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JET SCHEMES AND INVARIANT THEORY

by Andrew R. LINSHAW,
Gerald W. SCHWARZ & Bailin SONG (*)

Abstract. — Let G be a complex reductive group and V a G-module. Then
the mth jet scheme Gm acts on the mth jet scheme Vm for all m > 0. We are in-
terested in the invariant ring O(Vm)Gm and whether the map p∗m : O((V//G)m)→
O(Vm)Gm induced by the categorical quotient map p : V → V//G is an isomor-
phism, surjective, or neither. Using Luna’s slice theorem, we give criteria for p∗m
to be an isomorphism for all m, and we prove this when G = SLn, GLn, SOn,
or Sp2n and V is a sum of copies of the standard module and its dual, such that
V//G is smooth or a complete intersection. We classify all representations of C∗
for which p∗∞ is surjective or an isomorphism. Finally, we give examples where p∗m
is surjective for m = ∞ but not for finite m, and where it is surjective but not
injective.
Résumé. — Soient G un groupe réductif complexe et V un G-module. Alors

Gm, le schéma des jets d’ordre m de G, opère dans Vm, le schéma des jets d’ordre m
de V , pour tout m > 0. Nous nous intéressons à l’anneau des invariants O(Vm)Gm

et au morphisme p∗m : O((V//G)m)→ O(Vm)Gm induit par le morphisme du quo-
tient catégorique p : V → V//G : ce morphisme est-il un isomorphisme, surjectif, ou
non ? En utilisant le théorème du slice de Luna, nous obtenons des critères pour que
p∗m soit un isomorphisme pour tout m. Nous montrons que c’est bien le cas lorsque
G = SLn, GLn, SOn, ou Sp2n et V est un somme directe de copies du module
standard et de son dual, pourvu que V//G soit lisse ou une intersection complète.
Nous classifions toutes les représentations de C∗ telles que p∗∞ soit surjectif ou un
isomorphisme. Enfin, nous donnons des exemples où p∗m est surjectif pour m =∞
mais non surjectif pour m fini, et d’autres exemples où p∗m est surjectif mais non
injectif.

1. Introduction

Given an irreducible scheme X of finite type over an algebraically closed
field k, the first jet scheme X1 is just the total tangent space of X. For m >

Keywords: jet schemes, classical invariant theory.
Math. classification: 13A50,14L24,14L30.
(*) The authors thank Peter Littelmann for useful conversations.
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1, themth jet schemeXm is a higher-order generalization that is determined
by its functor of points. For every k-algebra A, we have a bijection

Hom(Spec(A), Xm) ∼= Hom(Spec(A[t]/〈tm+1〉), X).

When X is nonsingular, Xm is irreducible for all m > 1, and is an affine
bundle over X with fiber an affine space of dimension m dim(X). If X
is singular, the jet schemes are much more subtle and carry information
about the singularities ofX. The structural properties ofXm are of interest,
in particular the question of when Xm is irreducible for all m. Mustata
has shown that this holds when X is locally a complete intersection with
rational singularities, although these are not necessary conditions [22].
There are projections Xm+1 → Xm, and the arc space is defined to be

X∞ = lim
←
Xm.

Even though it is generally not of finite type, X∞ has some nicer properties
than Xm; for example, it is always irreducible [14]. Arc spaces were origi-
nally studied by Nash in an influential paper [23], in which he asked whether
there is a bijection between the irreducible components of X∞ lying over
the singular locus of X, and the essential divisors over X. This question is
known as the Nash problem. It has been answered affirmatively for many
classes of singular varieties, although counterexamples are known [12]. Arc
spaces are also important in Kontsevich’s theory of motivic integration
[15]. Given a complex algebraic variety X and a resolution of singularities
Y → X such that the discrepancy divisor D has simple normal crossings,
the motivic integral of X is the integral of a certain function FD defined on
the arc space Y∞, with respect to a measure on Y∞. Unlike ordinary inte-
gration, this measure takes values not in R, but in a certain completion of
the Grothendieck ring of algebraic varieties. Motivic integration was origi-
nally used by Kontsevich to prove that birationally equivalent Calabi-Yau
manifolds have the same Hodge numbers. This theory was subsequently
developed by many authors including Batyrev, Denef, Loeser, Looijenga,
Craw, and Veys [1][6][18][5][26]. A survey of these ideas and some of their
applications can be found in [7].
Our goal in this paper is to establish some foundational results on the

interaction between jet schemes, arc spaces, and classical invariant theory.
If G is a complex reductive group, Gm is an algebraic group which is a
unipotent extension of G. Let Y be an affine G-variety and let p : Y →
Y//G = Spec(O(Y )G) be the categorical quotient. Then p induces a mor-
phism pm : Ym → (Y//G)m and a homomorphism

(1.1) p∗m : O((Y//G)m)→ O(Ym)Gm ,
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which was studied in some special cases by Eck in [8] and by Frenkel-
Eisenbud in the appendix of [22]. We will find criteria for when this map is
an isomorphism, surjective, or neither. First, using Luna’s slice theorem, we
show that all of these are local conditions (see Corollary 3.3). We are most
interested in the case where Y is a G-module V . Under mild hypotheses (see
Corollary 3.20), we show that when V//G is smooth, p∗m is an isomorphism
for all m. In Section 4, we give a more refined criterion for p∗m to be an
isomorphism for all m (see Theorem 4.3) and we show that it holds when
G = SLn, GLn, SOn, or Sp2n and V is a sum of copies of the standard
representation and its dual, such that V//G is a complete intersection. In
Section 5, we consider representations of C∗. Using techniques of standard
monomial theory, we classify all cases where p∗∞ is surjective, and we show
that p∗∞ is an isomorphism whenever it is surjective. In Section 6, we show
that for G = SLn and V = `Cn, p∗∞ is surjective, even though p∗m generally
fails to be surjective for finite values of m. For n = 2, p∗∞ is injective, but
it is not injective for n > 3. The question of whether p∗∞ is surjective for
arbitrary representations V = kCn ⊕ `(Cn)∗ of SLn, and similar questions
for the other classical groups, remain open.
Note that O(V∞)G∞ is finitely generated as a differential algebra when-

ever p∗∞ is surjective, since O((V//G)∞) is generated by O(V//G) as a dif-
ferential algebra. An interesting problem is to find sufficient conditions for
O(V∞)G∞ to be finitely generated as a differential algebra even if p∗∞ is not
surjective. There are currently no examples where this is known to occur.
Computer experiments suggest that this is the case for G = C∗ and V = C2

with weights 2 and −3 (see Example 3.10).
Our results have a number of applications to the theory of vertex algebras

that appear in separate papers. Vertex algebras are a class of nonassocia-
tive, noncommutative algebras that arose out of conformal field theory in
the 1980s, and in the work of Borcherds [3] on the Moonshine conjecture.
They were developed mathematically from several different points of view
in the literature [2][10][11][13]. An abelian vertex algebra is just a commu-
tative ring equipped with a derivation. For any variety X, the ring O(X∞)
has a derivation D which makes it an abelian vertex algebra. On the other
hand, many nonabelian vertex algebras A possess filtrations for which the
associated graded algebra gr(A) is abelian and can be interpreted asO(X∞)
for some X.
The first application of our results is to the commutant problem. Given

a vertex algebra V and a subalgebra A ⊂ V, the commutant Com(A,V) is
the subalgebra of V that commutes with A. In [17], interesting examples of

TOME 65 (2015), FASCICULE 6
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commutants were described using the fact that gr(Com(A,V)) is isomorphic
to O((V//G)∞) for a certain choice of V and G. This leads to vertex algebra
analogues of the classical Howe pairs of types GLn−GLm, SOn−sp2m, and
Sp2n−so2m. The second application of our results is to the chiral de Rham
complex [21]. This is a sheaf of vertex algebras on any nonsingular variety
or complex manifold X that contains the ordinary de Rham sheaf at weight
zero, and captures stringy invariants of X such as the elliptic genus. Using
the fact that p∗∞ is an isomorphism for G = SL2 and V = `C2, Song gave
a complete description of the global section algebra when X is a Kummer
surface; it is isomorphic to the N = 4 superconformal algebra with c = 6
[25]. Previously, the only nontrivial case where a description was known
was CPn [20].

2. Jet schemes

Throughout this paper our base field will be C. We recall some basic
facts about jet schemes, following the notation in [9]. Let X be an irre-
ducible scheme of finite type. For each integer m > 0, the jet scheme Xm

is determined by its functor of points: for every C-algebra A, we have a
bijection

Hom(Spec(A), Xm) ∼= Hom(Spec(A[t]/〈tm+1〉), X).

Thus the C-valued points of Xm correspond to the C[t]/〈tm+1〉-valued
points of X. If p > m, we have projections πp,m : Xp → Xm and πp,m ◦
πq,p = πq,m when q > p > m. Clearly X0 = X and X1 is the total tan-
gent space Spec(Sym(ΩX/C)). The assignment X 7→ Xm is functorial, and
a morphism f : X → Y induces fm : Xm → Ym for all m > 1. If X is
nonsingular, Xm is irreducible and nonsingular for all m. Moreover, if X,Y
are nonsingular and f : X → Y is a smooth surjection, fm is surjective for
all m.
If X = Spec(R) where R = C[y1, . . . , yr]/〈f1, . . . , fk〉, we can find ex-

plicit equations for Xm. Define new variables y(i)
j for i = 0, . . . ,m, and

define a derivation D by D(y(i)
j ) = y

(i+1)
j for i < m, and D(y(m)

j ) = 0,
which specifies its action on all of C[y(0)

1 , . . . , y
(m)
r ]. In particular, f (i)

` =
Di(f`) is a well-defined polynomial in C[y(0)

1 , . . . , y
(m)
r ]. Letting Rm =

C[y(0)
1 , . . . , y

(m)
r ]/〈f (0)

1 , . . . , f
(m)
k 〉, we have Xm

∼= Spec(Rm). By identify-
ing yj with y(0)

j , we see that R is naturally a subalgebra of Rm. There is a
Z>0-grading Rm =

⊕
n>0 Rm[n] by weight, defined by wt(y(i)

j ) = i. For all
m, Rm[0] = R and Rm[n] is an R-module.

ANNALES DE L’INSTITUT FOURIER
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Given a scheme X, define

X∞ = lim
←
Xm,

which is known as the arc space ofX. For a C-algebra A, we have a bijection
Hom(Spec(A), X∞) ∼= Hom(SpecA[[t]], X). We denote by ψm the natural
map X∞ → Xm. If X = Spec(R) as above,

X∞ ∼= Spec(R∞),where R∞ = C[y(0)
1 , . . . , y

(i)
j , . . . ]/〈f (0)

1 , . . . , f
(i)
` , . . . 〉.

Here i = 0, 1, 2, . . . and D(y(i)
j ) = y

(i+1)
j for all i. By a theorem of Kolchin

[14], X∞ is irreducible whenever X is irreducible.

3. Group actions on jet schemes

We establish some elementary properties of jet schemes and quotient
mappings for reductive group actions. Mainly we see what one can say
using Luna’s slice theorem [19]. Let G be a complex reductive algebraic
group with Lie algebra g. For m > 1, Gm is an algebraic group which is the
semidirect product of G with a unipotent group Um. The Lie algebra of Gm
is g[t]/tm+1. Given an affine G-variety Y , there is the quotient Z := Y//G =
Spec(O(Y )G) and the canonical map p : Y → Z (sometimes denoted pY )
which is dual to the inclusion O(Y )G ⊂ O(Y ). We have a natural action
of Gm on Ym, and we are interested in the invariant ring O(Ym)Gm , the
morphism pm : Ym → Zm and whether p∗m : O(Zm) → O(Ym)Gm is an
isomorphism, surjective, or neither. If ϕ : X → Y is a morphism of affine
G-varieties, then ϕ//G will denote the induced mapping of X//G to Y//G.

Recall that a morphism of varieties is étale if it is smooth with fibers of
dimension zero. If ϕ : X → Y is a morphism where X and Y are smooth,
then ϕ is étale if and only if dϕx : TxX → Tϕ(x)Y is an isomorphism for
all x ∈ X.

Definition 3.1. — Let G be a reductive complex algebraic group and
let ϕ : X → Y be an equivariant map of affine G-varieties. We say that ϕ
is excellent if the following hold.

(1) ϕ is étale.
(2) ϕ//G : X//G→ Y//G is étale.
(3) The canonical map (ϕ, pX) : X → Y ×Y//GX//G is an isomorphism.

Note that condition (1) is a consequence of conditions (2) and (3). Let
us say that X is m-very good if p∗m : O((X//G)m) → O(Xm)Gm is
an isomorphism. We say that X is m-good if p∗m is surjective, so that

TOME 65 (2015), FASCICULE 6
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O(Xm)Gm = p∗mO((X//G)m), and we say that X is m-bad if p∗m is not
surjective. Here m is finite or ∞. Usually we drop the m. We say that X
is D-finite if O(X∞)G∞ is finitely generated as a differential algebra.

Lemma 3.2. — Suppose that ϕ : X → Y is excellent. Then
(1) Xm ' X//G×Y//G Ym.
(2) (X//G)m ' X//G×Y//G (Y//G)m.

If Y is very good (resp. good or D-finite), then so is X, and conversely if
ϕ is surjective.

Proof. — Since ϕ is étale, Xm ' X ×Y Ym. Since ϕ is excellent,

X ×Y Ym ' X//G×Y//G Y ×Y Ym
' X//G×Y//G Ym

and since ϕ//G is étale, (X//G)m ' X//G×Y//G (Y//G)m. Thus we have (1)
and (2).
If Y is very good, then by (1) and (2)

O(Xm)Gm ' O(X//G)⊗O(Y//G) O((Y//G)m)
' O((X//G)m),

hence X is very good. Similarly, Y good implies that X is good.
Conversely, if ϕ is surjective and O(Ym)Gm 6= p∗Y,mO((Y//G)m), then,

since ϕ//G is faithfully flat, we have that

O(X//G)⊗O(Y//G) O(Ym)Gm 6= O(X//G)⊗O(Y//G) p
∗
Y,mO((Y//G)m)

and hence that O(Xm)Gm 6= p∗X,mO((X//G)m). Hence Y is good if X is
good. The proof that Y is very good if X is very good is similar.
Now

O(X∞)G∞ ∼= O(Y∞)G∞ ⊗O(Y )G O(X)G.
Thus if Y is D-finite, then clearly so is X. Conversely, assume that X is
D-finite and that ϕ is surjective. Set A := O(X∞)G∞ . Then we have the
weight grading A = ⊕n∈NAn where A0 = O(X)G. Let B denote O(Y∞)G∞ .
Then B is graded and the isomorphism A ∼= B⊗O(Y )GO(X)G is an isomor-
phism of graded rings. Let fi ⊗ hi be generators of A ' B ⊗O(Y )G O(X)G
as differential graded algebras. We may assume that each fi has weight
ni for some ni ∈ N. Let p1, . . . , pd be generators of O(X)G. Then Dpj =∑
fij ⊗ hij where the hij are elements of O(X)G and the fij are in B1.

Now take the collection of elements fi and fij in B. An induction argu-
ment shows that D applied repeatedly to the elements fi⊗hi ends up in the
O(X)G-submodule of A generated byD applied to products of the elements

ANNALES DE L’INSTITUT FOURIER
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fi and fij . Since ϕ is faithfully flat, this shows that the B0-submodule of
Bn generated by the elements fi and fij is Bn since this submodule ten-
sored with O(X)G is An. Hence the fi and fij generate Bn for all n and Y
is D-finite. �

A subset S of X is G-saturated if S = p−1(p(S)); equivalently, S is a
union of fibers of p.

Corollary 3.3.
(1) Suppose that X = ∪Xα where the Xα are Zariski open and G-

saturated. Then X is very good (resp. good or D-finite) if and only
if each Xα is very good (resp. good or D-finite).

(2) Let W be a G-module and U = Wf where f ∈ O(W )G and f(0) 6=
0. Then W is very good (resp. good or D-finite) if and only U is
very good (resp. good or D-finite).

Proof. — For (1) we may assume that we have a finite cover. Then the
canonical map qXα → X is excellent and surjective and (1) follows from
Lemma 3.2. For (2) we may assume that U is very good (resp. good or
D-finite). Now W is the union of U and finitely many translates Uλ where
Uλ = λ ·U for λ ∈ C∗. Clearly each Uλ is very good (resp. good or D-finite)
since U is. Thus we can apply (1). �

Let H be a reductive subgroup of G and Y an affine H-variety. Then
G ×H Y denotes the quotient of G × Y by the H-action sending (g, y) to
(gh−1, hy) for (g, y) ∈ G× Y and h ∈ H. We denote the orbit of (g, y) by
[g, y]. We have an action of G on the left on G×Y which commutes with the
action of H and induces a G-action on G×H Y . Then (G×H Y )//G ' Y//H.
Note that G → G/H is a principal H-bundle, hence trivial over pullback
via an étale surjective map to G/H.

Lemma 3.4. — Let H be a reductive subgroup of G and Y an affine
H-variety. Then

O((G×H Y )m)Gm ' O(Ym)Hm .

Hence G×H Y is very good (resp. good or D-finite) if and only if Y is very
good (resp. good or D-finite).

Proof. — For a trivial principal H bundle U ×H, we have (U ×H)m =
Um×Hm is a trivial Hm-bundle with quotient Um. Thus (G×H Y )m is the
quotient of Gm × Ym by the action of Hm (it is a principal bundle).

Consider the action of Gm on Gm×Ym. Then the quotient is clearly just
projection to Ym, so that O(Gm × Ym)Gm ' O(Ym). Thus

O(Gm × Ym)Gm×Hm ' O(Ym)Hm

TOME 65 (2015), FASCICULE 6
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so that O((G×H Y )m)Gm ' O(Ym)Hm . �

LetX be a smooth affine G-variety and suppose that Gx is a closed orbit.
Then the isotropy group H := Gx is reductive and we have a splitting of
H-modules TxX = Tx(Gx) ⊕ N . The representation (N,H) is called the
slice representation at x. Here is Luna’s slice theorem [19] in our context.

Theorem 3.5.
(1) There is a locally closed affine H-stable and H-saturated subvariety

S of X containing x such that U := G · S is a G-saturated affine
open subset of X. Moreover, the canonical G-morphism

ϕ : G×H S → U, [g, s] 7→ gs

is excellent.
(2) S is smooth at x and the H-modules TxS and N are isomorphic.

Possibly shrinking S we can arrange that there is an excellent sur-
jective H-morphism ψ : S → Nf which sends x to 0, inducing an
excellent G-morphism

τ : G×H S → G×H Nf

where f ∈ O(N)H and f(0) 6= 0.

Combining 3.2–3.5 we obtain

Corollary 3.6. — Suppose that X is smooth. Let (W,H) be a slice
representation of X.

(1) If X is very good (resp. good or D-finite) then so is W .
(2) If W is very good (resp. good or D-finite) for each slice representa-

tion (W,H) of X, then X is very good (resp. good or D-finite).

From Lemma 3.2 we obtain

Corollary 3.7. — Suppose that X is smooth and that f ∈ O(X)G.
(1) If the slice representations of Xf are very good, then

(O(Xm)Gm)f ' O((X//G)m)f .

(2) If the slice representations of Xf are good, then

(O(Xm)Gm)f ' (p∗mO((X//G)m))f .

Our main focus in this paper will be on the case where X is a finite-
dimensional G-module V . Choose a basis {x1, . . . , xn} for V ∗, so that

O(V ) ∼= C[x1, . . . , xn], O(Vm) = C[x(i)
1 , . . . , x(i)

n ], 0 6 i 6 m.

ANNALES DE L’INSTITUT FOURIER
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The action of Gm on Vm induces the following action of its Lie algebra
g[t]/tm+1 on O(Vm). For ξ ∈ g,

ξtr(x(i)
j ) = λri (ξ(xj))(i−r), λri =

{ i!
(i−r)! 0 6 r 6 i

0 r > i
.

The invariant ring O(Vm)g[t]/tm+1 coincides with O(Vm)Gm when G is con-
nected.

Lemma 3.8. — Suppose that V ⊕W is a representation of G. If W is
bad (resp. not D-finite) then so is V ⊕W .

Proof. — If W is bad there is a Gm- invariant polynomial on Wm which
does not come from O((W//G)m). Then clearly it cannot come from an
element of O(((V ⊕W )//G)m). Now minimal generators of O(V∞⊕W∞)G∞
can clearly be chosen to be bihomogeneous in the variables of V∞ andW∞.
Thus if V ⊕W is D-finite, then so is W . �

The results above say that a representation is bad (resp. not D-finite) if
a subrepresentation or slice representation is bad (resp. not D-finite). Now
let us consider some examples.

Example 3.9. — Let (V,G) = (C,±1). Then V is bad. Let z be a co-
ordinate function on V . Then V1 has coordinates z = z(0) and z(1). The
invariants of G = G1 are generated by z2, zz(1) and (z(1))2. The invari-
ants coming from the quotient are z2 and 2zz(1). If one goes to degree 2,
then from C[z2] we get z2, 2zz(1) and 2(z(1))2 + 2zz(2). But among the
G2-invariants we have z2, zz(1), zz(2), (z(1))2, z(1)z(2) and (z(2))2. Things
are only getting worse. See Theorem 3.13 for the general case.

Example 3.10. — Let G = C∗ and let V = C2 with weights 2 and −3.
Then O(V )G is generated by z = x3y2, so that V//G ∼= C. For m = 1,
w := (D(z))2/z = x(3yx(1) + 2xy(1))2 is not a function on (V//G)1, but it
is a G1-invariant function on V1. Hence V is 1-bad. In fact, it is m-bad for
any m > 1. See Theorem 3.15 for a generalization. Computer calculations
suggest that V is D-finite with generators z and w. Thus this is likely an
example where V is bad yet D-finite.

Example 3.11. — Let G = SL3 and let V be the direct sum of 6 copies
of the standard representation C3, with basis {x(a,0), y(a,0), z(a,0)| a =
1, . . . , 6}. The generators of O(V )G are 3 × 3 determinants [abc] corre-
sponding to a choice of three distinct indices a, b, c ∈ {1, . . . , 6}. Let x(a,1) =
Dx(a,0) and similarly for y and z, and define

f =
∑
σ∈S6

sgn(σ)x(σ(1),0)y(σ(2),0)z(σ(3),0)x(σ(4),1)y(σ(5),1)z(σ(6),1),

TOME 65 (2015), FASCICULE 6
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where σ runs over the group S6 of permutations of {1, . . . , 6}. Note that f
has degree 6 and weight 3 and lies in O(V1)G1 , but f /∈ p∗1O((V//G)1), since
elements of p∗1O((V//G)1) of degree 6 can have weight at most 2. Hence V
is 1-bad, and in fact it is m-bad for all finite m > 1. However, f can be
expressed (up to a constant multiple) in the form∑

σ∈S6

[σ(1)σ(2)σ(3)]([σ(4)σ(5)σ(6)])(3),

so f ∈ p∗3O((V//G)3). In Theorem 6.5 and Example 6.6 below we show that
p∗∞ is surjective but not injective.

Remark 3.12. — The surjectivity of p∗∞ is equivalent to the condition
that every element of O(V∞)G∞ of weight m lies in p∗mO((V//G)m).

Theorem 3.13. — Suppose that G ⊂ GL(V ) is finite and nontrivial.
Then V is m-bad for any m > 1 and V is not D-finite.

Proof. — Note that Gm = G for all m. Let k > 0 be minimal such that
there is a homogeneous generator of O(V )G of degree k. Let f1, . . . , f` be a
basis of the generators of degree k. We have V1 ' TV = V ⊕ V ′ where V ′
is a G-module isomorphic to V . Using the isomorphism we obtain minimal
generators f ′1, . . . , f ′` of O(V ′)G which are linearly independent. The f ′i
exist in every O(Vm)G for m > 1. They are not in p∗mO((V/G)m) because
the only possibility is that f ′i = Dkfi for all i where the latter have terms
involving the variables of Vk not in V1. Thus V is m-bad for all m > 1.

Let f be a homogeneous element of O(V∞)G of minimal positive degree,
say m. Let 1 6 i1 < · · · < im 6 s. Then there is a polarization fi1,...,im
which is multilinear and invariant on the copies of V in Vs corresponding to
the indices i1, . . . , im. Now consider ij = rm+ j for r > 1. If f := fi1,...,im
is in the differential subalgebra of O(V∞)G generated by O(Vrm)G, then
we must have that f is a sum of D to some powers applied to invariants
of degree m lying in O(Vrm)G. But it is easy to see that such a sum can
never give f . �

Corollary 3.14. — If X is a smooth affine G-variety and (W,H) is a
slice representation of X with H finite and acting nontrivially on W , then
X is bad and not D-finite.

We need some more background on the action of G, see [19]. The points of
V//G are in one to one correspondence with the closed orbits Gv, v ∈ V . Let
H := Gv be the isotropy group (which is reductive) and let (W,H) be the
slice representation. The fiber p−1(p(v)) is isomorphic to G×HN (W ) where
N (W ) := p−1

W (pW (0)) is the null cone of W . For the rest of this section, we
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set Z := V//G. Let (H) denote the conjugacy class of H in G and let Z(H)
denote the closed orbits Gv′ such that Gv′ ∈ (H). Then there are finitely
many strata Z(H) each of which is smooth and irreducible. For reductive
subgroups H1 and H2 of G, write (H1) 6 (H2) if H1 is G-conjugate to a
subgroup of H2. Then among the isotropy classes of closed orbits, there
is a unique minimum (H) with respect to 6, called the principal isotropy
class. We also call H a principal isotropy group and corresponding closed
orbits are called principal orbits. Then Z(H) is the unique open stratum in
Z and we also denote it by Zpr. Let Gv be a principal orbit with Gv = H.
Then the fiber of p through v is of the form G ×H W where W is the
nontrivial part of the slice representation of H at v and O(W )H = C.
We say that a G-module is stable if the general G-orbit is closed. Then
the slice representations of the principal isotropy groups are trivial and
Vpr := p−1(Zpr) is open and consists of principal orbits.
Let S be an irreducible hypersurface in Z. Then the ideal of S is gener-

ated by an invariant f . Write f = fa1
1 . . . fan

n where the fi are irreducible
polynomials in O(V ). We say that the irreducible component {fi = 0}
of p−1(S) is schematically reduced if ai = 1. Equivalently, the differen-
tial df does not vanish at some point of {fi = 0}. We say that p−1(S) is
schematically reduced if all of its irreducible components are. Equivalently,
f generates the ideal of p−1(S) in O(V ). The codimension one strata of V
are the inverse images in V of the codimension one strata of Z.

Theorem 3.15. — Let V be a G-module such that dimZ = 1. Then
Z ' C.

(1) If O(Vm)Gm = p∗mO(Cm) for some m > 1, then an irreducible
component of N (V ) is schematically reduced.

(2) If an irreducible component of N (V ) is schematically reduced, then
O(Vm)Gm = p∗mO(Cm) for all m > 1.

Proof. — Since Z is normal of dimension one, we have Z ' C and O(V )G
is generated by a homogeneous invariant p. Write p = pa1

1 . . . pan
n where

the pi are irreducible polynomials in O(V ). Suppose that no irreducible
component of N (V ) is schematically reduced. Then ai > 2 for all i and
(Dp)2 is divisible by p, yet (Dp)2/p is not the pullback of an element of
O(Cm) and we have (1).
Now suppose that an irreducible component of N (V ) is schematically

reduced and that V is stable. Let V ′ = {v ∈ V | dp(v) 6= 0}. Then V ′

is G-stable, open and dense in V . Since dp does not vanish somewhere on
N (V ), p is a smooth mapping of V ′ onto C. Hence pm : V ′m → Cm is smooth
and surjective. The principal fibers of p : V → C are homogeneous spaces
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G/H where H is reductive. Since G → G/H is a principal H-bundle,
Gm → (G/H)m is a principal Hm-bundle and (G/H)m ' Gm/Hm. It
follows that the fibers of pm in (Vpr)m are homogeneous spaces Gm/Hm.
Hence any h ∈ O(Vm)Gm is the pullback of a rational function h̃ on Cm.
If h̃ has poles, then so does p∗mh̃ = h. Hence h̃ is in O(Cm) and we have
proved (2) in case V is stable.
Now suppose that V is not stable. Then the principal fibers are G×HW

where O(W )H = C. Since O(W )H = C, by Hilbert-Mumford there is a 1-
parameter subgroup λ : C∗ → H such that HWλ = W whereWλ is the sum
of the strictly positive weight spaces of λ. There is a dense open subset W ′λ
of Wλ such that H ×W ′λ →W ′ ⊂W is surjective and smooth where W ′ is
open in W . Then Hm×W ′λ,m →W ′m is surjective and smooth where λ has
only positive weights on W ′λ,m := (W ′λ)m. Hence the Hm-invariants of Wm

are just the constants. It follows that the Gm-invariants on Gm ×Hm Wm

are constants and the proof above goes through. �

Remark 3.16. — Whenever Zm is irreducible and reduced, p∗m is injec-
tive since pm is dominant. Hence good and very good are equivalent in this
case.

Corollary 3.17 (Eck). — Let V be a stable G-module with dimZ = 1.
Assume that the generating invariant p is irreducible. Then V is very good.

We say that the G-module V is coregular if Z is smooth. Equivalently,
O(V )G is a polynomial ring [16, II.4.3 Lemma 1]. In this case, good and
and very good are equivalent by Remark 3.16.

Corollary 3.18. — Let V be coregular. Then V is very good if and
only if each codimension one stratum of V has a schematically reduced
irreducible component.

Proof. — If a codimension one stratum has no schematically reduced
irreducible component, then the corresponding slice representation is of the
form (W + θ,H) where θ is a trivial representation, WH = 0, dimW//H =
1 and N (W ) has no schematically reduced irreducible component. Then
Corollary 3.6 and Theorem 3.15 show that V is bad.

Now assume that each codimension one stratum has a schematically
reduced irreducible component. Let V ′ be the set of points of V where dp
has maximal rank and let Z ′ ⊂ Z be the image. Then the complement
of Z ′ has codimension at least 2 in Z ' Ck. As in the case k = 1, any
Gm- invariant polynomial on Vm is the pullback of a rational function on
(Ck)m which has no poles on Z ′m. But the complement of Z ′m in (Ck)m has
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codimension at least 2. Hence our Gm-invariant polynomial is the pullback
of a polynomial on (Ck)m. �

Now let G be a connected complex reductive group and let V be a G-
module. We impose a mild technical condition which is automatic if G is
semisimple; we assume that O(V ) contains no nontrivial one-dimensional
invariant subspaces. Equivalently, we assume that every semi-invariant of
G is invariant.

Lemma 3.19. — Assume that G is connected and that every semi-
invariant of O(V ) is invariant.

(1) A function f ∈ O(V )G is irreducible in O(V ) if and only if it is
irreducible in O(V )G. In particular, O(V )G is a UFD.

(2) The codimension one strata of V are irreducible and schematically
reduced.

(3) Let S ⊂ V//G have codimension at least 2. Let f1 and f2 be rela-
tively prime elements of O(V )G which vanish on S. Then f1 and f2
are relatively prime elements of O(V ), hence p−1(S) has codimen-
sion at least 2 in V .

Proof. — We only need to prove (1) since this implies both (2) and (3).
Let f ∈ O(V )G and let f = p1 · · · pk be its prime factorization in O(V ).
Since every semi-invariant of G is invariant, each g ∈ G must permute the
factors of f , so f determines a homomorphism from G to the permutation
group on k letters. But G is connected and this map is continuous, so it
must be trivial. Therefore each pi ∈ O(V )G. �

Corollary 3.20. — Suppose that V is coregular, G is connected and
every semi-invariant of O(V ) is invariant. Then V is very good.

As above, let V ′ be the set of points in V where dp has maximal rank,
and let Z ′ ⊂ Z be the image of V ′.

Lemma 3.21. — Assume that G is connected and that every semi-
invariant of O(V ) is invariant. Let S be a codimension one stratum of Z.

(1) The rank of dp is dimZ on an open dense subset of p−1(S).
(2) V \ V ′ has codimension at least 2 in V .

Proof. — Let F = p−1(p(v)) where Gv is closed and p(v) lies in S. Since
O(V )G is a UFD, the closure of S is defined by an irreducible invariant f .
Hence p−1(S) is irreducible and df 6= 0 on an open dense subset of p−1(S).
Now F is isomorphic to G ×H N (W ) where W is the slice representation
of H = Gv. This fiber is the same everywhere over S and p−1(S) is a
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fiber bundle over S with fiber F . Thus f−1(0) is schematically reduced if
and only if F is schematically reduced, i.e., the G-invariant polynomials
vanishing at p(v) generate the ideal of F in O(V ). Thus at a smooth point
of F the rank of dp must be maximal. It follows that dp has maximal rank
on an open dense subset of p−1(S) and we have (1). By Lemma 3.19(3), if
T is a stratum of Z where codimZ T > 2, then codimV p

−1(T ) > 2. Hence
(2) follows from (1). �

Corollary 3.22. — Let (U,K) be a slice representation of V and let
S = (U//K)(H) be a codimension one stratum where H ⊂ K. Then p−1

U (S)
is schematically reduced.

Proof. — Over a point of S, the schematic fiber of pU is K ×H N (W )
where W is the slice representation of H. The schematic fiber of pV is
G ×H N (W ) over points of S′ := (V//G)(H). Thus the ranks of dpU and
dpV are the same on the inverse images of S and S′, respectively, and it
follows that the hypersurface p−1

U (S) is schematically reduced. �

Proposition 3.23. — Let H be reductive and W an H-module such
that the codimension one strata are schematically reduced. Set Y := W//H.
Suppose that W ′ ∩ N (W ) 6= ∅. Then W is coregular and very good, and
pW (W ′) = Y .

Proof. — Since dpW has maximal rank at a point of N (W ), the image
point 0 ∈ Y is smooth. But Y has a cone structure (induced by the scalar
action of C∗ onW ). It follows that Y is smooth, i.e.,W is a coregular repre-
sentation of H. By Corollary 3.18 we have that O(Wm)Hm = p∗W,mO(Ym).
Since W ′ ∩ N (W ) 6= ∅, pW (W ′) contains a neighborhood of 0 ∈ Y . Since
W ′ and Y are cones, pW (W ′) = Y . �

Theorem 3.24. — Assume that G is connected and that every semi-
invariant of O(V ) is invariant. Then for all m > 1, we have O(Vm)Gm =
p∗mO(Z ′m).

Proof. — Let Gv be a closed orbit such that p−1(p(v)) intersects V ′.
Let (W,H) be the slice representation at v. Then Proposition 3.23 and
Corollary 3.22 show that O(Wm)Hm = p∗W,mO((W//H)m). Using the slice
theorem we see that this implies that O(Um)Gm = p∗mO(Z̃m) where U is a
G-saturated neighborhood of Gv and Z̃ := p(U) is a neighborhood of p(v).
Thus given f ∈ O(V ′m)Gm there is a unique h ∈ O(Z ′m) such that p∗mh = f

on V ′m. Since codimV V \V ′ > 2, f extends to an element of O(Vm)Gm . �
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4. Classical representations of classical groups

Let G = SLn and V = kCn + `(Cn)∗. For applications to vertex algebras
it would be nice to show that p∗∞O(Z∞) = O(V∞)G∞ . But we don’t know
if this is true for general k and `. On the positive side we are able to
show that p∗∞ is surjective when k or ` is zero or when Z is a complete
intersection. In this section we concentrate on the complete intersection
case. We also handle the complete intersection classical representations of
the other classical groups (with On excluded, since it is not connected).
Let G be reductive and let V = V1 ⊕ V2 be a sum of G-modules. If

Zi := Vi//G is not a complete intersection for some i, then neither is Z =
V//G. This is clear because the generators and relations of O(V )G can be
chosen to be bihomogeneous in the generators of O(Vi), so a minimal set of
generators and relations for O(V )G will contain minimal sets of generators
and relations for each O(Vi)G.

Lemma 4.1. — Suppose that Z is a complete intersection. Then W//H
is a complete intersection for every slice representation (W,H) of V .

Proof. — Let y denote the image of 0 ∈ W in W//H. By Luna’s slice
theorem, up to étale mappings (which preserve the property of being a
complete intersection), we have an isomorphism of a neighborhood of y
with a neighborhood of some z ∈ Z. It follows that W//H is a complete
intersection in a neighborhood of y. Let p1, . . . , pd be minimal homogeneous
generators of O(W )H . Then their relations are minimally generated by
polynomials hj(y1, . . . , yd) which are homogeneous when we give yi the
degree of pi. Since W//H is a complete intersection near y, the number of
hj is d− dimW//H. Hence W//H is a complete intersection. �

Now consider (V,G) = (kCn,SLn), n > 3. If k = n + 2, then O(V )G
has

(
n+2

2
)
minimal generators and

(
n+2

4
)
minimal relations. Its dimension

is 2n + 1 >
(
n+2

2
)
−
(
n+2

4
)
, which shows that we don’t have a complete

intersection for k > n + 2. We say that there are too many relations. For
the case n = 2 we don’t have a complete intersection for k > 5 but we do
for k = 4. Note that here the representations of SL2 on C2 and (C2)∗ are
isomorphic.
Let H1, . . . ,Hr be representatives for the conjugacy classes of isotropy

groups of closed orbits in V . We say that Hi is maximal proper if Hi 6= G

and every other Hj besides G is conjugate to an isotropy group of the slice
representation of Hi. Of course, in general, such an isotropy group does not
exist.
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Lemma 4.2. — Let (V,G) = (kCn + `(Cn)∗,SLn), n > 3 where k` 6= 0.
Then the maximal proper isotropy group is SLn−1 with slice representation
(k − 1)Cn−1 + (`− 1)(Cn−1)∗ (up to trivial factors).

Proof. — We may assume that k > `. Write V = V1⊕· · ·⊕V`⊕(k−`)Cn
where each Vi is a copy of Cn⊕(Cn)∗. Then [24, 3.8] implies that any proper
isotropy class (H) of V is contained in a proper isotropy class (L) of one
of the Vi or (k− `)Cn. By [27, Theorem 2.6.A], the invariants of any Vi are
generated by the contraction of Cn with (Cn)∗. The nonzero orbits where
the invariant does not vanish are closed and have isotropy class (SLn−1).
Again by [27, Theorem 2.6.A] the nonconstant invariants of (k − `)Cn are
generated by determinants (this only happens for k − ` > n) in which
case the orbits where a determinant does not vanish are closed and have
trivial isotropy groups. Hence SLn−1 is maximal proper. LetW be the slice
representation of SLn−1. Then we have that

W ⊕ sln/sln−1 = V as SLn−1-modules.

This gives thatW = (k−1)Cn−1+(`−1)(Cn−1)∗ (up to trivial factors). �
Now suppose that (V,G) is as in the lemma above and that k = n + 1,

n > 3, and that Z is a complete intersection. If ` = n, then there are
again too many relations. Thus we must have ` < n. In fact we can have
` = (n− 1). Consider the action of SLn+1 on Hom(Cn+1,Cn) ' (n+ 1)Cn
and SLn−1 on Hom(Cn−1, (Cn)∗) ' (n−1)(Cn)∗. Then SLn+1×SLn−1 acts
on the G-invariants and the generators transform by the representations
∧n(Cn+1) (the determinants) and Cn+1⊗Cn−1 (the contractions). By [27,
Theorem 2.14.A], the relations are generated by those corresponding to

Cn−1 ' ∧n+1(Cn+1)⊗ Cn−1 ⊂ ∧n(Cn+1)⊗ (Cn+1 ⊗ Cn−1).

We have a complete intersection since(
n+ 1
n

)
+n2−1−(n−1) = n2+1 = dimZ = dimV−dimG = 2n2−(n2−1).

Now we state a general theorem enabling us to show that p∗m : O(Zm)→
O(Vm)Gm is an isomorphism for all m > 0. Let G be connected reductive
and V a G-module such that every semi-invariant is an invariant and such
that Z is a complete intersection. As before, let Z ′ denote the image of
the points V ′ of V where dp has maximal rank. Let Zm,0 denote Zm \Z ′m.
Recall that Z ′m consists of smooth points of Zm.

Theorem 4.3. — Let G and V be as above. Let (W,H) be a nontrivial
slice representation and write W = WH ⊕W1 where W1 is an H-module.
Let q : W1 → Y := W1//H be the quotient mapping and suppose that

ANNALES DE L’INSTITUT FOURIER



JET SCHEMES AND INVARIANT THEORY 2587

π−1
m (q(0)) ∩ Ym,0 has codimension at least 2 in Ym for all m > 0 and all

(W,H). Then Zm is normal for all m and p∗m : O(Zm) → O(Vm)Gm is an
isomorphism for m = 0, 1, . . . ,∞.

Proof. — By Boutot [4], it is known that Z has rational singularities.
Then [22] shows that each Zm is irreducible, reduced and a complete inter-
section, and Z∞ is reduced and irreducible. We thus need only show that
Zm \ Z ′m has codimension at least two in Zm for all m. Let S ⊂ Z be the
stratum corresponding toH. Then Luna’s slice theorem shows that a neigh-
borhood of S in Z is locally isomorphic to S × Y (up to étale mappings).
Thus (S×Y )′m ' Sm×Y ′m. Now the points of Ym,0 either lie over the stra-
tum {q(0)} of Y or they lie over a stratum T ⊂ Y with a smaller isotropy
group. By induction we can assume that π−1

m (T )∩Ym,0 has codimension at
least two in Ym. By hypothesis, π−1

m (q(0)) ∩ Ym,0 has codimension at least
two in Ym. Thus Ym,0 has codimension two in Ym and Zm,0 has codimen-
sion two in Zm over a neighborhood of S. Since this is true for all strata
S, we find that Zm,0 has codimension two in Zm, i.e., Zm is normal. Thus
p∗m : O(Zm)→ O(Vm)Gm is an isomorphism for m 6∞. �

Theorem 4.4. — Let (V,G) = ((n+ 1)Cn + (n− 1)(Cn)∗,SLn), n > 2.
Then Zm is normal for all m > 0 and p∗m : O(Zm) → O(Vm)Gm is an
isomorphism for m = 0, 1, . . . ,∞.

Proof. — Let us call our n − 1 relations f1, . . . , fn−1. Then the fj are
bilinear, being linear in the determinants and the contractions. Let

(ω(t), α(t)) = (
m∑
i=1

tiωi,

m∑
i=1

tiαi)

be elements of π−1
m (p(0)) where the ωi correspond to the determinants and

the αi to the contractions. Then for j = 1, . . . , n− 1 we have the equations
fj(ω(t), α(t)) = 0 mod tm+1. Thus we get the equations

fj(ω1, α1) = 0, fj(ω2, α1) + fj(ω1, α2) = 0, . . .

. . . , fj(ωm−1, α1) + · · ·+ fj(ω1, αm−1) = 0.

We have no conditions on ωm and αm, and the equations above on the ωi
and αi′ for 1 6 i, i′ 6 m − 1 give something isomorphic to Zm−2. Thus
the dimension of π−1

m (p(0)) is dimZm−2 + (n2 + n) for m > 2 and the
codimension of π−1

m (p(0)) in Zm is

dimZm − (dimZm−2)− (n2 + n) = (m+ 1− (m− 1))(n2 + 1)− (n2 + n)

= n2 − n+ 2 > 4.
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For m = 1 we get the same codimension and for m = 0 the codimension
is n2 + 1 > 5. Now we can use Lemma 4.2 and Theorem 4.3 to finish the
proof. �

We consider later the case of (n(Cn + (Cn)∗),SLn) whose quotient is a
complete intersection.

Theorem 4.5. — Let (V,G) = (kC2n,Sp2n), n > 1. Then V is coregu-
lar for k 6 2n+ 1, Z is a hypersurface for k = 2n+ 2 and is not a complete
intersection for k > 2n+ 3. When k = 2n+ 2, Zm is normal for all m and
p∗m : O(Zm)→ O(Vm)Gm is an isomorphism for m = 0, 1, . . . ,∞.

Proof. — The group G preserves a canonical non-degenerate skew form
on C2n. If we use indices 1 6 i < j 6 k for pairs of copies of C2n, then the
invariants of V give a 2-form ω =

∑
ωijei ∧ ej and the relations of the ωij

are given by the vanishing of ωn+1 ∈ ∧2n+2(Ck)⊗C[ωij ]. It follows that V
is coregular for k 6 2n+1 and has too many relations for k > 2n+3. Thus
we need only consider the hypersurface case k = 2n+ 2. The noncoregular
slice representations of V are of the same form as V with n replaced by
a smaller n′ > 1, modulo trivial representations. We show that Zm,0 has
codimension 4 in Zm which, by Theorem 4.3, establishes our result.

First consider the case where m is at least n+ 1. Let

ω =
m∑
i=1

tiωi ∈ π−1
m (p(0)).

Here the ωi are elements of
∧2(C2n+2)i. Then we have the equations

ωn+1
1 = 0, ωn1 ∧ ω2 = 0, . . . . The equations applied to n + 1 of the ωi

such that the sum of the indices does not exceed m gives a set isomorphic
to Zm−n−1, and there are no conditions on ωm−n+1, ωm−n+2, . . . , ωm. Now
Z has dimension

(2n+2
2
)
−1 and it follows that the codimension of π−1

m (p(0))
in Zm is

((m+ 1)− (m− n))(
(

2n+ 2
2

)
− 1)− n

(
2n+ 2

2

)
=
(

2n+ 2
2

)
− n− 1

= 2n2 + 2n > 4.

For the cases m = 0, . . . , n one gets that codim π−1
m (p(0)) = dimZ − m

which is even better. This completes the proof. �

Theorem 4.6. — Let (V,G) = (kCn + `(Cn)∗,GLn), n > 1, k > `.
Then V is coregular if ` 6 n, there are too many relations if ` > n+ 1 and
k + ` > 2n + 3 and Z is a hypersurface if k = ` = n + 1. In this last case
we have that Zm is normal for all m and p∗m : O(Zm) → O(Vm)Gm is an
isomorphism for m = 0, 1, . . . ,∞.
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Proof. — The invariants are just the contractions αij , 1 6 i 6 k,
1 6 j 6 l and the relations are detn+1

r,s=1 αir,js
= 0 where the ir are distinct

and the js are distinct. This shows that V is coregular for ` 6 n and that
Z is not a complete intersection for ` > n+ 2 or ` = n+ 1 and k > n+ 1.
We now consider the case k = ` = n+ 1. Then all the nontrivial slice rep-
resentations have the same form, with n replaced by a smaller n′ > 1. The
codimension of p(0) in Z0 is dimZ = (n+ 1)2 − 1 > 3. For m > n+ 1 one
can use the techniques as above to show that the codimension of π−1

m (p(0))
in Zm is at least

dimZm − dimZm−n−1 − n(n+ 1)2

= ((m+ 1)− (m− n))((n+ 1)2 − 1)− n(n+ 1)2

= n(n+ 1) > 2.

For 1 6 m 6 n the codimension is at least as great. Thus, as before, we
find that Zm is normal for all m and the theorem follows. �

Theorem 4.7. — Let (V,G) = (kCn,SOn), n > 2. Then V is coregular
for k < n and has too many relations if k > n. If k = n, then Z is a
hypersurface and Zm is normal for all m. Hence p∗m : O(Zm) → O(Vm)Gm

is an isomorphism for m = 0, 1, . . . ,∞.

Proof. — We leave it to the reader to show that there are too many
relations if k > n and that V is coregular for k < n. Consider the case
that k = n. The invariants of V are generated by the inner products αij ,
1 6 i, j 6 n and the determinant d. The relation is detni,j=1 αij = d2.
The nontrivial slice representations of V are just those for n replaced by
n′ where 2 6 n′ < n, up to trivial factors, so it is enough to show that
Ym := π−1

m (p(0)) has codimension at least 2 in Zm for m > 0. Let α(t) =∑m
i=1 t

iαi and d(t) =
∑m
i=1 t

idi be elements of Ym where m > n. For now
suppose that n = 2l is even. Then the equations det(α(t)) = d(t)2 force
d1 = · · · = dl−1 = 0. The nth equation is det(α1) = d2

l and one can see
that the dimension of Ym is dimZm−n + (n− 1)(dimZ + 1)− (n− 2)/2 so
that the codimension of Ym in Zm is

dimZ − (n− 1) + (n− 2)/2 = 1
2n(n+ 1)− n+ 1 + 1

2(n− 2)

= 1
2n

2

which is at least 2. If m < n, then we get the estimate that codimYm 6
dimZ −m+ [m2 ] which is even better.
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Now we consider the case that n = 2l + 1 is odd. Then looking at the
coefficient of tn we get the equation det(α1) = 0 since the equations with
lower powers of t force d1 = · · · = dl = 0. The coefficient of tn+1 gives an
inhomogeneous equation for α1 and α2 with right hand side d2

l+1. But the
solution space of the inhomogeneous equation has dimension at most that
of the homogeneous equation. Hence we can estimate the dimension of Ym
by replacing the inhomogeneous equations by the homogeneous equations.
Thus we get the estimate dimYm = dimZm−n+(n−1)(dimZ+1)−(n−1)/2
and for the codimension we get

dimZ − (n− 1) + n− 1
2 = 1

2n(n+ 1)− n+ 1 + 1
2(n− 1)

= 1
2n

2 + 1
2 .

As before, the estimates for 0 6 m < n are even better, so Ym has codi-
mension 2 and Zm is normal. �

There is one case left, which needs no new techniques.

Theorem 4.8. — Let (V,G) = (nCn + n(Cn)∗,SLn), n > 2. Then
Zm is normal and p∗m : O(Zm) → O(Vm)Gm is an isomorphism for m =
0, 1, . . . ,∞.

Proof. — The generators of O(V )G are the contractions αij and the de-
terminants d and e of the n copies of Cn and its dual. The relation is
det(αij) = de. The nontrivial slice representations, up to trivial factors,
have the same form, with n replaced by a smaller n′ > 2. As above, one
can show that π−1

m (p(0)) always has codimension at least 4 in Zm which
gives the result. �

5. Representations of C∗

The main theorem of this section is the following.

Theorem 5.1. — Let G = C∗ and let V be a G-module all of whose
weights are ±1. Then p∗∞ : O(Z∞) → O(V∞)G∞ is an isomorphism and
O(Z∞) is integrally closed.

Corollary 5.2. — Let V be a G = C∗ module with nonzero positive
weights r1 6 · · · 6 rd, d > 1, and nonzero negative weights −s1 6 · · · 6
−se, e > 1, where we may assume that the greatest common divisor of the
ri and sj is one. Then p∗∞ is surjective only in the following cases.
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(1) d = 1 and r1 = 1 or e = 1 and s1 = 1. Here Z ′ = Z so that p∗m is
an isomorphism for all m.

(2) All the ri and sj are 1.

Proof. — Suppose that there are weights ri and −sj neither of which
is 1. Let W be the corresponding two dimensional submodule of V . Then
the null cone of W consists of two non-reduced hypersurfaces, hence W is
not good and neither is V . Thus, without loss of generality, we can assume
that ri = 1 for all i. If d = 1, then we are in case (1) and one easily
sees that Z ′ = Z. Suppose that d > 1. If sj = s 6= 1 for some j, then V

contains a submodule W with weights 1, 1 and −s. Let x1, x2 and y be the
corresponding coordinate functions. The generators of the invariants have
degree s+ 1. Now (x1Dx2 − x2Dx1)xs−2

1 y is an invariant of G∞ of weight
one and degree s+1 but is not D applied to a generator of O(W )C∗ . Hence
W is not good. Thus we have to be in case (2). �

We now prove the theorem. We may assume that V G = (0) and that
the weights 1 and −1 have multiplicity n. Let x1, . . . , xn be coordinate
functions corresponding to the positive weights and let y1, . . . , yn be coor-
dinate functions corresponding to the negative weights. Set x(k)

i := Dkxi

and y(k)
j = Dkyj for k > 0. Then the x(k)

i and y(k)
j are coordinate functions

on V∞. We order the x(k)
i so that x(k)

i < x
(`)
j if k < ` or k = ` and i < j.

We similarly order the y(k)
i . The G-invariants of R := O(V∞) are linear

combinations of monomials W := u1 · · ·urv1 · · · vr where each ui is an x(k)
j

and each vi is some y(k′)
j′ and we have that u1 6 · · · 6 ur and v1 6 · · · 6 vr.

We say that W is a word in standard form. We define the weight wt(W )
of W to be the sums of the exponents of the x(k)

i and y(`)
j occurring in W .

Let W ′ = u′1 · · ·u′rv′1 · · · v′r be another monomial in standard form. We say
that W < W ′ if

(1) wt(W ) < wt(W ′),
(2) wt(W ) = wt(W ′), u1 · · ·usv1 · · · vs = u′1 · · ·u′sv′1 · · · v′s and

us+1 < u′s+1 where 0 6 s < r, or
(3) wt(W ) = wt(W ′), u1 · · ·us+1v1 · · · vs = u′1 · · ·u′s+1v

′
1 · · · v′s and

vs+1 < v′s+1 where 0 6 s < r.
We say that W is admissible if it is in standard form, v1 is some yj and for
1 6 s < r, D(vs) > vs+1. Given 0 6= h ∈ O(V∞)G∞ of degree 2r and weight
m it is a sum

∑
i ciWi where the Wi are distinct and in standard form,

the ci are nonzero scalars and wt(Wi) = m and deg(Wi) = 2r for all i.
We define the leading term M(h) to be the greatest Wi. We will eventually
show that M(h) is admissible.
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The ring O(Z) has generators fij (corresponding to xiyj) and relations
Rab,cd = fabfcd − fadfcb, 1 6 a, b, c, d 6 n and a 6= c, b 6= d. Then O(Z∞)
has generators f (k)

ij := Dkfij and relations generated by the DkRab,cd. Of
course, p∗∞f

(k)
ij = Dk(xiyj). We define a partial order on the f (k)

ij where
f

(k)
ij 6 f

(k′)
i′j′ if

(1) k + 2 6 k′,
(2) k + 1 = k′ and i 6 i′ or j 6 j′, or
(3) k = k′ and i 6 i′ and j 6 j′.

We say that a monomial f (k1)
i1,j1
· · · f (kr)

ir,jr
is standard if f (k1)

i1,j1
6 · · · 6 f (kr)

ir,jr
.

Lemma 5.3. — The algebra O(Z∞) is spanned by the standard mono-
mials.

Proof. — Suppose that f (k)
ab f

(`)
cd and f (`)

cd f
(k)
ab are not standard. First sup-

pose that k = `. We may assume that a > c and b < d. Consider the relation
D2k(fabfcd−fadfcb) = 0. It is a sum σ+f (k)

ab f
(k)
cd −f

(k)
ad f

(k)
cb where the terms

in σ are standard and involve an f with weight higher than k. We replace
f

(k)
ab f

(k)
cd by f (k)

ad f
(k)
cb − σ. The new expression is a sum of standard terms

and is “larger” than f (k)
ab f

(k)
cd in that each term has a factor with a higher

weight or contains the term f
(k)
ad which is larger than f (k)

ab and f (k)
cd in our

partial order.
Now suppose that ` = k+ 1 and our terms are not standard. Then a > c

and b > d. Consider the relation D2k+1(fabfcd − fadfcb) = 0. Expanding
we get a sum

σ + f
(k)
ab f

(k+1)
cd + f

(k+1)
ab f

(k)
cd − f

(k)
ad f

(k+1)
cb − f (k+1)

ad f
(k)
cb

where σ is a sum of standard terms with a factor of weight at least k + 2.
Now the term f

(k+1)
ab f

(k)
cd is standard and the factor f (k+1)

ab is larger than
f

(k)
ab and f (k+1)

cd in our partial order. Similarly, f (k)
ad f

(k+1)
cb is standard with

f
(k+1)
cb larger than f (k)

ab and f (k+1)
cd . Similarly for f (k+1)

ad f
(k)
cb . Hence we can

replace f (k)
ab f

(k+1)
cd by larger standard terms.

Now it follows by induction that any monomial in the f (k)
ij is a sum of

standard monomials. �

Let w = f
(k1)
i1,j1
· · · f (kr)

ir,jr
be standard. We construct a word

L(w) = u1 · · ·urv1 · · · vr
such that

(1) u1 6 · · · 6 ur and v1 6 · · · 6 vr, i.e., L(w) is a standard word.
(2) usvs is a monomial occurring in p∗∞(f (ks)

is,js
), 1 6 s 6 r.
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(3) v1 is a yi and Dvs > vs+1, 1 6 s < r, i.e., L(w) is admissible.
Clearly we must have that u1v1 = x

(k1)
i1

y
(0)
j1

. Suppose that we have de-
termined u1, . . . , ur−1 and v1, . . . , vr−1 satisfying (1)–(3) for r replaced by
r − 1. We have that ur−1 = x

(a)
ir−1

and vr−1 = y
(b)
jr−1

where a + b = kr−1.
Suppose that kr = kr−1. Then ir−1 6 ir and jr−1 6 jr so ur = x

(a)
ir

and
vr = y

(b)
jr

satisfy our conditions. If kr = kr−1 + 1 and ir−1 > ir, then
jr−1 6 jr and we set ur = x

(a+1)
ir

and vr = y
(b)
jr

. The case where jr−1 > jr

is similar. If ir−1 6 ir and jr−1 6 jr, then we set ur = x
(a+1)
ir

, vr = y
(b)
jr

.
The case kr > 2 + kr−1 is handled similarly.

Proposition 5.4. — Let w be as above. Then L(w) = M(p∗∞(w)).

Proof. — We have that L(w) = u1 · · ·urv1 · · · vr where us = x
(as)
is

and
vs = y

(bs)
js

and as + bs = ks, 1 6 s 6 r. Now M := M(p∗∞(w)) =
u′1 · · ·u′rv′1 · · · v′r where each u′s is some xa

′
s

i′s
and each v′s is some yb

′
s

j′s
.

First we prove that u′1 = u1 and that v′1 = v1 where u1 = x
(k1)
i1

and
v1 = y

(0)
j1

. Since f (k1)
i1,j1

is a factor of w, some u′s is xai1 where a 6 k1. Hence
u′1 6 u1 and by maximality of M we must have equality. It follows that
the monomial of p∗∞(f (k1)

i1,j1
) which occurs in M is x(k1)

i1
y

(0)
j1

. Hence some v′s
is y(0)

j1
and v′1 6 y

(0)
j1

. By maximality of M we have v′1 = v1.
Now suppose by induction that ui = u′i and vi = v′i for i < r. Then

u′rv
′
r is a monomial x(a′r)

ir
y

(b′r)
jr

occurring in p∗∞(f (kr)
ir,jr

) where a′r + b′r = kr.
If jr−1 6 jr, then the largest possible a′r is ar = kr − br−1 and we have
that M = L(w). If jr−1 > jr, one has a′r = ar = kr − br−1 − 1 and again
M = L(w). Hence we always have L(w) = M(p∗∞(w)). �

If W is admissible, then it is clear that there is a unique w with W =
L(w), hence we have the following

Lemma 5.5. — The function w 7→ L(w) is a bijective mapping from
standard monomials to admissible monomials. Hence the standard mono-
mials are linearly independent.

Since the smallest possible u1v1 is f11 = x1y1, multiplication by f11 is
injective on linear combinations of standard monomials. Hence f11 is not
a zero divisor in O(Z∞) and the mapping from O(Z∞) to its localization
O(Z∞)f11 is injective. By Corollary 3.7 this localization is isomorphic to
(O(V∞)G∞)(x1y1). Hence we have

Proposition 5.6. — Let G = C∗ and let V be a G-module with weights
±1 of multiplicity n, as above. The mapping p∗∞ : O(Z∞) → O(V∞)G∞ is
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injective, hence O(Z∞) is reduced. Given h ∈ O(V∞)G∞ there is an s > 0
and an f ∈ O(Z∞) such that (x1y1)sh = p∗∞(f).

Corollary 5.7. — Let h ∈ O(V∞)G∞ . Then M(h) is admissible.

Proof. — There is an s > 0 such that (x1y1)sh is in the image of O(Z∞).
Hence M((x1y1)sh) is admissible. But M((x1y1)sh) = (x1y1)sM(h) and
hence M(h) is admissible. �

Proof of Theorem 5.1. — Let h ∈ O(V∞)G∞ have a fixed degree and
weight. Let W = M(h). Then, as we saw before, there is a canonical stan-
dard monomial w such that M(p∗∞(w)) = W . Then for some constant c,
M(h − p∗∞(cw)) < M(h). By induction, then, we get that h ∈ p∗∞O(Z∞).
Since the group G∞ is connected, one shows as usual that O(V∞)G∞ is
integrally closed, hence so is O(Z∞). �

6. Some representations of SLn

In this section we consider the case where (V,G) = (`Cn,SLn). We use a
version of standard monomial theory to prove that p∗∞O(Z∞) = O(V∞)G∞ .
For n = 2 one can show that p∗∞ is injective, but for n > 3 this fails, as we
show in Example 6.6.
Consider pairs (j, k) where 1 6 j 6 ` and k > 0. For each j let {x(j,0)

i }ni=1
denote the usual coordinate functions on the jth copy of Cn. Let x(j,k)

i

denote (1/k!)Dkx
(j,0)
i . Then the x(j,k)

i are coordinate functions on V∞. Let
ω = (j, k). Then we write ω < ω′ = (j′, k′) if k < k′ or k = k′ and
j < j′. We write xωi < xω

′

i′ if ω < ω′ or ω = ω′ and i′ < i. Thus we have
xω1 > · · · > xωn for any ω. We inductively define a monomial order as follows.
Let M = mxωi (resp. M ′ = m′xω

′

i′ ) be a monomial where xωi (resp. xω′i′ ) is
the largest variable occurring in M (resp. M ′). If deg(M) < deg(M ′) or
degM = deg(M ′) and wt(M) < wt(M ′), thenM < M ′. IfM andM ′ have
the same degree and weight, then M < M ′ if xωi < xω

′

i′ or xωi = xω
′

i′ and
m < m′. If h 6= 0 is in O(V∞)G∞ , we let L(h) denote the lowest monomial
occurring with nonzero coefficient in the expression of h in the xωi .

Let xω denote the vector (xω1 , . . . , xωn). By classical invariant theory, the
algebra O(V∞)G is generated by determinants [xω1 , . . . , xωn ].

Remarks 6.1.

(1) We have L([xω1 , . . . , xωn ]) = xω1
1 · · ·xωn

n where ω1 < · · · < ωn.
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(2) Let 1 6 j1 < · · · < jn 6 ` and let k = na+ b where a, k ∈ Z+ and
0 6 b < n. Then

L(Dk([x(j1,0), . . . , x(jn,0)]))

= L([x(jb+1,a), . . . , x(jn,a), x(j1,a+1), . . . , x(jb,a+1)]).

Let

(6.1) W =

ω1,1 ω1,2 . . . ω1,n
...

... ωi,j
...

ωs,1 ωs,2 · · · ωs,n


where the ωi,j are pairs as above. We call W a tableau and we say that
W is standard if the rows are strictly increasing and the columns are non-
decreasing. To each row ωr,1, . . . , ωr,n of W we associate the determinant
[xωr,1 , . . . , xωr,n ] and to W we associate the product P (W ) of the determi-
nants determined by the rows. Let Q(W ) denote

∏
s

∏n
t=1 x

ωs,t

t .

Proposition 6.2.
(1) The P (W ) for W a standard tableau are a basis of O(V∞)G.
(2) The mapping W 7→ Q(W ) is injective and Q(W ) = L(P (W )).
(3) If 0 6= h ∈ O(V∞)G, then L(h) = Q(W ) for a standard W .

Proof. — Part (1) is just standard monomial theory and (2) is obvious.
Let h be as in (3). Then h is a sum

∑
i ciP (Wi) where the ci are nonzero

and the Wi are standard and distinct. Then the Q(Wi) are distinct and
L(h) is the minimum of the Q(Wi). �

For ω = (j, k) with wt(ω) = k > 0, let ω̃ denote (j, k−1). LetX ∈ g = sln
be the element which sends xn → x1 and annihilates xi for i < n. Here the
xi are the usual coordinate functions on Cn. Let F denote tX ∈ g[t]. Then
F and g generate g[t] so that O(V∞)G∞ = O(V∞)g[t] = O(V∞)G∩O(V∞)F .
Now F annihilates the x(j,0)

n and the xωi for i 6= n, and it sends xωn to xω̃1
when wt(ω) > 0. For wt(ω) > 0 let yω2 denote xωn and let yω1 denote xω̃1 .
Then the action of F on the yωi is the standard action of the Lie algebra of
the maximal unipotent subgroup U of SL2. Consider the symmetric algebra
A in the yωi for wt(ω) > 0. For fixed ω, the invariants of U acting on the
subalgebra generated by yω1 and yω2 are generated by yω1 . Then it follows
from [27, Theorem 2.5.A] that the U -invariants of A are generated by the
yω1 and the determinants Iωω′ := [yω, yω′ ] = yω1 y

ω′

2 − yω
′

1 yω2 . Then we have
the following relations:

Iω1
ω2

= −Iω2
ω1
, Iω1

ω2
Iω3
ω4

= Iω3
ω2
Iω1
ω4

+ Iω1
ω3
Iω2
ω4
, Iω1

ω2
yω3

1 = Iω3
ω2
yω1

1 + Iω1
ω3
yω2

1

TOME 65 (2015), FASCICULE 6



2596 Andrew R. LINSHAW, Gerald W. SCHWARZ & Bailin SONG

where wt(ωi) > 0, i = 1, . . . , 4. Let

(6.2) Y =



ω1 ω′1
...

...
ωq ω′q
ωq+1
...

ωq+r


be an array of our pairs (j, k) (a tableau) where k > 0. As usual, we
say that Y is standard if the pairs are strictly increasing in the rows and
nondecreasing as one goes down the columns. Let P̃ (Y ) denote the polyno-
mial [yω1 , yω

′
1 ] · · · [yωq , yω

′
q ]yωq+1

1 · · · yωq+r

1 . We say that P̃ (Y ) is a standard
monomial. Then the relations above show that AF = AU has basis the
standard monomials.
We have the induced monomial order on A ⊂ O(V∞). Then for ω < ω′

we have
L([yω, yω

′
]) = yω

′

1 yω2 = xω̃
′

1 x
ω
n .

Lemma 6.3. — Let Y be as above. Then the leading term of L(P̃ (Y ))
is

(6.3) y
ω′1
1 yω1

2 · · · y
ω′q
1 y

ωq

2 y
ωq+1
1 · · · yωq+r

1 = x
ω̃′1
1 xω1

n · · ·x
ω̃′q
1 xωq

n x
ωq+1
1 · · ·xωq+r

1 .

Let A′ be the subalgebra of O(V∞) generated by A and the x(j,0)
n , 1 6

j 6 `, and let B be the subalgebra of O(V∞) generated by the xωi for
1 < i < n. Then O(V∞) is the tensor product A′ ⊗C B.

Corollary 6.4.
(1) Let h ∈ (A′)F . Then L(h) is of the form fL(P̃ (Y )) where Y is

standard and f is a homogeneous polynomial in the x(j,0)
n .

(2) Let h ∈ O(V∞)F . Then L(h) is of the from fL(P̃ (Y )) where Y is
standard and f is a homogeneous polynomial in the x(j,0)

n and xωt
for 1 < t < n.

(3) Let h ∈ O(V∞)G∞ . Then L(h) = L(P (W )) where W = (ωij) is as
in (6.1). For any i with 1 6 i 6 s, if wt(ωi,n) > 0, then ω̃i,n < ωi,1.

Proof. — Parts (1) and (2) are immediate. Let h be as in (3). Then we
know that there is a standard W = (ωij) as in (6.1) such that L(h) =
L(P (W )). On the other hand, we also know that there is a standard Y as
in (6.2) such that L(h) = f(x(j,0)

n , xωt )L(P̃ (Y )) where f is homogeneous.
Suppose that wt(ωi,n) > 0 for i > i0. Then for i > i0 there is an ωi′,1 such
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that ω̃i,n < ωi′,1 and for i0 < i < j we have that ωi′,1 6 ωj′,1 and that
i′ 6= j′. It follows that we have ω̃i,n < ωi,1 for i > i0. �

Theorem 6.5. — Let (V,G) = (`Cn,SLn). Then

p∗∞O(Z∞) = O(V∞)G∞ .

Proof. — Let h ∈ O(V∞)G∞ . We may assume that h is homogeneous of
a fixed weight. By Corollary 6.4, L(h) = L(P (W )) where in the ith row of
W we have ωi,1 > ω̃i,n if wt(ωi,n) > 0. Whenever we have ωi,1 > ω̃i,n we
have that ωi,1 < · · · < ωi,n is of the form (j1, k1) < · · · < (jn, kn) where
k1 = kn or kn = k1 + 1 and jn < j1. In the former case we have a sequence
(j1, a) < · · · < (jn, a) where a > 0 and j1 < · · · < jn. In the latter case we
have a sequence (jb+1, a) < · · · < (jn, a) < (j1, a + 1) < · · · < (jb, a + 1)
where j1 < · · · < jn and a > 0. Thus the factor of L(h) corresponding
to the ith row of W is L(Dk([x(j1,0), . . . , x(jn,0)])) where k is the sum of
the kj . Hence there is a homogeneous element f of p∗∞O(Z∞) of the same
weight and degree as h such that L(h − p∗∞(f)) > L(h). By induction we
see that h ∈ p∗∞O(Z∞). �

We have not shown that p∗∞ is injective, hence we have not shown that
O(Z∞) is reduced. Using techniques as in §5 one can show that p∗∞ is an
isomorphism when n = 2. We now show that this is not the case for n = 3.

Example 6.6. — Let (V,G) = (6C3,SL3). Let [abc] denote the deter-
minant [x(a,0), x(b,0), x(c,0)] where 1 6 a < b < c 6 6. Consider the cor-
responding element fabc ∈ O(Z). Now the generators and relations trans-
form by representations of SL6. The generators transform by

∧3(C6) and
the relations are generated by quadratic expressions which transform by
the adjoint representation of SL6. The relations involving all six indices
are those fixed by the maximal torus T of SL6 and these span a space of
dimension dimT = 5. Now consider all the possible terms fabcDfdef and
(Dfabc)fdef where {a, b, c, d, e, f} = {1, . . . , 6}. It is easy to see that there
are six cases where the pullback of these terms to O(V1) contains a non-
standard monomial. Since we only have 5 relations to straighten with, we
see that one of the straightening relations in O(V∞) does not come from
the relations of O(Z). Hence p∗∞ is not injective. Since p∞ is dominant, the
kernel of p∗∞ consists of nilpotent elements. Hence Z∞ is not reduced.
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