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THE GROUP OF CREMONA TRANSFORMATIONS
GENERATED BY LINEAR MAPS AND THE

STANDARD INVOLUTION

by Jérémy BLANC & Isac HEDÉN (*)

Abstract. — This article studies the group generated by automorphisms of
the projective space of dimension n and by the standard birational involution of
degree n. Every element of this group only contracts rational hypersurfaces, but in
odd dimension, there are simple elements having this property which do not belong
to the group. Geometric properties of the elements of the group are given, as well
as a description of its intersection with monomial transformations.
Résumé. — Cet article étudie le groupe engendré par les automorphismes de

l’espace projectif de dimension n et par l’involution birationnelle standard de degré
n. Tout élément de ce groupe ne contracte que des hypersurfaces rationnelles, mais
en dimension impaire il existe des éléments simples qui ont cette propriété et n’ap-
partiennent pas au groupe. Des propriétés géométriques du groupe sont données,
de même qu’une description de son intersection avec le groupe des transformations
monômiales.

1. Introduction

Let us fix a ground field k. We will assume it to be arbitrary whenever
we do not state otherwise. The Cremona group Crn(k) = Bir(Pnk) is the
group of birational transformations of the space of dimension n. This group
contains Aut(Pnk) = PGL(n+ 1,k) and the birational map given by

σn : [x0 : · · · : xn] 799K[ 1
x0

: · · · : 1
xn

]

= [x1x2 . . . xn : x0x2x3 . . . xn : · · · : x0x1 . . . xn−1].

Keywords: Cremona transformation, standard involution, rational hypersurfaces, mono-
mial transformations.
Math. classification: 14E07.
(*) The authors acknowledge support by the Swiss National Science Foundation Grant
“Birational Geometry” PP00P2_128422 /1.
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For n = 3, this map is called a tetrahedral transformation and written Ttet
in [14, p. 301, §14] or the standard cubo-cubic transformation of space [29,
p. 179] or a (3, 3)-transformation [1, p. 2071-2072, 2108], as its degree and
the degree of its inverse are three (but of course this map is not the only
one having these properties). Nowadays, the usual terminology is to call
σn, in any dimension n, the standard Cremona transformation (see for
instance [12], [13], [21, p. 72], [8], [6]). The map σn restricts to an auto-
morphism of the standard torus T ⊂ Pnk and contracts the n+1 coordinate
hyperplanes, i.e. the complement of the torus.
The group Bir(P1

k) is equal to Aut(P1
k), so we will always assume n > 2

in the sequel. The classical Noether-Castelnuovo Theorem [4] (see also [28,
Chapter V, §5, Theorem 2, p. 100]) asserts that Bir(P2

k) is generated by
Aut(P2

k) and σ2 when k is algebraically closed. This is known to be false
when n > 3 or when k is not algebraically closed. The reason for these
two cases is in fact similar: it follows from the description of σn that every
element of the classical group

Gn(k) = 〈σn,Aut(Pnk)〉 ⊂ Bir(Pnk)

(whose elements are called regular by A. Coble [5, p. 359, §4] and punctual
by H. Hudson and P. Du Val [14, p. 318, §29], [9] and [10], see Section 8
for a discussion of the terminology) contracts only rational hypersurfaces
(recall that a irreducible hypersurface is said to be contracted if its image
has codimension > 2). Moreover, if n > 3 or if k is not algebraically closed,
there are elements of Bir(Pnk) which contract non-rational hypersurfaces
(see Section 7). Hence Gn(k) is a proper subgroup of Bir(Pnk) in general.
Its elements have been studied in detail in many texts. See in particular [18],
[5], [14], [31], [9], [10], [7], [12], [6].
To our knowledge, until now, there has been no other way of showing that

elements of Bir(Pnk) do not belong to Gn(k) than to look at non-rational
hypersurfaces that are contracted. The natural question that arises is then
whether the above reason is the only one which prevents elements from
being in Gn(k), i.e.: does Gn(k) contain every element of Bir(Pnk) that
contracts only rational hypersurfaces?
The answer to this question is positive for n = 2 and any field k; this

follows from an adaptation of the proof of the Noether-Castelnuovo The-
orem (see Proposition 7.4 below). However, we show in this text that the
answer is negative for any odd integer n > 3 and any field k. For instance
we prove that for n > 2, the birational monomial map

ξn : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3 : · · · : xn]

ANNALES DE L’INSTITUT FOURIER



STANDARD AND LINEAR CREMONA TRANSFORMATIONS 2643

does not belong to Gn(k) if n odd, but it does if n is even and char(k) 6= 2.
More generally, we give a way of deciding whether a monomial map belongs
to Gn(k) or not, at least when char(k) 6= 2. Recall that the group of mono-
mial transformations of Pnk is naturally isomorphic to (k∗)n o GL(n,Z).
The element(α1, . . . , αn),

 a11 . . . a1n
...

. . .
...

an1 . . . ann


 ∈ (k∗)n o GL(n,Z)

corresponds to the birational map

[x0 : · · · : xn] 799K [1 : α1(x1

x0
)a11 · · · (xn

x0
)a1n : · · · : αn(x1

x0
)an1 · · · (xn

x0
)ann ].

With this natural isomorphism, we obtain the following result.

Theorem 1.1. — Let k be any field and n > 2.
(1) If n is even and char(k) 6= 2, every monomial transformation of Pnk

belongs to Gn(k).
(2) If n is odd, there are monomial transformations of Pnk which do not

belong to Gn(k).
(3) If n is odd and char(k) 6= 2, then the group of monomial transfor-

mations that belong to Gn(k) is equal to

(k∗)n o GL(n,Z)odd,

where GL(n,Z)odd is the subgroup of GL(n,Z) consisting of matri-
ces such that each column has an odd number of odd entries (or an
odd sum of entries).

Remark 1.2. — The group GL(n,Z)odd is a maximal subgroup of
GL(n,Z), and has index 2n − 1 (Lemma 4.9).

The key point in the proof of part (2) of Theorem 1.1 is to observe that
in odd dimension, the discrepancy of hypersurfaces that are contracted by
elements of Gn(k) is even (see Section 3, and Proposition 3.5 in particular).
This result gives strong geometric properties of elements of Gn(k), which
we describe after giving the following definition.

Definition 1.3. — Let ϕ ∈ Bir(Pnk) and let H,Γ ⊂ Pnk be two closed
irreducible subsets. Denote by π : X → Pnk the blow-up of Γ and by E =
π−1(Γ) the exceptional divisor.
We will say that ϕ sends H onto the exceptional divisor of Γ if the

restriction of π−1ϕ induces a birational map H 99K E (this implies that H
is a hypersurface).

TOME 65 (2015), FASCICULE 6



2644 Jérémy BLANC & Isac HEDÉN

Theorem 1.4. — Let k be any field and n>2. Then the following hold.
(1) If n is odd andH ⊂ Pnk is a irreducible hypersurface which is sent by

an element g ∈ Gn(k) onto the exceptional divisor of an irreducible
closed subset Γ ⊂ Pnk, then Γ has even dimension.

(2) If n > m > 0, nm is even and char(k) 6= 2, then there exists
an irreducible closed linear subset Γ ⊂ Pnk of dimension m and an
element g ∈ Gn(k) that sends a hyperplane onto the exceptional
divisor of Γ.

Part (1) of Theorem 1.4 gives the geometric explanation of the fact that
ξn /∈ Gn(k) if n is odd (see Corollary 3.9). However, it follows from part (2)
that there are elements of G4(k) which send hypersurfaces onto the excep-
tional divisors of points, lines or planes. For this reason, it could a priori
be possible that G4(k) contains all elements of Bir(P4

k) that contract only
rational hypersurfaces. The same question remains open in any even dimen-
sion n > 4. It would also be interesting to know if the group generated by
Gn(k) and ξn contains all elements of Bir(Pnk) that contract only rational
hypersurfaces, or to describe Gn(k) ∩GL(n,Z) for n > 3 and char(k) = 2.

The article is organised as follows.
The result on discrepancies can also be viewed algebraically, using Jaco-

bians. We do this in Section 2, before giving the geometric description of
discrepancies in Section 3.

Section 4 explains how one can change the discrepancies in higher di-
mension, and especially in even dimension. It contains the proofs of Theo-
rems 1.1 and 1.4.

Section 5 describes when the canonical injections Bir(Pnk) → Bir(Pn+1
k )

send Gn(k) into Gn+1(k). In Section 6, we show that many automorphisms
of Ank can be obtained as elements of Gn(k) if char(k) 6= 2, namely all tame
automorphisms and the Nagata automorphism. The case of characteristic
zero is an easy observation, but the general case demands a little bit more
work.
Section 7 describes the relation between Gn(k) and rational hypersur-

faces which are contracted. Section 8, finally, explains the difference be-
tween the classical definitions of punctual maps that appear in the litera-
ture.
The authors thank Serge Cantat, Julie Déserti, Igor Dolgachev, Stéphane

Lamy, Ivan Pan and Thierry Vust for interesting discussions on the topic
and their remarks and corrections on the article. We also express our grat-
itude to the anonymous referee for his careful reading and very helpful
suggestions, remarks and historical references.
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2. The Jacobian

Definition 2.1.

(a) Let f0, . . . , fn ∈ k(x0, . . . , xn) be rational functions. We define

Jac(f0, . . . , fn) = det
((

∂fi
∂xj

)n
i,j=0

)
∈ k(x0, . . . , xn).

(b) If ϕ ∈ Bir(Pnk) is given by

[x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

where the fi are homogeneous polynomials of degree d without com-
mon factor, the Jacobian Jac(ϕ) of ϕ is defined to be Jac(f0, . . . , fn).
It is defined up to multiplication with the (n + 1)-th power of an
element of k∗, and has degree (n + 1)(d − 1) (or can be zero, if
char(k) > 0).

Remark 2.2. — If char(k) = 0, the Jacobian Jac(ϕ) of ϕ ∈ Bir(Pnk) is
a polynomial which determines the hypersurfaces of Pnk where the map ϕ
is not locally an isomorphism (this is false in positive characteristic, when
the Jacobian is zero).

Lemma 2.3. — Let k be a field of characteristic zero, h ∈ k[x0, . . . , xn]d
a homogeneous polynomial of degree d ∈ N and f0, . . . , fn ∈ k(x0, . . . , xn)e
homogeneous rational functions of degree e ∈ Z \ {0}. Then

Jac(hf0, . . . , hfn) =
(
1 + d

e

)
Jac(f0, . . . , fn)hn+1.

Proof. — By assumption we have fi(tx0, . . . , txn) = tefi(x0, . . . , xn) for
i = 0, . . . , n and for all t ∈ k∗. Taking the derivative of both sides with
respect to t gives

n∑
j=0

∂fi
∂xj

(tx0, . . . , txn)xj = ete−1fi(x0, . . . , xn),

and evaluating at t = 1 we see that the fi satisfy fi = 1
e

∑n
j=0 xj

∂fi

∂xj
.

We first show that the result holds when h = x0. Using linearity of det
with respect to the first column, the fact that fi = 1

e

∑n
j=0 xj

∂fi

∂xj
, and the

TOME 65 (2015), FASCICULE 6



2646 Jérémy BLANC & Isac HEDÉN

fact that det is alternating, we obtain

Jac(hf0, . . . , hfn) = det

f0 + x0
∂f0
∂x0

x0
∂f0
∂x1

. . . x0
∂f0
∂xn

...
...

...
fn + x0

∂fn

∂x0
x0

∂fn

∂x1
. . . x0

∂fn

∂xn


= (x0)n+1Jac(f0, . . . , fn)

+ (x0)n 1
e

n∑
j=0

xj det


∂f0
∂xj

∂f0
∂x1

. . . ∂f0
∂xn

...
...

...
∂fn

∂xj

∂fn

∂x1
. . . ∂fn

∂xn


= hn+1 (1 + 1

e

)
Jac(f0, . . . , fn),

so the result holds for h = x0. Analogously it holds for h = xj , j = 1 . . . , n
and it also holds for h = λ ∈ k. Applying it repeatedly, we obtain the case
when h is a monomial.
Since the Jacobian is a derivation in each of its arguments and zero

whenever two of the arguments are equal, we may use the product rule
repeatedly and obtain

Jac(hf0, . . . , hfn) = hn+1Jac(f0, . . . , fn)

+ hn
n∑
i=0

fi · Jac(f0, . . . , fi−1, h, fi+1, . . . , fn).

Hence, the result is equivalent to the following equality:

e

n∑
i=0

fi · Jac(f0, . . . , fi−1, h, fi+1, . . . , fn) = dh · Jac(f0, . . . , fn),

which is linear with respect to h, so the general case follows from the case
of monomials. �

Remark 2.4. — The Jacobian is an ancient tool, much used and studied
in classical works. In [25, p. 261], one can see the identity

Jac(fx0, . . . , fxn) = fn(f + x0
∂f

∂x0
+ · · ·+ xn

∂f

∂xn
)

for an arbitrary function f (not necessarily homogeneous) and it is written
“the proof is hardly needed”. If f is homogeneous of degreem, then x0

∂f
∂x0

+
· · · + xn

∂f
∂xn

= mf and the right hand side of the identity becomes (1 +
m)fn+1, which is a special case of Lemma 2.3 (corresponding to the identity
map).
For other relations and properties related to the Jacobian, see also [24,

p. 220] and [27, p. 228–229].

ANNALES DE L’INSTITUT FOURIER
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Corollary 2.5. — If char(k) = 0, then Jac(σn) =n(−1)n
∏n
i=0(xi)n−1.

Proof. — Since σn = [ hx0
: · · · : h

xn
] with h =

∏n
i=0 xi, it follows by

Lemma 2.3 that

Jac(σn) =
(

1 + n+1
−1

)
Jac(x−1

0 , . . . , x−1
n )hn+1 = n(−1)n

n∏
i=0

(xi)n−1.

�

Remark 2.6. — One can check by hand that Corollary 2.5 also holds if
char(k) > 0, even if Lemma 2.3 does not hold, but this will not be used in
the sequel.

Proposition 2.7. — Suppose that char(k) = 0 and let n, k > 2 be
some integers such that k divides n+ 1.

(1) The set

Hn,k = {f ∈ Bir(Pn) | Jac(f) = λhk for some h ∈ k[x0, . . . , xn], λ ∈ k∗}

is a subgroup of Bir(Pn) that contains Aut(Pn).
(2) The group Hn,k contains σn if and only if k = 2 and n is odd.
(3) For each irreducible hypersurface S ⊂ Pn of degree d prime to n+1,

the group Aut(Pn \ S) is contained in Hn,n+1, but σn /∈ Hn,n+1.
(4) In particular, taking S to be a line in P2, we have

〈Aut(P2),Aut(P2 \ S)〉 = 〈Aut(P2),Aut(A2)〉 ⊂ H2,3 ( Bir(P2)

(the same for n > 3 being obvious because of hypersurfaces con-
tracted).

Proof. — Since the Jacobian of every element of Aut(Pn) is an element
of k∗, we have Aut(Pn) ⊂ Hn,k.

Let f, g ∈Bir(Pn) be two birational maps of degree d1, d2, that we write as

f : [x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)],
g : [x0 : · · · : xn] 799K [g0(x0, . . . , xn) : · · · : gn(x0, . . . , xn)],

with polynomials fi, gi ∈ k[x0, . . . , xn] such that both the fi and the gi are
relatively prime. Supposing that the composition fg ∈ Bir(Pnk) has degree
d1d2, the chain rule states that

Jac(fg) = g∗(Jac(f)) · Jac(g),

where g∗(Jac(f)) is obtained by replacing each xi with gi in Jac(f). If the
degree of fg is d1d2−m, form > 0, there is a homogeneous polynomial h of

TOME 65 (2015), FASCICULE 6



2648 Jérémy BLANC & Isac HEDÉN

degree m that divides the formal composition of f and g. Using Lemma 2.3
this implies that

Jac(fg) =
(
d1d2−m
d1d2

)
g∗(Jac(f)) · Jac(g)/hn+1.

Since n + 1 is a multiple of k, we see that f, g ∈ Hn,k ⇒ fg ∈ Hn,k.
Moreover, taking g = f−1 we obtain that f ∈ Hn,k ⇔ f−1 ∈ Hn,k. This
concludes the proof of Assertion (1).
Assertion (2) directly follows from Corollary 2.5.
In order to prove (3), denote by h ∈ k[x0, . . . , xn] the irreducible ho-

mogenous polynomial defining S (which is unique up to multiple by an
element of k∗). For each f ∈ Aut(Pn \ S), the Jacobian of f only vanishes
on S, hence Jac(f) = λhm for some integer m > 0 and some λ ∈ k∗. We
obtain then

m deg(h) = deg(Jac(f)) = (n+ 1)(deg(f)− 1)

(see Definition 2.1). By assumption, deg(h) and n+ 1 are coprime, so n+ 1
divides m. This implies that f ∈ Hn,n+1. Assertion (4) corresponds to the
special case where n = 2 and deg(h) = 1. �

Corollary 2.8. — If n is odd and char(k) = 0, the Jacobian of each
element of Gn(k) is equal to λp2, for some λ ∈ k and some homogeneous
polynomial p ∈ k[x0, . . . , xn].

Proof. — Using the notation of Proposition 2.7, this corresponds to
saying that Gn(k) is contained in the group Hn,2. This is because
Aut(Pn) ⊂ Hn,2 and σn ∈ Hn,2, as observed in the proposition (or in
Corollary 2.5). �

Corollary 2.9. — If n is odd and char(k) = 0, the quadratic bira-
tional involution of Pnk given by

[x0 : · · · : xn] 799K [x1x2

x0
: x1 : x2 : · · · : xn] = [x1x2 : x0x1 : · · · : x0xn]

does not belong to Gn.

Proof. — The Jacobian of this map is −2xn−1
0 x1x2. The result follows

then from Corollary 2.8. �

Example 2.10. — We will see in Example 4.1 that the map

θn : [x0 : · · · : xn] 799K [x0x1 : (x0)2 : x1x2 : · · · : x1xn]

belongs to ∈ Gn(k). It satisfies Jac(θn) = −2(x0)2 · (x1)n−1 and this shows
in particular that Corollary 2.8 cannot be generalised to even dimension.

ANNALES DE L’INSTITUT FOURIER
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Note that Corollary 2.9 can be easily generalised to the following:

Corollary 2.11. — Let P1, P2 ∈ k[x1, . . . , xn] \ {0} be homogeneous
of degree 1 and 2 respectively, such that P2 defines a reduced quadric of Pnk.
If n > 3 is odd and char(k) = 0, the quadratic birational transformation
of P3

k given by

[x0 : · · · : xn] 799K [x0P1(x1, . . . , xn) + P2(x1, . . . , xn)
x0

: x1 : x2 : · · · : xn]

= [x0P1(x1, . . . , xn) + P2(x1, . . . , xn) : x0x1 : · · · : x0xn]

does not belong to Gn(k).

Proof. — Since

Jac
(
x0P1(x1, . . . , xn) + P2(x1, . . . , xn)

x0
, x1, x2, . . . , xn

)
= ∂

∂x0

(
P2

x0

)
= − P2

(x0)2

we have

Jac (x0P1(x1, . . . , xn) + P2(x1, . . . , xn), x0x1, x0x2, . . . , x0xn)

= −2P2(x1, . . . , xn) · (x0)n−1

by Lemma 2.3. The result follows then from Corollary 2.8. �

Remark 2.12. — Corollaries 2.9 and 2.11 also hold in positive charac-
teristic (even in characteristic 2). This can be observed geometrically, with
the tools developed in Section 3, but also by computing the affine Jacobian:
To a birational map

f : [x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

we can associate its affine Jacobian. This is

det
((

∂gi
∂xj

)n
i,j=1

)
∈ k(x1, . . . , xn),

where gi(x1, . . . , xn) = fi(1,x1,...,xn)
f0(1,x1,...,xn) , i = 1, . . . , n, are the coordinates of the

restriction of f to the affine open subset where x0 = 1. One can check that
this affine Jacobian is (−1)n( 1

x1...xn
)2 for σn, so is a square up to scalar

multiple (and is not zero, even if char(k) > 0). For n odd, one can then see
that the same holds for linear automorphisms and for elements of Gn(k),
by using chain rule.

TOME 65 (2015), FASCICULE 6



2650 Jérémy BLANC & Isac HEDÉN

3. Resolution of the standard involution and result on
discrepancies

Let us recall the following easy and well known result: the standard
quadratic involution σ2 : P2

k 99K P2
k can be factorised as the blow-up of

the three coordinate points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] followed by
the contraction of the three coordinate lines passing through 2 of these 3
points.
We can generalise this observation in the following way.

Proposition 3.1. — Let n > 2, let In = {0, . . . , n} and for each d ∈
{0, . . . , n− 2} let Ωd be the set of all subsets of In of size n− d. For each
element ∆ ∈ Ωd, we denote by X∆ ⊂ Pnk the linear subset of dimension d
defined by xi = 0 for each i ∈ ∆.
We then define inductively a sequence of birational morphisms πd :

Yd+1→ Yd, d = 0, . . . , n− 2 in the following way:
(1) Y0 = Pnk and π0 : Y1 → Pnk is the blow-up of all coordinate points,

i.e. all sets X∆, where ∆ ∈ Ω0.
(2) For d = 1, . . . , n − 2, πd : Yd+1 → Yd is the blow-up of the strict

transform of all varieties X∆, where ∆ ∈ Ωd.
Let Y = Yn−1, let π : Y → Pnk denote the composition π = π0 ◦ · · · ◦ πn−2,
and denote by E∆ ⊂ Y the strict transform of the exceptional divisor
contracted on X∆, for each ∆ in some Ωd. The following holds:

(1) The lift σ̂n = π−1σnπ is a biregular automorphism of Y .
(2) For each i ∈ {0, . . . , d− 2} and each ∆ ∈ Ωi, the automorphism σ̂n

exchanges E∆ with EIn\∆.

Proof. — (1) Denote by Symn+1 ⊂ Aut(Pnk) the group of permutations
of variables. The variety Y0 = Pnk is covered by the n+1 open subsets where
xi 6= 0, i = 0, . . . , n, each isomorphic to Ank and each containing exactly
one point blown up by π0. We can moreover choose the isomorphism to be
given by

(y1, . . . , yn) 7→ τ([1 : y1 : · · · : yn])
where τ ∈ Symn+1. The choice of τ is not unique, there are n! permutations
for one given chart. The point blown up by π0 is the origin of Ank, so the
blow-up of Ank at the origin naturally embeds into Ank×Pn−1 and has then
n affine charts isomorphic to Ank, each one intersecting exactly one of the
n lines X∆ passing through the point corresponding to the origin. We can
then choose the charts so that the map π0 corresponds to

(y1, . . . , yn) 7→ τ([1 : y1 : y1y2 : · · · : y1yn]),

ANNALES DE L’INSTITUT FOURIER
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the exceptional divisor corresponds to y1 = 0 and the line to y2 = · · · =
yn = 0. Each of the (n+1)n charts on Y1 corresponds to a choice of a point
X∆0 and a line X∆1 containing the point. Continuing in this way, we obtain
exactly (n+1)! charts on Y , parametrised by the elements τ ∈ Symn+1 (or
equivalently by the flags X∆0 ⊂ X∆1 ⊂ · · · ⊂ X∆n−1), such that the map
π corresponds in the corresponding chart to

(y1, . . . , yn) 7→ τ([1 : y1 : y1y2 : · · · : y1y2 · · · yn]).

Since σn commutes with elements in Symn+1, we have

σnτ([1 : y1 : y1y2 : · · · : y1yn])

= τ([1 : 1
y1

: 1
y1y2

: · · · : 1
y1y2 · · · yn

])

= τ([y1 . . . yn : y2 . . . yn : y3 · · · yn : · · · : yn−1yn : yn : 1])

so the restriction of σ̂n yields an isomorphism between each chart of Y with
another one.

(2) Since σ̂n is an automorphism of Y , it is enough to consider the blow-
ups π∆ : Z∆ → Pnk and πIn\∆ : ZIn\∆ → Pnk of X∆ and XIn\∆ and check
that the lift σ′ = (πIn\∆)−1σnπ∆ of σn induces a birational map between
the exceptional divisors. By a change of variables, we may assume that
X∆ ⊂ Pnk andXIn\∆ ⊂ Pnk are given respectively by x0 = x1 = . . . = xk = 0
and xk+1 = . . . = xn = 0, so the blow-ups of these two subsets are given
locally by

Ank → Pnk
(y1, . . . , yn) 7→ [y1 : y1y2 : · · · : y1yk+1 : yk+2 : · · · : yn : 1],

and

Ank → Pnk
(y1, . . . , yn) 7→ [1 : y1 : · · · : yk : yk+1yn : · · · : yn−1yn : yn].

In these coordinates, the exceptional divisors are given by y1 = 0 and
yn = 0 respectively and the map σ′ becomes

(y1, . . . , yn) 799K
(

1
y2
,

1
y3
, . . . ,

1
yk+1

,
1

yk+2
, . . . ,

1
yn
, y1

)
.

Restricting to y1 = 0 we get a birational map between the two exceptional
divisors. �

With this description, we can show that the discrepancy of a hypersurface
contracted by an element of Gn(k) is even when n is odd. To explain what
this means, we first recall the following definition.
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Definition 3.2. — Let ψ : X 99K Y be a birational map between two
smooth projective varieties and let H ⊂ X be an irreducible hypersurface.
We can always find a birational morphism π : Z → Y , such that Z is
a smooth projective variety and π−1ψ : X 99K Z can be restricted to a
birational map H 99K E, for some irreducible hypersurface E ⊂ Z. We
then define the discrepancy of H with respect to ψ by the integer a as the
order of vanishing of KZ − π∗(KY ) along E.

Remark 3.3. — The discrepancy only depends on ψ and H, and not
on π [22, Proposition-Definition 4.4.1, p. 179]. In general, this definition
is often used for terminal Q-factorial singularities and the discrepancy can
be a rational number, but we will only need the smooth case here. In
particular, the discrepancies that we will consider are all integers.

Remark 3.4. — If Y = Pnk and π : X → Y is the blow-up of an irre-
ducible subvariety Γ ⊂ Pnk of dimension d, and E ⊂ X is the exceptional
divisor, then the discrepancy of E with respect to π is n− d− 1.

Proposition 3.5. — Let k be any field and let n > 3 be odd. If g ∈
Gn(k) and H ⊂ Pnk is an irreducible hypersurface, the discrepancy of H
with respect to g is always even.

Remark 3.6. — In characteristic 0, one can see that the discrepancy of
an irreducible hypersurface H ⊂ Pnk with respect to ϕ ∈ Bir(Pnk) is the
exponent of the equation of H in Jac(ϕ). Hence, Proposition 3.5 is the
geometric version of Corollary 2.8.

Proof. — Since the automorphisms of Pnk do not change the discrepancy,
we only need to show that the discrepancy of H with respect to f differs
by an even number from the discrepancy of H with respect to σnf for
f ∈ Gn(k).
With the same notation as in Proposition 3.1, let Z be a smooth projec-

tive variety with a birational morphism ρ : Z −→ Y such that the restric-
tion of (πρ)−1f : Pnk 99K Z to H is a birational map H 99K HZ for some
irreducible hypersurface HZ ⊂ Z. This fact implies that the discrepancy
of H with respect to f (respectively to σnf) is equal to the discrepancy of
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HZ with respect to πρ (respectively to σnπρ = πσ̂nρ).

Z

ρ

��
Y

σ̂n //

π

~~

Y

π

  
Pnk

f // Pnk
σn // Pnk

For d = 0, . . . , n − 2, let Ed ∈ Pic(Yd+1) be the exceptional divisor of
πd : Yd+1 → Yd, which is the sum of

(
n+1
n−d
)
irreducible divisors, contracted

by πd onto the strict transforms of the toric d-dimensional linear varieties
of Pnk.
Using the ramification formula, KYd+1 = π∗d(KYd

) + (n − 1 − d)Ed, re-
peatedly we get

KY = (π)∗(KPn
k
) + En−2 +

n−3∑
j=0

(n− 1− j)(πj+1 · · ·πn−2)∗(Ej).

Since the linear spaces blown up by π0, . . . , πn−2 are in increasing dimen-
sion, the strict transform of each Ej on Y is the same as its total transform
(πj · · ·πn−2)∗(Ej−1); we will denote it by Êj (in the notation of Proposi-
tion 3.1, Êj =

∑
∆∈Ωj

E∆). With this notation the above formula becomes

KY = (π)∗(KPn
k
) +

n−2∑
j=0

(n− 1− j)Êj .

We also denote by Ên−1 ∈ Pic(Y ) the strict transform of
the union of the coordinate hyperplanes. Applying Proposition 3.1, we ob-
tain that (σ̂n)∗(Êj) = Ên−1−j for j = 0, . . . , n− 1. Applying (σ̂n)∗ to the
above formula we get

KY = (πσ̂n)∗(KPn
k
) +

n−2∑
j=0

(n− 1− j)Ên−1−j .

It remains to compare the coefficients of HZ in KZ − (πρ)∗(KPn
k
) and

KZ − (πσ̂nρ)∗(KPn
k
) and to see that the difference is even:
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(πσ̂nρ)∗(KPn
k
)− (πρ)∗(KPn

k
)

= ρ∗((πσ̂n)∗(KPn
k
)− π∗(KPn

k
))

= ρ∗

(KY −
n−2∑
j=0

(n− 1− j)Ên−1−j)− (KY −
n−2∑
j=0

(n− 1− j)Êj)


= ρ∗

n−2∑
j=0

(n− 1− j)Êj −
n−2∑
j=0

(n− 1− j)Ên−1−j


= ρ∗

n−2∑
j=0

(n− 1− j)Êj −
n−1∑
j=1

jÊj


= ρ∗

(n− 1)Ê0 − (n− 1)Ên−1 +
n−2∑
j=1

(n− 1− 2j)Êj

 .

All coefficients of the above sum are even, since n is odd. �

Remark 3.7. — The proof above also shows that composing with ele-
ments of Gn(k) do not change the parity of the discrepancies, when n is
odd. It can then be used to say that two elements ϕ1, ϕ2 ∈ Bir(Pnk) are not
equal, up to right and left multiplication by elements of Gn(k).

Lemma 3.8. — Let k be any field and let n > m > 2. Then the bira-
tional map

ϕ : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: · · · : xm

x1

x0
: xm+1 : · · · : xn]

sends the hyperplane H1 ⊂ Pnk given by x1 = 0 onto the exceptional divisor
of the linear subspace Γ ⊂ Pnk given by x1 = x2 = · · · = xm = 0 and of
dimension n−m.

Proof. — The hyperplane H1 ⊂ Pnk given by x1 = 0 is contracted by ϕ
onto the linear subspace Γ. The blow-up πΓ : XΓ → Pnk of this subset is
the birational morphism given by the projection of

XΓ = {([x0 : · · · : xn], [y1 : · · · : ym]) ∈ Pnk × Pm−1
k |

xiyj = xjyi, i, j ∈ {1, . . . ,m}}
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onto the first factor. The birational map (πΓ)−1 ◦ ϕ is then

([x0 : · · · : xn]) 799K

([x0 : x1 : x2
x1

x0
: · · · : xm

x1

x0
: xm+1 : · · · : xn], [x0 : x2 : · · · : xm]),

so its restriction to H1 yields a birational map from H1 to the exceptional
divisor E = (πΓ)−1(Γ). �

Corollary 3.9. — Let k be any field and n > 3 be odd. Then the
birational map

ξn : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3 : · · · : xn]

does not belong to Gn(k).

Proof. — It follows from Lemma 3.8 that ξn sends a hyperplane onto
the exceptional divisor of the linear subspace given by x1 = x2 = 0. The
linear subspace having codimension 2, the discrepancy obtained is equal to
1. Thus ξn does not belong to Gn(k), by Proposition 3.5. �

Example 3.10. — Looking at the geometric description of σn, one can
easily produce elements g ∈ Gn(k) which are not symmetrical. We choose
for instance α ∈ Aut(Pnk) given by

α : [x0 : x1 : · · · : xn] 7→ [x0 : x1 + x0 : x2 + x1 + x0 : x3 : · · · : xn],

α−1 : [x0 : x1 : · · · : xn] 7→ [x0 : x1 − x0 : x2 − x1 : x3 : · · · : xn].

The image of the coordinate points by α and α−1 have distinct alignement
with respect to the hyperplanes contracted by σn. Indeed, denoting by
pi the point where xi is the only non-zero value, α(p0) = [1 : 1 : 1 :
0 : · · · : 0] has three non-zero coordinates, but this is not the case for
α−1(pi), i = 0, . . . , n. This implies that the base-points of g = σnασn and
g−1 = σnα

−1σn have a different nature. Doing the computation, one gets

g : [x0 : x1 : · · · : xn] 7→ [x0 : x0x1

x0 +x1
: x0x1x2

x0x1 +x0x2 +x1x2
: x3 : · · · : xn],

g−1 : [x0 : x1 : · · · : xn] 7→ [x0 : x0x1

x0−x1
: x1x2

x1−x2
: x3 : · · · : xn].

If n = 2, g and g−1 are two birational maps of degree 3, with not the same
number of proper base-points (3 and 4 respectively). If n > 3, we get maps
of different degree: 4 and 3. This contradicts the expectations of Kantor
and Coble on the degree of elements of G3(k):
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For regular transformations of 3-space, Kantor claims, in [18, Theo-
rem IX, p. 7] “Die Transformationen haben stets in beiden Räumen gle-
ich hohe Ordnung.” Also one can see [1, p. 2108], “wie die ebenen Cre-
monaschen Transformationen: eine Transformation und ihre inverse haben
ein und diesselbe Ordnung”. Similarly, one find in [5, p. 366 (24)] “For a reg-
ular Cremona transformation in Sk the direct and inverse transformation
have the same order and ...”

4. Changing the discrepancies in even dimension and
monomial maps

As we saw in Proposition 3.5, the discrepancy of a hypersurface which is
contracted by an element of Gn is always even when n is odd, and the main
reason for this is that σ̂n exchanges the divisors associated with blow-ups
of linear subspaces of dimension k with divisors associated with blow-ups
of linear subspaces of dimension n − 1 − k. Here, we show how to use
this in even dimension to get elements of Gn(k) that contract divisors on
subspaces of codimension 2, with discrepancy 1.

Example 4.1. — We fix n > 2.
(1) Let α1 ∈ Aut(Pnk) be given by

[x0 : x1 : · · · : xn] 7→ [x0 : x0 − x1 : x2 : · · · : xn].

Then, α1σnα1σnα1 ∈ Gn(k) is equal to the quadratic involution

θn : [x0 : · · · : xn] 799K [x0 : (x0)2

x1
: x2 : · · · : xn].

(2) Moreover denoting by α2 ∈ Aut(Pnk) the element given by

[x0 : x1 : · · · : xn] 7→ [x0 : x1 : x1 − x2 : x3 : · · · : xn],

the map θnα2θn ∈ Gn(k) is equal to the quadratic involution

[x0 : · · · : xn] 799K [x0 : x1 : (x0)2

x1
− x2 : x3 : · · · : xn].

Remark 4.2. — The composition which yields the map θn (but also the
map α2) was already constructed, at least for n = 3, by M. Gizatullin
in [12, p. 115] to find elements of G3(k) which contract hyperplanes onto
curves (see Section 8 for more details). The geometric idea here is that
σn contracts a hyperplane onto a point, which is then moved by α onto a
general point of a coordinate line. The point is then blown up and replaced
with a hypersurface in the blow-up of the line, which is sent by σn onto a
codimension 2 subset.
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Lemma 4.3. — If n > 3 and char(k) 6= 2, the following map belongs to
Gn(k):

τ : [x0 : · · · : xn] 799K [x0 : x1 + x2x3

x0
: x2 : · · · : xn]

Remark 4.4. — We do not know if τ belongs toGn(k) when char(k) = 2.
Calculations tend to indicate that this is not the case, but we do not have
a proof.

Proof. — It follows from Example 4.1 that

τ ′ : [x0 : · · · : xn] 799K [x0 : x1 + (x2)2

x0
: x2 : x3 : · · · : xn]

belongs to Gn(k). Hence, writing α = [x0 : · · · : xn] 7→ [x0 : x1 : x2 + x3 :
x3 : · · · : xn], we get

(τ ′)−1α−1τ ′α : [x0 : · · · : xn] 799K [x0 : x1 + x3(x3 − 2x2)
x0

: x2 : x3 : · · · : xn],

which is equal to τ , up to linear automorphisms. �

The main construction of this section is the following example, which
we first describe algebraically, before explaining the geometry behind the
construction.

Example 4.5. — The following construction works for each integer n > 3
but is more interesting for n > 4.
We denote by θn, τ1, τ2, α ∈ Bir(Pnk) the following birational involutions

θn = [x0 : · · · : xn] 7→ [x0 : (x0)2

x1
: x2 : · · · : xn],

τ1 = [x0 : · · · : xn] 7→ [x0 : −x1 + x0x2

x3
: x2 : x3 : · · · : xn],

τ2 = [x0 : · · · : xn] 7→ [x0 : x1 : −x2 + x1x3

x0
: x3 : · · · : xn],

α = [x0 : · · · : xn] 7→ [x0 : x1 : x3 − x2 : x3 : · · · : xn].

It follows from Example 4.1 and Lemma 4.3 that the four maps belong to
Gn(k), if char(k) 6= 2. Then,

χ0 = σnασnτ2σnτ1θn ∈ Gn(k)

is given by

χ0 : [x0 : · · · : xn] 799K

[ 1
x0

: x1x3

x0(x1x2−x0x3) : x1(x2)2 +x0(x3)2−x0x2x3

x0(x3)3 : 1
x3

: · · · : 1
xn

].
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It sends the hyperplane H0 ⊂ Pnk given by x0 = 0 onto the exceptional
divisor of the plane P ⊂ Pnk given by x3 = · · · = xn = 0. Hence the
discrepancy is n− 3.

Let us explain the geometric idea of this construction.
(1) The map θn sends the hyperplane H0 onto a codimension 1 subset

of the exceptional divisor of the linear subspace R ⊂ Pnk given by
x0 = x1 = 0.

(2) The map σn exchanges the exceptional divisor of R with the excep-
tional divisor of the line L ⊂ Pnk given by x2 = · · · = xn = 0; these
divisors are naturally birational to R × L, so that the projections
are restrictions of the blow-ups.

(3) The image of H0 by θn corresponds then to a divisor of bidegree
(0, 1) in R× L; the projection to R is surjective but the projection
to L has only one point in its image.

(4) The map τ1 fixes R; its action on the divisor R×L sends the divisor
of bidegree (0, 1) onto a divisor of bidegree (1, 1).

(5) After applying σn, we apply τ2, which fixes L. It sends the divisor
of bidegree (1, 1) onto a divisor of bidegree (1, 0) in R× L.

(6) After applying σn again, the divisor of bidegree (1, 0) corresponds
to a general hypersurface of R (x3 = x2), which we move to a special
one (x2 = 0) by α.

(7) The last application of σn allows to go from x0 = x1 = x2 = 0 to
the plane given by x3 = · · · = xn = 0.

Remark 4.6. — In the above construction, we could replace the maps
τi with maps fixing L and R respectively, and acting on the exceptional
divisor in the same way. If char(k) = 2, it does not seem to be possible to
obtain such elements in Gn(k).

Starting with the map χ0 ∈ Gn(k) of Example 4.5, the following con-
struction provides monomial elements of Gn(k).

Example 4.7. — We use the map χ0 ∈ Gn(k) of Example 4.5 and the
following two elements of Gn(k).

τ = [x0 : · · · : xn] 799K [x0 : x1 + x0x3

x2
: x2 : x3 : · · · : xn],

α = [x0 : · · · : xn] 799K [x0 : x1 : x3 − x2 : x3 : · · · : xn].

Then χ1 = σnταχ0τ ∈ Gn(k) is the following monomial map

χ1 : [x0 : · · · : xn] 799K [x0 : x0x2

x3
: −x0(x3)3

x1(x2)2 : x3 : · · · : xn].
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Then we can obtain the following.

Proposition 4.8. — Assume that n > 3 and char(k) 6= 2. Then, the
following birational maps are elements of Gn(k):

µ : [x0 : · · · : xn] 799K [x0 : x1 : x2(x1

x0
)2 : x3 : · · · : xn],

ν : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3

x1

x0
: x4 : · · · : xn].

Moreover, the following birational map belongs to Gn(k) if and only if n
is even:

ξn : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3 : · · · : xn].

Proof. — (a) It follows from Example 4.1 that the birational map

θn : [x0 : · · · : xn] 799K [x0 : (x0)2

x1
: x2 : · · · : xn]

= [x1 : x0 : x2
x1

x0
: · · · : xn

x1

x0
]

belongs to Gn(k). Hence, the maps

ϕ1 : [x0 : · · · : xn] 799K [x0 : x1 : (x1)2

x2
: x3 : · · · : xn],

ϕ2 : [x0 : · · · : xn] 799K [ (x1)2

x0
: x1 : · · · : xn],

ϕ3 : [x0 : · · · : xn] 799K [x0 : x1 : (x0)2

x2
: x3 : · · · : xn],

all belong to Gn(k), which implies that µ = ϕ2ϕ3ϕ2ϕ1 ∈ Gn(k).
(b) It follows from Example 4.7 that the birational map

χ : [x0 : · · · : xn] 799K [x0 : x0x2

x3
: x0(x3)3

x1(x2)2 : x3 : · · · : xn]

belongs to Gn(k), and as before the map

ϕ4 : [x0 : · · · : xn] 799K [x0 : (x3)2

x1
: x2 : x3 : · · · : xn]

also belongs to Gn(k). Hence, the map

µχϕ4 : [x0 : · · · : xn] 799K [x0 : x2
x0

x3
: x1

x0

x3
: x3 : · · · : xn]

belongs to Gn(k). This implies that ν ∈ Gn(k).
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(c) Multiplying ν with conjugates by permutations, we obtain that

ψk : [x0 : · · · : xn] 799K

[x0 : x1 : x2
x1

x0
: x3

x1

x0
: x4

x1

x0
: · · · : x2k−1

x1

x0
: x2k : · · · : xn]

belongs to Gn(k) for each k with 3 6 2k − 1 6 n.
If n = 2k − 1, the map ξn does not belong to Gn(k), by Corollary 3.9.
If n = 2k, the map ϕ5(ψk)−1 ∈ Gn(k) is equal to

[x0 : · · · : xn] 799K [x0 : x1 : x2 : · · · : xn−1 : xn
x1

x0
]

where

ϕ5 : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3

x1

x0
: · · · : xn

x1

x0
].

Since ϕ5 is equal to θn up to automorphisms, the map ξn belongs to Gn(k).
�

As we already explained in the introduction, the subgroup of Bir(Pnk) that
consists of monomial transformations with coefficient one is isomorphic to
GL(n,Z): each matrix  a11 . . . a1n

...
. . .

...
an1 . . . ann


corresponds to the birational map of Ank which is given by

(x1, . . . , xn) 99K (xa11
1 · · ·xa1n

n , . . . , xan1
1 · · ·xann

n )

and which extends to the birational map of Pnk given by

[x0 : · · · : xn] 99K [1 : (x1

x0
)a11 · · · (xn

x0
)a1n : · · · : (x1

x0
)an1 · · · (xn

x0
)ann ].

Lemma 4.9. — Let n > 1, and denote by GL(n,Z)odd ⊂ GL(n,Z) the
subgroup of matrices such that each column has an odd number of odd
entries. Then the following hold.

(1) The group GL(n,Z)odd is a maximal subgroup of GL(n,Z), and has
index 2n − 1.
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(2) If n > 3, then GL(n,Z)odd is generated by the group of matrix
permutations and the following matrices:

Mθ =


−1

1
. . .

1

, Mµ =


1
2 1

. . .
1

, Mν =


1
1 1
1 1

. . .
1

.

Proof. — (1) There is a canonical surjective group homomorphism
GL(n,Z) → GL(n,F2), which induces an action GL(n,Z) on the vector
space V = (F2)n by right multiplication. As two distinct elements of V \{0}
are linearly independent, the action on V \ {0} is doubly transitive. More-
over, it follows from the definition of GL(n,Z)odd that it is the isotropy
group of the point (1, . . . , 1), so GL(n,Z)odd has index 2n − 1 in GL(n,Z),
and acts transitively on V \ {(0, . . . , 0), (1, . . . , 1)}. It remains to see that
this implies that GL(n,Z)odd is maximal in GL(n,Z). An elementary way
is to observe that for each M,N ∈ GL(n,Z) \ GL(n,Z)odd, there exist
A,B ∈ GL(n,Z)odd such that AM = NB: choose B that sends (1, . . . , 1)N
onto (1, . . . , 1)M and observe that A = NBM−1 fixes (1, . . . , 1). This can
also be explained by more general classical results: groups doubly transitive
are primitive [15, p. 149, Theorem 1.9] and stabilisers in primitive groups
are maximal [15, p. 147, Theorem 1.4].

(2) We assume n > 3 and denote by H ⊂ GL(n,Z)odd the group gener-
ated by matrix permutations and byMθ,Mµ,Mν . Our aim is to prove that
GL(n,Z)odd ⊂ H.
Denote byH ′ the group of elements of GL(n,Z)odd having t(0, . . . , 0, 1) as

the last column. By sending an element of H ′ onto the submatrix consisting
of the first n − 1 lines and columns, we obtain a group homomorphism
ρ : H ′ → GL(n − 1,Z). Note that ρ is surjective: we can complete any
element of GL(n − 1,Z) by adding entries on the last line so that the
corresponding element belongs to H ′ ⊂ GL(n,Z)odd. The kernel of ρ is
then isomorphic to Zn−1, generated by the matrices


1

1
. . .

1
2 1

 ,


1

1
. . .

1
2 1

 , . . . ,


1

1
. . .

1
2 1

 ,
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and is thus contained in H. Moreover, the matrices

Mθ =


−1

1
. . .

1

 , M ′ν =


1
1 1

. . .
1 1


belong to H ′ ∩H and are sent by ρ onto elements that generate GL(n,Z),
together with the image of the permutation matrices of H ′. It follows that
H ′ ⊂ H.
It remains to take an arbitrary element g ∈ GL(n,Z)odd and to see that

some element of Hg has last column equal to t(0, . . . , 0, 1); this will imply
that g ∈ H. To do this, we replace g with hg, where h ∈ H, in the following
way.
Step 1: We multiply g on the left with multiples of permutations andMθ, so

that the last column becomes t(a1, . . . , an) with 0 6 a1 6 · · · 6 an.
Step 2: We multiply on the left with the conjugate of M−1

ν by a per-
mutation matrix, replace t(a1, . . . , an) with t(a1, . . . , an−3, an−2 −
an−1, an−1, an − an−1), and then go back to Step 1.

It remains to observe that this algorithm always ends with a last column
equal to t(0, . . . , 0, 1). Note that Step 2 decreases the value of

∑
i|ai| by

2an−2. If an−2 = 0, then an−1 6= an because the sum is odd, and applying
Step 2 decreases the value of maxi|ai| (except in the case where an−1 = 0,
which implies that an = 1). Hence, we always decrease the value of the pair
(
∑
i|ai|,maxi|ai|) (in a lexicographic order), until we reach t(0, . . . , 0, 1).

�

We can now give the proofs of Theorems 1.1 and 1.4, which follow from
the above results.
Proof of Theorem 1.1. — For any n and any k, the group Gn(k) contains

the diagonal automorphisms of Pnk, so the question reduces to studying the
intersection of Gn(k) with the group GL(n,Z) of monomial transformations
with coefficient one.
If n = 2, then G2(k) contains θ2 : [x0 : x1 : x2] 799K [x0 : (x0)2

x1
: x2] = [1 :

x0
x1

: x2
x0

] (Example 4.1), and thus also the map [x0 : x1 : x2] 799K [ (x0)2

x2
: x1 :

x0] = [1 : x1
x0
· x2
x0

: x2
x0

]. The two correspond to(
−1 0
0 1

)
,

(
1 1
0 1

)
∈ GL(2,Z)

and generate, together with permutations, the group GL(2,Z).
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If n > 4 is even and char(k) 6= 2, the map

ξn : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3 : · · · : xn]

belongs to Gn(k) (Proposition 4.8). This map, together with permutations
and θn, generates GL(n,Z).

If n is odd, then Gn(k) does not contain ξn (Corollary 3.9), so GL(n,Z)
is not contained in Gn(k).

If n is odd and char(k) 6= 2, then Gn(k) contains the following maps (see
Example 4.1 and Proposition 4.8):

θn : [x0 : · · · : xn] 799K [x0x1 : (x0)2 : x1x2 : · · · : x1xn],

µ : [x0 : · · · : xn] 799K [x0 : x1 : x2(x1

x0
)2 : x3 : · · · : xn],

ν : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: x3

x1

x0
: x4 : · · · : xn].

This shows, together with Lemma 4.9, that Gn(k) contains the subgroup
GL(n,Z)odd of GL(n,Z) because Mθ,Mµ,Mν ∈ GL(n,Z)odd correspond
to θn, µ, ν ∈ Gn(k) respectively. Moreover, this group being maximal in
GL(n,Z), we have

Gn(k) ∩GL(n,Z) = GL(n,Z)odd.

�

Proof of Theorem 1.4. — (1) If H ⊂ Pnk is a irreducible hypersurface
which is sent by an element g ∈ Gn(k) onto the exceptional divisor of an
irreducible closed subset Γ ⊂ Pnk, the discrepancy of H with respect to g
is n− d− 1, where d is the dimension of Γ. If n is odd, the discrepancy is
even by Proposition 3.5, so d is even.

(2) If n > m > 0, nm is even and char(k) 6= 2, we want to find an
irreducible closed linear subset Γ ⊂ Pnk and an element g ∈ Gn(k) that
sends a hyperplane onto the exceptional divisor of Γ. We consider the map

ϕ : [x0 : · · · : xn] 799K [x0 : x1 : x2
x1

x0
: · · · : xn−m

x1

x0
: xn−m+1 : · · · : xn]

which sends the hyperplane H1 ⊂ Pnk given by x1 = 0 onto the exceptional
divisor of the linear subspace Γ ⊂ Pnk given by x1 = x2 = · · · = xn−m = 0
and of dimension m.
If n is even, then ϕ belongs to Gn(k), like all monomomial birational

maps of Pnk (Theorem 1.1). If n is odd, then m is even, so ϕ belongs to
GL(n,Z)odd, which is contained in Gn(k) by Theorem 1.1. �
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Example 4.10. — At the end of the introduction of [12], M. Gizatullin
gives an example of quadratic transformation due to I. Dolgachev, “con-
sidered as an analog for P5 of the standard quadratic transformation” σ2.
The transformation is given by

σ′ : [x0 : · · · : x5] 799K [x1x2 : x0x2 : x0x1 : x0x3 : x1x4 : x2x5].

It sends the three hyperplanes x0 = 0, x1 = 0 and x2 = 0 onto the excep-
tional divisors of three planes. In affine coordinates, we obtain

(x1, . . . , x5) 799K
(

1
x1
,

1
x2
,
x3

x1x2
,
x4

x2
,
x5

x1

)
which corresponds to the matrix

−1 0 0 0 0
0 −1 0 0 0
−1 −1 1 0 0

0 −1 0 1 0
−1 0 0 0 1

 ∈ GL(5,Z)odd

so the map belongs to G5(k) if char(k) 6= 2, by Theorem 1.1.

Remark 4.11. — Seeing P5 as P(k[x0, . . . , x2]2), where k[x0, . . . , xn]d
denotes the vector space of homogeneous polynomials of degree d, we can
choose homogenous coordinates zi,j = xixj on it. The map of Example 4.10
becomes then

σ′ : [z00 : z11 : z22 : z12 : z02 : z01] 799K
[z11z22 : z00z22 : z00z11 : z12z00 : z02z11 : z01z22]

= [ 1
z00

: 1
z11

: 1
z22

: z12

z11z22
: z02

z00z22
: z01

z00z11
]

One obtains a map Aut(P2) ∪ {σ2} → G5(k) that sends σ2 onto σ′, and a
linear automorphism α onto the linear automorphism corresponding to the
action of α on P(k[x0, . . . , x2]2). This map naturally extends to a group
homomorphism G2(k)→ G5(k), as it was observed by [12].
One can then generalise this construction to any dimension, and send σn

onto the involution σ′ ∈ Bir(P(k[x0, . . . , xn]2) = Bir(PN ) given by

σ′ : [z00 : z11 : · · · : znn : · · · : zij : . . . ] 799K

[ 1
z00

: 1
z11

: · · · : 1
znn

: · · · : zij
ziizjj

: . . . ].

This element is a monomial transformation of PN , that belongs to GN (k)
if n 6≡ 3 (mod 4).
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The natural question that arises is to know if this extends to a group ho-
momorphism Gn(k) → Bir(PN ) (or Gn(k) → GN (k) for n 6≡ 3 (mod 4)).
One needs for this to know the relations of the groupGn(k)=〈Aut(Pn), σn〉.

5. Linear injections Bir(Pn
k)→ Bir(Pn+1

k )

There is a canonical injection

ιn : Bir(Ank)→ Bir(An+1
k ),

which corresponds to acting on the n first coordinates of An+1
k and to fix

the last one: if ϕ ∈ Bir(Ank), then ιn(ϕ) ∈ Bir(An+1
k ) is given by

(ιn(ϕ))(x1, . . . , xn+1) = (ϕ(x1, . . . , xn), xn+1).

Choosing birational maps Ank → Pnk and An+1
k → Pn+1

k , we can thus
obtain injections Bir(Pnk) → Bir(Pn+1

k ). The simplest one is when we use
linear open embeddings Aik → Pik, i.e. open embeddings such that the pull-
back of a general hyperplane is a hyperplane.

Definition 5.1. — An injective group homomorphism ι : Bir(Pnk) →
Bir(Pn+1

k ) is said to be a linear embedding if there exist linear open em-
beddings τn : Ank → Pnk and τn+1 : An+1

k → Pn+1
k such that

ι(ϕ) = τn+1ιn((τn)−1ϕτn)(τn+1)−1

for each ϕ ∈ Bir(Pnk) (where ιn : Bir(Ank) → Bir(An+1
k ) is the canonical

embedding as above).

Proposition 5.2. — Let ι : Bir(Pnk) → Bir(Pn+1) be a linear embed-
ding.

(1) If n is even, then ι(Gn(k)) 6⊂ Gn+1(k).
(2) If n is odd and char(k) 6= 2, then ι(Gn(k)) ⊂ Gn+1(k).

Proof. — Let us denote by τn : Ank → Pnk and τn+1 : An+1
k → Pn+1

k the
linear embdeddings associated to ι.

If we replace τn with another linear embedding τ ′n : Ank → Pnk, we do not
change the group ι(Gn(k)) since (τ ′n)−1 ◦ τn is an element of Aut(Pnk) ⊂
Gn(k). Similarly, replacing τn with another linear embedding only replaces
ι(Gn(k)) with a conjugate by an element of Aut(Pn+1

k ) ⊂ Gn+1(k). We can
then assume that τn, τn+1 are given by

τn(x1, . . . , xn) = [1 : x1 : · · · : xn],
τn+1(x1, . . . , xn+1) = [1 : x1 : · · · : xn : xn+1].
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With this choice, we can see ι(σn) locally as

ι(σn) : [1 : x1 : · · · : xn+1] 799K [1 : 1
x1

: · · · : 1
xn

: xn+1].

Hence, ι(σn)σn+1 is the map

[1 : x1 : · · · : xn+1] 799K [1 : x1 : · · · : xn : 1
xn+1

],

which is equal to the map θn+1 ∈ Gn+1(k) of Example 4.1 up to permuta-
tions. This shows that ι(σn) ∈ Gn+1(k) for each n, so it remains to decide
when ι(Aut(Pnk)) ⊂ Gn+1(k).

Let us denote by A0 ⊂ Aut(Pnk) the subgroup of elements that preserve
the hyperplaneH0 ⊂ Pnk given by x0 = 0. The group (τn)−1A0τn ⊂ Bir(Ank)
is then equal to the group Affn of affine automorphisms of Ank (generated
by GL(n,k) and the translations). Since ι(Affn) is contained in Affn+1, we
obtain that ι(A0) ⊂ Aut(Pn+1) ⊂ Gn+1(k).

Because A0 acts transitively on the set of hyperplanes of Pnk distinct from
H0, it is a maximal subgroup of Aut(Pnk). Hence, ι(Gn(k)) is contained in
Gn+1(k) if and only if ι(ν) ∈ Gn+1(k) for one element ν ∈ Aut(Pnk) \A0.

We choose ν ∈ Aut(Pnk) to be the involution

ν : [x0 : · · · : xn] 7→ [x1 : x0 : x2 : · · · : xn]

and obtain
(τn)−1ντn : (x1, . . . , xn) 799K

(
1
x1
, x2
x1
, . . . , xn

x1

)
ιn((τn)−1ντn) : (x1, . . . , xn+1) 799K

(
1
x1
, x2
x1
, . . . , xn

x1
, xn+1

)
ι(ν) : [x0 : x1 : · · · : xn+1] 799K [x1 : x0 : x2 : · · · : xn : xn+1

x1
x0

].

If n is odd and char(k) 6= 2, then ι(ν) belongs to Gn+1(k) by Theo-
rem 1.1.
If n is even, then ι(ν) does not belong to Gn+1(k) by Corollary 3.9. �

6. Automorphisms of An
k

Any linear embedding of Ank into Pnk yields an injective group homomor-
phism

Aut(Ank)→ Bir(Pnk).
Changing the linear embedding only changes the image by conjugation by
an element of Aut(Pnk). Hence, whether an element of Aut(Ank) belongs to
Gn(k) or not does not depend of the linear embedding. In the sequel, we
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will always talk about extension of automorphisms of Ank to Pnk via linear
embeddings.
By Jung-van der Kulk’s Theorem [17], [20], the group Aut(A2

k) is gener-
ated by GL(2,k) and by all elementary automorphisms of the form (x, y) 7→
(x+ p(y), y) (where p ∈ k[y] is a polynomial).
This is no longer true for Aut(A3

k) if char(k) = 0 [30] and still open for
Aut(Ank) if n > 4 or if n = 3 and char(k) > 0. The group TAut(Ank) ⊂
Aut(Ank) generated by GL(n,k) and elementary automorphisms is then
called Tame group of automorphisms.
If char(k) = 0 and n > 3, H. Derksen showed that the group TAut(Ank)

is generated by affine automorphisms and by

(x1, . . . , xn) 7→ (x1 + (x2)2, x2, . . . , xn)

(see [11, Theorem 5.2.1, p. 95]). Hence, we easily obtain that TAut(Ank) is
contained in Gn(k) in this case. In char(k) > 0, the result of H. Derksen
does not work, as the following lemma shows.

Lemma 6.1. — Let n > 2 and let k be a field of characteristic p > 0.
(a) Let us write Rp = k[(x1)p, . . . , (xn)p] ⊂ k[x1, . . . , xn] and let

R = x1Rp + · · ·+ xnRp ⊂ k[x1, . . . , xn].

Then, the following sets of endomorphisms of Ank are closed under
composition:

{f : (x1, . . . , xn) 7→(f1, . . . , fn) | fi∈x1Rp+. . .+xnRp+Rp for i=1, . . . , n},
{f : (x1, . . . , xn) 7→(f1, . . . , fn) | fi∈x1k+. . .+xnk+Rp for i=1, . . . , n}.

(b) The group generated by affine transformations and all maps of the
form

(x1, . . . , xn) 7→ (x1 + x2x
pa3
3 . . . xpan

n , x2, . . . , xn), a3, . . . , an ∈ N

is a proper subgroup of TAut(Ank).
(c) The group generated by affine transformations and all maps of the

form

(x1, . . . , xn) 7→ (x1 + (x2)mp, x2, . . . , xn), m ∈ N

is a proper subgroup of TAut(Ank).

Remark 6.2. — If k = F2, Assertion (c) can also be proven by looking
at the bijections induced by the automorphisms on the k-points of Ank, as
observed in [23].
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Proof. — Assertion (a) is given by the fact that if g(x1, . . . , xn) ∈ Rp,
then g(f1, . . . , fn) ∈ Rp, for each f1, . . . , fn ∈ k[x1, . . . , xn]. Assertions (b)
and (c) directly follow from (a). �

The question of finding a finite set of elements that generate, together
with affine automorphisms, the group TAut(Ank) is still open when
char(k) > 0 (see [23]).
We will show all tame automorphisms belong to Gn(k), when

char(k) 6= 2. This shows in particular that we only need affine automor-
phisms and two elements of Bir(Ank) (Corollary 6.6).

Lemma 6.3. — Let n > 2, let k be such that char(k) 6= 2 and let
a2, . . . , an ∈ Z.

If na2 is even, the element of Bir(Ank) given by

(x1, . . . , xn) 7→ (x1 + xa2
2 . . . xan

n , x2, . . . , xn)

extends to an element of Gn(k), via any linear embedding Ank → Pnk.

Proof. — If a2 is even, the matrix
1 −a2 −a3 . . . −an

1 a3 . . . an
1

. . .
1


belongs to GL(n,Z)odd, so the birational map of Ank given by

ϕ : (x1, . . . , xn) 799K (x1x
−a2
2 . . . x−an

n , x2x
a3
3 . . . xan

n , x3, . . . , xn)

extends to an element of Gn(k) by Theorem 1.1. The same holds if a2 is
odd but n is even, since in this case all monomial elements belong to Gn(k),
again by Theorem 1.1. We take

l : (x1, . . . , xn) 7→ (x1 + 1, x2, . . . , xn)

and obtain

lϕ : (x1, . . . , xn) 799K (x1x
−a2
2 . . . x−an

n + 1, x2x
a3
3 . . . xan

n , x3, . . . , xn)

ϕ−1lϕ : (x1, . . . , xn) 799K (x1 + xa2
2 . . . xan

n , x2, x3, . . . , xn),

which concludes the proof. �

Corollary 6.4. — If n is even and char(k) 6= 2, any linear embedding
of Ank to Pnk yields an inclusion TAut(Ank) ⊂ Gn(k).
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Proof. — Follows from Lemma 6.3 and from the fact that TAut(Ank) is
generated by affine automorphisms, which extend to elements of Aut(Pnk) ⊂
Gn(k), and maps of the form

(x1, . . . , xn) 7→ (x1 + xa2
2 . . . xan

n , x2, . . . , xn).

�

In the case where n is odd, we can work a little bit more and obtain the
same result:

Proposition 6.5. — If n > 2 and char(k) 6= 2, any linear embedding
of Ank to Pnk yields an inclusion TAut(Ank) ⊂ Gn(k).

Proof. — By Corollary 6.4, we can assume that n is odd. The aim is to
show that each map of the form

Pv = (x1, . . . , xn) 7→ (x1 + xv2
2 . . . xvn

n , x2, . . . , xn),

extends to an element of Gn(k), for each v = (v2, . . . , vn) ∈ Nn−1. It follows
from Lemma 6.3 that this works if one of the vi is even (apply permutations
of coordinates).
We can also get Pv if one of the vi is equal to 1. Indeed, for each

(v3, . . . , vn) ∈ Nn−2, the following maps belong to Gn(k):

(x1, . . . , xn) 7→ (x1 + (x2 + 1)2xv3
3 . . . xvn

n , x2, . . . , xn),
(x1, . . . , xn) 7→ (x1 − xv3

3 . . . xvn
n , x2, . . . , xn),

(x1, . . . , xn) 7→ (x1 − (x2)2xv3
3 . . . xvn

n , x2, . . . , xn),

so the composition (x1, . . . , xn) 7→ (x1 + 2x2x
v3
3 . . . xvn

n , x2, . . . , xn) belongs
to Gn(k). As char(k) 6= 2, we get Pv ∈ Gn(k).
Then, we observe that

f : (x1, . . . , xn) 99K (x1 · (x2)2, x2, . . . , xn)

extends to an element of Gn(k), by Theorem 1.1. Conjugating

(x1, . . . , xn) 7→ (x1 + xv2
2 . . . xvn

n , x2, . . . , xn)

by f we obtain

(x1, . . . , xn) 7→ (x1 + xv2+2
2 xv3

3 . . . xvn
n , x2, . . . , xn).

This implies that we can get all elements Pv. �

Corollary 6.6. — For each n > 2, the group TAut(Ank) is contained
in the subgroup of Bir(Ank) generated by affine automorphisms and by the
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following two birational involutions

(x1, . . . , xn) 799K ( 1
x1
, . . . ,

1
xn

)

(x1, . . . , xn) 799K ( 1
x1
,
x2

x1
, . . . ,

xn
x1

)

Proof. — We fix the linear embedding Ank → Pnk, (x1, . . . , xn) 7→ [1 : x1 :
· · · : xn], that fixes an isomorphism Bir(Ank)→ Bir(Pnk). The image of affine
automorphisms corresponds then to the subgroup of Aut(Pnk) that preserve
the hyperplane x0, being the complement of Ank. The group Gn(k) is then
generated by this group, by the automorphism [x0 : · · · : xn] 7→ [x1 : x0 :
x2 : · · · : xn] and by σn. Writing the action of these two elements on Ank
gives the result. �

Example 6.7. — Let us recall that the famous Nagata automorphism of
A3

k is given by

N : (x, y, z) 7→ (x+ 2y(xz − y2) + z(xz − y2)2, y + z(xz − y2), z).

This element was proven to be in Aut(A3
k)\TAut(A3

k) if char(k) = 0 in [30].
The case of char(k) > 0 is however still open.

Proposition 6.8. — Let k be a field such that char(k) 6= 2. Taking any
linear embedding A3

k → P3
k sends the Nagata automorphism to an element

of G3(k).

Proof. — Recall the following classical observation: the Nagata automor-
phism can be seen as an automorphism of the affine plane over the field
k(z), and as such can be decomposed as a composition of elementary au-
tomorphisms and affine automorphisms.
Explicitely, we can write

α : (x, y, z) 799K (x+ y2

z
, y, z)

β : (x, y, z) 799K (x, y + xz2, z)

and obtain N = α−1βα. We fix a linear embedding (x, y, z) 7→ [1 : x : y : z]
of A3

k into P3
k and obtain the birational maps

α̂ : [w : x : y : z] 799K [w : x+ y2

z
: y : z]

β̂ : [w : x : y : z] 799K [w : x : y + xz2

w2 : z].

The map α̂ belongs to G3(k) by Example 4.1. The map β̂ also belongs
to G3(k) as it is the extension of a tame automorphism β ∈ TAut(A3

k)
(Proposition 6.5). �
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Remark 6.9. — In TAut(Ank), one easily gets elements whose inverse
does not have the same degree. For example,

(x1, . . . , xn) 7→ (x1 + (x2)2, x2 + (x3)2, x3, . . . , xn)

has degree 2 but its inverse has degree 4. This provides other kind of ele-
ments g ∈ Gn(k), such that deg(g) 6= deg(g−1) (see Example 3.10).

7. Rational hypersurfaces contracted

Let us recall why there are elements of Bir(Pnk), for each n > 3, that
contract non-rational hypersurfaces ([14, p. 381, §31], [26]). This is done
for example by taking an irreducible polynomial q ∈ k[x, y] of degree d > 1
that defines a non-rational curve Γ of A2, and by considering the birational
map

[x0 : · · · : xn] 99K [x0q(
x1

x3
,
x2

x3
) : x1 : · · · : xn],

which contracts the hypersurface given by q(x1
x3
, x2
x3

) · (x3)d, birational to
Γ×Pn−2. Note that this argument directly implies that the group Bir(Pnk) is
in fact not generated by Aut(Pnk) and a finite number of elements. However,
the question of whether Bir(Pnk) is generated by maps preserving a fibration
is still open.
If n = 2 and k is not algebraically closed, a similar argument works: we

take an irreducible polynomial p ∈ k[x] of degree d > 1, having roots in
k\k, where k is the algebraic closure of k. We then consider the birational
map of P2

k given by

[x0 : x1 : x2] 799K [x0 : x1 : x2p(
x1

x0
)]

which contracts the curve given by p(x1
x0

)xd0 = 0, which is irreducible over
k and not rational (but is a union of lines over k).
These two observations show that Gn(k) 6= Bir(Pnk) if n > 3 or if n = 2

and k is not algebraically closed.
The description of G2(k), for any field k is given in Proposition 7.4

below, and follows from an adaptation of the classical proofs of Noether-
Castelnuovo’s Theorem, and the following easy observation on the relation
between the base-points and curves contracted.
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Lemma 7.1. — Let k be any field, and let k be its algebraic closure.
Let ϕ ∈ Bir(P2

k) be a birational map, which is also a birational map of P2
k
.

The following are equivalent.
(1) Every k-base-point of ϕ is defined over k.
(2) Every k-base-point of ϕ−1 is defined over k.
(3) Every irreducible k-curve contracted by ϕ is defined over k.
(4) Every irreducible k-curve contracted by ϕ is rational over k.

Proof. — Seeing ϕ as an element of Bir(P2
k
), where k is the algebraic

closure of k, we have a minimal resolution

Z

π

��

η

��
P2

k

ϕ // P2
k

where π and η are the blow-ups of the k-base-points of ϕ and ϕ−1 respec-
tively.

(a) We suppose that one k-base-point of ϕ−1 is not defined over k. There
is thus a (−1)-curve E ⊂ Z, not defined over k, which is contracted by η and
not by π. The image π(E) is then an irreducible k-curve in P2

k
, contracted

by ϕ. This yields (3)⇒ (2).
(b) If one irreducible k-curve C in P2

k
is contracted by ϕ but not defined

over k, the closure of C under the k-topology is an irreducible k-curve, not
irreducible over k, and contracted by ϕ. This curve being not rational over
k, we obtain (4)⇒ (3).

(c) Suppose that (2) holds. Observing that the Picard group of Z, viewed
as a k-variety, is generated by the pull-back by η of the divisor of a line in P2

k
and by the exceptional divisors produced by the corresponding blow-ups,
we see that each k-curve on Z is linearly equivalent to a divisor defined
over k. Hence, all rational irreducible k-curves in Z with negative self-
intersection are defined over k, since they are rigid in their equivalence
classes. This implies that all irreducible k-curves contracted by η and π are
defined over k, and yields (1), (3) and (4).

(d) The last implication needed is (1)⇒ (2) which is equivalent to (2)⇒
(1), by replacing ϕ with its inverse. �

The classical proofs of the Noether-Castelnuovo’s Theorem decompose an
element of Bir(P2

k
) into a product of quadratic and linear elements. One of

the simplest can be find in [3], and works perfectly here if the field is infinite,
but not in the case of finite fields, as it uses the choice of “general” points.
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The same phenomenon occurs for the classical proof of G. Castelnuovo,
well explained in [2, Chapter 8], together with historical references. We
will then take the proofs given by the Minimal Model Program (see [16,
Comment 4, p. 622]).
Using the classical Noether inequalities [16, Lemma 2.4], one can obtain

the decomposition of every element of Bir(P2
k) into Sarkisov links [16, The-

orem 2.5]. The fact that all our base-points are defined over k implies that
the base-points of the Sarkisov links are also defined over k. Hence, the
links involved are the following [16, Section 2.2].

(I) A birational map P2
k 99K F1 given by the blow-up of a k-point of

P2
k.

(II) A birational map Fm 99K Fm±1 given by the blow-up of a k-point,
followed by the contraction of the strict transform of a fibre.

(III) A birational morphism F1 → P2
k given by the contraction of the

(−1)-curve onto a k-point of P2
k (inverse of a link of type I).

(IV) The automorphism F0 = P1
k×P1

k → F0 that consists of exchanging
the two factors.

Remark 7.2. — Usually, there is a fibration associated to each Fi, which
is implicit for i > 1 but important for F0 as there are two such; this ex-
plains why links of type IV arise. For our purpose, we do not need to really
consider the fibration, and observe that the composition of a link with au-
tomorphisms is again a link. So we consider automorphisms as composition
of zero links, and will then not need links of type IV.

Lemma 7.3. — Let k be any field and let ϕ ∈ Bir(P2
k) be a birational

map, such that all k-base-points are defined over k. Then, ϕ decomposes
into a sequence of elementary links as above, involving only P2

k, F1, F0.

Proof. — As we already explained, we can decompose ϕ into Sarkisov
links of type I, II, III as above. It remains to see that we can avoid Fn for
n > 2.

To do this, we take two two links of type II given by

ϕ1 : Fm 99K Fm+1 and ϕ2 : Fm+1 99K Fm,

for some m > 1 and prove that ϕ2ϕ1 is either an isomorphism or de-
composes into links involving only Fi for some i 6 m. If ϕ2ϕ1 is not an
isomorphism, then it has exactly two base-points: the point p1 being the
base-points of ϕ1 and the other point p2 corresponding to the base-point
of ϕ2, via ϕ1. Note that p1 is a proper point of Fm and that p2 is either
a proper point or infinitely near to p1, and that the two points do not be-
long to the same fibre (as proper or infinitely near points). The exceptional
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section E of Fm is sent by ϕ2ϕ1 onto itself, so p1 ∈ E but p2 does not
belong to E (as a proper or infinitely near point). If p2 is a proper point of
Fm, we factorise ϕ1ϕ2 into the link associated first to p2 and then to the
image of p1, and obtain links Fm 99K Fm−1 99K Fm. Otherwise, we take
a point p3 ∈ Fm on a distinct fibre of p1 and not lying on E, and denote
by ϕ3 : Fm 99K Fm−1 the link associated to it, and by ϕ4 : Fm−1 99K Fm
the link associated to ϕ3(p1). Then, p1, p3 are the two base-points of ϕ4ϕ3
and ϕ2ϕ1(ϕ4ϕ3)−1 has exactly two base-points, which are now both proper
points of Fm. Applying the previous case, we get the result. �

Proposition 7.4. — Let k be some field. The group G2(k) is equal to
the subgroup of Bir(P2

k) consisting of elements that contract only rational
curves, which is equal to the subgroup of elements of Bir(P2

k) having all
base-points defined over k.

Proof. — By Lemma 7.1, it suffices to show that every element ϕ ∈
Bir(P2

k) which has all base-points defined over k belongs to G2(k). If ϕ has
degree 1, then ϕ ∈ Aut(P2

k) = PGL(3,k) ⊂ G2(k). Otherwise, we apply
Lemma 7.3 and decompose ϕ into links of type I, II, III, involving only
P2

k,F0,F1. We prove then that ϕ ∈ G2(k), proceeding by induction on the
number of links, the case of zero links being the case of automorphisms.
Let ϕ1 : P2

k 99K F1 be some link of type I. If ϕ1 is followed by a link ϕ2 of
type III, then ϕ2ϕ1 is an automorphism of P2

k, so we can decrease by two
the number of links. If ϕ1 is followed by a link ϕ2 : F1 99K F0, then ϕ3 is a
link F0 99K F1 (we did not use links of type IV, see Remark 7.2). It remains
to show that the birational map ψ = (ϕ1)−1ϕ3ϕ2ϕ1 : P2

k 99K P2
k belongs to

G2(k). Replacing ϕ with ϕψ−1 will then decrease by 2 the number of links
needed.
Note that ψ has at most 3 base-points, and is thus of degree 1 or 2.

If ψ has degre 1, then ψ ∈ G2(k). Otherwise, the three base-points of ψ
are defined over k, and two of these are proper points of P2

k: these are the
base-point p1 of ϕ1 and p2 = (ϕ1)−1(q), where q is the base-point of ϕ2,
which does not belong to the exceptional divisor of F1. Moreover, the three
base-points of ψ are not collinear, since the linear system of ψ is irreducible
and of degree 2.
If the third base-point p3 of ψ is also a proper point of P2

k, there exists
β ∈ Aut(P2

k) = PGL(3,k) that sends the coordinate points [1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1] onto p1, p2, p3. Then, ϕ and σ2β have the same linear
system, which implies that ϕ = ασ2β for some α ∈ PGL(3,k). This shows
that ϕ ∈ G2(k).
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If p3 is not a proper point of P2
k, it has to correspond to a tangent to

one of the two other points, say p1, and which is not the direction of the
line through p1, p2. We can then as before replace ϕ with ϕβ, for some
β ∈ PGL(3,k) and assume that p1 = [0 : 0 : 1], p2 = [0 : 1 : 0], and
that p3 corresponds to the direction of x1 = 0. Hence, ϕ = αθ2, where
α ∈ PGL(3,k) and θ2 is as before equal to

θ2 : [x0 : x1 : x2] 799K [x0x1 : (x0)2 : x2x1]

and belongs to G2(k) (see Example 4.1). �

8. Punctual maps

There are plenty of definitions of a punctual element of Bir(Pnk) in the lit-
erature, which are often falsely considered as equivalent. The most studied
case is when n = 3 and k = C; let us restrict to that case for the moment,
and give the most used definitions.

(0) The map θn from Example 4.1 can be seen, in affine coordinates,
as an affine blow-up z′1 = z1

zn
, i = 1, . . . , n − 1, z′n = zn. It was

studied, at least for n = 3, by G. Kobb in [19, p. 406], see also [1,
p. 2056–2057].

(1) In [18], S. Kantor studies birational maps of P3
C with no curve of the

first species, that is transformations without curves whose proper
image in the projective space is a surface; this is also the definition
of punctual maps given in [12, p. 116]. S. Kantor gives a proof
that contains gaps (H. Hudson says that “the proof is admittedly
“gewagt”” in [14, p. 318, §29] using the word “gewagt” that appears
in Kantor’s work in the footnotes of pages 18 and 20) which says
that each such map is generated by Aut(P3) and σ3. He also claims
that the set of such maps forms a group.

(2) In [5, p. 359, §4], A. Coble defines a regular map of P3 to be a
birational map which is a generated by Aut(P3

C) and σ3; this termi-
nology is confusing, since regular usually means “defined at every
point”. A. Coble explains “They are determined essentially by their
fundamental points alone and in all important particulars are en-
tirely analogous to the ternary Cremona transformation.”

(3) In [14, p. 318, §29], [9] and [10], H. Hudson and P. Du Val define the
group of punctual birational map of Bir(P3

C) as the group generated
by σ3 and Aut(P3

C). They claim that the linear system of a map in
this group is only defined by points.
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(4) In [7, p. 93], I. Dolgachev and D. Ortland define a punctual Cremona
transformation to be a map of the form πτη−1, where η : X → P3

C
and π : Y → P3

C are blow-ups of points of P3
C and τ : X 99K Y

is a pseudo-isomorphism, that is a birational map which does not
contract any hypersurface. They also claim that the set of such
maps is a group, and compare it to the group generated by σn and
linear automorphisms.

Recall that an irreducible curve Γ ⊂ P3 is a fundamental curve of the first
kind for ϕ ∈ Bir(P3) if there is an irreducible surface S ⊂ P3 contracted
by ϕ−1 onto Γ (which means that a general point of S is sent to Γ by ϕ−1

and that a general point of Γ is obtained by this way).
In [12, p. 116], M. Gizatullin give a simple example which shows that

the set of birational maps of P3
C having no fundamental curve of the first

kind is not a group, contrary to what S. Kantor claimed to have proven.
The map computed in [12, p. 115] is the birational involution

θ : [x0 : x1 : x2 : x3] 99K [(x1)2 : x0x1 : x0x2 : x0x3]

that we already introduced in Example 4.1. The map θ−1 = θ contracts
the plane H1 given by x1 = 0 onto the line l given by x0 = x1 = 0, or more
precisely send H1 on the divisor of a line l̂ infinitely near to l. Hence, the
line l is a fundamental curve of the first kind of θ. The map θ is then not
punctual in all natural senses, except that it belongs to the group generated
by Aut(P3

C) and σ3.
This example also shows that the terminology “punctual” does not seem

to be appropriate for the group G3(C) (and even more for Gn(C) for n > 4).
Note that H. Hudson was aware of some problems: in [14, p. 318, §39], af-
ter having said that the set of punctual transformations is a group which
consists of compositions of maps of the form ασ3β, α, β ∈ Aut(P3

C), she
describes the linear system of such an element, and assume for this that
the base-points of the new map are either points where a surface is con-
tracted by the previous map, or “in general position”. The set of such maps
obtained could deserve the word “punctual”, and are in fact some of the
maps described in [7] (maybe all), but would not be a group.
One consequence of the work made in this text is the following result,

which tends to show that the “gewagt” Theorem of S. Kantor is false.

Proposition 8.1. — Let k be any field. There are elements of Bir(P3
k)

which have no fundamental curve of the first species, but which do not
belong to G3(k).
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Remark 8.2. — The example given here is not really “punctual”, since
one of the hypersurfaces is contracted onto a line in the exceptional divisor
of a point. So the “gewagt” Theorem of Kantor could maybe be true if we
avoid such kind of examples (see below).

Proof. — The birational monomial involution

ψ : [x0 : · · · : x3] 799K [x1 : x0 : x2
(x1)2

(x0)2 : x3
x1

x0
]

does not belong to G3(k). Indeed, the map

θ : [x0 : x1 : x2 : x3] 799K [x0 : x1 : (x3)2

x2
: x3]

belongs to G3(k) (Example 4.1), but

θψθ : [x0 : x1 : x2 : x3] 799K [x1 : x0 : x2 : x3
x1

x0
]

does not belong to G3(k) (Corollary 3.9). The map ψ contracts exactly
two hypersurfaces, namely H0, H1 ⊂ P3

k, given respectively by x0 = 0 and
x1 = 0, respectively on the points [0 : 0 : 1 : 0] and [0 : 1 : 0 : 0]. Hence,
ψ = ψ−1 does not have any fundamental curve of the first species. �

In fact, part (1) of Theorem 1.4 shows that even if hypersurfaces are
contracted by elements of G3(k) onto points, we cannot send a hypersur-
face onto the exceptional divisor of a curve by some element of G3(k), so
this group is not “so” far from being punctual. However, the elements of
Gn(k) are very far from being punctual in dimension n > 4, as one can
contract hypersurfaces on the exceptional divisors of planes (part (2) of
Theorem 1.4).
In fact, it seems to us that a “punctual” map should be an element of

ϕ ∈ Bir(Pnk) admitting a birational morphism π : X → Pnk, that consists of
sequence of blow-ups of points, and such that (ϕπ)−1 : Pnk 99K X should
not contract any hypersurface. The strong sense would be to ask that all
points lie in Pnk, and a weaker sense would allow infinitely near points.
The definition of [7] goes in this direction, but is in fact even stronger,

as it basically ask that the map and also its inverse are punctual in the
strong sense (we could say bipunctual). As explained before, the set of
maps satisfying any of these definitions is not a group, contrary to what
is claimed in many of the texts cited above. The following example also
shows that all these definitions are different.
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Example 8.3. — Let k be a field with char(k) 6= 2 and let l ∈ Aut(P3
k),

be the automorphism given by

l : [x0 : · · · : x3] 7→ [x0 : x2 + x3 : x1 + x3 : x1 + x2]

l−1 : [x0 : · · · : x3] 7→ [2x0 : −x1 + x2 + x3 : x1 − x2 + x3 : x1 + x2 − x3]

and observe that l and l−1 act in the following way on the coordinate points
of P3

k:

l([1 : 0 : 0 : 0]) = ([1 : 0 : 0 : 0]) l−1([1 : 0 : 0 : 0]) = ([1 : 0 : 0 : 0])

l([0 : 1 : 0 : 0]) = ([0 : 0 : 1 : 1]) l−1([0 : 1 : 0 : 0]) = ([0 : −1 : 1 : 1])

l([0 : 0 : 1 : 0]) = ([0 : 1 : 0 : 1]) l−1([0 : 0 : 1 : 0]) = ([0 : 1 : −1 : 1])

l([0 : 0 : 0 : 1]) = ([0 : 1 : 1 : 0]) l−1([0 : 0 : 0 : 1]) = ([0 : 1 : 1 : −1]).

Hence, α = σ3lσ3 is punctual in the weak sense defined above, but not in the
strong sense, since l−1 sends coordinates points onto general points of the
hyperplane x0 = 0. However, α−1 is not even punctual in the weak sense,
as l sends coordinate points onto points on general points of coordinate
lines.
Similarly, taking

l : [x0 : · · · : x3] 7→ [x0 − x2 : x1 − x2 : −x2 + x3 : 2x2 − x3]

l−1 : [x0 : · · · : x3] 7→ [x0 + x2 + x3 : x1 + x2 + x3 : x2 + x3 : 2x2 + x3]

the map α = σ3lσ3 is punctual in the strong sense defined above, but α−1

is not punctual in the weak one.

The question of showing that every bipunctual map is in fact an element
of Gn(k), asked in [7] and corresponding to the “gewagt” theorem of Kantor
is still open.
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