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CLOSED RANGE FOR ∂̄ AND ∂̄b ON BOUNDED
HYPERSURFACES IN STEIN MANIFOLDS

by Phillip S. HARRINGTON & Andrew S. RAICH (*)

Abstract. — We define weak Z(q), a generalization of Z(q) on bounded do-
mains Ω in a Stein manifold Mn that suffices to prove closed range of ∂̄. Under
the hypothesis of weak Z(q), we also show (i) that harmonic (0, q)-forms are trivial
and (ii) if ∂Ω satisfies weak Z(q) and weak Z(n − 1 − q), then ∂̄b has closed range
on (0, q)-forms on ∂Ω. We provide examples to show that our condition contains
examples that are excluded from (q−1)-pseudoconvexity and the authors’ previous
notion of weak Z(q).
Résumé. — Nous définissons Z(q) faible, une généralisation de Z(q) sur les

domaines bornés Ω dans une variété de Stein Mn qui suffit à prouver que l’image
de ∂̄ est fermée. Sous l’hypothèse d’une Z(q) faible, nous montrons également que
(i) les (0, q)-formes harmoniques sont triviales et (ii) si ∂Ω satisfait une Z(q) faible
et une Z(n − 1 − q) faible, alors ∂̄b a une image fermée sur les (0, q)-formes sur
∂Ω. Nous fournissons des exemples pour montrer que notre condition contient des
exemples qui sont exclus de la (q − 1)-pseudoconvexité et la notion précédente des
auteurs de Z(q) faible.

1. Introduction

The purpose of this article is to establish sufficient conditions for the
closed range of ∂̄ (and ∂̄b) on not necessarily pseudoconvex domains (and
their boundaries) in Stein manifolds. We pay particular attention to keeping
the boundary regularity at a minimum; our results hold for C3 boundaries.
In [9], we develop a notion of weak Z(q) for which we can prove closed range
of ∂̄b for smooth bounded CR manifolds of hypersurface type in Cn. In this

Keywords: Stein manifold, ∂̄b, tangential Cauchy-Riemann operator, closed range, ∂̄-
Neumann, weak Z(q), q-pseudoconvexity.
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1712 Phillip S. HARRINGTON & Andrew S. RAICH

paper, we generalize our notion of weak Z(q) and relax the smoothness
assumption. The microlocal analysis technique of [9] requires significant
boundary smoothness, and to replace the microlocal analysis, we assume
that our CR manifold is the boundary of a bounded domain in a Stein
manifold and attain the closed range of ∂̄b as a consequence of the ∂̄-theory
which we prove. Our analysis of ∂̄b is in the spirit of [22]. Additionally,
we show that the weak Z(q)-hypothesis is sufficient to show that harmonic
forms vanish at level (0, q). Finally, we provide examples to show that our
new condition is more general than either (q − 1)-pseudoconvexity [27] or
the weak Z(q)-hypothesis of [9].

Let Ω ⊂ Cn be a bounded domain with a C2 defining function ρ. The
Levi form of ∂Ω is the form

Lρ(t) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
tj t̄k,where

n∑
j=1

∂ρ

∂zj
tj = 0.

If the Levi form is positive semi-definite for all boundary points, we say Ω
is pseudoconvex. Suppose that f is a (0, q)-form on Ω with components in
L2. If ∂̄f = 0, where ∂̄ is the Cauchy-Riemann operator, we wish to know
whether there exists a (0, q−1)-form u with L2 components such that ∂̄u =
f . When Ω is a pseudoconvex domain, this question was answered in the
affirmative for all 1 6 q 6 n by Hörmander in [13]. In fact, pseudoconvexity
is a necessary condition to solve ∂̄ in L2 for all 1 6 q 6 n.
If we only wish to solve ∂̄ for a fixed value of q, pseudoconvexity is no

longer necessary. If the Levi form has at least n − q positive eigenvalues
or at least q + 1 negative eigenvalues, we say that ∂Ω satisfies Z(q). It is
known that the ∂̄ problem can be solved in L2 if ∂Ω satisfies Z(q). In fact,
Z(q) is equivalent to the solvability of ∂̄u = f if the components of u are
required to be elements of the L2 Sobolev space W 1/2 (see [13], Theorem
3.2.2 in [7], or [1]).
If we allow the Levi form to degenerate as in the pseudoconvex case, solv-

ability is less well understood. The most natural condition would replace
“positive” and “negative” in the definition of Z(q) with “nonnegative” and
“nonpositive.” From a function theoretic perspective, this is indeed natural
(see for example [3] or [6]). Building on work of Andreotti and Hill [2],
Brinkschulte [4] is able to show local smooth solvability of ∂̄ at appropriate
form levels for such domains. However, global closed range for ∂̄ in L2

(0,q)(Ω)
and L2

(0,q+1)(Ω) remains open on these domains.
In [12], Ho considers domains Ω where the sum of any q-eigenvalues of the

Levi-form for ∂Ω are nonnegative (q-convex domains), and shows that this

ANNALES DE L’INSTITUT FOURIER



CLOSED RANGE IN STEIN MANIFOLDS 1713

suffices for closed range of ∂̄ in L2
(0,r)(Ω) with r > q. Zampieri has further

generalized this as q-pseudoconvexity (see [27]). In q-pseudoconvexity, a
subbundle of the tangent bundle of at most dimension q exists locally with
the property that the sum of the q + 1 smallest eigenvalues of the Levi
form is greater than or equal to the trace of the Levi form with respect
to the subbundle. As shown in Theorem 1.9.9 in [27], this implies that for
L2 (0, q + 1)-forms f in the kernel of ∂̄, there exists an L2 (0, q)- form u

solving ∂̄u = f . To be consistent with the notation convention in Z(q) (and
q-convexity in [12]), we will typically refer to this as (q−1)-pseudoconvexity.
In this paper, we will generalize (q−1)-pseudoconvexity as follows. Taking

the trace of the Levi form with respect to a vector bundle can be thought
of in local coordinates as taking the trace of the Levi form with respect
to a projection matrix (i.e., a hermitian matrix with eigenvalues of 0 or
1). We will relax this condition by allowing eigenvalues that are between
0 and 1. This gives us needed flexibility, as demonstrated by an example
in Proposition 6.1 in which the rank of the identity minus our matrix is
forced to be locally nonconstant. By analogy with the nondegenerate case,
we will call such domains weak Z(q) domains (see Definition 2.1 for a formal
definition). The example in Proposition 6.1 thus illustrates that weak Z(q)
is a strictly weaker condition than any previously known condition.
We also allow for the boundary to be disconnected, using techniques

developed for the annulus between two pseudoconvex domains in [20]. These
techniques allow us to solve ∂̄ modulo the space of harmonic (0, q)-forms in
some weighted L2 space. By adapting recent arguments of Shaw [23], we are
able to show that the space of harmonic (0, q)-forms in fact vanishes, which
allows us to use Hörmander’s methods to obtain results in unweighted L2

spaces. Our main L2-result is thus the following:

Theorem 1.1. — Let M be an n-dimensional Stein manifold, and let
Ω be a bounded subset of M with C3 boundary satisfying weak Z(q) for
some 1 6 q 6 n− 1. Then we have

(1) The space of harmonic (0, q)-forms Hq(Ω) is trivial.
(2) The ∂̄-Laplacian �q has closed range in L2

(0,q)(Ω).
(3) The ∂̄-Neumann operator Nq exists and is continuous in L2

(0,q)(Ω).
(4) The operator ∂̄ has closed range in L2

(0,q)(Ω) and L2
(0,q+1)(Ω).

(5) The operator ∂̄∗ has closed range in L2
(0,q)(Ω) and L2

(0,q−1)(Ω).

We work in Stein manifolds motivated by results in [10]. The C3 bound-
ary is needed for our method of proof because of additional integration by
parts that are carried out to handle the nonpositive eigenvalues of the Levi

TOME 65 (2015), FASCICULE 4



1714 Phillip S. HARRINGTON & Andrew S. RAICH

form. Unfortunately, while the results of Theorem 1.1 do not depend on
the metric, our condition appears to depend on the metric (see Proposi-
tion 6.7). See [26] for discussion of analogous difficulties surrounding the
apparent metric dependence of Property (Pq). This is another benefit of
working in generic Stein manifolds, since our example in Section 6 requires
a non-Euclidean metric. Our condition also implies stronger results which
do depend on the metric. Let ϕ be a global plurisubharmonic exhaustion
function for M , and let the metric for M be given by the Kähler form
ω = i∂∂̄ϕ. For a weight function φ which is chosen to equal ±ϕ in a neigh-
borhood of each connected component of ∂Ω, we can define the weighted
L2-norm ‖f‖2t =

∫
Ω e
−tφ |f |2 dV . For sufficiently large t > 0, we will be able

to obtain Sobolev space estimates for the weighted ∂̄-Neumann operator
defined with respect to this norm.

Theorem 1.2. — Let M be an n-dimensional Stein manifold, and let
Ω be a bounded subset of M with C3 boundary satisfying weak Z(q) for
some 1 6 q 6 n − 1. Then there exists a constant t̃ > 0 such that for all
t > t̃ and − 1

2 6 s 6 1 we have

(1) The weighted ∂̄-Neumann operator Nq
t exists and is continuous in

L2
(0,q)(Ω).

(2) The canonical solution operators to ∂̄ given by ∂̄∗tN
q
t : W s

(0,q)(Ω)→
W s

(0,q−1)(Ω) and Nq
t ∂̄
∗
t : W s

(0,q+1)(Ω)→W s
(0,q)(Ω) are continuous.

(3) The canonical solution operators to ∂̄∗t given by ∂̄Nq
t : W s

(0,q)(Ω)→
W s

(0,q+1)(Ω) and Nq
t ∂̄ : W s

(0,q−1)(Ω)→W s
(0,q)(Ω) are continuous.

(4) For every f ∈W s
(0,q)(Ω)∩ ker ∂̄ there exists a u ∈W s

(0,q−1)(Ω) such
that ∂̄u = f .

Interestingly, Theorem 1.2 is actually needed to prove Theorem 1.1 when
the boundary is disconnected; see Section 5 for details. The estimates of
Theorem 1.2 were carried out by the first author in [8] for pseudoconvex do-
mains with C2 boundary; again, the additional integration by parts needed
for weak Z(q) seem to require an additional degree of smoothness. Further-
more, the elliptic regularization carried out in Section 4 seems to require a
C3 boundary.
When ∂Ω satisfies weak Z(q) and weak Z(n − q − 1), we say that ∂Ω

satisfies weak Y (q). In [9], the authors continued work of [18] and [19]
to understand solvability for the boundary operator ∂̄b on CR-manifolds
of hypersurface type. The definition given for weak Y (q) in that paper is
completely superseded by the definition in the present paper. When our

ANNALES DE L’INSTITUT FOURIER
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bounded weak Y (q) manifold is an actual hypersurface in a Stein manifold,
we now have the following result:

Theorem 1.3. — Let M be an n-dimensional Stein manifold, and let
Ω be a bounded subset of M with connected C3 boundary satisfying weak
Y (q) for some 1 6 q < n − 1. For every f ∈ L2

(0,q)(∂Ω) ∩ ker ∂̄b there
exists a u ∈ L2

(0,q−1)(∂Ω) satisfying ∂̄bu = f . Hence, ∂̄b has closed range in
L2

(0,q)(∂Ω).

Additional assumptions seem necessary for q = n− 1, even in the pseu-
doconvex case (see [5] for details).
The authors would like to thank the referee for several helpful comments

on Section 6, which led to substantial improvements to Proposition 6.6.

2. Basic Properties and Notation

Let M be an n-dimensional Stein manifold, n > 2, and fix a smooth,
strictly plurisubharmonic exhaustion function ϕ for M . We endow M with
the Kähler metric given by the Kähler form ω = i∂∂̄ϕ. In local coordinates
z1, . . . , zn, we will write

ω = i

n∑
j,k=1

gjk̄dzj ∧ dz̄k = i

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
dzj ∧ dz̄k.

As usual, gk̄j will denote the inverse matrix to gjk̄. By the usual convention,
we will use the metric to raise and lower indices, so that, for example,

n∑
`=1

gj ¯̀b
¯̀k = b·kj and

n∑
`=1

cj ¯̀g
¯̀k = c·kj .

Additionally, we use the bracket 〈·, ·〉 notation for the metric pairing, i.e.,
if L,L′ ∈ T 1,0(M), then 〈L,L′〉 = ω(iL̄′ ∧ L) whereas if α =

∑n
j=1 aj dzj

and α′ =
∑n
j=1 a

′
j dzj in local coordinates, then 〈α, α′〉 =

∑n
j,k=1 ā

′
kg
k̄jaj .

By multilinearity, 〈·, ·〉 now extends to (p, q)-forms.
Let Ω ⊂M be a bounded domain with Cm boundary. By definition, this

means that there exists a Cm function ρ on M such that Ω = {z ∈ M |
ρ(z) < 0} and dρ 6= 0 on ∂Ω. Such a ρ is called a Cm defining function for
Ω. For z ∈ ∂Ω, we define the induced CR-structure on ∂Ω at z by

T 1,0
z (∂Ω) =

{
L ∈ T 1,0

z (M) : ∂ρ(L) = 0
}
.

Let T 1,0(∂Ω) denote the space of Cm−1 sections of T 1,0
z (∂Ω). We will

also need T 0,1(∂Ω) = T 1,0(∂Ω) and the exterior algebra generated by

TOME 65 (2015), FASCICULE 4



1716 Phillip S. HARRINGTON & Andrew S. RAICH

these: T p,q(∂Ω). Let Λp,q(∂Ω) denote the bundle of Cm−1 (p, q)-forms on
T p,q(∂Ω). We use τ to denote the orthogonal projection and restriction:

(2.1) τ : Λp,q(M)→ Λp,q(∂Ω).

For each element X of T p,q (resp. Λp,q), we denote the metric dual ele-
ment of Λp,q (resp. T p,q) by X]. This is defined to satisfy the relationships
X](Y ) = 〈Y,X〉 for all Y ∈ T p,q (resp. Y (X]) = 〈Y,X〉 for all Y ∈ Λp,q).
For example, the dual of the Kähler form is given in local coordinates by

ω] = i

n∑
j,k=1

gk̄j
∂

∂z̄k
∧ ∂

∂zj
.

For any C2 defining function ρ, the Levi form Lρ is the real element of
Λ1,1(∂Ω) defined by

Lρ(iL̄ ∧ L′) = i∂∂̄ρ(iL̄ ∧ L′)

for any L,L′ ∈ T 1,0(∂Ω). As usual, if ρ̃ is another C2 defining function for
Ω, then ρ̃ = ρh for some nonvanishing C1 function h, and Lρ̃ = hLρ. We
will typically suppress the subscript ρ when the choice of defining function
is not relevant.

Definition 2.1. — For 1 6 q 6 n− 1, we say ∂Ω satisfies Z(q) weakly
if there exists a real Υ ∈ T 1,1(∂Ω) satisfying

(1) |θ|2 > (iθ ∧ θ̄)(Υ) > 0 for all θ ∈ Λ1,0(∂Ω).
(2) µ1 + · · ·+ µq −L(Υ) > 0 where µ1, . . . , µn−1 are the eigenvalues of
L in increasing order.

(3) ω(Υ) 6= q.

Remark 2.2. — Note that this is an intrinsic definition, so it can also be
applied to abstract CR-manifolds of hypersurface type. This replaces the
definition given in [9], and the main results of that paper still follow with
this more general definition.

The fact that ∂Ω is the boundary of a domain induces a natural orien-
tation on ∂Ω. It is sometimes useful to reverse the orientation and think of
∂Ω as the boundary of the complement instead. The following observation
is trivial for Z(q), and motivates the definition of Y (q), so it is of interest
to confirm the corresponding fact for weak Z(q).

Proposition 2.3. — For 1 6 q 6 n − 2, let Ω ⊂ M be a bounded
domain and let B ⊂ M be a sufficiently large bounded pseudoconvex do-
main so that Ω ⊂ B. Then ∂Ω satisfies Z(q) weakly if and only if ∂(B/Ω)
satisfies Z(n− q − 1) weakly.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Suppose ∂Ω satisfies Z(q) weakly, and let Υ̃ be the element of
T 1,1(∂Ω) given by Definition 2.1. On ∂B, we can define Υ = 0, and on ∂Ω
we define Υ = (τω)] − Υ̃. If µ̃1, . . . , µ̃n−1 are the eigenvalues of the Levi
form of ∂Ω in increasing order, then µ1 = −µ̃n−1, . . . , µn−1 = −µ̃1 are the
eigenvalues of the Levi form of ∂(B/Ω) (on ∂Ω) in increasing order, so since
L((τω)]) = µ1 + · · ·+ µn−1, we have

µ1 + · · ·+ µn−q−1 − L(Υ) = µ̃1 + · · ·+ µ̃q − L̃(Υ̃).

Furthermore, ω(Υ) = n− 1− ω(Υ̃) 6= n− q − 1.
Similar computations prove the converse. �

Remark 2.4. — We can replace B with any bounded domain such that
∂B satisfies Z(n− q − 1) weakly.

Motivated by this, we define

Definition 2.5. — For 1 6 q 6 n− 2, we say ∂Ω satisfies Y (q) weakly
if ∂Ω satisfies Z(q) weakly and Z(n− q − 1) weakly.

We note that Definition 2.1 is essentially a local property (modulo con-
nected boundary components).

Lemma 2.6. — For 1 6 q 6 n− 1, let σ : ∂Ω → {−1, 1} be continuous
and suppose that for every p ∈ ∂Ω there exists an open neighborhood Up
of p such that Up ∩ ∂Ω is connected and a real Υp ∈ T 1,1(Up) satisfying

(1) |θ|2 > (iθ ∧ θ̄)(Υp) > 0 for all θ ∈ Λ1,0(Up).
(2) µ1 + · · ·+ µq −L(Υp) > 0 on Up where µ1, . . . , µn−1 are the eigen-

values of the Levi form in increasing order.
(3) σ(p) (ω(Υp)− q) > 0 on Up.

Then ∂Ω satisfies Z(q) weakly.

Remark 2.7. — The function σ represents a choice of orientation for
each connected boundary component of Ω.

Proof. — Choose a finite cover {Up}p∈P of ∂Ω and let χp be a subor-
dinate partition of unity. If we let Υ =

∑
p∈P χpΥp, then the necessary

properties are satisfied by linearity. Since σ is constant on each connected
component of ∂Ω, ω(Υp) − q will have a constant sign on each connected
component of ∂Ω, so there is no possibility of cancellation in the corre-
sponding sum. �

TOME 65 (2015), FASCICULE 4



1718 Phillip S. HARRINGTON & Andrew S. RAICH

Fix p ∈ ∂Ω, and choose local coordinates that are orthonormal at p and
satisfy ∂ρ

∂zj
(p) = 0 for all 1 6 j 6 n− 1. At p we can write

Υ = i

n−1∑
j,k=1

bk̄j
∂

∂z̄k
∧ ∂

∂zj
and L = i

n−1∑
j,k=1

cjk̄dzj ∧ dz̄k

where bk̄j and cjk̄ are hermitian (n−1)×(n−1) matrices. Suppose that the
local coordinates are chosen to diagonalize bk̄j at p, and write bk̄j = δjkλj .
When restricted to p, the defining characteristics of weak Z(q) will take
the form

(1) 0 6 λj 6 1 for all 1 6 j 6 n− 1.
(2) µ1 + · · ·+ µq − (λ1c11̄ + · · ·+ λn−1cn−1n−1) > 0.
(3) λ1 + · · ·+ λn−1 6= q.

If there is an orthonormal local coordinate frame that diagonalizes bk̄j such
that λ1 = · · · = λm = 1 and λm+1 = · · · = λn−1 = 0 for some m 6= q, then
this is the condition studied in [9] which was shown to generalize Z(q) and
(q − 1)-pseudoconvexity [27] (with the weight ϕ(z) = |z|2 in [9]).
Alternatively, we can choose orthonormal coordinates that diagonalize

the Levi form at a point, so that cjk̄ = δjkµj . The second condition then
translates into

µ1(1− b1̄1) + · · ·+ µq(1− bq̄q)− (µq+1b
q+1q+1 + · · ·+ µn−1b

n−1n−1) > 0.

Since (1 − bj̄j) > 0, bj̄j > 0, and µj 6 µq 6 µq+1 6 µk for all j 6 q <

q+ 1 6 k, it follows that µq(q−ω(Υ)) > 0 and µq+1(q−ω(Υ)) > 0. Hence,
if µq < 0, then ω(Υ) > q, and if µq+1 > 0, then ω(Υ) < q. Equivalently, we
have

Lemma 2.8. — For 1 6 q 6 n− 1 let Ω ⊂M be a bounded domain and
suppose that ∂Ω satisfies Z(q) weakly. Let Υ be as in Definition 2.1. For
any fixed boundary point, if ω(Υ) < q then the Levi form has at least n−q
nonnegative eigenvalues, and if ω(Υ) > q, then the Levi form has at least
q + 1 nonpositive eigenvalues.

Many results will be easier to work with when the boundary is connected.
The fact that we are only working with bounded domains induces a natural
decomposition into domains with connected boundaries.

Lemma 2.9. — For any Stein manifold M , supposed that Ω ⊂ M is a
connected bounded domain with C3 boundary satisfying Z(q) weakly for
some 1 6 q 6 n − 1. Then Ω = Ω1/

⋃m
j=2 Ωj where Ωj has connected

boundary for each 1 6 j 6 m, Ω1 satisfies Z(q) weakly, and Ωj satisfies

ANNALES DE L’INSTITUT FOURIER



CLOSED RANGE IN STEIN MANIFOLDS 1719

Z(n−q−1) weakly for each 2 6 j 6 m. The (1, 1)-vector Υ in Definition 2.1
will satisfy ω(Υ) < q on ∂Ω1 and ω(Υ) > q on ∂Ωj for 2 6 j 6 m.

Proof. — Let ψ : M → C2n+1 be an embedding (see Theorem 5.3.9 in
[14]). Since Ω is bounded, there exists a minimal radius R > 0 such that
ψ[Ω] is contained in a ball centered at zero with radius R. Denote the
pullback of this ball under ψ by B. Then B is a strictly pseudoconvex
domain in M containing Ω and since R is minimal there exists at least
one point p ∈ ∂Ω ∩ ∂B. At p, ∂Ω must also be strictly pseudoconvex, so
ω(Υ)(p) < q by the contrapositive of Lemma 2.8. By continuity, ω(Υ) < q

on the connected boundary component containing p, so we define this to be
∂Ω1. Since Ω is connected, the remaining boundary components (finitely
many, since Ω is relatively compact with C3 boundary) can be thought of
as boundaries of Z(n− q− 1) domains by Proposition 2.3 and Remark 2.4.
Using the argument with a ball in C2n+1, we again see that each of these
subdomains has a strictly pseudoconvex point, and hence the Levi form
is negative definite (when viewed as part of ∂Ω). When the Levi form is
negative-definite, we must have ω(Υ) > q by Lemma 2.8. �

Remark 2.10. — One consequence of this proof is that there are no
bounded weak Z(0) domains, since ω(Υ) < 0 is impossible. On the other
hand, bounded weak Z(n − 1) domains can exist (e.g., pseudoconvex do-
mains), but they must have connected boundaries (otherwise some bound-
ary components would bound weak Z(0) domains). For analysis of the
q = n− 1 case on domains with disconnected boundaries, see [15] and [23].

To prove our basic estimates, we will need extensions of Υ to M .

Lemma 2.11. — Suppose that ∂Ω satisfies Z(q) weakly, and let Υ be
as in Definition 2.1. Let ρ be any Cm defining function for Ω. There exist
relatively compact open sets U+, U−, and U0 covering Ω such that ∂Ω ∩
U

0 = ∅ and U+ ∩ U− = ∅, along with real Υ+,Υ− ∈ T 1,1(M) satisfying
(1) |θ|2 > (iθ ∧ θ̄)(Υ±) > 0 for all θ ∈ Λ1,0(M).
(2) ω(Υ+) < q and ω(Υ−) > q on M .
(3) For any θ ∈ Λ1,0(M) we have

(iθ ∧ θ̄)(Υ±) = (iτθ ∧ τ θ̄)(Υ)

on ∂Ω ∩ U±.
(4) On a neighborhood of ∂Ω ∩ U±, we have (θ ∧ ∂̄ρ)(Υ±) = 0 for all

θ ∈ Λ1,0(M).

Remark 2.12. — Note that U+ 6= ∅ by Lemma 2.9. On the other hand,
if ∂Ω is connected, we can set U− = ∅ and U0 = ∅.

TOME 65 (2015), FASCICULE 4



1720 Phillip S. HARRINGTON & Andrew S. RAICH

Proof. — LetK+ ={z ∈ ∂Ω : ω(Υ) < q} andK−={z ∈ ∂Ω : ω(Υ) > q}.
By the continuity of ω(Υ) these are disconnected from each other, so there
exist open neighborhoods U+ and U− such that K± ⊂ U± and K±∩U∓ =
∅. Choose U0 such that ∂Ω ∩ U0 = ∅ and Ω ⊂ U0 ∪ U+ ∪ U−.

Let U be a neighborhood of ∂Ω on which dρ 6= 0 for some Cm defin-
ing function ρ. Let ψ(w, t) : U × [0, |ρ(w)|] → U solve the initial value
problem ψ(w, 0) = w and ∂

∂tψ(w, t) = −
(

(sgnρ) |dρ|−2 (dρ)]
)

(ψ(w, t)).
By construction, this will satisfy

∂

∂t
ρ(ψ(w, t)) = −(sgnρ)|dρ|−2〈dρ, dρ〉(ψ(w, t)) = −(sgnρ)(ψ(w, t)),

so ψ(w, |ρ(w)|) ∈ ∂Ω.
We denote parallel translation along ψ(w, t) by

P ba,w : T p,qψ(w,a)(M)→ T p,qψ(w,b)(M).

Choose χ ∈ C∞0 (U) such that χ ≡ 1 on a neighborhood of ∂Ω. We define
Υ± on ∂Ω ∩ U± by

(iθ ∧ θ̄)(Υ±) = (iτθ ∧ τ θ̄)(Υ)

for any θ ∈ Λ1,0(M). On U ∩ U±, we parallel translate Υ± along ψ, as
follows. We define

Υ+(w) = χ(w)P 0
|ρ(w)|,wΥ+(ψ(w, |ρ(w)|))

and
Υ−(w) = χ(w)P 0

|ρ(w)|,wΥ−(ψ(w, |ρ(w)|)) + (1− χ(w))ω].

We can now define Υ+ = 0 on M/(U ∩ U+) and Υ− = ω] on M/(U ∩
U−). �

We are now ready to define our weight function. Let U±, U0, and Υ± be
as in Lemma 2.11. Fix χ ∈ C∞0 (M/U

−) such that χ ≡ 1 on U+. Set

φ = χϕ− (1− χ)ϕ.

While the complex Hessian of φ on U0 will involve derivatives of χ, we still
have

(2.2) i∂∂̄φ =
{
ω on U+

−ω on U−
.

We next define the usual weighted L2-inner products. For f, h ∈ L2
(0,q)(Ω),

define
(f, h)t =

∫
Ω
e−tφ 〈f, h〉 dV.
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and ‖f‖t =
√

(f, f)t. Since e−tφ is uniformly bounded on Ω, the space of
(0, q)-forms bounded in ‖·‖t is equal to L2

(0,q)(Ω). The operator

∂̄ : L2
(0,q)(Ω, e−tφ)→ L2

(0,q+1)(Ω, e−tφ)

is given its L2-maximal definition, and the adjoint

∂̄∗t : L2
(0,q+1)(Ω, e−tφ)→ L2

(0,q)(Ω, e−tφ)

is defined with respect to the weighted inner product (·, ·)t. We also have
�qt = ∂̄∂̄∗t + ∂̄∗t ∂̄ with the induced domain. The space of harmonic forms is
given by

Hqt (Ω) = L2
(0,q)(Ω, e−tφ) ∩ ker ∂̄ ∩ ker ∂̄∗t ,

with the projection onto these denoted Hq
t : L2

(0,q)(Ω, e−tφ)→ Hqt (Ω, e−tφ).
When it exists, the weighted ∂̄-Neumann operator

Nq
t : L2

(0,q)(Ω, e−tφ)→ Dom(�qt )

satisfies �qtN
q
t = I −Hq

t .
Let Iq denote the set of increasing multi-indices over {1, · · · , n} of length

q. For an open set U ⊂M with local coordinates
{
zU1 , . . . , z

U
n

}
, we let ∇Uj

denote the covariant derivative with respect to ∂
∂zU

j

. We also use ∇U,∗j,t =

−∇Uj + t ∂φ
∂z̄U

j

. This satisfies the adjoint relationship

n∑
j,k=1

(gk̄jU ∇
U
j f, hk)t =

n∑
j,k=1

(gk̄jU f,∇
U,∗
j,t hk)t

assuming f and hk are compactly supported. If U is a finite open cover of
Ω by such sets, we let

{
χU
}
U∈U denote a partition of unity subordinate to

this cover and define the following gradient terms on (0, q)-forms f for any
Υ ∈ T 1,1(M): ∥∥∇f∥∥2

t
=
∑
U∈U

n∑
j,k=1

(χUgk̄jU ∇
U

k f,∇
U

j f)t(2.3)

∥∥∇Υf
∥∥2
t

=
∑
U∈U

n∑
j,k=1

(χUbk̄jU ∇
U

k f,∇
U

j f)t(2.4)

‖∇Υf‖2t =
∑
U∈U

n∑
j,k=1

(χUbk̄jU ∇
U,∗
j,t f,∇

U,∗
k,t f)t,(2.5)

where

Υ = i

n∑
j,k=1

bk̄jU
∂

∂z̄Uk
∧ ∂

∂zUj
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on U . We also introduce vector fields which will figure prominently in our
error terms:

E =
∑
U∈U

∑
j,k,`

χUgk̄`U

(
∂

∂z̄Uk
b·j`,U

)
∂

∂zUj

EΥ =
∑
U∈U

∑
j,k,`,r

χUgk̄`U

(
∂

∂z̄Uk
b·r`,U

)
b·jr,U

∂

∂zUj
.

Note that if we change coordinates, b·r`,U will be multiplied by matrices
of holomorphic functions, which will be annihilated by ∂

∂z̄U
k

, so the vector
fields remain invariant under changes of coordinates. At any point p ∈ Ω,
choose orthonormal coordinates at p that diagonalize bk̄j , with eigenvalues
λj corresponding to the eigenvector ∂

∂zj
at p. If Υ satisfies property (1) in

Lemma 2.11, then 0 6 λj 6 1. If Υ is C1, then at p we can write

E =
n∑
j=1

Aj
∂

∂zj
and EΥ =

n∑
j=1

Ajλj
∂

∂zj

where Aj are continuous functions on our local coordinate patch. Hence,
at p, since λ2

j 6 λj we have

∣∣∣∇∗EΥ,t
f
∣∣∣2 =

∣∣∣∣∣∣
n∑
j=1

Ajλj∇
∗
j,tf

∣∣∣∣∣∣
2

6 C
n∑
j=1

λj

∣∣∣∇∗j,tf ∣∣∣2
for some constant C > 0. Integrating, this gives us

(2.6)
∥∥∥∇∗EΥ,t

f
∥∥∥2

t
6 C ‖∇Υf‖2t .

On the other hand, since (1− λj)2 6 (1− λj), we also have at p

∣∣∇Ef −∇EΥf
∣∣2 =

∣∣∣∣∣∣
n∑
j=1

Aj(1− λj)∇jf

∣∣∣∣∣∣
2

6 C
n∑
j=1

(1− λj)
∣∣∇jf ∣∣2

for some constant C > 0. Integration gives us

(2.7)
∥∥∇Ef −∇EΥf

∥∥2
t
6 C

(∥∥∇f∥∥2
t
−
∥∥∇Υf

∥∥2
t

)
.

We also abuse notation and define the action of (1, 1)-forms on (0, q)-
forms. Let f ∈ C1

(0,q)(Ω) ∩ Dom(∂̄∗t ). For any point p ∈ Ω, choose local
coordinates that are orthonormal at p and define

i∂∂̄φ(f, f)(p) =
∑

J∈Iq−1

n∑
j,k=1

∂2φ

∂zj∂z̄k
fkJ f̄jJ
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where fkJ = (−1)σfK for K ∈ Iq if {k}∪J = K as sets and σ is the length
of the permutation that changes kJ into K. Due to (2.2), we have

(2.8) i∂∂̄φ(f, f) =
{
q |f |2 on U+

−q |f |2 on U−
.

For any point p ∈ ∂Ω, choose local coordinates that are orthonormal at p
such that ∂ρ

∂zj
(p) = 0 for all 1 6 j 6 n− 1. We define

L(f, f)(p) =
∑

J∈Iq−1

n−1∑
j,k=1

∂2ρ

∂zj∂z̄k
fkJ f̄jJ .

We note for future reference that if µ1, . . . , µn−1 are the eigenvalues of L
arranged in increasing order, then (adapting the proof of Lemma 4.7 in
[25]), we have

(2.9) L(f, f) > (µ1 + · · ·+ µq) |f |2 .

3. The Basic Estimate

Let ρ be a Cm defining function for Ω with |dρ| = 1 on Ω. For f ∈
C1

(0,q)(Ω)∩Dom(∂̄∗t ) with 1 6 q 6 n, we have the Morrey-Kohn-Hörmander
equality (see for example [5], [7], [14], or [25]):∥∥∂̄f∥∥2

t
+
∥∥∂̄∗t f∥∥2

t
=
∥∥∇f∥∥2

t
+ t

∫
Ω
i∂∂̄φ(f, f)e−tφdV

+
∫
∂Ω
L(f, f)e−tφdS +O(‖f‖2t ).

(3.1)

The error term involves the curvature of the Kähler metric, and can be
computed explicitly using the Bochner-Kodaira technique [24]. Since this
term can be controlled by choosing t large enough, we will not need the
precise value.
We wish to understand integration by parts in the gradient term. Note

that in (2.3), (2.4), and (2.5), the integrated terms are invariant under
changes of coordinate, so derivatives of the partition of unity χU that arise
from integration by parts will cancel. Hence, for clarity of notation, we can
suppress the partition of unity without losing information.
Let U±, U0, and Υ± be as in Lemma 2.11. Note that property (3) in

this lemma guarantees that Υ± has no normal component on ∂Ω ∩ U±,
so Υ±|∂Ω∩U± is made up of tangential derivatives which can be integrated
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by parts without introducing a boundary term. Hence, working in local
coordinates with f ∈ C2

(0,q)(Ω) ∩ C2
0 (U±) we have

∥∥∇Υ±f
∥∥2
t

=
n∑

j,k=1
(bk̄j∇kf,∇jf)t

=
n∑

j,k,`=1
(gk̄`f,∇∗k,t(b

·j̄
¯̀∇jf))t

=
n∑

j,k=1
(bk̄jf,∇∗k,t∇jf)t − (f,∇Ef)t.

(3.2)

To continue, we will need the commutator
n∑

j,k=1
bkj̄ [∇∗k,t,∇j ]f = −t

n∑
j,k=1

bkj̄
∂2φ

∂zk∂z̄j
f +O(f) = ∓tω(Υ±)f +O(f)

where the error terms are independent of t and (2.2) has been used. Sub-
stituting in (3.2) we have∥∥∇Υ±f

∥∥2
t

= ∓t(ω(Υ±)f, f)t +
n∑

j,k=1
(bk̄jf,∇j∇

∗
k,tf)t

− (f,∇Ef)t +O(‖f‖2t )

= ∓t(ω(Υ±)f, f)t +
n∑

j,k,`=1

(
g

¯̀j∇∗j,t
(
bk̄·¯̀f

)
,∇∗k,tf

)
t

− (f,∇Ef)t +O(‖f‖2t )

= ∓t(ω(Υ±)f, f)t + ‖∇Υ±f‖
2
t − (f,∇∗E,tf)t

− (f,∇Ef)t +O(‖f‖2t ).

(3.3)

When we integrate the error terms by parts, it will be helpful to note that
on ∂Ω we have EΥ±ρ = 0 but

Eρ =
∑
j,k,`

gk̄`
(

∂

∂z̄k
b·j`

)
∂ρ

∂zj
= −

∑
j,k

bk̄j
∂2ρ

∂zj∂z̄k
= −L(Υ).

It is also important to note that Υ± must be C2 if integration by parts
with respect to ∇EΥ±

is going to be well-defined. Considering the error
terms in (3.3), we have

(f,∇∗E,tf)t = (f,∇∗EΥ± ,t
f)t + ((∇E −∇EΥ±

)f, f)t

+
∫
∂Ω
L(Υ) |f |2 e−tφdS +O(‖f‖2t )

(3.4)
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and

(3.5) (f,∇Ef)t = (∇∗EΥ± ,t
f, f)t + (f, (∇E −∇EΥ±

)f)t +O(‖f‖2t ).

Substituting (3.4) and (3.5) into (3.3), we have∥∥∇Υ±f
∥∥2
t

= ∓t(ω(Υ±)f, f)t − 2Re
(

(∇∗EΥ± ,t
f, f)t

+ (f, (∇E −∇EΥ±
)f)t

)
+ ‖∇Υ±f‖

2
t

−
∫
∂Ω
L(Υ) |f |2 e−tφdS +O(‖f‖2t ).

(3.6)

Since we have property (1) in Lemma 2.11, we can now write∥∥∇f∥∥2
t

=
(∥∥∇f∥∥2

t
−
∥∥∇Υ±f

∥∥2
t

)
+
∥∥∇Υ±f

∥∥2
t

and use the Schwarz inequality, the small constant/large constant inequal-
ity, (2.7) and (2.6) to control the error terms in (3.6). We conclude

(3.7)
∥∥∇f∥∥2

t
> ∓t(ω(Υ±)f, f)t −

∫
∂Ω
L(Υ) |f |2 dS +O(‖f‖2t )

Substituting (3.7) and (2.8) into (3.1), we have∥∥∂̄f∥∥2
t

+
∥∥∂̄∗t f∥∥2

t
>± t((q − ω(Υ±))f, f)t

+
∫
∂Ω

(L(f, f)− L(Υ) |f |2)e−tφdS +O(‖f‖2t ).
(3.8)

We are now ready to prove the basic estimate (see Proposition 3.1 in
[20] for the case where Ω is the annuli between two weakly-pseudoconvex
domains).

Proposition 3.1. — LetM be an n-dimensional Stein manifold, n > 2,
and let Ω be a bounded subset ofM with C3 boundary satisfying weak Z(q)
for some 1 6 q 6 n− 1.

(1) For any constant ε > 0 there exists tε > 0 and a Cε > 0 such that
for any t > tε and f ∈ L2

(0,q)(Ω, e−tφ)∩Dom(∂̄)∩Dom(∂̄∗t ) we have

ε
(∥∥∂̄f∥∥2

t
+
∥∥∂̄∗t f∥∥2

t

)
+ Cε ‖f‖2t,W−1 > ‖f‖2t

where ‖ · ‖t,W−1 is the dual norm to ‖ · ‖t,W 1 .
(2) There exist constants C > 0 and t̃ > 0 such that for all t > t̃ and

f ∈ L2
(0,q)(Ω, e−tφ) ∩Dom(∂̄) ∩Dom(∂̄∗t ) ∩ (Hqt (Ω))⊥ we have

C
(∥∥∂̄f∥∥2

t
+
∥∥∂̄∗t f∥∥2

t

)
> ‖f‖2t .
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(3) If ∂Ω is connected, then for any constant ε > 0 there exists tε > 0
such that for all t > tε and f ∈ L2

(0,q)(Ω, e−tφ)∩Dom(∂̄)∩Dom(∂̄∗t )
we have

ε
(∥∥∂̄f∥∥2

t
+
∥∥∂̄∗t f∥∥2

t

)
> ‖f‖2t .

Proof. — Let U±, U0, and Υ± be as in Lemma (2.11). Let χ± and χ0

form a partition of unity subordinate to U± and U0. Given f ∈ C2
(0,q)(Ω)∩

Dom(∂̄∗t ), we define f± = χ±f and f0 = χ0f . Since ∂Ω is C3, Υ± are C2,
and hence (3.8) holds for f±. By (2.9) and property (2) of Definition 2.1,
the boundary term in (3.8) is positive, so we have∥∥∂̄f±∥∥2

t
+
∥∥∂̄∗t f±∥∥2

t
> ±t((q − ω(Υ±))f±, f±)t +O(

∥∥f±∥∥2
t
).

By property (2) of Lemma 2.11, we have ±(q − ω(Υ±)) > 0. Since Ω is
bounded we know that ±(q − ω(Υ̃)) > C0 for some constant C0 > 0.
Furthermore,∥∥∂̄f±∥∥2

t
+
∥∥∂̄∗t f±∥∥2

t
6 2

∥∥∂̄f∥∥2
t

+ 2
∥∥∂̄∗t f∥∥2

t
+O(‖f‖2t ),

so
2
∥∥∂̄f∥∥2

t
+ 2

∥∥∂̄∗t f∥∥2
t
> tC0

∥∥f±∥∥2
t

+O(‖f‖2t ).
Since f0 is compactly supported in Ω, we have Gårding’s inequality∥∥f0∥∥2

t,W 1 6 Ct(
∥∥∂̄f0∥∥2

t
+
∥∥∂̄∗t f0∥∥2

t
+
∥∥f0∥∥2

t
)

for some constant Ct > 0. Using the duality betweenW 1
0 andW−1 we have∥∥f0∥∥2

t
6
∥∥f0∥∥

t,W−1

√
Ct(
∥∥∂̄f0

∥∥2
t

+
∥∥∂̄∗t f0

∥∥2
t

+ ‖f0‖2t ).

Associating
√
Ct with the

∥∥f0
∥∥
t,W−1 and applying the standard small con-

stant/large constant inequality, we have for any s > 0∥∥f0∥∥2
t
6
s

2Ct
∥∥f0∥∥2

t,W−1 + 1
2s (
∥∥∂̄f0∥∥2

t
+
∥∥∂̄∗t f0∥∥2

t
+
∥∥f0∥∥2

t
).

Subtracting 1
2s
∥∥f0

∥∥2
t
from both sides and multiplying by 2s we have

(2s− 1)
∥∥f0∥∥2

t
6 s2Ct

∥∥f0∥∥2
t,W−1 +

∥∥∂̄f0∥∥2
t

+
∥∥∂̄∗t f0∥∥2

t
.

Letting s = 1
2 (1 + tC0), we have

tC0
∥∥f0∥∥2

t
6

1
4(1 + tC0)2Ct ‖f‖2t,W−1 + 2

∥∥∂̄f∥∥2
t

+ 2
∥∥∂̄∗t f∥∥2

t
+O(‖f‖2t ).

Combining the estimates for f0 and f±, we conclude
tC0

3 ‖f‖
2
t +O(‖f‖2t ) 6

1
4(1 + tC0)2Ct ‖f‖2t,W−1 + 2

∥∥∂̄f∥∥2
t

+ 2
∥∥∂̄∗t f∥∥2

t
.
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We can now choose t sufficiently large so that
tC0

6 ‖f‖
2
t +O(‖f‖2t ) >

1
ε
‖f‖2t

and the estimate is complete. Standard density results (see for example
Lemma 4.3.2 in [5]) complete the proof of part (1). The proof of part
(2) is completed in the same manner as Lemma 3.1 in [20], after setting
t̃ = infε>0 tε.
When the boundary is connected, we note that U0 = U− = ∅ (see

Remark 2.12), so there is no need to estimate f0. Hence the W−1 terms
are not necessary, and part (3) follows. �

We immediately have the standard consequences of such L2 estimates.

Theorem 3.2. — Let M be an n-dimensional Stein manifold, n > 2,
and let Ω be a bounded subset of M with C3 boundary satisfying weak
Z(q) for some 1 6 q 6 n− 1. Then there exists a constant t̃ > 0 such that
for all t > t̃ we have
(1) Hqt (Ω) is finite dimensional. If ∂Ω is connected, then Hqt (Ω) = {0}.
(2) The weighted ∂̄-Laplacian �qt has closed range in L2

(0,q)(Ω, e−tφ).
(3) The weighted ∂̄-Neumann operator Nq

t exists and is continuous.
(4) The operator ∂̄ has closed range in L2

(0,q)(Ω, e−tφ) and L2
(0,q+1)(Ω, e−tφ).

(5) The operator ∂̄∗t has closed range in L2
(0,q)(Ω,e−tφ) and L2

(0,q−1)(Ω,e−tφ).
(6) The canonical solution operators to ∂̄ given by ∂̄∗tN

q
t : L2

(0,q)(Ω, e−tφ)→
L2

(0,q−1)(Ω, e−tφ) and Nq
t ∂̄
∗
t : L2

(0,q+1)(Ω, e−tφ) → L2
(0,q)(Ω, e−tφ) are

continuous.
(7) The canonical solution operators to ∂̄∗t given by ∂̄Nq

t : L2
(0,q)(Ω, e−tφ)→

L2
(0,q+1)(Ω, e−tφ) and Nq

t ∂̄ : L2
(0,q−1)(Ω, e−tφ) → L2

(0,q)(Ω, e−tφ) are
continuous.

(8) For every f ∈ L2
(0,q)(Ω)∩ker ∂̄∩(Hqt (Ω))⊥ there exists a u ∈ L2

(0,q−1)(Ω)
such that ∂̄u = f .

4. Sobolev Estimates

In this section we will use elliptic regularization to obtain estimates in
the L2-Sobolev space W 1 when ∂Ω is connected. The first author obtained
such estimates for C2-pseudoconvex domains in [8]. In that paper, he used
an exhaustion by smooth strictly pseudoconvex domains. Although smooth
Z(q) domains can exhaust bounded weakly Z(q) domains with connected
boundaries, constructing Υ on the exhaustion domains in such a way that
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the estimates are uniform may not be possible. Hence, we will use elliptic
regularization in the present paper. Our discussion follows the argument in
Section 3.3 of [25], focusing on steps where the reduced boundary regularity
requires more careful estimates.
We will need two equivalent norms on W 1(Ω): the standard norm

‖u‖2W 1 = ‖u‖2 + ‖∇u‖2 and the weighted norm ‖u‖2t,W 1 = ‖u‖2t + ‖∇u‖2t .
Although these are equivalent, the constant involved will depend on t, so
for estimates where the dependency on t is significant we will need to use
the weighted norm. Only at the end of the proof will we be able to pass to
estimates for the standard norm, which is more suitable for interpolation.
For u ∈W 1

(0,q)(Ω) ∩Dom(∂̄∗t ) and δ > 0 we define

Qt,δ(u, u) =
∥∥∂̄u∥∥2

t
+
∥∥∂̄∗t u∥∥2

t
+ δ ‖∇u‖2t .

As in [25], we have a unique self-adjoint operator �qt,δ on L2
(0,q)(Ω) satis-

fying (�qt,δu, v)t = Qt,δ(u, v) for all u ∈ Dom(�qt,δ) and v ∈ W 1
(0,q)(Ω) ∩

Dom(∂̄∗t ), where Dom(�qt,δ) is the subspace of W 1
(0,q)(Ω) ∩ Dom(∂̄∗t ) on

which �̃qt,δu ∈ L2
(0,q)(Ω) and �̃qt,δ is the canonical identification between

W 1
(0,q)(Ω)∩Dom(∂̄∗t ) and its conjugate dual. We also obtain a unique solu-

tion operator Nq
t,δ mapping L2

(0,q)(Ω) onto Dom(�qt,δ) satisfying (u, v)t =
Qt,δ(Nq

t,δu, v).
By Proposition 3.5 in [25], Nq

t,δ maps L2
(0,q)(Ω) continuously toW 2

(0,q)(Ω).
Although this proposition is stated for smooth domains, the proof for the
s = 0 case holds on C3 domains and we now outline the key step to illustrate
the role of boundary smoothness. Let ρ be the signed distance function
for Ω, so that ρ is a C3 defining function [16], and let (x1, . . . , x2n−1)
be coordinates on ∂Ω with ρ as the transverse coordinate. Similarly, we
choose an orthonormal basis for (1, 0)-forms consisting of ω1, . . . , ωn, where
ωn = ∂ρ. If we express u in this basis, then the components will involve
first derivatives of ρ. If we let Dh

j denote a difference quotient with respect
to xj , we can define Dh

j u by considering difference quotients of components
of u in our special basis. This will preserve Dom(∂̄∗), but uniform bounds
on Dh

j u will now involve the C2 norm of ρ. Finally we wish to estimate
Qt,δ(Dh

j u, v). The details for this estimate are contained in (3.38) through
(3.41) in [25], but we will simply observe that they involve uniform bounds
for [∂̄, Dh

j ]u, [∂̄∗t , Dh
j ]u, and [∇, Dh

j ]u, which will all involve the C3 norm of
ρ. Working with the smooth cutoff functions necessary to work locally will
not involve additional derivative of ρ, so Straube’s argument will allow us to
bound tangential derivatives of u in theW 1 norm. As usual, the structure of
�qt,δ as a second-order elliptic operator will allow us to estimate the second
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derivatives in the normal direction (which only involve second derivatives
of ρ).

Our goal is to show that the W 1 norm of Nq
t,δf is bounded by the W 1

norm of f with a constant that is independent of δ, so that we may use
a limiting argument to show that this estimate also holds for Nq

t f . Since
∂̄ ⊕ ∂̄∗t is an elliptic system, it will suffice to estimate tangential deriva-
tives, but first we must clarify how a differential operator acts globally on
a (0, q)-form. Let ψ ∈ W 2

(0,q)(Ω) ∩Dom(∂̄∗t ) and let T be a differential op-
erator defined on Ω that is tangential on the boundary. Since ∂Ω is C3,
we may assume T has C2 coefficients. For U ⊂ M with local coordinates
{z1, . . . , zn} we can write

ψ =
∑
I∈Iq

ψIdz̄I ,

where the components ψI are all in W 2(Ω). The covariant derivative ∇Tψ
is globally defined and in local coordinates we can write

∇Tψ =
∑
I∈Iq

TψIdz̄I +O(ψ),

where the coefficients in the zero order term involve coefficients of T and
are hence C2. However, ∇Tψ is probably not in the domain of ∂̄∗t . On the
other hand, for U sufficiently small, we can also choose a C2 orthonormal
basis for the space of (1, 0)-forms ω1, . . . , ωn where ωn = ∂ρ. In this basis
we write

ψ =
∑
I∈Iq

ψ̃I ω̄I .

Since the transition matrices between dz and ω have C2 entries, ψ̃I can
be obtained by applying a linear operator with C2 coefficients to ψI . We
define

DU
T ψ =

∑
I∈Iq

T ψ̃IωI ,

and sum over a partition of unity to obtain DTψ. Note that DT preserves
tangential and normal components of ψ, so it will also preserve the domain
of ∂̄∗t . However, returning to local coordinates,

DU
T ψ =

∑
I∈Iq

TψIdz̄I +O(ψ),

where the coefficients of the zero order terms are obtained by differen-
tiating the C2 transitions matrices between dz and ω, so they are only
C1. Hence, DT − ∇T is a zero-order operator with C1 coefficients. This
requires some caution. For example, if ∇2

D is a second-order differential
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operator with C1 coefficients, then [∇2
D,∇T ] is a second-order differential

operator with continuous coefficients, and hence [∇2
D,∇T ]ψ is a form in

L2
(0,q). However, [∇2

D, DT − ∇T ] may not be a differential operator with
continuous coefficients, so we cannot make use of [∇2

D, DT ]ψ. On the other
hand, commutators between DT and first-order differential operators will
still have continuous (hence bounded) coefficients.
For ε > 0, let tε and t be as in (3) of Proposition 3.1. Then for u ∈

W 1
(0,q)(Ω) ∩ Dom(∂̄∗t ), when ∂Ω is connected we have εQt,δ(u, u) > ‖u‖2t .

Let f ∈W 1
(0,q)(Ω). We immediately obtain

(4.1)
∥∥∥Nq

t,δf
∥∥∥
t
6 ε ‖f‖t .

Since Nq
t,δf ∈ W 2

(0,q), we can set u = DTN
q
t,δf and obtain u ∈ W 1

(0,q)(Ω) ∩
Dom(∂̄∗t ). Hence,

(4.2)
∥∥∥DTN

q
t,δf
∥∥∥2

t
6 εQt,δ(DTN

q
t,δf,DTN

q
t,δf).

To estimate Qt,δ(DTN
q
t,δf,DTN

q
t,δf), we will need to work with slightly

smoother forms. To that end, we introduce the following density lemma:

Lemma 4.1. — Let Ω ⊂ M be a bounded domain with C3 bound-
ary, and let u ∈ W 1

(0,q)(Ω) ∩ Dom(∂̄∗t ). Then there exists a sequence u` ∈
C2

(0,q)(Ω) ∩Dom(∂̄∗t ) converging to u in the W 1 norm.

Proof. — Let ρ be a C3 defining function for Ω, and let

Iq =
{
f ∈ L2

(0,q)(Ω) : f = ∂̄ρ ∧ g, g ∈ L2
(0,q−1)(Ω)

}
.

Choose χ ∈ C∞0 (M) such that χ ≡ 1 in a neighborhood of ∂Ω and ∂̄ρ 6= 0
on the support of χ. If we let ν denote the orthogonal projection onto
Iq where defined, then χν is a linear operator with C2(Ω) coefficients.
Since u ∈ W 1

(0,q)(Ω), u has a boundary trace in L2. By the usual density
lemma (e.g., Lemma 4.3.2 in [5]) and the usual characterization of Dom(∂̄∗t )
(e.g., Lemma 4.2.1 in [5]), we have that the boundary trace of χνu is zero
a.e. Since components of χνu are in W 1

0 (Ω), χνu is the limit in W 1 of a
sequence uν` ∈ C∞0,(0,q)(Ω), so we can write uν` → χνu in W 1

(0,q)(Ω). We
can also write u as a limit in W 1

(0,q)(Ω) of forms ũ` ∈ C∞(0,q)(Ω). If we set
u` = uν` + (1− χν)ũ`, then u` → u in W 1

(0,q)(Ω) since

‖u` − u‖W 1 6 ‖uν` − χνu‖W 1 + ‖(1− χν)(ũ` − u)‖W 1 .
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Since ν has C2(Ω) coefficients, u` is in C2
(0,q)(Ω). Furthermore, since ν(1−

χν) = (1− χ)ν, we have νu` = 0 on the boundary of Ω, so u` ∈ Dom(∂̄∗t ).
�

With this density lemma in place, we are ready to prove the key lemma
for our estimate (analogous to (3.50) in [25]).

Lemma 4.2. — Let Ω ⊂ M be a bounded domain with connected C3

boundary satisfying weak Z(q). There exist constants C > 0 independent of
t and Ct > 0 depending on t such that for any f ∈W 1

(0,q)(Ω) and differential
operator T with C2(Ω) coefficients that is tangential on the boundary of
Ω, we have
(4.3)
Qt,δ(DTN

q
t,δf,DTN

q
t,δf) 6 C(DT f,DTN

q
t,δf)t +C

∥∥∥Nq
t,δf
∥∥∥2

t,W 1
+Ct ‖f‖2t .

Proof. — We will adopt the convention that the values of C > 0 and Ct >
0 may increase from line to line. Let u = DTN

q
t,δf and let u` ∈ C2

(0,q)(Ω)∩
Dom(∂̄∗t ) be the sequence converging to DTN

q
t,δf given by Lemma 4.1.

Note that the principal part of ∂̄∗t is the same as the principal part of ∂̄∗,
so only the low order terms depend on t. Hence, [DT , ∂̄

∗
t ] has a first order

component which is independent of t and a lower order component which
depends on t, so

∥∥∥[DT , ∂̄
∗
t ]Nq

t,δf
∥∥∥
t
6 C

∥∥∥Nq
t,δf
∥∥∥
t,W 1

+ Ct

∥∥∥Nq
t,δf
∥∥∥
t

6 C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t ,

where the second inequality follows from (4.1). Estimating commutators in
this fashion gives us

Qt,δ(u, u`) 6 (DT ∂̄N
q
t,δf, ∂̄u`)t + (DT ∂̄

∗
tN

q
t,δf, ∂̄

∗
t u`)t

+ δ(DT∇Nq
t,δf,∇u`)t

+
(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)√
Qt,δ(u`, u`).
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Since T is tangential, we can integrate by parts and commute again to
obtain

Qt,δ(u, u`) 6 Qt,δ(Nq
t,δf, (DT )∗tu`) + (∂̄Nq

t,δf, [(DT )∗t , ∂̄]u`)t
+ (∂̄∗tN

q
t,δf, [(DT )∗t , ∂̄∗t ]u`)t

+ δ(∇Nq
t,δf, [(DT )∗t ,∇]u`)t

+
(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)√
Qt,δ(u`, u`).

By definition,

Qt,δ(Nq
t,δf, (DT )∗tu`) = (f, (DT )∗tu`)t = (DT f, u`)t.

Since all terms with u` can now be estimated by the W 1 norm of u`, we
can take limits and obtain

Qt,δ(u, u) 6 (DT f, u)t + (∂̄Nq
t,δf, [(DT )∗t , ∂̄]u)t

+ (∂̄∗tN
q
t,δf, [(DT )∗t , ∂̄∗t ]u)t

+ δ(∇Nq
t,δf, [(DT )∗t ,∇]u)t

+
(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)√
Qt,δ(u, u).

Now, we may also use the estimate(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)√
Qt,δ(u, u)

6
1
2

(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)2
+ 1

2Qt,δ(u, u)

and absorb the last term in the left-hand side to obtain

Qt,δ(u, u) 6 2(DT f, u)t + 2(∂̄Nq
t,δf, [(DT )∗t , ∂̄]u)t

+ 2(∂̄∗tN
q
t,δf, [(DT )∗t , ∂̄∗t ]u)t

+ 2δ(∇Nq
t,δf, [(DT )∗t ,∇]u)t

+ C
∥∥∥Nq

t,δf
∥∥∥2

t,W 1
+ Ct ‖f‖2t .

The remaining commutators will each be estimated using the same tech-
nique; we will illustrate the method with (∂̄∗tN

q
t,δf, [(DT )∗t , ∂̄∗t ]u)t since it

could potentially involve additional factors of t. Recall that ∇T has C2

coefficients, while DT − ∇T is a zero-order operator with C1 coefficients.
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Since adjoints of zero-order operators won’t introduce additional factors of
t, we can break down the commutator as follows:

(4.4) [(DT )∗t , ∂̄∗t ] = [(DT−∇T )∗t , ∂̄∗]+[(DT−∇T )∗t , (∂̄∗t−∂̄∗)]+[(∇T )∗t , ∂̄∗t ],

The zero-order component of [(DT −∇T )∗t , ∂̄∗] is independent of t but only
has continuous coefficients; we denote this A. If we let Bt = [(DT )∗t , ∂̄∗t ]−A,
then Bt is a first-order operator depending on t (in the zero-order compo-
nent) with C1 coefficients. Thus, if we commute DT with Bt but not A we
obtain

(∂̄∗tN
q
t,δf, [(DT )∗t , ∂̄∗t ]u)t = (∂̄∗tN

q
t,δf, (A+Bt)DTN

q
t,δf)t

6 (∂̄∗tN
q
t,δf,DTBtN

q
t,δf)t + C

∥∥∥Nq
t,δf
∥∥∥2

t,W 1

+ Ct ‖f‖2t .

Integrating DT by parts, commuting with ∂̄∗t , and using (4.4), we have

(∂̄∗tN
q
t,δf, [(DT )∗t , ∂̄∗t ]u)t 6 (∂̄∗t (DT )∗tN

q
t,δf,BtN

q
t,δf)t + C

∥∥∥Nq
t,δf
∥∥∥2

t,W 1

+ Ct ‖f‖2t .

However, this can be bounded by

(∂̄∗tN
q
t,δf, [(DT )∗t , ∂̄∗t ]u)t 6

√
Qt,δ((DT )∗tN

q
t,δf, (DT )∗tN

q
t,δf)

×
(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+ Ct ‖f‖t

)
+ C

∥∥∥Nq
t,δf
∥∥∥2

t,W 1
+ Ct ‖f‖2t .

The same upper bound will be obtained if ∂̄∗t is replaced with ∂̄ or ∇, so
we have

Qt,δ(u,u) 6
√
Qt,δ((DT)∗tN

q
t,δf,(DT)∗tN

q
t,δf)

(
C
∥∥∥Nq

t,δf
∥∥∥
t,W 1

+Ct‖f‖t
)

+2(DT f, u)t + C
∥∥∥Nq

t,δf
∥∥∥2

t,W 1
+Ct‖f‖2t .

(4.5)

Note that (DT )∗t = −DT + at, where at is a C1 function depending on t.
In particular,

Qt,δ((DT )∗tN
q
t,δf + u, (DT )∗tN

q
t,δf + u)

= Qt,δ(atNq
t,δf, atN

q
t,δf)

6 (f, |at|2Nq
t,δf)t + Ct ‖f‖t

√
Qt,δ(atNq

t,δf, atN
q
t,δf).
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After using the small constant/large constant inequality to absorb the Qt,δ
term on the right-hand side, we have

Qt,δ((DT )∗tN
q
t,δf + u, (DT )∗tN

q
t,δf + u) 6 Ct ‖f‖2t ,

and hence

Qt,δ((DT )∗tN
q
t,δf, (DT )∗tN

q
t,δf) 6 CQt,δ(u, u) + Ct ‖f‖2t .

Substituting this into (4.5) and again using the small constant/large con-
stant estimate to absorb the Qt,δ term on the left-hand side will imply
(4.3). �

Combining Lemma 4.2 and (4.2), we have∥∥∥DTN
q
t,δf
∥∥∥2

t
6 εC

(∣∣∣(DT f,DTN
q
t,δf)t

∣∣∣+
∥∥∥Nq

t,δf
∥∥∥2

t,W 1

)
+ Ct ‖f‖2t .

Another application of the small constant/large constant inequality to the
first term on the right-hand side gives us∥∥∥DTN

q
t,δf
∥∥∥2

t
6 εC

(
‖f‖2t,W 1 +

∥∥∥Nq
t,δf
∥∥∥2

t,W 1

)
+ Ct ‖f‖2t .

By Lemma 2.2 in [25], the normal derivatives of Nq
t,δf consist of linear

combinations of ∂̄Nq
t,δf , ∂̄∗N

q
t,δf , and tangential derivatives of Nq

t,δf . We
can convert ∂̄∗ to ∂̄∗t by adding a zeroth order term, so summing over all
tangential derivatives and the normal derivative gives us∥∥∥Nq

t,δf
∥∥∥2

t,W 1
6 εC

(
‖f‖2t,W 1 +

∥∥∥Nq
t,δf
∥∥∥2

t,W 1

)
+ Ct ‖f‖2t .

When ε is sufficiently small (and hence t is sufficiently large), we can absorb
the W 1 norm of Nq

t,δf on the left-hand side, obtaining

(4.6)
∥∥∥Nq

t,δf
∥∥∥2

t,W 1
6 εC ‖f‖2t,W 1 + Ct ‖f‖2t .

Since all constants have been chosen independently of δ, the usual limiting
argument will give us W 1 estimates for Nq

t . Standard arguments now give
us

Theorem 4.3. — Let M be an n-dimensional Stein manifold, and let
Ω be a bounded subset of M with connected C3 boundary satisfying weak
Z(q) for some 1 6 q 6 n− 1. Then there exists a constant t̃ > 0 such that
for all t > t̃ and − 1

2 6 s 6 1 we have
(1) The weighted ∂̄-Neumann operator Nq

t is continuous in W s
(0,q)(Ω).
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(2) The canonical solution operators to ∂̄ given by ∂̄∗tN
q
t : W s

(0,q)(Ω)→
W s

(0,q−1)(Ω) and Nq
t ∂̄
∗
t : W s

(0,q+1)(Ω) ∩ Dom(∂̄∗t ) → W s
(0,q)(Ω) are

continuous.
(3) The canonical solution operators to ∂̄∗t given by ∂̄Nq

t : W s
(0,q)(Ω)→

W s
(0,q+1)(Ω) and Nq

t ∂̄ : W s
(0,q−1)(Ω) ∩ Dom(∂̄) → W s

(0,q)(Ω) are
continuous.

(4) For every f ∈W s
(0,q)(Ω)∩ ker ∂̄ there exists a u ∈W s

(0,q−1)(Ω) such
that ∂̄u = f .

Remark 4.4. — Theorem 4.3 is identical to Theorem 1.2 except for the
additional hypothesis that ∂Ω is connected. Also, Nq

t ∂̄
∗
t is a problematic

solution operator to ∂̄ since it places a boundary condition on the data.
However, estimates for this operator are needed to obtain estimates for the
dual operator ∂̄Nq

t in the dual Sobolev space.

Proof. — We have already completed the proof of (1) when s = 0 and
s = 1, so interpolation will give us the result for 0 < s < 1. We emphasize
that the weighted Sobolev spaces used in (4.6) are equivalent to standard
Sobolev spaces which are amenable to interpolation. When − 1

2 6 s < 0 we
use the duality between W s and W−s and the fact that Nq

t is self-adjoint:

‖Nq
t f‖W s 6 Ct sup

h∈W−s(Ω),‖h‖W−s=1

|(Nq
t f, h)t|

6 Ct sup
h∈W−s(Ω),‖h‖W−s=1

|(f,Nq
t h)t|

6 Ct ‖f‖W s .

For ∂̄∗tN
q
t and ∂̄Nq

t , we use Lemma 3.2 in [25]. Although this Lemma
assumes Nq

t f is smooth, we can use elliptic regularization and Lemma 4.1
as before to obtain sufficient regularity. Interpolation will give us estimates
for 0 6 s 6 1.
For Nq

t ∂̄ and Nq
t ∂̄
∗
t , we first note that since f ∈ W 1

(0,q)(Ω) implies Nq
t f ,

∂̄Nq
t f , and ∂̄∗tN

q
t f are all in W 1(Ω), we can conclude that

∂̄DTN
q
t f = [∂̄, DT ]Nq

t f +DT ∂̄N
q
t f ∈ L2

(0,q+1)(Ω)

and

∂̄∗tDTN
q
t f = [∂̄∗t , DT ]Nq

t f +DT ∂̄
∗
tN

q
t f ∈ L2

(0,q−1)(Ω).

TOME 65 (2015), FASCICULE 4



1736 Phillip S. HARRINGTON & Andrew S. RAICH

Thus we can substitute into (3) of Proposition 3.1 and estimate commuta-
tors to obtain

‖DTN
q
t f‖

2
t

6 ε
(∥∥DT ∂̄N

q
t f
∥∥2
t

+
∥∥DT ∂̄

∗
tN

q
t f
∥∥2
t

+ C ‖Nq
t f‖

2
t,W 1

)
+ Ct ‖Nq

t f‖
2
t .

Estimating the normal derivatives using Lemma 2.2 in [25] we can estimate
the W 1 norm of Nq

t f , and hence the error term on the right hand side can
be absorbed into the left for sufficiently small ε > 0. Hence we have (after
possibly increasing tε)

‖Nq
t f‖

2
t,W 1 6 ε

(∥∥∂̄Nq
t f
∥∥2
t,W 1 +

∥∥∂̄∗tNq
t f
∥∥2
t,W 1

)
+ Ct ‖Nq

t f‖
2
t .

For f1 ∈W 2
(0,q−1)(Ω), let f = ∂̄f1 to obtain∥∥Nq

t ∂̄f1
∥∥2
t,W 1 6 ε

∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 + Ct

∥∥Nq
t ∂̄f1

∥∥2
t
.

To estimate the projection, we use integration by parts:∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 6 (Nq

t ∂̄f1, ∂̄f1)t,W 1 + C
∥∥Nq

t ∂̄f1
∥∥
t,W 1

∥∥∂̄∗tNq
t ∂̄f1

∥∥
t,W 1

+ Ct
∥∥Nq

t ∂̄f1
∥∥
t

∥∥∂̄∗tNq
t ∂̄f1

∥∥
t,W 1

+ Ct
∥∥Nq

t ∂̄f1
∥∥
t,W 1

∥∥∂̄∗tNq
t ∂̄f1

∥∥
t
.

Repeated use of the small constant/large constant inequality allows us to
absorb the

∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 terms on the left-hand side and obtain

∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 6 C(Nq

t ∂̄f1, ∂̄f1)t,W 1 + C
∥∥Nq

t ∂̄f1
∥∥2
t,W 1

+ Ct
∥∥Nq

t ∂̄f1
∥∥2
t

+ Ct
∥∥∂̄∗tNq

t ∂̄f1
∥∥2
t
.

A second integration by parts gives us∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 6 C(∂̄∗tN

q
t ∂̄f1, f1)t,W 1 + C

∥∥Nq
t ∂̄f1

∥∥
t,W 1 ‖f1‖t,W 1

+ Ct
∥∥Nq

t ∂̄f1
∥∥
t
‖f1‖t,W 1 + C

∥∥Nq
t ∂̄f1

∥∥2
t,W 1

+ Ct
∥∥Nq

t ∂̄f1
∥∥2
t

+ Ct
∥∥∂̄∗tNq

t ∂̄f1
∥∥2
t
,

and more small constant/large constant inequalities yield∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 6 C ‖f1‖2t,W 1 + C

∥∥Nq
t ∂̄f1

∥∥2
t,W 1

+ Ct ‖f1‖2t + Ct
∥∥Nq

t ∂̄f1
∥∥2
t

+ Ct
∥∥∂̄∗tNq

t ∂̄f1
∥∥2
t
.
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All of the terms with Ct in front are bounded by ‖f1‖2t , so∥∥∂̄∗tNq
t ∂̄f1

∥∥2
t,W 1 6 C ‖f1‖2t,W 1 + C

∥∥Nq
t ∂̄f1

∥∥2
t,W 1 + Ct ‖f1‖2t .

Now we can substitute into the original estimate for
∥∥Nq

t ∂̄f1
∥∥2
t,W 1 and, by

making ε sufficiently small and adjusting tε we obtain∥∥Nq
t ∂̄f1

∥∥2
t,W 1 6 ε ‖f1‖2t,W 1 + Ct ‖f1‖2t .

For f2 ∈ W 2
(0,q+1)(Ω) ∩ Dom(∂̄∗t ), let f = ∂̄∗t f2 and use similar techniques

to estimate Nq
t ∂̄
∗
t f2. Density lets us generalize to f1 and f2 in W 1.

As before, we interpolate to obtain estimates for 0 < s < 1 and use
duality to obtain estimates for − 1

2 6 s < 0 (since we now have estimates
for the adjoint of each operator). �

5. Proofs of Main Theorems

When s < 1
2 , we immediately obtain a solution operator for the ∂̄-Cauchy

Problem (see Section 9.1 in [5]).

Corollary 5.1. — Let M be an n-dimensional Stein manifold, let Ω
be a bounded subset of M with connected C3 boundary satisfying weak
Z(n − q − 1) for some 1 6 q < n − 1, and let − 1

2 6 s < 1
2 . For every

f ∈ W s
(0,q+1)(M) ∩ ker ∂̄ supported in Ω there exists a u ∈ W s

(0,q)(M)
supported in Ω such that ∂̄u = f , and the solution operator is continuous.

Proof. — The proof is identical to that given for Proposition 3.4 in [22].
It suffices to have estimates for ∂̄N (n,n−q−1). On Z(n − q − 1) domains
we have estimates for the operator ∂̄N (0,n−q−1), but these are equivalent
since the holomorphic component of (p, q)-forms has no impact on our
estimates (except in the curvature terms, but these are all dominated when
t is large). �

Furthermore, we can now use techniques of Shaw [23] to remove the
requirement that the boundary of Ω be connected.

Corollary 5.2. — Let M be an n-dimensional Stein manifold, and
let Ω be a bounded subset of M with C3 boundary satisfying weak Z(q)
for some 1 6 q < n − 1. For every f ∈ L2

(0,q)(Ω) ∩ ker ∂̄ there exists a
u ∈ L2

(0,q−1)(Ω) such that ∂̄u = f . In particular, Hq(Ω) = {0}.

Remark 5.3. — This is also known for bounded weak Z(n−1) domains,
by Remark 2.10 and Theorem 3.2.
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Proof. — Without loss of generality, assume that Ω is connected. By
Lemma 2.9 we have the decomposition Ω = Ω1\

⋃m
j=2 Ωj where Ω1 is a

weak Z(q) domain with connected boundary and each Ωj with 2 6 j 6 m
is a weak Z(n− q − 1) domain with connected boundary and Ωj ⊂ Ω1.
The proof now follows like the proof of Theorem 3.2 in [23], but we must

make a few clarifying remarks. Shaw’s proof initially finds a solution U in
W−1(Ω1), and then proposes two techniques for regularizing this to a solu-
tion in L2(Ω1). The first technique requires approximating Ω1 from within
by smooth strongly pseudoconvex domains. While we can approximate from
within by smooth Z(q) domains, the role of Υ on these domains is unpre-
dictable, so the constants in our estimates may not be uniform. Hence, we
use the second technique, which decomposes U into a component supported
near the boundary of Ω1 and a compactly supported component. This tech-
nique requires solving ∂̄ for compactly supported forms in Ω1, but as Shaw
points out, this can be accomplished by solving ∂̄ on a ball containing Ω1.
This gives us vanishing of Hqt (Ω). However, this is isomorphic to a Dol-

beault cohomology group which is independent of t, so the dimension of
Hqt (Ω) must also be independent of t. Hence, Hq(Ω) = {0} as well. �

Now that the vanishing of the space of harmonic (0, q)-forms has been es-
tablished, Theorem 1.1 will follow for the unweighted operators and spaces
(see Theorem 4.4.1 in [5]) from Theorem 3.2.
In the proof of Theorem 4.3 we required a connected boundary only

because it gave us vanishing for the space of harmonic (0, q)-forms. Now
that we’ve established this for disconnected boundaries, the proof of Theo-
rem 4.3 can be carried through for all bounded domains, as in the statement
of Theorem 1.2.
In [21], Shaw uses the ∂̄ operator to solve ∂̄b extrinsically on smooth

pseudoconvex domains. Since we are working on C3 domains, we will more
closely follow the methods of [22], which are adapted to work on non-smooth
domains. We now prove Theorem 1.3.

Proof of Theorem 1.3. — We outline the proof, following the construc-
tion in [22]. By embedding M in C2n+1, we can pullback a ball containing
the image of ∂Ω to obtain a strictly pseudoconvex set B such that Ω ⊂ B.
Let Ω+ = B\Ω and Ω− = Ω. In [11] a Martinelli-Bochner-Koppelman type
kernel is constructed for Stein manifolds, and in [17] it is shown that the
transformation induced by this kernel satisfies a jump formula. As a result,
there exists an integral kernel Kq(ζ, z) of type (0, q) in z and (n, n− q− 1)
in ζ satisfying a Martinelli-Bochner-Koppelman formula such that we can
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define ∫
∂Ω
Kq(ζ, z) ∧ f(ζ) =

{
f+(z) z ∈ Ω+

f−(z) z ∈ Ω−

(see section 2.4 in [11]). If, by an abuse of notation, we extend f+(z) and
f−(z) to ∂Ω by considering non-tangential limits, we have the jump formula

τf+(z)− τf−(z) = (−1)qf(z)

on ∂Ω where τ is defined in (2.1) (see Proposition 2.3.1 in [17]). Since
∂̄bf = 0, we have ∂̄f+ = 0 and ∂̄f− = 0. Since f+ and f− have non-
tangential boundary values in L2, they have components in W 1/2.
Let E denote a linear extension operator from Ω+ to B that is contin-

uous in the Sobolev spaces W s(Ω+) for 0 6 s 6 1/2. Applying this com-
ponentwise to f+, we obtain a (0, q)-form Ef+ that is in W 1/2(B). Since
∂̄f+ = 0 on Ω+, we have ∂̄Ef+ supported in Ω−. Furthermore, ∂̄Ef+ has
components inW−1/2(M), so by Corollary 5.1 there exists V ∈W−1/2

(0,q) (M)
supported in Ω− satisfying ∂̄V = ∂̄Ef+. Thus f̃+ = Ef+−V ∈W−1/2

(0,q) (B)
satisfies ∂̄f̃+ = 0 on B and f̃+ = f+ on Ω+.

We may now use the canonical solution operator to define u+ = ∂̄∗Nq
B f̃

+

and u− = ∂̄∗tN
q
t,Ωf

−. By interior regularity for Nq
B , u+ gains a derivative on

compact subsets of B, so u+ has components in W 1/2 on a neighborhood
of Ω. By Theorem 4.3, u− also has components in W 1/2. Since each of
these forms satisfies an elliptic system, they have trace values in L2(∂Ω),
so abusing notation we can write u = (−1)q(u+ − u−) on ∂Ω. �

6. Examples

Our first goal in this section is to motivate Definition 2.1 by constructing
an example where this definition holds but earlier definitions fail. In [9] we
proposed a more restrictive definition for weak Z(q). In the context of
bounded domains in Cn with connected boundaries, this was equivalent to
(q − 1)-pseudoconvexity in the sense of [27]. The key difference is that in
(q − 1)-pseudoconvexity the eigenvalues of Υ must all be zero or one. This
can often be achieved locally by changing the metric. The critical issue
seems to be that if Υ is continuous then (q− 1)-pseudoconvexity forces the
rank of Υ and the rank of I−Υ to be locally constant. We will construct an
example where this is impossible, but the added flexibility of Definition 2.1
still allows us establish closed range. We summarize the first result of this
section as follows:
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Proposition 6.1. — There exists a smooth bounded domain Ω ⊂ C3

with 0 ∈ ∂Ω such that:
(1) There does not exist a hermitian metric in a neighborhood of the

origin for which ∂Ω is 1-pseudoconvex at the origin.
(2) In the Euclidean metric, ∂Ω is weakly Z(2).

In what follows, we assumeM = Cn is equipped with a strictly plurisub-
harmonic exhaustion function ϕ. After adding a pluriharmonic polynomial
to ϕ, we may assume ϕ(0) = 0, dϕ(0) = 0, and ∂2ϕ

∂zj∂zk
(0) = 0 for all

1 6 j, k 6 n. Under these assumptions, ϕ is strictly convex in a neighbor-
hood of the origin, so ϕ(z)−R2 is a defining function for a strictly convex
domain when R is sufficiently small.

Definition 6.2. — Let Ω ⊂ Cn be a domain with C3 boundary. For
p ∈ ∂Ω, let the Kähler form ω in a neighborhood of p be given by ω = i∂∂̄ϕ

for some smooth strictly plurisubharmonic function ϕ satisfying ϕ(p) = 0,
dϕ(p) = 0, and ∂2ϕ

∂zj∂zk
(p) = 0 for all 1 6 j, k 6 n. For 1 6 q 6 n − 1, we

say the weak Z(q) property for Ω is radially stable at p if there exists a
neighborhood U of p and a real Υ ∈ T 1,1(∂Ω ∩ U) satisfying

(1) |θ|2 > (iθ ∧ θ̄)(Υ) > 0 for all θ ∈ Λ1,0(∂Ω ∩ U).
(2) For every neighborhood Ũ of p relatively compact in U , there exists

ε̃ > 0 such that µε1 + · · · + µεq − Lε(Υ) > 0 on
(
U\Ũ

)
∩ ∂Ω for

all 0 6 ε < ε̃ where Lε(iL̄ ∧ L) = (i∂∂̄ρ + iε∂ϕ ∧ ∂̄ϕ)(iL̄ ∧ L)
for L ∈ T 1,0(∂Ω) and µε1, . . . , µ

ε
n−1 are the eigenvalues of Lε in

increasing order.
(3) ω(Υ) 6= q on ∂Ω ∩ U .

Remark 6.3. — The term “radially stable" reflects the observation that
in orthonormal coordinates ϕ(z) = |z − p|2 + O(|z − p|3), so dϕ points in
the radial direction near p and Lε represents a perturbation of L in the
radial direction.

Remark 6.4. — A simple obstruction to radial stability would be the
situation where µq = µq+1 = 0, i∂ϕ∧ ∂̄ϕ(Υ) > 0 is necessary for condition
(2) of Definition 6.2 to hold (because of local behavior of the eigenspaces),
and ∂ϕ lies in the kernel of L, i.e., whenever L is in the kernel of (the
matrix) L, ∂ϕ(L) = 0. In this case µε1 + · · · + µεq = µ1 + · · · + µq, so
µε1 + · · ·+ µεq − Lε(Υ) < 0 for all ε > 0.

Remark 6.5. — If p ∈ ∂Ω ⊂ Cn and U is a neighborhood of p so that
U ∩ ∂Ω satisfies weak Z(n− 1), then weak Z(n− 1) is radially stable at p.

ANNALES DE L’INSTITUT FOURIER



CLOSED RANGE IN STEIN MANIFOLDS 1741

As in the proof of Proposition 2.3, we know µ1 + · · · + µn−1 = L((τω)]).
Thus, we have

µε1 + · · ·+ µεn−1 − Lε(Υ) = Lε((τω)] −Υ) >

L((τω)] −Υ) = µ1 + · · ·+ µn−1 − L(Υ) > 0.

Our motivation for studying radial stability is that it allows us to con-
struct global examples from local data, as per the following proposition.

Proposition 6.6. — Let Ω1 be an unbounded Ck domain in Cn, k > 3,
with 0 ∈ ∂Ω1. Moreover, suppose that for some 1 6 q 6 n − 1, the weak
Z(q) property for Ω1 is radially stable at the origin. There exists a bounded
domain Ω ⊂ Ω1 defined by a Ck defining function ρ such that Ω∩U = Ω1∩U
on a neighborhood U of the origin and Ω satisfies weak Z(q).

Proof. — Let ρ1 be a defining function for Ω1. After a rotation and
rescaling, we may assume ∂ρ1(0) = i

2dzn. We write zn = xn+iyn. Using the
Implicit Function Theorem, we may find a Ck function P (z1, . . . , zn−1, xn)
such that in some relatively compact neighborhood V of the origin, ρ1(z) <
0 if and only if −yn + P (z1, . . . , zn−1, xn) < 0 and we have |P | 6 O(|z|2).
Without loss of generality, we may assume ρ1|V =−yn+P (z1, . . . , zn−1, xn).
We have the projection π : V → ∂Ω1 defined by π(z) = (z1, . . . , zn−1, xn +
iP (z1, . . . , zn−1, xn)). We will frequently make use of the fact that our
chosen defining function ρ1 satisfies ∂ρ1(z) = ∂ρ1(π(z)) and ∂∂̄ρ1(z) =
∂∂̄ρ1(π(z)), where this composition is interpreted componentwise (we do
not use the pullback since π is not holomorphic). Since π is not holomorphic,
we define the modified pushforward π̃∗ : T 1,0(V )→ T 1,0(∂Ω1) by π̃∗(L) =
L− ∂ρ1(L)

∂ρ1/∂zn

∂
∂zn

. Note that ∂ρ1
∂zn

= 1
2

(
∂P
∂xn

+ i
)
, so

∣∣∣ ∂ρ1
∂zn

∣∣∣ > 1
2 . Thus

|L− π̃∗(L)| 6
√

2 |∂ρ1(L)| .

On V , we have
(6.1)∣∣∣i∂∂̄ρ1(iL̄ ∧ L)− Lρ1 |π(z)(iπ̃∗(L) ∧ π̃∗(L))

∣∣∣ 6 O(‖P‖C2(V ) |L||∂ρ1(L)|).

Since ‖P‖C2(V ) will not depend on any of our parameters, we will suppress
it in future error terms.
Let ρ2(z) = ϕ(z)−R2 for some 0 < R < 1. Observe that in coordinates

(w1, . . . , wn) that are orthonormal at 0, ϕ(w) = |w|2+O(|w|3), so ρ2 defines
a bounded strictly convex domain for R > 0 sufficiently small. We choose
R > 0 sufficiently small so that this domain is contained in V . Since dϕ(0) =
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0, on V we have

(6.2) |∂ϕ| 6 O(‖ϕ‖C2(V )R).

As with ‖P‖C2(V ), we will not continue to track ‖ϕ‖C2(V ) in our error
terms. We will assume henceforth that R > 0 is chosen sufficiently small
so that

∣∣∣ ∂ϕ∂yn

∣∣∣ is bounded by 1
2 , and hence

(6.3)
∣∣∣∣1 + ∂ϕ

∂yn

∣∣∣∣ > 1
2

Our goal is to construct a Ck approximation to max {ρ1, ρ2}. Construct-
ing such an approximation is relatively easy, but showing that weak Z(q) is
satisfied for points where ρ1(z) ≈ ρ2(z) (i.e., those points which lie near the
smoothed corner of our new domain) will take some work. Let χ ∈ C∞0 (R)
be a smooth, even, nonnegative function satisfying suppχ = [−1, 1] and∫
R χ = 1. For 0 < r < 1, define

ψr(x) =
∫ x

−∞
r−1(x− t)χ(r−1t) dt.

We can check that ψr ∈ C∞(R) is a convex increasing function satisfying
ψr(x) = 0 when x 6 −r and ψr(x) = x for x > r (note that we use∫ 1
−1 tχ(t) dt = 0 since χ is even). Furthermore,

(6.4) ψr(x) 6 (x+ r)
∫ x

−∞
r−1χ(r−1t) dt = (x+ r)ψ′r(x).

We can now define

ρ(z) = ρ1(z) + ψr(ρ2(z)− ρ1(z)).

For |ρ2 − ρ1| > r, ρ(z) = max {ρ1(z), ρ2(z)}, so this is a candidate for our
Ck defining function. At the origin ρ1(0) − ρ2(0) = R2, so for R2 > r,
ρ(z) = ρ1(z) in a neighborhood of the origin. Thus, by taking R2 > r > 0
sufficiently small, ρ(z) defines a bounded domain Ω and Ω ∩ U = Ω1 ∩ U
for a sufficiently small neighborhood U ⊂ V of the origin.

We compute

(6.5) ∂ρ = (1− ψ′r(ρ2 − ρ1))∂ρ1 + ψ′r(ρ2 − ρ1)∂ϕ

and
i∂∂̄ρ = (1− ψ′r(ρ2 − ρ1))i∂∂̄ρ1 + ψ′r(ρ2 − ρ1)ω

+ iψ′′r (ρ2 − ρ1)(∂ϕ− ∂ρ1) ∧ (∂̄ϕ− ∂̄ρ1).
(6.6)

Since ρ2 is strictly convex, ∂Ω is strictly convex when ρ2 − ρ1 > r. Thus,
there must exist some 0 < r0 < r such that ∂Ω is strictly convex when
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ρ2 − ρ1 > r0. For z ∈ ∂Ω satisfying ρ2(z) − ρ1(z) 6 r0 and L ∈ T 1,0(∂Ω),
we can use ∂ρ(L) = 0 at z, (6.2), and (6.5) to show

(6.7) |∂ρ1(L)| 6 O
(

Rψ′r(ρ2 − ρ1)
1− ψ′r(ρ2 − ρ1) |L|

)
.

By construction, 1
1−ψ′r(ρ2−ρ1) 6

1
1−ψ′(r0) <∞ when ρ2−ρ1 6 r0 < r. Using

this with (6.6) and (6.1), we have

Lρ(iL̄ ∧ L) > (1− ψ′r(ρ2 − ρ1))Lρ1 |π(z)(iπ̃∗(L) ∧ π̃∗(L)) + ψ′r(ρ2 − ρ1)|L|2

+ψ′′r (ρ2 − ρ1)|∂ϕ(L)− ∂ρ1(L)|2 −O
(
Rψ′r(ρ2 − ρ1)

1− ψ′(r0) |L|
2
)
.

By choosing R > 0 sufficiently small, we may assume ψ′r(ρ2 − ρ1)|L|2 is
strictly larger than the error term, so when ρ2 − ρ1 > −r we are adding
a positive definite form to the Levi-form of Ω1. Hence, Ω satisfies Z(q)
whenever ρ2 − ρ1 > −r. Since we know Ω inherits weak Z(q) from Ω1
when ρ2 − ρ1 < −r, we conclude that we only need to show that weak
Z(q) is satisfied on a neighborhood of the set of boundary points where
ρ2 − ρ1 = −r. To that end, we define

K = {z ∈ ∂Ω : ρ2(z)− ρ1(z) = −r} ⊂ ∂Ω ∩ ∂Ω1.

For the delicate estimates near K, we will need an estimate for |z−π(z)|.
Since ∂ρ1

∂yn
= −1, we can use (6.5) to show

∂ρ

∂yn
+ 1 = ψ′r(ρ2 − ρ1)

(
1 + ∂ϕ

∂yn

)
.

Since ρ1(π(z)) = 0, we have ρ(π(z)) = ψr(ρ2(π(z))) by definition. If z ∈ ∂Ω,
we also have ρ(z) = 0 by definition, so we can integrate ∂ρ

∂yn
+ 1 in yn to

obtain
ψr(ρ2(π(z))) + (P (z1, . . . , zn−1, xn)− yn)

=
∫ P (z1,...,zn−1,xn)

yn

(
ψ′r(ρ2−ρ1)

(
1+ ∂ϕ

∂yn

))
(z1, . . . , zn−1, xn+it) dt.

(6.8)

This equality motivates the following estimates. Note that each of the fol-
lowing conditions is open and trivial on K, so for every 1

4 > η > 0 there
exists a neighborhood Wη ⊂ V of K satisfying

(1) ρ2(z) < 0 on Wη.
(2) If z ∈ ∂Ω ∩Wη, then the line segment [z, π(z)] ⊂Wη.
(3)

∣∣∣ψ′r(ρ2 − ρ1)
(

1 + ∂ϕ
∂yn

)∣∣∣ < η on Wη.

(4)
∣∣∣ψ′′r (ρ2 − ρ1)

(
1 + ∂ϕ

∂yn

)∣∣∣ < η on Wη.
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Note that (2) can be accomplished if Wη is the cross product of a ball
in Cn−1 × R with coordinates (z1, . . . , zn−1, xn) and an interval in R with
coordinate yn. Since (4) tells us that

∣∣∣ ∂
∂yn

ψ′r(ρ2 − ρ1)
∣∣∣ < η on Wη, the

Mean Value Theorem implies

|ψ′r(ρ2(π(z)))− ψ′r(ρ2(z)− ρ1(z))| < η |π(z)− z| .

Using (6.4) and (1), we have

ψr(ρ2(π(z))) 6 (ρ2(π(z)) + r)ψ′r(ρ2(π(z)))
6 r(ψ′r(ρ2(z)− ρ1(z)) + η |π(z)− z|)

Since |π(z)− z| = |P (z1, . . . , zn−1, xn)− yn|, we can substitute this into
(6.8) along with property (3) to show

|π(z)− z| < r(ψ′r(ρ2(z)− ρ1(z)) + η |π(z)− z|) + η |π(z)− z| .

Since 0 < η < 1
4 and 0 < r < 1 imply 0 < 1

1−(r+1)η < 2, we have on Wη

(6.9) |π(z)− z| < r

2ψ
′
r(ρ2 − ρ1).

Using (6.3) with (3), we have ψ′r(ρ2 − ρ1) < 2η < 1
2 on Wη, so

1
1−ψ′r(ρ2−ρ1) < 2, and we may neglect the corresponding coefficient in (6.7)
onWη. With (6.2), (6.7), (6.9), we can use our assumption that r < R2 < R

to prove for z ∈Wη and L ∈ T 1,0(∂Ω ∩Wη):

(6.10)
∣∣∂ϕ|π(z)(π̃∗(L))− ∂ϕ(L)

∣∣ < O(Rψ′r(ρ2 − ρ1)|L|)

Note that (6.3) and (4) imply that ψ′′r (ρ2 − ρ1) 6 2η < 1
2 on Wη, so

this will not impact our error terms. Given L ∈ T 1,0(∂Ω∩Wη), we can use
(6.1), (6.6), (6.7), and (6.10), to show

Lρ(iL̄∧L) > (1−ψ′r(ρ2− ρ1))Lρ1 |π(z)(iπ̃∗(L)∧ π̃∗(L)) +ψ′r(ρ2− ρ1)|L|2

+ ψ′′r (ρ2 − ρ1)
∣∣∂ϕ|π(z)(π̃∗(L))

∣∣2 −O(|L|2Rψ′r(ρ2 − ρ1))

If we set ε(z) =
(

ψ′′r (ρ2−ρ1)
1−ψ′r(ρ2−ρ1) ◦ π

−1
)

(z), where π−1 : ∂Ω1 → ∂Ω is well-
defined on Wη, we can define Lερ1

= Lρ1 + iε(z)∂ϕ ∧ ∂̄ϕ. If the eigenvalues
of Lερ1

in increasing order are given by µε1, . . . , µεn−1, then we have

µ1 + · · ·+ µq > (1− ψ′r(ρ2−ρ1))
(
(µε1 + · · ·+ µεq)|π(z)

)
+ qψ′r(ρ2 − ρ1)−O(Rψ′r(ρ2 − ρ1)).

(6.11)

Let Υ1 satisfy the conditions of Definition 6.2. We may assume that
ω(Υ1) < q. Otherwise, we define ρ̃1 = −ρ1 and Υ̃1 = (τω)] − Υ1. As in
the proof of Proposition 2.3, we now have a domain Ω̃1 such that weak
Z(n − 1 − q) is radially stable at the origin and ω(Υ̃1) < n − 1 − q (note
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that ω(Υ1) > q necessarily implies q < n − 1, so 1 6 n − 1 − q). The
proof proceeds as follows (the change of sign in Imzn is irrelevant, as this
can be fixed by reflection in zn), and we use Proposition 2.3 to revert to
our original domain. In such cases, our domain will have a disconnected
boundary.
Next, we use Υ1 to construct Υ on ∂Ω, and use our estimates to compare

Lρ(Υ) with Lερ1
(Υ). We extend Υ1 off of ∂Ω1 by setting Υ1|z = Υ1|π1(z),

translating each coefficient with respect to our local coordinates (we cannot
use the pushforward, since this will not respect the complex structure). We
can define Υ to be the orthogonal projection of Υ1 with respect to ∂ρ and
∂̄ρ via the formula

Υ = Υ1 −
n∑

j,k=1
2 |∂ρ|−2 Re

(
(dzj ∧ ∂̄ρ)(Υ1) ∂ρ

∂zk

∂

∂zj
∧ ∂

∂z̄k

)

+
n∑

j,k=1
|∂ρ|−4 (∂ρ ∧ ∂̄ρ)(Υ1) ∂ρ

∂z̄j

∂ρ

∂zk

∂

∂zj
∧ ∂

∂z̄k
.

Then Υ ∈ T 1,1(Wη) since (θ∧∂̄ρ)(Υ) = 0 for all θ ∈ Λ1,0(Wη). Furthermore
for all θ ∈ Λ1,0(Wη)

(iθ ∧ θ̄)(Υ) = i((θ − |∂ρ|−2 〈θ, ∂ρ〉 ∂ρ) ∧ (θ̄ − |∂ρ|−2 〈∂ρ, θ〉 ∂̄ρ))(Υ1),

so by assumption

0 6 (iθ ∧ θ̄)(Υ) 6
∣∣∣θ − |∂ρ|−2 〈θ, ∂ρ〉 ∂ρ

∣∣∣2 = |θ|2 − |∂ρ|−2 |〈θ, ∂ρ〉|2 6 |θ|2 .

Note that for any θ ∈ Λ1,0(Wη) we have θ ∧ ∂̄ρ1(Υ1) = 0, so by (6.5) θ ∧
∂̄ρ(Υ1) = ψ′r(ρ2−ρ1)θ∧ ∂̄ϕ(Υ1). By (6.2), we have |Υ−Υ1| 6 O(Rψ′r(ρ2−
ρ1)), so for R > 0 sufficiently small we have ω(Υ) < q on ∂Ω. In addition,
adapting the proof of (6.11), we have

Lρ(Υ) 6 (1− ψ′r(ρ2 − ρ1))
(
Lερ1

(Υ1)|π(z)
)

+ ψ′r(ρ2 − ρ1)ω(Υ) +O(Rψ′r(ρ2 − ρ1)).
(6.12)

Now that we have (6.11) and (6.12), we carefully choose R, r, and η (in
that order) to show that radial stability of weak Z(q) on ∂Ω1 implies weak
Z(q) on ∂Ω. On Wη we have

µ1+· · ·+µq−Lρ(Υ) > (1−ψ′r(ρ2−ρ1))
(

(µε1 + . . .+ µεq − Lε(z)ρ1
(Υ1))|π(z)

)
+ ψ′r(ρ2 − ρ1)(q − ω(Υ))−O(Rψ′r(ρ2 − ρ1)).
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Since q > ω(Υ), we can choose R > 0 sufficiently small so that the error
term is dominated by ψ′r(ρ2 − ρ1)(q − ω(Υ)). Hence

µ1 + · · ·+µq−Lρ(Υ) > (1−ψ′r(ρ2−ρ1))
(
(µε1 + . . .+ µεq − Lερ1

(Υ1))|π(z)
)
.

After choosing 0 < r < R2, we can choose η > 0 sufficiently small to
guarantee that ε(z) is sufficiently small so that Definition 6.2 applies. Thus,

µ1 + · · ·+ µq − Lρ(Υ) > 0,

and hence weak Z(q) holds on Wη.
By Lemma 2.6, we can patch to obtain a global Υ. �

Now, we are ready to introduce our unbounded domain.
Proof of Proposition 6.1. — For convenience, we set z1 = x + iy and

define P (z1, z2) = 2x |z2|2 − xy4. Let Ω1 ⊂ C3 be defined by ρ1(z) =
−Imz3 + P (z1, z2). Since ∂̄x = 1

2dz̄1 and ∂̄y = i
2dz̄1 we compute:

∂̄ρ1 =
(
|z2|2 −

1
2y

4 − 2ixy3
)
dz̄1 + 2xz2dz̄2 −

i

2dz̄3

and

(6.13) ∂∂̄ρ1 = −3xy2dz1 ∧ dz̄1 + z2dz1 ∧ dz̄2 + z̄2dz2 ∧ dz̄1 + 2xdz2 ∧ dz̄2.

We choose a basis for T 1,0(∂Ω1) by setting Lj = ∂
∂zj

+ 2i ∂P∂zj

∂
∂z3

for 1 6
j 6 2. Under this basis we can represent the Levi form by the matrix
cjk̄ = Lρ1(iL̄k ∧ Lj) = i∂∂̄ρ1

(
i ∂
∂z̄k
∧ ∂
∂zj

)
. One can easily check that the

Levi-form has one positive and one negative eigenvalue when either z2 6= 0
or both x 6= 0 and y 6= 0, so Z(2) is satisfied on a dense subset of the
boundary.
Both 1-pseudoconvexity and the definition of weak Z(2) given in [9]

require orthonormal coordinates. For an arbitrary hermitian metric, let u1
and u2 be an orthonormal basis for T 1,0(∂Ω1). Each of these can be written
in the form

uj =
2∑
k=1

akjLk

for smooth functions akj . We use cu
jk̄

to denote the Levi form with respect
to these new coordinates, and note that

(6.14) cu
jk̄

=
2∑

`,m=1
a`jc`m̄ā

m
k .
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The eigenvalues of cu will be denoted µu1 6 µu2 . Computing the trace, we
have

µu1 + µu2 =
2∑

k,`,m=1
a`kc`m̄ā

m
k =

2∑
`,m=1

gm̄`c`m̄

where gm̄` is a positive definite 2×2 hermitian matrix. Substituting (6.13),
we have

(6.15) µu1 + µu2 = −3xy2g1̄1 + 2Re(z2g
2̄1) + 2xg2̄2.

For ∂Ω to be 1-pseudoconvex, we need either µu1 + µu2 > 0 or µu1 + µu2 −
cu11̄ > 0. We will show that each of these leads to contradictions.
First, assume that µu1 +µu2 > 0. Set y = 0, so that by (6.15), 2Re(z2g

2̄1)+
2xg2̄2 > 0. Since the left hand side of this inequality equals zero when
x = z2 = 0, this must be a critical point and hence all first derivatives in
x or z2 will also vanish when x = z2 = 0. Hence, when x = z2 = 0 we have
g2̄1 = g2̄2 = 0. However, this implies that gm̄` has rank 1, contradicting
the fact that gm̄` is nondegenerate. Thus µu1 + µu2 can not be nonnegative
in a neighborhood of the origin.
Now, we assume that µu1 +µu2 −cu11̄ > 0. Combining our assumption with

(6.15) yields

−3xy2(g1̄1 −
∣∣a1

1
∣∣2) + 2Re(z2(g2̄1 − a1

1ā
2
1)) + 2x(g2̄2 −

∣∣a2
1
∣∣2) > 0.

As before, derivatives in x and z2 must vanish when x = z2 = 0, so at these
points we have g2̄1 − a1

1ā
2
1 = 0 and

−3y2(g1̄1 −
∣∣a1

1
∣∣2) + 2(g2̄2 −

∣∣a2
1
∣∣2) = 0

When y 6= 0, this means that the rank of gk̄j − āk1a
j
1 is either zero or two.

However,

gm̄` − ām1 a`1 =
2∑

j,k=1
āmk (δk̄j − δj1δk1)a`j .

Hence gk̄j − āk1a
j
1 must have rank one, contradicting the fact that it must

have a rank of zero or two. We conclude that µu1 + µu2 − cu11̄ can not be
nonnegative in a neighborhood of the origin.
Since the above construction was carried out for an arbitrary metric, we

conclude that there is no metric in a neighborhood of the origin in which
∂Ω is 1-pseudoconvex.
We must now show that Definition 2.1 holds for this domain under the

Euclidean metric (i.e., ϕ = |z|2). If u1 and u2 are orthonormal vectors in
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the span of L1 and L2 then the sum of the two smallest eigenvalues of the
Levi form are

µ1 + µ2 = L(iū1 ∧ u1 + iū2 ∧ u2).

If

Υt = iū1 ∧ u1 + iū2 ∧ u2 − t(2iL̄1 ∧ L1 + 3y2iL̄2 ∧ L2),

then

µ1 + µ2 − L(Υt) = 0,

so (2) of Definition 2.1 is satisfied. Since L1 and L2 are also in the span
of u1 and u2, condition (1) will follow for t > 0 sufficiently small. Finally,
ω(Υt) = 2 − t(2 |L1|2 + 3y2 |L2|2), so condition (3) holds for any t 6= 0.
Hence Ω1 satisfies weak Z(2).

By Remark 6.5, we may now use Proposition 6.6 to turn our example
into a bounded domain. �

We will also construct an example demonstrating that our condition is
not invariant under changes of metric. Roughly speaking, this example con-
tains a direction which is poorly behaved (at some points in a neighborhood
of the origin this direction is an eigenvector of the Levi form with a negative
eigenvalue, while at other points it can be an eigenvector corresponding to
the largest positive eigenvalue). In order for weak Z(2) to be satisfied, the
metric must be chosen to minimize the size of this direction (and prevent
it from corresponding to the largest positive eigenvalue).

Proposition 6.7. — There exists a bounded domain Ω ⊂ C4 with
smooth boundary such that

(1) ∂Ω does not satisfy weak Z(2) under the Euclidean metric.
(2) There exists a strictly plurisubharmonic exhaustion function ϕ for

C4 such that ∂Ω satisfies weak Z(2) with respect to the metric
ω = i∂∂̄ϕ.

Proof. — As before, we can construct an unbounded domain and use
Proposition 6.6 to make this bounded. To minimize the number of sub-
scripts, we will write ρ in place of the ρ1 used in the statement of Proposi-
tion 6.6. As above, let z1 = x+ iy and ρ(z) = −Imz4 + P (z1, z2, z3) where
P (z1, z2, z3) = −9 |z1|4 + 6(x2 |z2|2 + y2 |z3|2) + |z2|2 |z3|2 + 1

4 (|z2|4 + |z3|4).
We choose a basis for T 1,0(∂Ω) by setting Lj = ∂

∂zj
+2i ∂P∂zj

∂
∂z4

for 1 6 j 6 3.
Let Pj = ∂P

∂zj
.
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We compute

∂̄ρ =
(
−18 |z1|2 z1 + 6x |z2|2 + 6iy |z3|2

)
dz̄1

+
(

6x2z2 + |z3|2 z2 + 1
2 |z2|2 z2

)
dz̄2

+
(

6y2z3 + |z2|2 z3 + 1
2 |z3|2 z3

)
dz̄3 −

i

2dz̄4

and

i∂∂̄ρ = i(−36 |z1|2 + 3 |z2|2 + 3 |z3|2)dz1 ∧ dz̄1

+ i(6x2 + |z2|2 + |z3|2)dz2 ∧ dz̄2

+ i(6y2 + |z2|2 + |z3|2)dz3 ∧ dz̄3

+ 6ix(z2dz1 ∧ dz̄2 + z̄2dz2 ∧ dz̄1)
+ 6iy(−iz3dz1 ∧ dz̄3 + iz̄3dz3 ∧ dz̄1)
+ i(z̄2z3dz2 ∧ dz̄3 + z2z̄3dz3 ∧ dz̄2).

If we consider the 2× 2 block spanned by dz2 and dz3, we can see that this
is positive definite unless z2 = z3 = 0 and either x = 0 or y = 0. Hence, the
Levi form has at least two positive eigenvalues and satisfies Z(2) except on
this set.
To define our metric, we let ϕt(z) = t |z1|2 +

∑4
j=2 |zj |

2 for some fixed
t > 1 and use the Kähler form ωt = i∂∂̄ϕt. We use |·|t and 〈·, ·〉t to denote
norms and inner products with respect to this metric. Note that ω1 is the
Euclidean metric.
Observe that 〈Lj , Lk〉t = δjk + 4PjP̄k when j 6= 1 or k 6= 1, and

|L1|2t = t + 4 |P1|2. Therefore, by carrying out a Gram-Schmidt process
we can construct orthonormal vectors Lt2 and Lt3 satisfying |L2 − Lt2|t 6
O(|z|4 (|z2|2 + |z3|2)) and |L3 − Lt3|t 6 O(|z|4 (|z2|2 + |z3|2)). We assume
3 > t > 1, so that we have uniform bounds on constants involving t, and
we can safely neglect t in our error terms (although any upper bound larger
than 2 will suffice). We can complete our orthonormal basis with Lt1 satis-
fying

∣∣∣ 1√
t
L1 − Lt1

∣∣∣
t
6 O(|z|4 (|z1|2 + |z2|2 + |z3|2)). Let {θt1, θt2, θt3} be the

orthonormal dual basis for {Lt1, Lt2, Lt3}. We define the non-isotropic error
form

Θ = (|z1|2 + |z2|2 + |z3|2)iθt1 ∧ θ̄t1 + (|z2|2 + |z3|2)i(θt2 ∧ θ̄t2 + θt3 ∧ θ̄t3),

and observe that off-diagonal terms can be estimated by

2Re((ax+ by)zjθt1 ∧ θ̄tj) 6
√
a2 + b2Θ
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for j = 2 or j = 3. Our Levi-form with respect to our orthonormal basis
has the form

L = (−36 |z1|2+ 3 |z2|2+ 3 |z3|2)
t

iθt1 ∧ θ̄t1 + (6x2+ |z2|2+ |z3|2)iθt2 ∧ θ̄t2

+ (6y2 + |z2|2 + |z3|2)iθt3 ∧ θ̄t3 + Re
(

12xz2√
t
iθt1 ∧ θ̄t2

)
− Re

(
12iyz3√

t
iθt1 ∧ θ̄t3

)
+ 2Re(z̄2z3iθ

t
2 ∧ θ̄t3) +O(|z|6 Θ)

We write

Υt = i

n−1∑
j,k=1

bk̄jt L̄
t
k ∧ Ltj .

When z2 = z3 = 0, the Levi-form is diagonalized with eigenvalues µ1 =
−36|z1|2

t +O(|z|6 |z1|2), µ2 = min
{

6x2, 6y2}, and µ3 = max
{

6x2, 6y2}. To
check condition (2) of Definition 2.1, we compute

µ1 + µ2 − L(Υt) = min
{

6x2, 6y2}+ −36 |z1|2

t
(1− b1̄1

t )

− 6x2b2̄2
t − 6y2b3̄3

t +O(|z|6 |z1|2).

Since b2̄2
t > 0 and 1 > b1̄1

t , (by condition (1) of Definition 2.1) nonnega-
tivity when y = 0 requires b2̄2

t 6 O(|z|6) and b1̄1
t > 1 − O(|z|6). Similar

computations when x = 0 require b3̄3
t 6 O(|z|6) and b1̄1

t > 1 − O(|z|6) on
this set. At the origin, Υt is now represented by a matrix whose eigenvalues
are bounded between 0 and 1 (by condition (1) of Definition 2.1 again) with
diagonal entries of 0 and 1, so the off-diagonal entries must vanish. Hence,
Υt = iL̄t1∧Lt1 at the origin. Since nonvanishing terms of order O(|z|) would
cause the eigenvalues of Υt to grow larger than 1 or smaller than 0 in some
direction, we conclude that Υt = iL̄t1 ∧ Lt1 +O(|z|2) near the origin.

We note that µ1 + µ2 − L(Υt) > 0 (condition (2) in Definition 2.1) is
equivalent to TrL − L(Υt) > µ3, which is in turn equivalent to (TrL −
L(Υt))ωt − L > 0 on T 1,1(∂Ω). We compute

TrL − L(Υt) = 6 |z1|2 + 2(|z2|2 + |z3|2) +O(|z|4).

If (TrL − L(Υt))ωt − L > 0, then every diagonal entry of this form must
be nonnegative. If we test nonnegativity of (TrL − L(Υt)) − L11̄, we see
that this is equivalent to

6 |z1|2 + 2(|z2|2 + |z3|2)− (−36 |z1|2 + 3 |z2|2 + 3 |z3|2)
t

+O(|z|4) > 0.
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Considering coefficients of |z2|2 + |z3|2 when z1 = 0, it is necessary that
2 > 3

t , or t >
3
2 . Since the Euclidean metric corresponds to t = 1, weak

Z(2) will fail for the Euclidean metric.
For the positive result, we set Υt = iL̄t1 ∧ Lt1, so that conditions (1) and

(3) are immediately satisfied. To check radial stability, we compute

i∂ϕt ∧ ∂̄ϕt ≡ t |z1|2 iθt1 ∧ θ̄t1 + |z2|2 iθt2 ∧ θ̄t2 + |z3|2 iθt3 ∧ θ̄t3
+ 2
√
tRe(z̄1z2iθ

t
1 ∧ θ̄t2) + 2

√
tRe(z̄1z3iθ

t
1 ∧ θ̄t3)

+ 2Re(z̄2z3iθ
t
2 ∧ θ̄t3) +O(|z|3 Θ) (mod ∂ρ, ∂̄ρ).

If we set Lε = i∂∂̄ρ+ iε∂ϕt ∧ ∂̄ϕt, we can show

TrLε − Lε(Υt) = Lε22̄ + Lε33̄

= 6 |z1|2 + (2 + ε)(|z2|2 + |z3|2) +O(|z|3 (|z2|2 + |z3|2)).

As before, showing µ1 + µ2 −Lε(Υt) > 0 is equivalent to showing that the
form Φ = (TrLε − Lε(Υt))ωt − Lε is positive semi-definite. We compute

Φ = 1
t

(
(6t− εt2 + 36) |z1|2 + ((2 + ε)t− 3)(|z2|2 + |z3|2)

)
iθt1 ∧ θ̄t1

+
(

6y2 + |z2|2 + (1 + ε) |z3|2
)
iθt2 ∧ θ̄t2

+
(

6x2 + (1 + ε) |z2|2 + |z3|2
)
iθt3 ∧ θ̄t3

− 2√
t
Re
(

(6x+ εtz̄1)z2iθ
t
1 ∧ θ̄t2

)
− 2√

t
Re
(

(−6iy + εtz̄1)z3iθ
t
1 ∧ θ̄t3

)
− 2(1 + ε)Re

(
z̄2z3iθ

t
2 ∧ θ̄t3

)
+O(|z|3 Θ).

For any 1 > η > 0, we may choose |z| sufficiently small so that O(|z|3 Θ) >
−ηΘ. To control terms off the diagonal, we can estimate

2(1+ε)Re(z̄2z3iθ
t
2 ∧ θ̄t3) 6 i(1 + ε) |z2| |z3| (θt2 ∧ θ̄t2 + iθt3 ∧ θ̄t3)

6

(
(1 + ε)2

4(1 + ε− η) |z2|2 + (1 + ε− η) |z3|2
)
iθt2 ∧ θ̄t2

+
(

(1 + ε− η) |z2|2 + (1 + ε)2

4(1 + ε− η) |z3|2
)
iθt3 ∧ θ̄t3,

2Re
(

6x+ εtz̄1√
t

z2iθ
t
1 ∧ θ̄t2

)
6
|6x+ εz̄1t|2

tC
iθt1 ∧ θ̄t1 + C |z2|2 iθt2 ∧ θ̄t2,
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and

2Re
(
−6iy + εtz̄1√

t
z3iθ

t
1 ∧ θ̄t3

)
6
|−6iy + εz̄1t|2

tC
iθt1 ∧ θ̄t1 + C |z3|2 iθt3 ∧ θ̄t3,

for some C > 0. Suppose that 0 < η < 1
2 , so that for ε sufficiently small we

know that C(η, ε) = 4(1+ε−η)(1−η)−(1+ε)2

4(1+ε−η) is strictly positive. Combining
the above estimates for this value of C, we obtain

Φ > 1
t
((6t− εt2+ 36− tη) |z1|2+ ((2 + ε− η)t− 3)(|z2|2+ |z3|2))iθt1 ∧ θ̄t1

− 2 |z1|2 (18 + 6εt+ ε2t2)
tC

iθt1 ∧ θ̄t1 + 6y2iθ2 ∧ θ̄2 + 6x2iθt3 ∧ θ̄t3

If t > 2, then we can fix 0 < η < 1
4 sufficiently small so that (6t+36−tη) >

36
C(η,0) (note that C(0, 0) = 3

4 ). For such η, we know that for all ε > 0
sufficiently small we have (6t−εt2+36−tη) > 2(18+6εt+ε2t2)

C(η,ε) . Thus each term
has a strictly positive coefficient for sufficiently small ε, so the resulting
form is positive for sufficiently small ε and |z|. We conclude that weak
Z(2) is radially stable, and Proposition 6.6 can now be used to create a
bounded domain. �
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