*}
$$

Then, by (2.4) and (2.12), $\mathrm{M}_{\alpha}=\mathrm{M}_{0}-1=\mathrm{N}-1$, so that, by (2.2), (2.6), (2.12), (2.14) and (2.16),

$$
y \Xi_{x, y}(\alpha) \sim-e^{x /(\mathbf{v}+\alpha)}+y \sim y
$$

as $\mathrm{N} \rightarrow \infty$.
2.3. The latter part of the paper is devoted to $h(n)=\log n$. It is well known that the sequence $\log n$ is not uniformly distributed modulo 1, and in view of this the next theorem is perhaps rather surprising. However, one can take the view that x being permitted to go to infinity, however slowly by comparison with y, crushes any unruly behaviour of the logarithmic function.

Let

$$
\begin{equation*}
\Omega_{x, y}(\alpha)=y^{-1} \sum_{n \leqslant y} c_{\alpha}(x \log n) \tag{2.17}
\end{equation*}
$$

Theorem 3. - Suppose that $0<\alpha<1, x \geqslant 2$ and $y \geqslant 2$. Then

$$
\Omega_{x, y}(\alpha)=\alpha+\mathrm{O}\left(x^{-1} \log x+x^{1 / 3} y^{-2 / 3}(\log x y)^{2 / 3}\right)
$$

Corollary 3.1. - Suppose that $x^{1 / 2} \log x=o(y)$ as $x \rightarrow \infty$. Then

$$
\Omega_{x, y}(\alpha) \rightarrow \alpha \quad \text { as } \quad x \rightarrow \infty
$$

Proof. - Let

$$
\begin{equation*}
\mathrm{M}=\left[y^{2 / 3} x^{-1 / 3}(\log x y)^{-2 / 3}\right]+1 \tag{2.18}
\end{equation*}
$$

Then, by Theorem 1 of [2] and (2.17),

$$
\begin{equation*}
\Omega_{x, y}(\alpha)-\alpha \ll y^{-1}+\mathrm{M}^{-1}+y^{-1} \sum_{k=1}^{\mathrm{M}} k^{-1}\left|\sum_{n \leqslant y} e(k x \log n)\right| \tag{2.19}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{Y}=[y]+\frac{1}{2} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}=4 \pi k x \tag{2.21}
\end{equation*}
$$

Then, by Lemma 3.12 of Titchmarsh [4],

$$
\begin{aligned}
& \sum_{n \leqslant y} e(k x \log n)=\frac{1}{2 \pi i} \int_{1+\frac{1}{\log y}-i \mathrm{~T}}^{1+\frac{1}{\log y+i \mathrm{~T}}} \zeta(s-2 \pi i k x) \frac{\mathrm{Y}^{s}}{s} d s \\
&+\mathrm{O}\left(\left(\frac{\mathrm{Y}}{\mathrm{~T}}+1\right) \log x y\right)
\end{aligned}
$$

where ζ is the Riemann zeta function. By moving the path of integration to the line $\sigma=1 / \log y$, one obtains

$$
\begin{array}{r}
\sum_{n \leqslant y} e(k x \log n)=\frac{y^{1+2 \pi i k x}}{1+2 \pi i k x}+\frac{1}{2 \pi i} \int_{\frac{1}{\log y}-i \mathbf{T}}^{\frac{1}{\log y}+i \mathbf{T}} \zeta(s-2 \pi i k x) \frac{\mathrm{Y}^{s}}{s} d s \\
+\mathrm{O}\left(\left((k x)^{1 / 2}+y \log k x\right) \mathrm{T}^{-1}\right) .
\end{array}
$$

Hence, by (2.21),
$\sum_{n \leqslant y} e(k x \log n) \ll(k x)^{1 / 2} \int_{0}^{\mathrm{T}} \frac{d t}{t+\frac{1}{\log y}}+(k x)^{-1 / 2}+\frac{y \log k x}{k x}$
$\ll(k x)^{1 / 2}(\log \log y+\log k x)+y(\log k x)(k x)^{-1}$.
Thus
$\sum_{k=1}^{\mathrm{M}} k^{-1}\left|\sum_{n \leqslant y} e(k x \log n)\right| \ll(\mathrm{M} x)^{\mathrm{I}^{1 / 2}}(\log \log y+\log \mathrm{M} x)+y x^{-1} \log x$.
Therefore, by (2.18) and (2.19), we have the theorem.

BIBLIOGRAPHY

[1] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974.
[2] B. Saffari and R.-C. Vaughan, On the fractional parts of x / n and related sequences. I, Annales de l'Institut Fourier, 26, 4 (1976), 115-131.
[3] B. Saffari and R.-C. Vaughan, On the fractional parts of x / n and related sequences, II, Annales de l'Institut Fourier, 27, 2 (1977), 1-30.
[4] E. C. Titchmarsh, Theory of the Riemann zeta function, Clarendon Press, Oxford, 1967.
R.-C. Vaughan, Imperial College
Dept of Mathematics
Huxley Building
180 Queen's Gate
London Sw7 2Bz (G. B.).

Manuscrit reçu le 23 janvier 1976
Proposé par C. Chabauty.

B. Saffari,

1, place Corneille 92100 Boulogne-Billancourt.

