ANNALES

DE

L'INSTITUT FOURIER

Arata KOMYO

On compactifications of character varieties of n-punctured projective line Tome 65, no 4 (2015), p. 1493-1523.
http://aif.cedram.org/item?id=AIF_2015__65_4_1493_0
© Association des Annales de l'institut Fourier, 2015, Certains droits réservés.
(cc) BY-ND Cet article est mis à disposition selon les termes de la licence Creative Commons attribution - pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/

L'accès aux articles de la revue «Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/).

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

ON COMPACTIFICATIONS OF CHARACTER VARIETIES OF n-PUNCTURED PROJECTIVE LINE

by Arata KOMYO (*)

Abstract

In this paper, we construct compactifications of $S L_{2}(\mathbb{C})$-character varieties of n-punctured projective line and study the boundary divisors of the compactifications. This study is motivated by a conjecture for the configurations of the boundary divisors, due to C. Simpson. We verify the conjecture for a few examples.

Résumé. - Dans cet article, nous construisons des compactifications de $S L_{2}(\mathbb{C})$ variétés de caractères d'une droite projective moins n points et étudions les diviseurs au bord des compactifications. Cette étude est motivée par une conjecture, due à C. Simpson, sur les configurations des diviseurs au bord. Nous vérifions quelques cas de la conjecture.

1. Introduction

Let C be a compact Riemann surface of genus g, and let $\left\{t_{1}, \ldots, t_{n}\right\}$ be the set of n-distinct points on C. For a positive integer $r>0$, denote by \mathcal{P}_{r} the set of partitions of r, and fix $\boldsymbol{\mu}=\left(\mu^{1}, \ldots, \mu^{n}\right) \in\left(\mathcal{P}_{r}\right)^{n}$ where $\mu^{i}=\left(\mu_{1}^{i}, \ldots, \mu_{r_{i}}^{i}\right) \in \mathcal{P}_{r}$. For each partition $\mu^{i} \in \mathcal{P}_{r}$, let us fix semisimple conjugacy classes $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n} \subset S L_{r}(\mathbb{C})$ which is generic in the sense of [4, Definition 2.1.1] and type μ^{1}, \ldots, μ^{n}, that is, the multiplicities of eigenvalues of matrices in \mathcal{C}_{i} are given by $\mu^{i}=\left(\mu_{1}^{i}, \mu_{2}^{i}, \ldots\right)$. We consider a monodoromy $S L_{r}(\mathbb{C})$-semisimple representation

$$
\rho: \pi_{1}\left(C \backslash\left\{t_{1}, \ldots, t_{n}\right\}, *\right) \longrightarrow S L_{r}(\mathbb{C})
$$

[^0]of type $(g, \boldsymbol{\mu})$ which satisfies the condition $\rho\left(\gamma_{i}\right) \in \mathcal{C}_{i}$ for each i where γ_{i} is a anticlockwise loop around the point t_{i}. We can define the $S L_{r}(\mathbb{C})$-character variety $\mathcal{R}_{g, \mu}$ of the n-punctured compact Riemann surface of genus g by the following categorical quotient
\[

$$
\begin{gathered}
\mathcal{R}_{g, \mu}:=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g} ; M_{1}, \ldots, M_{n}\right) \in S L_{r}(\mathbb{C})^{2 g} \times \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right. \\
\left.\mid\left(A_{1}, B_{1}\right) \cdots\left(A_{g}, B_{g}\right) M_{1} \cdots M_{n}=I_{r}\right\} / / S L_{r}(\mathbb{C})
\end{gathered}
$$
\]

Here, we set $(A, B)=A B A^{-1} B^{-1}$ and I_{r} is the identity matrix. The variety depends on the actual choice of eigenvalues, but for simplicity we drop this choice from the notation. The categorical quotient $\mathcal{R}_{g, \mu}$ can be considered as a moduli space of monodoromy $S L_{r}(\mathbb{C})$-semisimple representations of type $(g, \boldsymbol{\mu})$. The variety $\mathcal{R}_{g, \boldsymbol{\mu}}$, if nonempty, is a nonsingular affine variety of dimension

$$
d_{g, \mu}:=r^{2}(2 g-2+n)-\sum_{i, j}\left(\mu_{j}^{i}\right)^{2}+2-2 g .
$$

(See [4]). In the case where $g=0$ and $d_{g, \mu}=2, S L_{r}(\mathbb{C})$-character varieties can be classified into four cases, which can be listed as follows:

$$
\begin{align*}
\boldsymbol{\mu} & =((1,1),(1,1),(1,1),(1,1)) \\
\boldsymbol{\mu} & =((1,1,1),(1,1,1),(1,1,1)) \\
\boldsymbol{\mu} & =((2,2),(1,1,1,1),(1,1,1,1)) \tag{1.1}\\
\boldsymbol{\mu} & =((3,3),(2,2,2),(1,1,1,1,1,1))
\end{align*}
$$

In the first and second types, the $S L_{r}(\mathbb{C})$-character varieties are known to be an affine cubic surface. ([3], [10], [9], [12]).

The purpose of this paper is to study the configuration of boundary divisor of compactifications of $S L_{r}(\mathbb{C})$-character varieties. This study is motivated by a conjecture due to Simpson [18], which is explained as follows. We choose a smooth compactification $\overline{\mathcal{R}_{g, \boldsymbol{\mu}}}$ of $\mathcal{R}_{g, \boldsymbol{\mu}}$ such that $D_{g, \boldsymbol{\mu}}^{B}=\overline{\mathcal{R}_{g, \boldsymbol{\mu}}} \backslash \mathcal{R}_{g, \boldsymbol{\mu}}$ is a divisor with normal crossings. We call the divisor $D_{g, \boldsymbol{\mu}}^{B}$ a boundary divisor of the compactification $\overline{\mathcal{R}_{g, \boldsymbol{\mu}}}$. Let $\bar{N}_{g, \boldsymbol{\mu}}^{B}$ be a small neighborhood of $D_{g, \boldsymbol{\mu}}^{B}$ in $\overline{\mathcal{R}_{g, \boldsymbol{\mu}}}$, and let $N_{g, \boldsymbol{\mu}}^{B}=\bar{N}_{g, \boldsymbol{\mu}}^{B} \cap \mathcal{R}_{g, \boldsymbol{\mu}}=\bar{N}_{g, \boldsymbol{\mu}}^{B} \backslash D_{g, \boldsymbol{\mu}}^{B}$. Let $\Delta\left(D_{g, \mu}^{B}\right)$ be a simplicial complex whose n-dimensional simplices correspond to the irreducible components of intersections of $k+1$ distinct components of $D_{g, \boldsymbol{\mu}}^{B}$. This is called the boundary complex or Stepanov complex of a compactification of $\mathcal{R}_{g, \mu}$ (see [22], [23], and [16]).

Theorem 1.1 ([22], [23], and [16]). - The homotopy type of boundary complex $\Delta\left(D_{g, \mu}^{B}\right)$ is independent of the choice of compactifications.

We have a continuous map, well-defined up to homotopy,

$$
\begin{equation*}
N_{g, \boldsymbol{\mu}}^{B} \longrightarrow \Delta\left(D_{g, \boldsymbol{\mu}}^{B}\right) \tag{1.2}
\end{equation*}
$$

On the other hand, let $\mathcal{M}_{g, \mu}$ be the moduli space of parabolic Higgs bundles, which is diffeomorphic to the character variety $\mathcal{R}_{g, \boldsymbol{\mu}}$ via the nonabelian Hodge theory [19]. In particular, we have $\operatorname{dim} \mathcal{M}_{g, \boldsymbol{\mu}}=d_{g, \mu}$. We have the Hitchin fibration $\mathcal{M}_{g, \mu} \rightarrow \mathbb{A}^{\frac{d_{g}, \mu}{2}}$. The moduli space $\mathcal{M}_{g, \mu}$ has a canonical orbifold compactification, where the divisor at infinity is the quotient

$$
D_{g, \boldsymbol{\mu}}^{D o l}:=\mathcal{M}_{g, \boldsymbol{\mu}}^{*} / \mathbb{C}^{*}
$$

Here, $\mathcal{M}_{g, \boldsymbol{\mu}}^{*}$ is the complement of the nilpotent cone. Let $\bar{N}_{g, \boldsymbol{\mu}}^{\text {Dol }}$ be a small neighborhood of $D_{g, \boldsymbol{\mu}}^{D o l}$, and let $N_{g, \boldsymbol{\mu}}^{D o l}=\bar{N}_{g, \boldsymbol{\mu}}^{D o l} \cap \mathcal{R}_{g, \boldsymbol{\mu}}=\bar{N}_{g, \boldsymbol{\mu}}^{D o l} \backslash D_{g, \boldsymbol{\mu}}^{D o l}$. The Hitchin fibration gives us a continuous map to the sphere at infinity in the Hitchin base

$$
\begin{equation*}
N_{g, \mu}^{D o l} \longrightarrow S^{d_{g, \mu}-1} \tag{1.3}
\end{equation*}
$$

Conjecture 1.2 ([18]).
(1) There exists a homotopy-commutative diagram

(2) In particular, there exists a non-singular compactification of $\mathcal{R}_{g, \boldsymbol{\mu}}$ such that the boundary complex is a simplicial decomposition of sphere $S^{d_{g, \mu}-1}$.

Remark 1.3 (See [18]). - The assertion (1) of Conjecture 1.2 is true in the first case of the list (1.1).

The main theorem of this paper is the following
Theorem 1.4 (Theorem 6.2). - The assertion (2) of Conjecture 1.2 is true in the following cases:
(1) $g=0, r=3, n=3, \boldsymbol{\mu}=((1,1,1),(1,1,1),(1,1,1)), d_{g, \boldsymbol{\mu}}=2$;
(2) $g=0, r=2, n=5, \boldsymbol{\mu}=((1,1),(1,1),(1,1),(1,1),(1,1)), d_{g, \boldsymbol{\mu}}=4$.

For the case (1) of Theorem 1.4, the assertion (2) of Conjecture 1.2 can be verified by the classical invariant theory. ([3], [10], [9], [12]). However, it seems that the application of the classical invariant theory is difficult for general cases. Then, we construct compactifications of $S L_{r}(\mathbb{C})$-character
varieties as follows. Following [13], we can construct a compactification of the representation variety [13]

$$
\begin{aligned}
& \operatorname{Rep}_{g, \mu}:=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g} ;\right.\right.\left.M_{1}, \ldots, M_{n}\right) \in S L_{r}(\mathbb{C})^{2 g} \times \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \\
&\left.\mid\left(A_{1}, B_{1}\right) \cdots\left(A_{g}, B_{g}\right) M_{1} \cdots M_{n}=I_{r}\right\}
\end{aligned}
$$

Then, we take the GIT quotient of this compactification of $\operatorname{Rep}_{g, \mu}$, which gives a compactification $\overline{\mathcal{R}_{g, \mu}}$ of $\mathcal{R}_{g, \mu}$. As special cases, we consider the case where $g=0, r=2, n \geqslant 4, \boldsymbol{\mu}=((1,1), \ldots,(1,1))$. For $n=4$, we obtain the same result as the classical invariant theory [3]. For $n=5$ (i.e., the case (2) of Theorem 1.4), $\overline{\mathcal{R}_{g, \mu}}$ has singular points. A suitable blowing up of $\overline{\mathcal{R}_{g, \mu}}$ shows that the assertion (2) of Conjecture 1.2 holds. It seems that the configuration of the boundary divisor $D_{0, \boldsymbol{\mu}}^{B}$ is rather complicated for $n \geqslant 6$.

Conjecture 1.2 is related to the $\mathrm{P}=\mathrm{W}$ conjecture due to Hausel et al ([1]). First, we consider compact curve cases. The non-abelian Hodge theory for compact curves states that character varieties \mathcal{R} are diffeomorphic to moduli spaces \mathcal{M} of semi-stable Higgs bundles. Then, we have the induced isomorphism between the rational cohomology groups of \mathcal{R} and \mathcal{M}. The $\mathrm{P}=\mathrm{W}$ conjecture assert that the isomorphism of the rational cohomology groups exchanges the weight filtration on the cohomology groups of \mathcal{R} with the perverse Leray filtration associated with the Hitchin fibration on the cohomology groups of \mathcal{M}. The $\mathrm{P}=\mathrm{W}$ conjecture is verified in the case where $r=2([1])$. We may extend the conjecture to punctured curve cases. On the other hand, there exists a natural isomorphism from the reduced homology of the boundary complex $\Delta\left(D_{g, \mu}^{B}\right)$ to the $2 l$-th graded piece of the weight filtration on the cohomology of $\mathcal{R}_{g, \mu}$:

$$
\widetilde{H}_{i-1}\left(\Delta\left(D_{g, \mu}^{B}\right), \mathbb{Q}\right) \cong G r_{2 l}^{W} H^{2 l-i}\left(\mathcal{R}_{g, \mu}, \mathbb{Q}\right)
$$

(For example, see [16, Theorem 4.4]). By the isomorphism, the assertion (2) of Conjecture 1.2 implies that there exists only 1-dimensional weight $2 d_{g, \mu}$ part in the middle degree $d_{g, \mu}$ cohomology of the character variety, which is also a consequence of the $\mathrm{P}=\mathrm{W}$ conjecture.

Remark 1.5. - The structure groups of character varieties studied in [1] are $G L_{n}(\mathbb{C}), P G L_{n}(\mathbb{C})$ and $S L_{n}(\mathbb{C})$. However, for $g=0$, those character varieties are the same.

The organization of this paper is as follows. In Section 2, we give the definition of a $S L_{r}(\mathbb{C})$-character variety. In Section 3, we consider the case where $g=0, r=2, n=4$ and $g=0, r=3, n=3$. In those cases, the character varieties are describe by invariants and a relation of invariants.

We recall that the character varieties are affine cubic surfaces. In Section 4, we consider the construction of compactifiations of $S L_{2}(\mathbb{C})$-character varieties of $g=0, \boldsymbol{\mu}=((1,1), \ldots,(1,1))$. In Section 5 and 6, we describe the boundary divisor of the compactifiations of the cases where $n=4$ and $n=5$.

2. Preliminaries

We fix integers g, r, n with $g \geqslant 0, r>0, n>0$, and let $(C, \boldsymbol{t})=$ (C, t_{1}, \ldots, t_{n}) be an n-pointed compact Riemann surface of genus g, which consists of a compact Riemann surface C of genus g and a set of n distinct points $\boldsymbol{t}=\left\{t_{i}\right\}_{1 \leqslant i \leqslant n}$ on C. We put $D(\boldsymbol{t})=t_{1}+\cdots+t_{n}$ for each $(C, \boldsymbol{t})=\left(C, t_{1}, \ldots, t_{n}\right)$. We denote by

$$
\begin{equation*}
\Gamma_{C, \boldsymbol{t}}:=\pi_{1}(C \backslash D(\boldsymbol{t}), *) \tag{2.1}
\end{equation*}
$$

the fundamental group of $C \backslash D(\boldsymbol{t})$ with the base point $* \in C \backslash D(\boldsymbol{t})$. The group $\Gamma_{C, t}$ is generated by $(2 g+n)$-element $\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}, \gamma_{1}, \ldots, \gamma_{n}$ with one relation

$$
\left(\alpha_{1}, \beta_{1}\right) \cdots\left(\alpha_{g}, \beta_{g}\right) \gamma_{1} \cdots \gamma_{n}=1
$$

Here, we set $(\alpha, \beta)=\alpha \beta \alpha^{-1} \beta^{-1}$. The set of generators $\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}$, $\gamma_{1}, \ldots, \gamma_{n}$ is called canonical generators of $\Gamma_{C, t}$.

Definition 2.1. - $A n S L_{r}(\mathbb{C})$-representation of the fundamental group $\Gamma_{C, t}$ is a group homomorphism

$$
\begin{equation*}
\rho: \Gamma_{C, t} \longrightarrow S L_{r}(\mathbb{C}) \tag{2.2}
\end{equation*}
$$

Let $\operatorname{Hom}\left(\Gamma_{C, t}, S L_{r}(\mathbb{C})\right)$ be the set of all $S L_{r}(\mathbb{C})$-representations of $\Gamma_{C, t}$. If we fix a set of canonical generators of $\Gamma_{C, t}$, we have the identification

$$
\operatorname{Hom}\left(\Gamma_{C, \boldsymbol{t}}, S L_{r}(\mathbb{C})\right) \xrightarrow{\simeq} S L_{r}(\mathbb{C})^{2 g+n-1} .
$$

Definition 2.2. - Two $S L_{r}(\mathbb{C})$-representations ρ_{1} and ρ_{2} are isomorphic to each other, if and only if there exists a matrix $P \in S L_{r}(\mathbb{C})$ such that

$$
\rho_{2}(\gamma)=P^{-1} \cdot \rho_{1}(\gamma) \cdot P \text { for all } \gamma \in \Gamma_{C, t} .
$$

Let $R_{(g, n-1)}^{r}$ denote the affine coordinate ring of $S L_{r}(\mathbb{C})^{2 g+n-1}$. We consider the simultaneous action of $S L_{r}(\mathbb{C})$ on $S L_{r}(\mathbb{C})^{2 g+n-1}$ as

$$
\begin{aligned}
& P \curvearrowright\left(A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g} ; M_{1}, \ldots, M_{n-1}\right) \\
& \quad \mapsto\left(P^{-1} A_{1} P, \ldots, P^{-1} A_{g} P, P^{-1} B_{1} P, \ldots, P^{-1} B_{g} P\right. \\
& \left.\quad P^{-1} M_{1} P, \ldots, P^{-1} M_{n-1} P\right) .
\end{aligned}
$$

The invariant ring $\left(R_{(g, n-1)}^{r}\right)^{A d\left(S L_{r}(\mathbb{C})\right)}$ is finitely generated. For any (C, \boldsymbol{t}), there exists the universal categorical quotient map

$$
\begin{aligned}
\Phi_{(C, \boldsymbol{t})}^{r}: \operatorname{Hom}\left(\Gamma_{C, \boldsymbol{t}}, S L_{r}(\mathbb{C})\right) \cong S L_{r}(\mathbb{C})^{2 g+n-1} & \\
& \rightarrow \mathcal{R}_{(C, \boldsymbol{t})}^{r}=S L_{r}(\mathbb{C})^{2 g+n-1} / / S L_{r}(\mathbb{C})
\end{aligned}
$$

where

$$
\mathcal{R}_{(C, t)}^{r}=\operatorname{Spec}\left[\left(R_{(g, n-1)}^{r}\right)^{\left.\operatorname{Ad(SL_{r}(\mathbb {C}))}\right] .}\right.
$$

The following lemme is due to Simpson.
Lemma 2.3 ([21, Proposition 6.1]). - The closed points of $\mathcal{R}_{(C, t)}^{r}$ represent the Jordan equivalence classes of $S L_{r}(\mathbb{C})$-representations of $\Gamma_{C, t}$.

Let us set

$$
\mathcal{A}_{r}^{(n)}:=\left\{\boldsymbol{a}=\left(a_{j}^{(i)}\right)_{1 \leqslant j \leqslant r-1}^{1 \leqslant i \leqslant n} \in \mathbb{C}^{n r-n}\right\} .
$$

For $\boldsymbol{a}=\left(a_{j}^{(i)}\right) \in \mathcal{A}_{r}^{(n)}$, we set

$$
\chi_{i}(s):=s^{r}+a_{r-1}^{(i)} s^{r-1}+\cdots+a_{1}^{(i)} s+(-1)^{r},(i=1, \ldots, n)
$$

Moreover, we define the morphism

$$
\phi_{(C, t)}^{r}: \mathcal{R}_{(C, t)}^{r} \rightarrow \mathcal{A}_{r}^{(n)}
$$

by the relation

$$
\operatorname{det}\left(s I_{r}-\rho\left(\gamma_{i}\right)\right)=\chi_{i}(s)
$$

where $[\rho] \in \mathcal{R}_{(C, t)}^{r}$ and γ_{i} is a anticlockwise loop around the point t_{i}. The fiber of $\phi_{(C, t)}^{r}$ at $\boldsymbol{a} \in \mathcal{A}_{r}^{(n)}$ is given by the affine subscheme of $\mathcal{R}_{(C, t)}^{r}$:

$$
\begin{aligned}
\mathcal{R}_{(C, \boldsymbol{t}), \boldsymbol{a}}^{r} & :=\left(\phi_{(C, \boldsymbol{t})}^{r}\right)^{-1}(\boldsymbol{a}) \\
& =\left\{[\rho] \in \mathcal{R}_{(C, \boldsymbol{t})}^{r} \mid \operatorname{det}\left(s I_{r}-\rho\left(\gamma_{i}\right)\right)=\chi_{i}(s), 1 \leqslant i \leqslant n\right\}
\end{aligned}
$$

For $\boldsymbol{a} \in \mathcal{A}_{r}^{(n)}$, let $\mu^{i}=\left(\mu_{1}^{i}, \mu_{2}^{i}, \ldots\right)$ be the partition of r which implies the multiplicity of the solutions of the equation $\chi_{i}(s)=0$. Put $\boldsymbol{\mu}=$ $\left(\mu^{1}, \ldots, \mu^{n}\right)$, called the multiplicity of $\boldsymbol{a} \in \mathcal{A}_{r}^{(n)}$. Moreover, we define the subvariety
$\mathcal{A}_{r, \boldsymbol{\mu}}^{(n)}:=\left\{\boldsymbol{a}=\left(a_{j}^{(i)}\right)_{1 \leqslant j \leqslant r-1}^{1 \leqslant i \leqslant n} \in \mathbb{C}^{n r-n} \mid\right.$ the multiplicity of \boldsymbol{a} is $\left.\boldsymbol{\mu}\right\} \subset \mathcal{A}_{r}^{(n)}$.

Definition 2.4. - We fix a k-tuple $\boldsymbol{\mu}$ of partitions of r. Let \boldsymbol{a} be a element of $\mathcal{A}_{r, \mu}^{(n)}$. Then, we define

$$
\begin{aligned}
& \mathcal{R}_{(C, t), \boldsymbol{\mu}, \boldsymbol{a}}^{r, s}:=\left\{[\rho] \in \mathcal{R}_{(C, \boldsymbol{t})}^{r} \mid\right. \operatorname{det}\left(s I_{r}-\rho\left(\gamma_{i}\right)\right)=\chi_{i}(s), \rho\left(\gamma_{i}\right): \\
&\text { diagonalizable, } 1 \leqslant i \leqslant n\} \\
&=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g} ; M_{1}, \ldots, M_{n}\right) \in S L_{r}(\mathbb{C})^{2 g} \times \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n}\right. \\
&\left.\mid\left(A_{1}, B_{1}\right) \cdots\left(A_{g}, B_{g}\right) M_{1} \cdots M_{n}=I_{r}\right\} / / S L_{r}(\mathbb{C})
\end{aligned}
$$

where $\mathcal{C}_{i}=\left\{M \in S L_{r}(\mathbb{C}) \mid \operatorname{det}\left(s I_{r}-M\right)=\chi_{\boldsymbol{a}^{(i)}}(s), M\right.$: diagnalizable $\}$. In Section 1, we denoted by $\mathcal{R}_{g, \boldsymbol{\mu}}$ the variety instead of $\mathcal{R}_{(C, t), \boldsymbol{\mu}, \boldsymbol{a}}^{r, s}$, for simplicity. The affine subvariety $\mathcal{R}_{(\stackrel{R}{r, t), \mu, a}}^{r, s}$ is called a $S L_{r}(\mathbb{C})$-character variety of the n-punctured compact Riemann surface of genus g. In particular, we denote by $\mathcal{R}_{n, \boldsymbol{a}}^{r}$ this variety in the case where $g=0, \boldsymbol{\mu}=$ $((1, \ldots, 1), \ldots,(1, \ldots, 1))$.

If we take a generic $\boldsymbol{a} \in \mathcal{A}_{r, \boldsymbol{\mu}}^{(n)}$, the affine algebraic variety $\mathcal{R}_{(C, \boldsymbol{t}), \boldsymbol{\mu}, \boldsymbol{a}}^{r, s}$ is a non-singular irreducible variety of dimension

$$
d_{g, \mu}:=r^{2}(2 g-2+n)-\sum_{i, j}\left(\mu_{j}^{i}\right)^{2}+2-2 g
$$

and has a holomorphic symplectic structure, if nonempty. (See [4],[6]). In particular, for $g=0, \boldsymbol{\mu}=((1, \ldots, 1), \ldots,(1, \ldots, 1))$, the dimension of $\mathcal{R}_{n, \boldsymbol{a}}^{r}$ is

$$
d_{0,((1,1), \ldots,(1,1))}=2 n-6 .
$$

3. Invariant ring

We recall the explicit description of the invariant ring $\left.\left(R_{(g, n-1)}^{r}\right)\right)^{A d\left(S L_{r}(\mathbb{C})\right)}$ for the two cases $g=0, r=2, n=4$ and $g=0, r=3, n=3$. The following proposition follows from the fundamental theorem for matrix invariants. (See [2] or [17]).

Proposition 3.1.

$$
\left(R_{(0, n-1)}^{r}\right)^{A d\left(S L_{r}(\mathbb{C})\right)}=\mathbb{C}\left[\operatorname{Tr}\left(M_{i_{1}} M_{i_{2}} \cdots M_{i_{k}}\right) \mid 1 \leqslant i_{1}, \ldots, i_{k} \leqslant n-1\right] .
$$

In particular, for $r=2$, the elements $\operatorname{Tr}\left(M_{i_{1}} M_{i_{2}} \cdots M_{i_{k}}\right)$ of degree $k \leqslant 3$ generate the invariant ring, that is,

$$
\begin{aligned}
& \left(R_{(0, n-1)}^{2}\right)^{\operatorname{Ad}\left(S L_{2}(\mathbb{C})\right)} \\
& \quad=\mathbb{C}\left[\operatorname{Tr}\left(M_{i}\right), \operatorname{Tr}\left(M_{i} M_{j}\right), \operatorname{Tr}\left(M_{i} M_{j} M_{k}\right) \mid 1 \leqslant i, j, k \leqslant n-1\right]
\end{aligned}
$$

First, we consider the case where $g=0, r=2, n=4$. Let (i, j, k) be a cyclic permutation of $(1,2,3)$. Then, the invariant ring $\left(R_{(0,3)}^{2}\right)^{\operatorname{Ad}\left(S L_{2}(\mathrm{C})\right)}$ is generated by

$$
\begin{align*}
x_{i} & :=\operatorname{Tr}\left(M_{k} M_{j}\right)(i=1,2,3), \\
a_{i} & :=\operatorname{Tr}\left(M_{i}\right)(i=1,2,3), \tag{3.1}\\
a_{4} & :=\operatorname{Tr}\left(M_{3} M_{2} M_{1}\right) .
\end{align*}
$$

The following proposition is due to Frike-Klein, Jimbo, and Iwasaki, ([3], [10], [9]).

Proposition 3.2. - The invariant ring $\left(R_{(0,3)}^{2}\right)^{\operatorname{Ad}\left(S L_{2}(\mathrm{C})\right)}$) is generated by seven elements $x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}, a_{4}$ and there exists a relation
$f_{\boldsymbol{a}}(x):=x_{1} x_{2} x_{3}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-\theta_{1}(\boldsymbol{a}) x_{1}-\theta_{2}(\boldsymbol{a}) x_{2}-\theta_{3}(\boldsymbol{a}) x_{3}+\theta_{4}(\boldsymbol{a})=0$ where

$$
\begin{aligned}
& \theta_{i}(\boldsymbol{a})=a_{i} a_{4}+a_{j} a_{k} \quad(i, j, k) \\
& \theta_{4}(\boldsymbol{a})=a_{1} a_{2} a_{3} a_{4}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}-4
\end{aligned}
$$

Therefore, we have an isomorphism

$$
\left(R_{(0,3)}^{2}\right)^{\left.A d\left(S L_{2}(\mathbb{C})\right)\right)} \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}, a_{4}\right] /\left(f_{\boldsymbol{a}}(x)\right)
$$

We have the surjective morphism

$$
\begin{aligned}
&\left.\phi_{\left(\mathbb{P}^{1}, 0,1, t, \infty\right)}^{2}: \mathcal{R}_{\left(\mathbb{P}^{1}, 0,1, t, \infty\right)}^{2}=\operatorname{Spec}\left[\left(R_{(0,3)}^{2}\right)\right)^{\left.A d\left(S L_{2}(\mathbb{C})\right)\right)}\right] \\
& \rightarrow \mathcal{A}_{2}^{(4)}=\operatorname{Spec}\left[\mathbb{C}\left[a_{1}, a_{2}, a_{3}, a_{4}\right]\right]
\end{aligned}
$$

where t is a point of \mathbb{P}^{1} such that $t \neq 0,1, \infty$. The fiber at $\boldsymbol{a} \in \mathcal{A}_{2}^{(4)}$, such that the type of the multiplicities of eigenvalues is $((1,1),(1,1),(1,1),(1,1))$, is an affine cubic hypersurface in \mathbb{C}^{3}. Hence, the $S L_{2}(\mathbb{C})$-character variety of the 4 -punctured projective line is an affine cubic hypersurface

$$
\mathcal{R}_{4, \boldsymbol{a}} \cong\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3} \mid f_{\boldsymbol{a}}(x)=0\right\}
$$

The affine cubic hypersurface is called a Fricke-Klein cubic surface.
We consider the natural compactification $\mathbb{C}^{3} \hookrightarrow \mathbb{P}^{3}$ as follows. Set $x_{1}=$ $X / W, x_{2}=Y / W, x_{3}=Z / W$. Then, we obtain the following homogeneous polynomial

$$
\begin{aligned}
X Y Z+X^{2} W+Y^{2} W+Z^{2} W & -\theta_{1}(a) X W^{2} \\
& \quad-\theta_{2}(a) Y W^{2}-\theta_{3}(a) Z W^{2}+\theta_{4}(a) W^{3}=0
\end{aligned}
$$

Substitute $W=0$ to this equation. Then, we obtain the equation $X Y Z=0$. Hence, the boundary divisor of the natural compactification of $\mathcal{R}_{4, a}$ consists

Figure 3.1.
of three lines. The boundary complex is shown in Figure 3.1. The boundary complex is a simplicial decomposition of S^{1}.

Next, we consider the case where $g=0, r=3, n=3$. We describe generators and defining relations for the invariant ring $\left(R_{(0,2)}^{3}\right)^{\operatorname{Ad}\left(S L_{3}(\mathbb{C})\right)}$. The following proposition is due to Lawton [12].

Proposition 3.3. - The invariant ring $\left(R_{(0,2)}^{3}\right)^{\operatorname{Ad(SL}(\mathbb{C}))}$ is generated by

$$
\begin{array}{ll}
a_{1}:=\operatorname{Tr}\left(M_{1}\right) & a_{2}:=\operatorname{Tr}\left(M_{1}^{-1}\right) \\
b_{1}:=\operatorname{Tr}\left(M_{2}\right) & b_{2}:=\operatorname{Tr}\left(M_{2}^{-1}\right) \\
c_{1}:=\operatorname{Tr}\left(M_{1}^{-1} M_{2}^{-1}\right)=\operatorname{Tr}\left(M_{3}\right) & c_{2}:=\operatorname{Tr}\left(M_{1} M_{2}\right)=\operatorname{Tr}\left(M_{3}^{-1}\right) \\
x_{1}:=\operatorname{Tr}\left(M_{1} M_{2}^{-1}\right) & x_{2}:=\operatorname{Tr}\left(M_{1}^{-1} M_{2}\right) \\
x_{3}:=\operatorname{Tr}\left(M_{1} M_{2} M_{1}^{-1} M_{2}^{-1}\right), &
\end{array}
$$

and there exists a relation

$$
x_{3}^{2}-f x_{3}+g=0
$$

where f, g are polynomials of x_{1}, x_{2} over $\mathbb{C}\left[a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right]$, more precisely,

$$
\begin{aligned}
& f=x_{1} x_{2}-a_{2} b_{1} x_{1}-a_{1} b_{2} x_{2}+\left(\text { constant terms in } x_{1}, x_{2}\right) \\
& g=x_{1}^{3}+x_{2}^{3}+\left(\text { terms that order is at most } 2 \text { in } x_{1}, x_{2}\right) .
\end{aligned}
$$

We consider the subring $A_{3}^{(3)}=\mathbb{C}\left[a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right]$ of $\left(R_{(0,2)}^{3}\right)^{\operatorname{Ad}\left(S L_{3}(\mathbb{C})\right)}$. We have a natural morphism

$$
\phi_{\left(\mathbb{P}^{1}, 0,1, \infty\right)}^{3}: \mathcal{R}_{\left(\mathbb{P}^{1}, 0,1, \infty\right)}^{3}=\operatorname{Spec}\left[\left(R_{(0,2)}^{3}\right)^{\left.\operatorname{Ad(SLL_{3}(\mathbb {C}))}\right] \rightarrow \mathcal{A}_{3}^{(3)}=\operatorname{Spec}\left[A_{3}^{(3)}\right] . . . ~ . ~}\right.
$$

The fiber at $\boldsymbol{a} \in \mathcal{A}_{3}^{(3)}$, such that the type of the multiplicities of eigenvalues is $((1,1,1),(1,1,1),(1,1,1))$, is an affine cubic hypersurface in \mathbb{C}^{3}. Hence,

Figure 3.2.
the $S L_{3}(\mathbb{C})$-character variety of the 3 -punctured projective line is an affine cubic hypersurface

$$
\mathcal{R}_{3, \boldsymbol{a}}^{3} \cong\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3} \mid x_{3}^{2}-f x_{3}+g=0\right\}
$$

We consider the compactification $\mathbb{C}^{3} \hookrightarrow \mathbb{P}^{3}$ as follows. Set $x_{1}=X / W, x_{2}=$ $Y / W, x_{3}=Z / W$. Then, we obtain the following homogeneous polynomial

$$
X^{3}+Y^{3}-X Y Z+(\text { term containing } W)=0
$$

We substitute $W=0$ to this equation. Then, we obtain the equation $X^{3}+$ $Y^{3}-X Y Z=0$. This equation defines a plane cubic curve having a node. The boundary complex is shown in Figure 3.2. The boundary complex is a simplicial decomposition of S^{1}.

4. A compactification of the character variety

We construct a compactification of the $S L_{2}(\mathbb{C})$-character variety $\mathcal{R}_{n, \boldsymbol{k}}$ (\boldsymbol{k} of the n-punctured projective line is date of coefficient of characteristic polynomials) by means of the geometric invariant theory for a compactification of the following variety

Definition 4.1. - We put

$$
\begin{align*}
\operatorname{Rep}_{n, \boldsymbol{k}} & :=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n-1} \mid M_{n-1}^{-1} \cdots M_{1}^{-1} \in \mathcal{C}_{n}\right\} \tag{4.1}\\
& =\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n-1} \mid \operatorname{Tr}\left(M_{n-1}^{-1} \cdots M_{1}^{-1}\right)=k_{n}\right\}
\end{align*}
$$

where $\mathcal{C}_{i}=\left\{M \in S L_{2}(\mathbb{C}) \mid \operatorname{Tr}(M)=k_{i}\right\}$ and $\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{C}^{n}$. The affine variety $\operatorname{Rep}_{n, \boldsymbol{k}}$ is said to the $S L_{2}(\mathbb{C})$-representation variety of the n-punctured line.

We will introduce a compactification of the representation variety due to Benjamin [13]. First, we consider a construction of a compactification of the algebraic group $S L_{2}(\mathbb{C})$. We pick an embedding $\alpha: S L_{2}(\mathbb{C}) \hookrightarrow$ $P G L_{3}(\mathbb{C})$. Such an embedding always exists: we consider the natural embedding $S L_{2}(\mathbb{C}) \rightarrow G L_{2}(\mathbb{C})$ and we take the composition of the embedding and the map $G L_{2}(\mathbb{C}) \xrightarrow{\xi} G L_{3}(\mathbb{C}) \rightarrow P G L_{3}(\mathbb{C})$ where

$$
\xi(A)=\left(\begin{array}{l|l}
A & \\
\hline & 1
\end{array}\right)
$$

and the second arrow is the canonical projection. We regard $P G L_{3}(\mathbb{C})$ as an open subvariety of $\mathbb{P}\left(M_{3}(\mathbb{C})\right)$, and define the compactification $\overline{S L_{2}(\mathbb{C})}$ of $S L_{2}(\mathbb{C})$ as the closure of $\alpha\left(S L_{2}(\mathbb{C})\right)$ in $\mathbb{P}\left(M_{3}(\mathbb{C})\right)$, that is,

$$
\overline{S L_{2}(\mathbb{C})}=\left\{\left.\left(\begin{array}{ll|l}
a & b & \\
c & d & \\
\hline & & e
\end{array}\right) \in \mathbb{P}\left(M_{3}(\mathbb{C})\right) \right\rvert\, a d-b c=e^{2}\right\} .
$$

Then, we obtain a compactification of the semisimple conjugacy class \mathcal{C}_{i}, denoted by $\overline{\mathcal{C}_{i}}$, that is,

$$
\overline{\mathcal{C}_{i}}=\left\{\left.\left(\begin{array}{ll|l}
a & b & \\
c & d & \\
\hline & & e
\end{array}\right) \in \mathbb{P}\left(M_{3}(\mathbb{C})\right) \right\rvert\, a d-b c=e^{2}, a+d=k_{i} e\right\}
$$

We can define a compactification of the representation variety.
Definition 4.2. - We put

$$
\begin{align*}
\overline{\operatorname{Rep}_{n, \boldsymbol{k}}}:=\left\{\left(M_{1}, \ldots, M_{n-1}\right) \in\right. & \overline{\mathcal{C}}_{1} \times \cdots \times \overline{\mathcal{C}}_{n-1} \mid \\
& \left.\operatorname{Tr}\left(A_{1} \cdots A_{n-1}\right)=k_{n} e_{1} \cdots e_{n-1}\right\} \tag{4.2}
\end{align*}
$$

where

$$
M_{1}=\left(\begin{array}{l|l}
A_{1} & \\
\hline & e_{1}
\end{array}\right), \ldots, M_{n-1}=\left(\begin{array}{l|l}
A_{n-1} & \\
\hline & e_{n-1}
\end{array}\right)
$$

Remark 4.3. - In general, for $X \in \overline{S L_{2}(\mathbb{C})}$, there is no inverse. Since

$$
\operatorname{Tr}\left(A_{n-1}^{-1} \cdots A_{1}^{-1}\right)=\operatorname{Tr}\left(A_{1} \cdots A_{n-1}\right)
$$

for $\forall A_{i} \in S L_{2}(\mathbb{C})$, we use the condition $\operatorname{Tr}\left(A_{1} \cdots A_{n-1}\right)=k_{n}$, instead of $\operatorname{Tr}\left(A_{n-1}^{-1} \cdots A_{1}^{-1}\right)=k_{n}$.

We have the following action of $S L_{2}(\mathbb{C})$ on $\overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$, which is compatible with the simultaneous action of $S L_{2}(\mathbb{C})$ on $\operatorname{Rep}_{n, \boldsymbol{k}}$

$$
\begin{align*}
& P \curvearrowright\left(\left(\begin{array}{l|l}
A_{1} & \\
\hline & e_{1}
\end{array}\right), \ldots,\left(\begin{array}{l|l}
A_{n-1} & \\
\hline & e_{n-1}
\end{array}\right)\right) \tag{4.3}\\
& \longmapsto\left(\left(\begin{array}{l|l}
P A_{1} P^{-1} & \\
\hline & e_{1}
\end{array}\right), \ldots,\left(\begin{array}{l}
P A_{n-1} P^{-1} \\
\hline
\end{array}\right.\right. \\
& \hline
\end{align*}
$$

We regard $\overline{\operatorname{Rep}_{n, \boldsymbol{k}}} \subset \overline{\mathcal{C}_{1}} \times \cdots \times \overline{\mathcal{C}_{n-1}}$ as the closed subset in $\mathbb{P}^{4} \times \cdots \times$ \mathbb{P}^{4}. Then, we obtain an embedding in the projective space by the Segre embedding. Let L be an ample line bundle associated with this embedding, that is,

$$
L=\bigotimes_{i=1}^{n-1} p_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{4}}(1)\right)
$$

where $p_{i}: \overline{\operatorname{Rep}_{n, \boldsymbol{k}}} \rightarrow \mathbb{P}^{4}$ is the i-th projection. Then, L admits the $S L_{2}(\mathbb{C})$ linearization with respect to the action.

For $x=\left(M_{1}, \ldots, M_{n-1}\right) \in \overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$, we put

$$
I^{n i l}:=\left\{i \in\{1, \ldots, n-1\} \mid M_{i} \text { is nilpotent i.e. } e_{i}=0\right\} .
$$

If $I^{\text {nil }}$ is not empty, we decompose

$$
\begin{equation*}
I^{n i l}=I_{1}^{n i l} \cup \cdots \cup I_{k}^{n i l} \tag{4.4}
\end{equation*}
$$

where the index set $I_{l}^{\text {nil }} \subset I^{\text {nil }}(1 \leqslant l \leqslant k)$ consists of indexes of same matrices, that is, matrices indexed by elements of $I_{l}^{\text {nil }}$ are same each other and two matrices which respectively have indexes in $I_{l}^{\text {nil }}$ and $I_{l^{\prime}}^{\text {nil }}$ where $l \neq l^{\prime}$ are not equal. Let $\sharp I_{l}^{\text {nil }}$ be the cardinality of $I_{l}^{n i l}$, and let m_{1} be a maximum value in $\sharp I_{1}^{n i l}, \ldots, \sharp I_{k}^{n i l}$. We put

$$
\begin{aligned}
& J_{l}:=\{j \in\{1, \ldots, n-1\} \mid \\
& \\
& \left.\qquad M_{j} \text { is not nilpotent, } M_{j} * M_{i}=M_{i} * M_{j}=M_{i}, i \in I_{l}^{\text {nil }}\right\} .
\end{aligned}
$$

Here, we define the product $*$ as

$$
\begin{aligned}
& M * M^{\prime}:=\left(\begin{array}{l|l}
A A^{\prime} & \\
\hline & e
\end{array}\right) \in \mathbb{P} M_{3}(\mathbb{C}) \\
& \text { for } M:=\left(\begin{array}{l|l}
A & \\
\hline & e
\end{array}\right) \text { and } M^{\prime}:=\left(\begin{array}{l|l}
A^{\prime} & \\
\hline & e^{\prime}
\end{array}\right) .
\end{aligned}
$$

Note that the product $*$ is well-defined in the case where M (resp. M^{\prime}) is nilpotent and $M^{\prime}($ resp. $M)$ is not nilpotent where $M \in \overline{\mathcal{C}}$ and $M^{\prime} \in \overline{\mathcal{C}^{\prime}}$. Let m_{2} be a maximum value in $\left\{\sharp J_{l} \mid l\right.$ is satisfied $\left.\sharp I_{l}^{\text {nil }}=m_{1}, 1 \leqslant l \leqslant k\right\}$. If $I^{\text {nil }}$ is empty, then we put $m_{1}=m_{2}=0$.

Remark 4.4. - Let $\left(M_{1}, \ldots, M_{n-1}\right) \in \overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$. Suppose that $i \in I^{\text {nil }}$. We normalize the nilpotent matrix M_{i} :

$$
M_{i}=\left(\begin{array}{cc|c}
0 & 1 & \tag{4.5}\\
0 & 0 & \\
\hline & & 0
\end{array}\right)
$$

For a matrix $M_{j}(j \neq i)$, the condition which, by this transformation, the matrix M_{j} is transformed to the following form

$$
\left(\begin{array}{cc}
a_{j} & b_{j} \\
0 & d_{i}
\end{array}\right)
$$

is equivalent to the condition $M_{j} * M_{i}=M_{i} * M_{j}=M_{i}$.
Proposition 4.5. - The point $x=\left(M_{1}, \ldots, M_{n-1}\right)$ is semi-stable (resp. stable) point if and only if x is satisfied the following condition,

$$
\begin{equation*}
n-1 \geqslant 2 m_{1}+m_{2} \quad(\text { resp. }>) \tag{4.6}
\end{equation*}
$$

Proof. - For any integer $r>0$, let λ_{r} be the 1-parameter subgroup (1-PS) of $S L_{2}(\mathbb{C})$ given by

$$
\lambda_{r}: t \longmapsto\left(\begin{array}{cc}
t^{r} & 0 \tag{4.7}\\
0 & t^{-r}
\end{array}\right), t \in \mathbb{C}^{\times}
$$

The matrix $\lambda_{r}(t)$ acts on $\overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$ as follows.

$$
\begin{aligned}
& \left(\begin{array}{cc}
t^{r} & 0 \\
0 & t^{-r}
\end{array}\right) \curvearrowright\left(\left(\begin{array}{cc|c}
a_{1} & b_{1} & \\
c_{1} & d_{1} & \\
\hline & & e_{1}
\end{array}\right), \ldots,\left(\begin{array}{ll|l}
a_{n-1} & b_{n-1} & \\
c_{n-1} & d_{n-1} & \\
\hline & & e_{n-1}
\end{array}\right)\right) \\
& \longmapsto\left(\left(\begin{array}{cc|c}
a_{1} & t^{2 r} b_{1} & \\
t^{-2 r} c_{1} & d_{1} & \\
\hline & e_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc|c}
a_{n-1} & t^{2 r} b_{n-1} & \\
t^{-2 r} c_{n-1} & d_{n-1} & \\
\hline & & e_{n-1}
\end{array}\right)\right) .
\end{aligned}
$$

We put $n^{\prime}:=5^{n-1}$. Let $\mathbb{A}^{n^{\prime}}$ be the affine cone over the projective space $\mathbb{P}^{n^{\prime}-1}$ which is the target space of the Segre embedding. We take a base change of the affine cone $\mathbb{A}^{n^{\prime}}$ via $\overline{\operatorname{Rep}} \mathrm{n}_{n, \boldsymbol{k}} \hookrightarrow \mathbb{P}^{n^{\prime}-1}$, denoted by the same notation $\mathbb{A}^{n^{\prime}}$. Let $x^{*}=\left(M_{1}^{*}, \ldots, M_{n-1}^{*}\right)$ be the closed point of $\mathbb{A}^{n^{\prime}}$ lying over $x \in \overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$, that is, $x^{*} \neq 0$ and x^{*} projects to x. The action (4.3) and the linearization L define a linear action of $S L_{2}(\mathbb{C})$ on $\mathbb{A}^{n^{\prime}}$. In particular, the matrix $\lambda_{r}(t)$ acts on $\mathbb{A}^{n^{\prime}}$ as follows. For each $i=1, \ldots, n-1$, let
$e_{1}^{(i)}, \ldots, e_{5}^{(i)}$ be a basis of \mathbb{A}^{5} such that the matrix

$$
M_{i}^{*}=\left(\begin{array}{cc|c}
a_{i} & b_{i} & \\
c_{i} & d_{i} & \\
\hline & & e_{i}
\end{array}\right)
$$

is describe by

$$
M_{i}^{*}=a_{i} e_{1}^{(i)}+b_{i} e_{2}^{(i)}+c_{i} e_{3}^{(i)}+d_{i} e_{4}^{(i)}+e_{i} e_{5}^{(i)}
$$

Let $e_{i_{1}, \ldots, i_{n-1}}$ be the base $e_{i_{1}}^{(1)} \otimes \cdots \otimes e_{i_{n-1}}^{(n-1)}$ of $\mathbb{A}^{n^{\prime}}$ where $i_{1}, \ldots, i_{n-1} \in$ $\{1, \ldots, 5\}$. Then, the action of $\lambda_{r}(t)$ on \mathbb{A}^{5} is given by

$$
\lambda_{r}(t) \cdot e_{i_{1}, \ldots, i_{n-1}}=t^{2 r\left(r_{i_{1}, \ldots, i_{n-1}}^{+}-r_{i_{1}, \ldots, i_{n-1}}^{-}\right)} e_{i_{1}, \ldots, i_{n-1}}
$$

where $i_{1}, \ldots, i_{n-1} \in\{1, \ldots, 5\}$ and $r_{i_{1}, \ldots, i_{n-1}}^{+}$(resp. $r_{i_{1}, \ldots, i_{n-1}}^{-}$) is the number of 2 (resp. 3) in the index set $\left\{i_{1}, \ldots, i_{n-1}\right\}$. For $x^{*} \in \mathbb{A}^{n^{\prime}}$ lying over $x \in \overline{\operatorname{Rep}_{n, \boldsymbol{k}}}$, we write $x^{*}=\sum x_{i_{1}, \ldots, i_{n-1}}^{*} e_{i_{1}, \ldots, i_{n-1}}$, so that

$$
\lambda_{r}(t) \cdot x^{*}=\sum t^{2 r r_{i_{1}, \ldots, i_{n-1}}} x_{i_{1}, \ldots, i_{n-1}}^{*} e_{i_{1}, \ldots, i_{n-1}}
$$

where $r_{i_{1}, \ldots, i_{n-1}}=r_{i_{1}, \ldots, i_{n-1}}^{+}-r_{i_{1}, \ldots, i_{n-1}}^{-}$, and we put

$$
\begin{aligned}
\mu^{L}\left(x, \lambda_{r}\right): & =\max \left\{-r_{i_{1}, \ldots, i_{n-1}} \mid i_{1}, \ldots, i_{n-1} \text { such that } x_{i_{1}, \ldots, i_{n-1}}^{*} \neq 0\right\} \\
= & \sharp\left\{i \mid M_{i}=\right. \\
& \left.\left(\begin{array}{cc}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right), c_{i} \neq 0\right\} \\
& -\sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right., e_{i}=0\right\} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{ll}
a_{i} & b_{i} \\
c_{i} & d_{i}
\end{array}\right)\right., c_{i} \neq 0\right\} \\
=(n-1)-\sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right., e_{i}=0\right\} \\
-\sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
0 & d_{i}
\end{array}\right)\right., e_{i} \neq 0\right\} .
\end{aligned}
$$

Then, we have

$$
\begin{align*}
& \mu^{L}\left(x, \lambda_{r}\right) \\
& \quad=(n-1)-2 \sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right., e_{i}=0\right\} \tag{4.9}\\
& -\sharp\left\{i \left\lvert\, M_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
0 & d_{i}
\end{array}\right)\right., e_{i} \neq 0\right\} .
\end{align*}
$$

By the Hilbert-Mumford criterion (see [14, Theorem 2.1] or [15, Proposition 4.11]), the point x is stable (resp. semi-stable) for this action if and only if $\mu^{L}\left(g \cdot x, \lambda_{r}\right)>0($ resp. $\geqslant 0)$ for every $g \in S L_{2}(\mathbb{C})$ and every 1-PS λ_{r} of the form (4.7). If the point x satisfies the condition $2 m_{1}<\sharp I^{\text {nil }}$, then we have $\mu^{L}\left(g \cdot x, \lambda_{r}\right)>0$ for any $g \in S L_{2}(\mathbb{C})$. On the other hand, we consider the case where the point x satisfies the condition $2 m_{1} \geqslant \sharp I^{\text {nil }}$. There are at most two components of the decomposition (4.4) of $I^{\text {nil }}$ such that the cardinalities are m_{1}. We denote by $I_{\text {max }}^{\text {nil }}$ the union of the components. If the index set $I^{\text {nil }} \backslash I_{\text {max }}^{\text {nil }}$ is nonempty, then we have $\mu^{L}\left(g \cdot x, \lambda_{r}\right)>0$ for $g \in S L_{2}(\mathbb{C})$ such that $g M_{i} g^{-1}$ is the matrix (4.5) where $i \in I^{\text {nil }} \backslash I_{\text {max }}^{n i l}$. For $g \in S L_{2}(\mathbb{C})$ such that $g M_{i} g^{-1}$ is the matrix (4.5) where $i \in I_{\text {max }}^{\text {nil }}$, we have

$$
\begin{equation*}
\mu^{L}\left(g \cdot x, \lambda_{r}\right) \geqslant(n-1)-\left(2 m_{1}+m_{2}\right) . \tag{4.10}
\end{equation*}
$$

If the index $i \in I_{\text {max }}^{\text {nil }}$ of the normalized matrix is a element of $I_{l}^{\text {nil }}$ such that $\sharp I_{l}^{n i l}=m_{1}$ and $\sharp J_{l}=m_{2}$, then the equality of (4.10) holds. For the other matrix $g \in S L_{2}(\mathbb{C})$, we have $\mu^{L}\left(g \cdot x, \lambda_{r}\right)>0$. We have thus proved the proposition.

We obtain a compactification of the character variety $\mathcal{R}_{n, \boldsymbol{k}}$.
Definition 4.6. -

$$
\overline{\mathcal{R}_{n, \boldsymbol{k}}}:=\operatorname{Proj} H^{0}\left(\overline{\operatorname{Rep}_{n, \boldsymbol{k}}}, L^{\otimes r}\right)^{A d\left(S L_{2}(\mathbb{C})\right)} .
$$

The variety $\overline{\mathcal{R}_{n, \boldsymbol{k}}}$ is a projective algebraic variety. This variety may have singular points on the boundary. Then, we should take a resolution of singular points of $\overline{\mathcal{R}_{n, \boldsymbol{k}}}$. In general, it is not easy to give a systematic resolution of singularities for any n. On the following sections, we treat the cases for $n=4,5$. We will show that $\overline{\mathcal{R}_{n, \boldsymbol{k}}}$ is non-singular and the boundary divisor is a triangle of \mathbb{P}^{1}. On Section 6 , we will treat the case for $n=5$.

$$
\text { 5. } n=4
$$

Let

$$
\left(\left(\begin{array}{cc|c}
a_{1} & b_{1} & \tag{5.1}\\
c_{1} & d_{1} & \\
\hline & & e_{1}
\end{array}\right),\left(\begin{array}{cc|c}
a_{2} & b_{2} & \\
c_{2} & d_{2} & \\
\hline & & e_{2}
\end{array}\right),\left(\begin{array}{cc|c}
a_{3} & b_{3} & \\
c_{3} & d_{3} & \\
\hline & & e_{3}
\end{array}\right)\right) \in \overline{\operatorname{Rep}_{4, \boldsymbol{k}}}
$$

The compactification $\overline{\operatorname{Rep}_{4, \boldsymbol{k}}}$ is defined by the following equations in $\mathbb{P}^{4} \times$ $\mathbb{P}^{4} \times \mathbb{P}^{4}$

$$
\begin{equation*}
a_{i}+d_{i}=k_{i} e_{i}, \quad(i=1,2,3), \tag{5.2}
\end{equation*}
$$

$$
\begin{gather*}
a_{i} d_{i}-b_{i} c_{i}=e_{i}^{2},(i=1,2,3), \tag{5.3}\\
\operatorname{Tr}\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right)\right)=k_{4} e_{1} e_{2} e_{3} . \tag{5.4}
\end{gather*}
$$

We analyze the stability. If $e_{i}=0$ and $e_{j} e_{k} \neq 0(j, k \in\{1,2,3\} \backslash\{i\})$, then x is an unstable point if and only if x is a point of the orbit of $\left(M_{1}, M_{2}, M_{3}\right)$ where

$$
M_{i}=\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right), M_{j}=\left(\begin{array}{cc|c}
a_{j} & b_{j} & \\
0 & d_{j} & \\
\hline & & e_{j}
\end{array}\right), M_{k}=\left(\begin{array}{cc|c}
a_{k} & b_{k} & \\
0 & d_{k} & \\
\hline & & e_{k}
\end{array}\right)
$$

If $e_{i}=0, e_{j}=0$, then x is an unstable point if and only if x is a point of the orbit of $\left(M_{1}, M_{2}, M_{3}\right)$ where two matrices in M_{1}, M_{2}, M_{3} are

$$
\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right) .
$$

Lemma 5.1. - The point $x \in \overline{\operatorname{Rep}_{4, \boldsymbol{k}}}$ is stable if and only if x is semistable.

Proof. - The point $x=\left(M_{1}, M_{2}, M_{3}\right)$ is not stable if only x is normalized as follows.

$$
\begin{gathered}
M_{i}=\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right), M_{j}=\left(\begin{array}{ll|l}
a_{j} & b_{j} & \\
c_{j} & d_{j} & \\
\hline & & e_{j}
\end{array}\right), \text { where } c_{j} \neq 0 \\
M_{k}=\left(\begin{array}{cc|c}
a_{k} & b_{k} & \\
0 & d_{k} & \\
\hline & & e_{k}
\end{array}\right)
\end{gathered}
$$

or

$$
M_{i}=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right), M_{j}=\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right), M_{k}=\left(\begin{array}{cc|c}
a_{k} & b_{k} & \\
0 & d_{k} & \\
\hline & & e_{k}
\end{array}\right)
$$

However, the matrices are not satisfied the equation (5.4). Then, there are no strictly semistable points.

The following theorem shows that our compactification $\overline{\mathcal{R}_{4, \boldsymbol{k}}}$ of $\mathcal{R}_{4, \boldsymbol{k}}$ has the same configuration of the boundary divisor as the natural compactification of the Fricke-Klein cubic surface.

Theorem 5.2. - The boundary divisor of the compactification $\overline{\mathcal{R}_{4, k}}$ is a triangle of three projective lines.

Proof. - We describe the boundary divisor explicitly. Let E_{i} be the image of the divisor $\left[e_{i}=0\right.$] on $\overline{\operatorname{Rep}_{4, \boldsymbol{k}}}$ by the quotient $\overline{\operatorname{Rep}_{4, \boldsymbol{k}}} \rightarrow \overline{\mathcal{R}_{4, \boldsymbol{k}}}$ $(i=1,2,3)$. First, we describe $\left[e_{1}=0\right]$. We normalize M_{1} by the $S L_{2}(\mathbb{C})$ conjugate action as the matrix (4.5). The stabilizer subgroup of the matrix is $\left\{\left(\begin{array}{cc}a & b \\ 0 & 1 / a\end{array}\right)\right\}$.

By the stability, we obtain $c_{2} \neq 0$ and $c_{3} \neq 0$. Since $c_{2} \neq 0$, the matrices of the component $\left[e_{1}=0\right.$] are normalized by the action of this stabilizer subgroup:

$$
\left(\left(\begin{array}{cc|c}
0 & 1 & \tag{5.5}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
0 & -e_{2}^{2} & \\
c_{2}^{2} & k_{2} c_{2} e_{2} & \\
\hline & & c_{2} e_{2}
\end{array}\right),\left(\begin{array}{cc|c}
a_{3} & b_{3} & \\
c_{3} & d_{3} & \\
\hline & & e_{3}
\end{array}\right)\right)
$$

The stabilizer subgroup of the normalized matrices is the torus group $\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right\}$.

Before we consider the quotient by the torus group, we consider the normalized matrices (5.5). The normalized matrices are defined by the following equations

$$
\left\{\begin{array}{l}
a_{3}+d_{3}=k_{3} e_{3} \tag{5.6}\\
a_{3} d_{3}-b_{3} c_{3}=e_{3}^{2} \\
c_{2} a_{3}+k_{2} e_{2} c_{3}=0
\end{array}\right.
$$

in the Zariski open set $c_{2} c_{3} \neq 0$ of $\mathbb{P}^{1} \times \mathbb{P}^{4}$. By the equations $a_{3}+d_{3}=k_{3} e_{3}$ and $a_{3} d_{3}-b_{3} c_{3}=e_{3}^{2}$, we obtain the equation

$$
\left(-a_{3}^{2}+k_{3} a_{3} e_{3}-e_{3}^{2}\right)-b_{3} c_{3}=0
$$

Note that the equation define a hypersurface of degree 2 in \mathbb{P}^{3}, which is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We put the coordinate $\left(\left[S_{3}: T_{3}\right],\left[U_{3}: V_{3}\right]\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that

$$
\begin{aligned}
\left(S_{3} U_{3}\right)\left(T_{3} V_{3}\right) & =-a_{3}^{2}+k_{3} a_{3} e_{3}-e_{3}^{2}=-\left(a_{3}-\alpha_{3}^{+} e_{3}\right)\left(a_{3}-\alpha_{3}^{-} e_{3}\right) \\
S_{3} V_{3} & =b_{3} \\
T_{3} U_{3} & =c_{3}
\end{aligned}
$$

where $\alpha_{i}^{+}, \alpha_{i}^{-}$are eigenvalues of a matrix of the semisimple conjugacy class \mathcal{C}_{i}. Then, we obtain the following transformation from $\mathbb{P}^{1} \times \mathbb{P}^{1}$ to the hypersurface of degree 2 on \mathbb{P}^{3} :

$$
\begin{array}{ll}
a_{3}=\frac{\alpha_{3}^{-} S_{3} U_{3}+\alpha_{3}^{+} T_{3} V_{3}}{\alpha_{3}^{+}-\alpha_{3}^{-}}, & b_{3}=S_{3} V_{3}, \\
c_{3}=T_{3} U_{3}, & d_{3}=\frac{\alpha_{3}^{+} S_{3} U_{3}+\alpha_{3}^{-} T_{3} V_{3}}{\alpha_{3}^{+}-\alpha_{3}^{-}}, \tag{5.7}\\
e_{3}=\frac{S_{3} U_{3}+T_{3} V_{3}}{\alpha_{3}^{+}-\alpha_{3}^{-}} &
\end{array}
$$

Therefore, the normalized matrices are defined by

$$
\begin{equation*}
c_{2}\left(\alpha_{3}^{-} S_{3} U_{3}+\alpha_{3}^{+} T_{3} V_{3}\right)+k_{2}\left(\alpha_{3}^{+}-\alpha_{3}^{-}\right) e_{2}\left(T_{3} U_{3}\right)=0 \tag{5.8}
\end{equation*}
$$

in the Zariski open set $c_{2} T_{3} U_{3} \neq 0$ of $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$.
We consider the quotient by the torus group. The torus action on $\mathbb{P}^{1} \times$ $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ is

$$
\begin{aligned}
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) & \curvearrowright\left(\left[c_{2}: e_{2}\right],\left[S_{3}: T_{3}\right],\left[U_{3}: V_{3}\right]\right) \\
& \longmapsto\left(\left[a^{-1} c_{2}: a e_{2}\right],\left[a S_{3}: a^{-1} T_{3}\right],\left[a^{-1} U_{3}: a V_{3}\right]\right)
\end{aligned}
$$

We consider the $S L_{2}(\mathbb{C})$-linearization $L=\bigotimes_{i=1}^{3} p_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{4}}(1)\right)$ on $\overline{\operatorname{Rep}_{4, \boldsymbol{k}}}$. We take a pull-back of L via the embedding

$$
\begin{equation*}
p_{e_{1}}: \mathbb{P}^{1} \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \hookrightarrow \overline{\operatorname{Rep}_{4, k}} \tag{5.9}
\end{equation*}
$$

defined by the matrices (5.5) and the transform (5.7). Let $L_{e_{1}}$ be the pullback of L on $\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. We obtain the T-linearization on $L_{e_{1}}$ induced by the $S L_{2}(\mathbb{C})$-linearization L on $\overline{\operatorname{Rep}_{4, \boldsymbol{k}}}$. We consider the dual action on $H^{0}\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right), L_{e_{1}}\right)$. We have the following basis of the subspace consisting of invariant sections:

$$
\begin{align*}
& s_{1}=b_{1} \otimes c_{2}^{2} \otimes S_{3} U_{3}, \quad s_{2}=b_{1} \otimes c_{2}^{2} \otimes T_{3} V_{3}, \\
& s_{3}=b_{1} \otimes c_{2} e_{2} \otimes T_{3} U_{3} \tag{5.10}
\end{align*}
$$

where $b_{1} \in H^{0}\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right),\left(p_{e_{1}} \circ p_{1}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{4}}(1)\right)\right)$ corresponding to the (1,2)-entry of the matrix M_{1}. The sections have the relation

$$
\alpha_{3}^{-} s_{1}+\alpha_{3}^{+} s_{2}+k_{2}\left(\alpha_{3}^{+}-\alpha_{3}^{-}\right) s_{3}=0
$$

by the equation (5.8). Therefore, we obtain $E_{1} \cong \mathbb{P}^{1}$. In the same way, we also obtain $E_{i} \cong \mathbb{P}^{1}(i=2,3)$.

We show that E_{1} and E_{2} intersect at one point. We substitute $e_{2}=0$ for (5.6). Then, we have the following equations

$$
\left\{\begin{array}{l}
a_{3}+d_{3}=k_{3} e_{3} \\
a_{3} d_{3}-b_{3} c_{3}=e_{3}^{2} \\
a_{3}=0
\end{array}\right.
$$

The locus defined by the equations above is a quadric curve in \mathbb{P}^{2}, which is isomorphic to \mathbb{P}^{1}. There are two unstable points in the locus, $\left[b_{3}: c_{3}: e_{3}\right]=$ $[0: 1: 0]$ and $\left[b_{3}: c_{3}: e_{3}\right]=[1: 0: 0]$. The intersection is the quotient of \mathbb{P}^{1} minus the two points by the torus action. Then, the intersection is a point. In the same way, the intersection of E_{2} and $E_{3}\left(\right.$ resp. E_{3} and $\left.E_{1}\right)$ is a point.

$$
\text { 6. } n=5
$$

Let

$$
\left.\begin{array}{rl}
\left(\left(\begin{array}{ll|l}
a_{1} & b_{1} & \\
c_{1} & d_{1} & \\
\hline & & e_{1}
\end{array}\right),\right. & \left(\begin{array}{ll|l}
a_{2} & b_{2} & \\
c_{2} & d_{2} & \\
\hline & & e_{2}
\end{array}\right) \\
& \left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right. \\
\hline & \\
\hline
\end{array}\right),\left(\left.\begin{array}{ll}
a_{4} & b_{4} \\
c_{4} & d_{4}
\end{array} \right\rvert\,\right.
$$

The compactification $\overline{\operatorname{Rep}_{5, k}}$ is defined by the following equations in $\left(\mathbb{P}^{4}\right)^{4}$

$$
\begin{gather*}
a_{i}+d_{i}=k_{i} e_{i},(i=1,2,3,4), \tag{6.1}\\
a_{i} d_{i}-b_{i} c_{i}=e_{i}^{2},(i=1,2,3,4), \tag{6.2}\\
\operatorname{Tr}\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right)\left(\begin{array}{ll}
a_{4} & b_{4} \\
c_{4} & d_{4}
\end{array}\right)\right)=k_{5} e_{1} e_{2} e_{3} e_{4} . \tag{6.3}
\end{gather*}
$$

We consider the stability condition.
Lemma 6.1. - The closures of orbits of properly semistable points contain the point

$$
s_{1}=\left(\left(\begin{array}{cc|c}
0 & 1 & \tag{6.4}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right)\right)
$$

or

$$
s_{2}=\left(\left(\begin{array}{ll|l}
0 & 1 & \tag{6.5}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right)\right)
$$

Expect for the points of the orbits of s_{1} and s_{2}, the stabilizer groups of every points are finite. Each stabilizer group of the orbits of s_{1} and s_{2} is conjugate to the torus group $T=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right\}$.

Proof. - Let $x=\left(M_{1}, \ldots, M_{4}\right)$ be a property semistable point. By Proposition 4.5, we have $2 m_{1}+m_{2}=4$. First, we consider the case where $m_{1}=1, m_{2}=2$. We put

$$
\begin{array}{ll}
M_{i_{1}}=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right), \quad M_{i_{2}}=\left(\begin{array}{cc|c}
* & * & \\
0 & * & \\
\hline & *
\end{array}\right), \tag{6.6}\\
M_{i_{3}}=\left(\begin{array}{ll|l}
* & * & \\
0 & * & \\
\hline & *
\end{array}\right), \quad M_{i_{4}}=\left(\begin{array}{cc|c}
* & * & \\
\hline c_{i_{4}} & * & \\
\hline & & *
\end{array}\right)
\end{array}
$$

where $\left\{i_{1}, \ldots, i_{4}\right\}=\{1, \ldots, 4\}$ and $c_{i_{4}} \neq 0$. However, by the condition $c_{i_{4}} \neq 0$, the matrices do not satisfy the equation (6.3).

Second, we consider the case where $m_{1}=2, m_{2}=0$. We put

$$
\begin{array}{ll}
M_{i_{1}}=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right), \quad M_{i_{2}}=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right), \tag{6.7}\\
M_{i_{3}}=\left(\begin{array}{cc|c}
* & * & \\
c_{i_{3}} & * & \\
\hline & & *
\end{array}\right), \quad M_{i_{4}}=\left(\begin{array}{cc|c}
* & * & \\
c_{i_{4}} & * & \\
\hline & & *
\end{array}\right)
\end{array}
$$

where $\left\{i_{1}, \ldots, i_{4}\right\}=\{1, \ldots, 4\}, c_{i_{3}} \neq 0$, and $c_{i_{3}} \neq 0$. If $\left(i_{1}, i_{2}\right)=(1,3)$ or $(2,4)$, then the matrices do not satisfy the equation (6.3). Therefore, we consider the case where $\left(i_{1}, i_{2}\right)=(1,2),(2,3)$, or $(3,4)$. The 1-parameter subgroup (4.7) acts on the matrices (6.7). For the matrices $M_{i_{1}}$ and $M_{i_{2}}$, the action is trivial. The actions of the 1-parameter subgroup $\lambda_{r}(t)$ on $M_{i_{3}}$
and $M_{i_{4}}$ are
(6.8)

$$
\left.\left.\begin{array}{rlrl}
\lambda_{r}(t) \cdot M_{i_{3}} & =\left(\begin{array}{cc|c}
* & t^{2 r} * & \\
t^{-2 r} c_{i_{3}} & * & \\
\hline & & *
\end{array}\right) \quad \lambda_{r}(t) \cdot M_{i_{4}} & =\left(\begin{array}{cc|c}
* & t^{2 r} * & \\
t^{-2 r} c_{i_{4}} & * & \\
\hline & & *
\end{array}\right) \\
& =\left(\begin{array}{cc}
t^{2 r} * & t^{4 r} * \\
c_{i_{3}} & t^{2 r} *
\end{array}\right. & \\
\hline & & t^{2 r_{*}}
\end{array}\right), \quad \begin{array}{ccc}
t^{2 r} * & t^{4 r_{*}} & \\
c_{i_{4}} & t^{2 r} * & \\
\hline & & t^{2 r_{*}}
\end{array}\right) .
$$

Then, the limit $\lim _{t \rightarrow 0} \lambda_{r} \cdot M$ is the matrices (6.4) or (6.5).
Since the orbits of the points s_{1} and s_{2} are closed, the orbits have the maximum dimension of the stabilizer group, which is one dimension.

We consider a resolution of properly semistable points. We take the blowing up along the orbits of s_{1} and s_{2} :

$$
\begin{equation*}
\widetilde{\widetilde{\operatorname{Rep}_{5, \boldsymbol{k}}}} \longrightarrow \overline{\operatorname{Rep}_{5, \boldsymbol{k}}} \tag{6.9}
\end{equation*}
$$

The simultaneous action of $S L_{2}(\mathbb{C})$ on $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$ induces an action on $\widetilde{\operatorname{Rep}_{5, \boldsymbol{k}}}$. By taking the blowing up (6.9), the condition for stability and unstability is unchanging. On the other hand, the points of the exceptional divisors are stable points. The points of orbits which are not closed are unstable points. Hence, there is no properly semistable point in $\widetilde{\text { Rep }_{5, \boldsymbol{k}}}$. (See [11, Section $6]$). We will show that the quotient of the blowing up is non-singular. First, we describe the blowing up of $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$ along the orbit of s_{1}. Let U_{1} and U_{2} be the Zariski open sets $U_{1}=\left[b_{1} \neq 0, b_{2} \neq 0, c_{3} \neq 0, c_{4} \neq 0\right]$ and $U_{2}=\left[c_{1} \neq 0, c_{2} \neq 0, b_{3} \neq 0, b_{4} \neq 0\right]$ of $\overline{\operatorname{Rep}_{5, k}} \subset \overline{\mathcal{C}}_{1} \times \cdots \times \overline{\mathcal{C}}_{4}$. Note that the orbit of s_{1} is contained in $U_{1} \cup U_{2}$. Since $\overline{\mathcal{C}}_{i} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ for $i=1, \ldots, 4$ by the transformation (5.7), we have

$$
\begin{equation*}
U_{i} \subset \overline{\operatorname{Rep}_{5, k}} \subset\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{4} \text { for } i=1,2 \tag{6.10}
\end{equation*}
$$

In the open sets U_{1} and U_{2}, we put the following affine coordinates

$$
\left(\left[1: x_{1}\right],\left[y_{1}: 1\right]\right),\left(\left[1: x_{2}\right],\left[y_{2}: 1\right]\right),\left(\left[x_{3}: 1\right],\left[1: y_{3}\right]\right),\left(\left[x_{4}: 1\right],\left[1: y_{4}\right]\right)
$$

and

$$
\left(\left[z_{1}: 1\right],\left[1: w_{1}\right]\right),\left(\left[z_{2}: 1\right],\left[1: w_{2}\right]\right),\left(\left[1: z_{3}\right],\left[w_{3}: 1\right]\right),\left(\left[1: z_{4}\right],\left[w_{4}: 1\right]\right)
$$

respectively. In the open set U_{1}, the ideal of the orbit of s_{1} is $\left(X_{1}, X_{2}, X_{3}\right.$, X_{4}, X_{5}) where

$$
\begin{array}{ll}
X_{0}:=e_{1}=\frac{y_{1}+x_{1}}{\alpha_{1}^{+}-\alpha_{1}^{-}}, & X_{1}:=e_{2}=\frac{y_{2}+x_{2}}{\alpha_{2}^{+}-\alpha_{2}^{-}}, \\
X_{2}:=e_{3}=\frac{y_{3}+x_{3}}{\alpha_{3}^{+}-\alpha_{3}^{-}}, & X_{3}:=e_{4}=\frac{y_{4}+x_{4}}{\alpha_{4}^{+}-\alpha_{4}^{-}}, \\
X_{4}:=x_{1}-x_{2}, & X_{5}:=x_{3}-x_{4} .
\end{array}
$$

We can extend the torus action on $\overline{\operatorname{Rep}_{5, k}}$ to the torus action on $\widetilde{\operatorname{Rep}_{5, k}}$ by

$$
\begin{aligned}
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) & \curvearrowright\left[X_{0}: X_{1}: X_{2}: X_{3}: X_{4}: X_{5}\right] \\
& \longmapsto\left[a^{-2} X_{0}: a^{-2} X_{1}: a^{2} X_{2}: a^{2} X_{3}: a^{-2} X_{4}: a^{2} X_{5}\right]
\end{aligned}
$$

On the other hand, in the open set U_{2}, the ideal of the orbit of s_{1} is $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}\right)$ where

$$
\begin{array}{ll}
Y_{0}:=e_{1}=\frac{z_{1}+w_{1}}{\alpha_{1}^{+}-\alpha_{1}^{-}}, & Y_{1}:=e_{2}=\frac{z_{2}+w_{2}}{\alpha_{2}^{+}-\alpha_{2}^{-}} \\
Y_{2}:=e_{3}=\frac{z_{3}+w_{3}}{\alpha_{3}^{+}-\alpha_{3}^{-}}, & Y_{3}:=e_{4}=\frac{z_{4}+w_{4}}{\alpha_{4}^{+}-\alpha_{4}^{-}} \\
Y_{4}:=z_{1}-z_{2}, & Y_{5}:=z_{3}-z_{4} .
\end{array}
$$

We can extend the torus action on $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$ to the torus action on $\widetilde{\operatorname{Rep}_{5, k}}$ by

$$
\begin{aligned}
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) & \curvearrowright\left[Y_{0}: Y_{1}: Y_{2}: Y_{3}: Y_{4}: Y_{5}\right] \\
& \longmapsto\left[a^{2} Y_{0}: a^{2} Y_{1}: a^{-2} Y_{2}: a^{-2} Y_{3}: a^{2} Y_{4}: a^{-2} Y_{5}\right]
\end{aligned}
$$

Hence, we have

$$
\widetilde{\overline{\operatorname{Rep}}_{5, \boldsymbol{k}_{s_{1}}}} \hookrightarrow\left(\overline{\overline{\operatorname{Rep}}_{5, \boldsymbol{k}}} \backslash U_{1} \cup U_{2}\right) \cup\left(U_{1} \times \mathbb{P}^{5}\right) \cup\left(U_{2} \times \mathbb{P}^{5}\right)
$$

where $\widetilde{\operatorname{Rep}_{5, \boldsymbol{k}_{S_{1}}}}$ is the blowing up along the orbit of s_{1}. The stabilizer group of any point in the exceptional divisor is

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

This action is trivial. In the same way, we can describe the blowing up along the orbit of s_{2}.

Theorem 6.2. - In the case of $n=5$, there exists a non-singular compactification of $\mathcal{R}_{5, k}$ such that the boundary complex is a simplicial decomposition of sphere S^{3}.

Proof. - The outline of the proof is as follows. We put

$$
\widetilde{\widetilde{\mathcal{R}_{5, k}}}: \widetilde{\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}} / / S L_{2}(\mathbb{C})
$$

We have the six components of the boundary divisor of $\widetilde{\mathcal{R}_{5, k}}$: the quotients of the proper transformations of the divisors $\left[e_{1}=0\right]$, $\left[e_{2}=0\right]$, $\left[e_{3}=\right.$ $0],\left[e_{4}=0\right]$ of $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$ and the quotients of the exceptional divisors associated with blowing up along s_{1} and s_{2}. We denote by $E_{1}, E_{2}, E_{3}, E_{4}$ and $e x_{1}, e x_{2}$ each component. In Step 1 , we describe the components E_{1}, E_{2}, E_{3} and E_{4} explicitly. In Step 2, we describe the intersections $E_{i} \cap E_{j}, i \neq j$. In particular, the intersections $E_{i} \cap E_{i+1}, i=1,2,3,4$ (where E_{5} implies E_{1}) are nonempty and irreducible. On the other hand, the intersections $E_{i} \cap E_{i+2}, i=1,2$ are not irreducible. The intersection $E_{i} \cap E_{i+2}$ consists of two components, denoted by $E_{i, i+2}^{+}, E_{i, i+2}^{-}$. Then, we take the blowing up along the components $E_{1,3}^{+}, E_{1,3}^{-}, E_{2,4}^{+}, E_{2,4}^{-}$:

$$
\begin{equation*}
\widetilde{X} \longrightarrow X:=\widetilde{\widetilde{\mathcal{R}_{5, \boldsymbol{k}}}} \tag{6.11}
\end{equation*}
$$

We use the same notation E_{i} which is the proper transform of E_{i}. We denote by $e x_{1,3}^{+}, e x_{1,3}^{-}, e x_{2,4}^{+}, e x_{2,4}^{-}$the exceptional divisors associated with the blowing up (6.11). Consequently, the components of the boundary divisor of the compactification \widetilde{X} of $\mathcal{R}_{5, \boldsymbol{k}}$ are

$$
E_{1}, E_{2}, E_{3}, E_{4}, e x_{1}, e x_{2}, e x_{1,3}^{+}, e x_{1,3}^{-}, e x_{2,4}^{+}, e x_{2,4}^{-}
$$

Next, we see how $e x_{i}$ and the other components intersect. In Step 3, we describe the 2-dimensional simplices and the 3 -dimensional simplices. Finally, we can describe the boundary complex of the boundary divisor of the compactification of the character variety.

Step 1. - We describe the component E_{i} (i.e. $\left.\left[e_{i}=0\right] / / S L_{2}(\mathbb{C})\right)$ explicitly. We consider the case where $e_{1}=0$. Let D_{i} be the divisor $\left[e_{i}=0\right.$] on $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$ for $i=1, \ldots, 4$. Let $\left(M_{1}, \ldots, M_{4}\right)$ be a point on D_{1}. We normalize the matrix M_{1} by the $S L_{2}(\mathbb{C})$-conjugate action as the matrix (4.5). The stabilizer subgroup of the matrix is the group of upper triangular matrices. From the stability, we obtain $c_{2} \neq 0, c_{3} \neq 0$ or $c_{4} \neq 0$. In the case of $c_{2} \neq 0$, the matrices of the divisor D_{1} are normalized by the action of this stabilizer subgroup:

$$
\left(\left(\begin{array}{ll|l}
0 & 1 & \tag{6.12}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
0 & -e_{2}^{2} & \\
c_{2}^{2} & k_{2} c_{2} e_{2} & \\
\hline & & c_{2} e_{2}
\end{array}\right),\left(\begin{array}{cc|c}
a_{3} & b_{3} & \\
c_{3} & d_{3} & \\
\hline & & e_{3}
\end{array}\right),\left(\begin{array}{cc|c}
a_{4} & b_{4} & \\
c_{4} & d_{4} & \\
\hline & & e_{4}
\end{array}\right)\right) .
$$

Then, we have the locus defined by the following equations

$$
\left\{\begin{array}{l}
a_{3}+d_{3}=k_{3} e_{3} \tag{6.13}\\
a_{3} d_{3}-b_{3} c_{3}=e_{3}^{2} \\
a_{4}+d_{4}=k_{4} e_{4} \\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
c_{2} a_{3} a_{4}+k_{2} e_{2} c_{3} a_{4}+c_{2} b_{3} c_{4}+k_{2} e_{2} d_{3} c_{4}=0
\end{array}\right.
$$

in $\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{4} \times \mathbb{P}^{4}\right)\right) \cap\left[c_{2} \neq 0\right]$. The locus defined by $a_{i}+d_{i}=k_{i} e_{i}$ and $a_{i} d_{i}-b_{i} c_{i}=e_{i}^{2}$ in \mathbb{P}^{4} is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We put the coordinates $S_{3}, T_{3}, U_{3}, V_{3}$ and $S_{4}, T_{4}, U_{4}, V_{4}$ of $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{2}$ in the same way as in Section 5 . Then, the locus of the normalized matrices is defined by the following equation

$$
\begin{aligned}
& c_{2}\left(\alpha_{3}^{-} S_{3} U_{3}+\alpha_{3}^{+} T_{3} V_{3}\right)\left(\alpha_{4}^{-} S_{4} U_{4}+\alpha_{4}^{+} T_{4} V_{4}\right) \\
& \quad+k_{2} e_{2}\left(\alpha_{3}^{+}-\alpha_{3}^{-}\right)\left(T_{3} U_{3}\right)\left(\alpha_{4}^{-} S_{4} U_{4}+\alpha_{4}^{+} T_{4} V_{4}\right) \\
& \quad+c_{2}\left(\alpha_{3}^{+}-\alpha_{3}^{-}\right)\left(\alpha_{4}^{+}-\alpha_{4}^{-}\right)\left(S_{3} V_{3}\right)\left(T_{4} U_{4}\right) \\
& \quad \quad+k_{2} e_{2}\left(\alpha_{4}^{+}-\alpha_{4}^{-}\right)\left(\alpha_{3}^{+} S_{3} U_{3}+\alpha_{3}^{-} T_{3} V_{3}\right)\left(T_{4} U_{4}\right)=0
\end{aligned}
$$

in $\left(\mathbb{P}^{1}\right)^{5} \cap\left[c_{2} \neq 0\right]$. Let $D_{1}^{c_{2} \neq 0}$ be the Zariski open set of the hypersrface in $\left(\mathbb{P}^{1}\right)^{5}$. The torus action on $D_{1}^{c_{2} \neq 0}$ is the following action:

$$
\begin{aligned}
&\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \curvearrowright\left(\left[c_{2}: e_{2}\right],\left[S_{3}: T_{3}\right],\left[U_{3}: V_{3}\right],\left[S_{4}: T_{4}\right],\left[U_{4}: V_{4}\right]\right) \\
& \mapsto\left(\left[a^{-1} c_{2}: a e_{2}\right],\left[a S_{3}: a^{-1} T_{3}\right],\left[a^{-1} U_{3}: a V_{3}\right]\right. \\
& {\left.\left[a S_{3}: a^{-1} T_{3}\right],\left[a^{-1} U_{3}: a V_{3}\right]\right) }
\end{aligned}
$$

In the same way as in the case $c_{2} \neq 0$, we have the Zariski open sets of the hypersurfaces in $\left(\mathbb{P}^{1}\right)^{5}$ corresponding to $c_{3} \neq 0$ and $c_{4} \neq 0$, denoted by $D_{1}^{c_{3} \neq 0}$ and $D_{1}^{c_{4} \neq 0}$. We glue $D_{1}^{c_{2} \neq 0}, D_{1}^{c_{3} \neq 0}$ and $D_{1}^{c_{4} \neq 0}$, denoted by D_{1}^{\prime}. We take the blowing up (6.9). Let $\widetilde{D}_{1}^{\prime}$ be the proper transform of D_{1}^{\prime}. Then, the component of the boundary divisor E_{1} is the quotient of $\widetilde{D}_{1}^{\prime}$ by the torus action. Similarly, we may describe the components $E_{j}(j=2,3,4)$.

Step 2. - We denote by $D_{i, j}$ the intersection of the divisors $\left[e_{i}=0\right.$] and $\left[e_{j}=0\right]$ on $\overline{\operatorname{Rep}_{5, \boldsymbol{k}}}$. First, we consider the intersection of E_{1} and E_{2}. We substitute $e_{2}=0$ for (6.13). Then, we have the locus defined by the
following equations

$$
\left\{\begin{array}{l}
a_{3}+d_{3}=k_{3} e_{3} \\
a_{3} d_{3}-b_{3} c_{3}=e_{3}^{2} \\
a_{4}+d_{4}=k_{4} e_{4} \\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
a_{3} a_{4}+b_{3} c_{4}=0
\end{array}\right.
$$

in $\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{4}\right)^{2}\right) \cap\left[c_{2} \neq 0\right]$. By the transform (5.7), we have the Zariski open set of the hypersurface in $\left(\mathbb{P}^{1}\right)^{5}$, denoted by $D_{12}^{c_{2} \neq 0}$. Next, we consider the case where $c_{3} \neq 0$. In the same way as in the case where $c_{2} \neq 0$, we have the locus defined by the following equations

$$
\left\{\begin{array}{l}
a_{2}+d_{2}=0 \\
a_{2} d_{2}-b_{2} c_{2}=0 \\
a_{4}+d_{4}=k_{4} e_{4} \\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
d_{2} c_{3}^{2} a_{4}-c_{2} e_{3}^{2} c_{4}+k_{3} d_{2} c_{3} e_{3} c_{4}=0
\end{array}\right.
$$

in $\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{4}\right)^{2}\right) \cap\left[c_{3} \neq 0\right]$. Since we may put $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}s t & s^{2} \\ -t^{2} & -s t\end{array}\right)$ where $a+d=0, a d-b e=0$, we have

$$
\left\{\begin{array}{l}
a_{4}+d_{4}=k_{4} e_{4} \\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
t\left(s c_{3}^{2} a_{4}-t e_{3}^{2} c_{4}+k_{3} s c_{3} e_{3} c_{4}\right)=0
\end{array}\right.
$$

By the transform (5.7), we have the Zariski open set of the hypersurface in $\left(\mathbb{P}^{1}\right)^{5}$, denoted by $D_{1,2}^{c_{3} \neq 0}$. The locus $D_{1,2}^{c_{3} \neq 0}$ is not irreducible. Now, we take the blowing up along the orbits of s_{1} and s_{2}. Let $\widetilde{D}_{1,2}^{c_{3} \neq 0}$ be the proper transform of $D_{1,2}^{c_{3} \neq 0}$. Since an orbit of a point of

$$
\begin{equation*}
[t=0] \backslash\left([t=0] \cap\left[s c_{3}^{2} a_{4}-t e_{3}^{2} c_{4}+k_{3} s c_{3} e_{3} c_{4}\right]\right) \subset D_{1,2}^{c_{3} \neq 0} \tag{6.14}
\end{equation*}
$$

are not closed, the points of the inverse image of (6.14) on $\widetilde{D}_{1,2}^{c_{3} \neq 0}$ are unstable (see [11, Lemma 6.6]). Then, the quotient of $\widetilde{D}_{1,2}^{c_{3} \neq 0}$ by the torus action is irreducible. Next, we consider the case where $c_{4} \neq 0$. In the same way as in the case where $c_{3} \neq 0$, we have the Zariski open set of the hypersurface in $\left(\mathbb{P}^{1}\right)^{5}$, denoted by $D_{1,2}^{c_{4} \neq 0}$. We glue $D_{1,2}^{c_{2} \neq 0}, D_{1,2}^{c_{3} \neq 0}$ and $D_{1,2}^{c_{4} \neq 0}$, denoted by $D_{1,2}^{\prime}$. We take the proper transform of $D_{1,2}^{\prime}$ of the blowing up along the orbits of s_{1} and s_{2}, denoted by $\widetilde{D}_{1,2}^{\prime}$. Then, the intersection of E_{1} and E_{2} is
the quotient of $\widetilde{D}_{1,2}^{\prime}$ by the torus action, denoted by $E_{1,2}$. The intersection $E_{1,2}$ is irreducible.

Second, we consider the intersection of E_{1} and E_{3}. We substitute $e_{3}=0$ for (6.13). Then, we have the locus defined by the following equations

$$
\left\{\begin{array}{l}
a_{3}+d_{3}=0 \\
a_{3} d_{3}-b_{3} c_{3}=0 \\
a_{4}+d_{4}=k_{4} e_{4} \\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
c_{2} a_{3} a_{4}+k_{2} e_{2} c_{3} a_{4}+c_{2} b_{3} c_{4}+k_{2} e_{2} d_{3} c_{4}=0
\end{array}\right.
$$

in $\left(\mathbb{P}^{1} \times\left(\mathbb{P}^{4}\right)^{2}\right) \cap\left[c_{2} \neq 0\right]$. We put $a_{3}=s t, b_{3}=s^{2}, c_{3}=-t^{2}, d_{3}=-s t$. Then, we have the equations

$$
\left\{\begin{array}{l}
a_{4}+d_{4}=k_{4} e_{4} \tag{6.15}\\
a_{4} d_{4}-b_{4} c_{4}=e_{4}^{2} \\
\left(t a_{4}+s c_{4}\right)\left(c_{2} s-k_{2} e_{2} t\right)=0
\end{array}\right.
$$

We denote the two components $\left[t a_{4}+s c_{4}=0\right]$ and $\left[c_{2} s-k_{2} e_{2} t=0\right]$ by $D_{1,3}^{c_{2} \neq 0,+}$ and $D_{1,3}^{c_{2} \neq 0,-}$.

Remark 6.3. - Any point $\left(M_{1}, M_{2}, M_{3}, M_{4}\right)$ on $D_{1,3}^{c_{2} \neq 0,+}$ is conjugate to the following matrices

$$
\left(\left(\begin{array}{cc|c}
0 & 1 & \tag{6.16}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
a_{2} & b_{2} & \\
c_{2} & d_{2} & \\
\hline & & e_{2}
\end{array}\right),\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
0 & b_{4} & \\
c_{4} & d_{4} & \\
\hline & & e_{4}
\end{array}\right)\right)
$$

In fact, we normalize the third matrix M_{3} instead of M_{2}. Then, we have

$$
M_{3}=\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right) \text { or }\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right)
$$

In the former case, by the stability, we have $c_{4} \neq 0$. However, the matrices do not satisfy the condition (6.3). In the latter case, the equation $t a_{4}+s c_{4}=$ 0 implies that $a_{4}=0$. On the other hand, any point on $D_{1,3}^{c_{2} \neq 0,-}$ is conjugate to the following matrices

$$
\left(\left(\begin{array}{cc|c}
0 & 1 & \tag{6.17}\\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
a_{2} & b_{2} & \\
c_{2} & 0 & \\
\hline & & e_{2}
\end{array}\right),\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
a_{4} & b_{4} & \\
c_{4} & d_{4} & \\
\hline & & e_{4}
\end{array}\right)\right)
$$

We consider the cases where $c_{3} \neq 0$ and $c_{4} \neq 0$. In the same way as in the case where $c_{2} \neq 0$, we have the Zariski open sets

$$
D_{1,3}^{c_{3} \neq 0,+}, D_{1,3}^{c_{3} \neq 0,-}, D_{1,3}^{c_{4} \neq 0,+}, D_{1,3}^{c_{4} \neq 0,-}
$$

of the hypersurfaces in $\left(\mathbb{P}^{1}\right)^{5}$. We glue $D_{1,3}^{c_{2} \neq 0,+}, D_{1,3}^{c_{3} \neq 0,+}$ and $D_{1,3}^{c_{4} \neq 0,+}$ (resp. $D_{1,3}^{c_{2} \neq 0,-}, D_{1,3}^{c_{3} \neq 0,-}$ and $\left.D_{1,3}^{c_{4} \neq 0,-}\right)$, denoted by ${ }^{\prime} D_{1,3}^{+}\left(\right.$resp. $\left.{ }^{\prime} D_{1,3}^{-}\right)$. We take the blowing up (6.9). Let ' $\widetilde{D}_{1,3}^{+}$and ' $\widetilde{D}_{1,3}^{-}$be the proper transforms of ' $D_{1,3}^{+}$and ${ }^{\prime} D_{1,3}^{-}$, respectively. Then, the intersections of E_{1} and E_{3} are the quotients of ' $\widetilde{D}_{1,3}^{+}$and ${ }^{\prime} \widetilde{D}_{1,3}^{-}$by the torus action, denoted by $E_{1,3}^{+}$and $E_{1,3}^{-}$.

We consider the intersections $E_{2} \cap E_{3}, E_{3} \cap E_{4}$ and $E_{1} \cap E_{4}$. In the same way as in the case $E_{1} \cap E_{2}$, the intersections are irreducible, denoted by $E_{2,3}, E_{3,4}$ and $E_{1,4}$.

We consider the intersection of E_{2} and E_{4}. In the same way as in the case $E_{1} \cap E_{3}$, the intersection $E_{2} \cap E_{4}$ is not irreducible. The intersection has two components, denoted by $E_{2,4}^{+}$and $E_{2,4}^{-}$. Here, the components $E_{2,4}^{+}$ and $E_{2,4}^{-}$correspond respectively to the following matrices

$$
\left(\left(\begin{array}{cc|c}
a_{1} & b_{1} & \\
c_{1} & d_{1} & \\
\hline & & e_{1}
\end{array}\right),\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{cc|c}
a_{3} & b_{3} & \\
c_{3} & 0 & \\
\hline & & e_{3}
\end{array}\right),\left(\begin{array}{cc|c}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right)\right)
$$

and

$$
\left(\left(\begin{array}{cc|c}
0 & b_{1} & \\
c_{1} & d_{1} & \\
\hline & & e_{1}
\end{array}\right),\left(\begin{array}{cc|c}
0 & 1 & \\
0 & 0 & \\
\hline & & 0
\end{array}\right),\left(\begin{array}{ll|l}
a_{3} & b_{3} & \\
c_{3} & d_{3} & \\
\hline & & e_{3}
\end{array}\right),\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & & 0
\end{array}\right)\right) .
$$

Now, we take the blowing up along the components $E_{1,3}^{+}, E_{1,3}^{-}, E_{2,4}^{+}, E_{2,4}^{-}$:

$$
\widetilde{X} \longrightarrow X:=\widetilde{\widetilde{\mathcal{R}_{5, \boldsymbol{k}}}}
$$

We use the same notation E_{i} which is the proper transforms of E_{i}. We denote by $e x_{1,3}^{+}, e x_{1,3}^{-}, e x_{2,4}^{+}, e x_{2,4}^{-}$the quotients of the exceptional divisors associated with this blowing up. Consequently, we have the ten components of the boundary divisor of the compactification \widetilde{X} of $\mathcal{R}_{5, k}$

$$
E_{1}, E_{2}, E_{3}, E_{4}, e x_{1}, e x_{2}, e x_{1,3}^{+}, e x_{1,3}^{-}, e x_{2,4}^{+}, e x_{2,4}^{-}
$$

and we obtain that the intersections

$$
E_{1} \cap E_{2}, \quad E_{2} \cap E_{3}, \quad E_{3} \cap E_{4}, \quad E_{4} \cap E_{1}
$$

and

$$
E_{1} \cap e x_{1,3}^{ \pm}, \quad E_{3} \cap e x_{1,3}^{ \pm}, \quad E_{2} \cap e x_{2,4}^{ \pm}, \quad E_{4} \cap e x_{2,4}^{ \pm}
$$

are nonempty and irreducible.

Figure 6.1.

We describe the intersections of the other pairs. We consider the intersection of $e x_{1,3}^{+}$and E_{4}. If we substitute $e_{4}=0$ for the matrix (6.16), then we have $d_{4}=0$. Moreover, we have $b_{4}=0$ or $c_{4}=0$. Then, we obtain that

$$
{ }^{\prime} D_{1,3}^{+} \cap\left[e_{4}=0\right]=\left\{s_{1}, s_{2}\right\} \cup[\text { points whose orbits are not closed }] .
$$

By the blowing up along s_{1} and s_{2}, we obtain that the intersection of $E_{1,3}^{+}$ and E_{4} is empty (see [11, Lemma 6.6]). Then, the intersection of $e x_{1,3}^{+}$and E_{4} is empty. In the same way as above, the intersections

$$
e x_{1,3}^{-} \cap E_{2}, \quad e x_{2,4}^{+} \cap E_{3}, \quad e x_{2,4}^{-} \cap E_{1}
$$

are empty. On the other hand, the intersections
$e x_{1,3}^{+} \cap E_{2}, e x_{1,3}^{-} \cap E_{4}, e x_{2,4}^{+} \cap E_{1}, e x_{2,4}^{-} \cap E_{3}, e x_{1,3}^{+} \cap e x_{1,3}^{-}, e x_{2,4}^{+} \cap e x_{2,4}^{-}$ are nonempty and irreducible. Next, we consider the intersections of the pairs containing $e x_{1}$ or $e x_{2}$. The orbit of the point s_{1} (resp. s_{2}) is contained in the components D_{1}, \ldots, D_{4} and $D_{1,3}^{ \pm}, D_{2,4}^{ \pm}$, respectively. Here, $D_{1,3}^{ \pm}$and $D_{2,4}^{ \pm}$are the irreducible components of $D_{1,3}$ and $D_{2,4}$. Then, the intersections $e x_{i} \cap E_{j}$ and $e x_{i} \cap e x_{k, k+2}^{ \pm}$are nonempty and irreducible for $i=1,2$, $j=1, \ldots, 4$ and $k=1,2$. On the other hand, the orbits of the point s_{1} and s_{2} are not intersect. Then, the intersection of $e x_{1}$ and $e x_{2}$ is empty.

Step 3. - We draw the vertexes and the 1-dimensional simplices except $e x_{1}$ and $e x_{2}$. Then, we obtain the graph of Figure 6.1. We consider the following sphere

$$
\mathbb{R}^{4} \supset S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\}
$$

We arrange the vertexes except $e x_{1}$ and $e x_{2}$ on $S^{2}=S^{3} \cap[w=0]$ and arrange the vertexes $e x_{1}$ and $e x_{2}$ at $(0,0,0,1)$ and $(0,0,0,-1)$ respectively.

We glue together the vertex $e x_{i}(i=1,2)$ and each vertex on $S^{2}=S^{3} \cap[w=$ $0]$.

Next, we describe the 2-dimensional simplices. First, we consider the intersections $E_{1} \cap E_{2} \cap e x_{1,3}^{+}$and $E_{2} \cap E_{3} \cap e x_{1,3}^{+}$. The intersection $E_{1} \cap E_{2} \cap$ $E_{3}=E_{1,3}^{+} \cap E_{2}$ is nonempty and irreducible in $\widetilde{\mathcal{R}_{5, k}}$. We take the blowing up along $E_{1,3}^{+}$. Then, the intersections $E_{1} \cap E_{2} \cap e x_{1,3}^{+}$and $E_{2} \cap E_{3} \cap e x_{1,3}^{+}$ are irreducible. Second, we consider the intersections $E_{1} \cap e x_{1,3}^{+} \cap e x_{1,3}^{-}$and $E_{3} \cap e x_{1,3}^{+} \cap e x_{1,3}^{-}$. We substitute $d_{2}=0$ for the matrices (6.16). Then, we have that $D_{1,3}^{c_{2} \neq 0,+} \cap\left[d_{2}=0\right]$ is irreducible. Therefore, the intersection $E_{1,3}^{+} \cap E_{1,3}^{-}$is irreducible. We take the blowing up along $E_{1,3}^{+}$. Then, the intersections $E_{1} \cap e x_{1,3}^{+} \cap e x_{1,3}^{-}$and $E_{3} \cap e x_{1,3}^{+} \cap e x_{1,3}^{-}$are irreducible. Then, we glue together the triangles

$$
\left(E_{1}, E_{2}, e x_{1,3}^{+}\right),\left(E_{2}, E_{3}, e x_{1,3}^{+}\right),\left(E_{1}, e x_{1,3}^{+}, e x_{1,3}^{-}\right) \text {and }\left(E_{3}, e x_{1,3}^{+}, e x_{1,3}^{-}\right)
$$

in the graph of Figure 6.1. In the same way as above, we glue together each triangle. Then, we obtain that the complex of Figure 3 is a simplicial decomposition of S^{2}. Third, we consider the intersection of 3 -tuple of components of the boundary divisor containing $e x_{1}$ or $e x_{2}$. The divisors $e x_{1}$ and $e x_{2}$ are the exceptional divisors of the blowing up along the orbits of s_{1} and s_{2}. The orbits of s_{1} and s_{2} are contained in $D_{i} \cap D_{i+1}(i=1, \ldots, 4), D_{1,3}^{+}$, $D_{1,3}^{-}, D_{2,4}^{+}$and $D_{2,4}^{-}$, respectively. Then, the intersections $E_{i} \cap E_{i+1} \cap e x_{j}$, $E_{k, k+2}^{+} \cap e x_{j}$ and $E_{k, k+2}^{-} \cap e x_{j}$ are nonempty and irreducible for $i=1, \ldots, 4$, $j=1,2$, and $k=1,2$. We take the blowing up along $E_{1,3}^{+}$and $E_{1,3}^{-}$. Then, we can glue together the 3 -tuples which have either $e x_{i}$ or $e x_{i}$ in the graph.

Lastly, we describe the 3 -dimensional simplices. We can glue together the 4 -tuples of components of the boundary divisor such that the 4 -tuples have either $e x_{i}$ or $e x_{i}$ and 3-tuples expect $e x_{i}$ or $e x_{i}$ are glued together. On the other hand, the intersections of the 4 -tuples which have the vertexes expect $e x_{i}$ or $e x_{i}$ are empty. Then, we obtain that the boundary complex of the compactification \widetilde{X} of $\mathcal{R}_{5, \boldsymbol{k}}$ is simplicial decomposition of S^{3}.

BIBLIOGRAPHY

[1] M. A. A. de Cataldo, T. Hausel \& L. Migliorini, "Topology of Hitchin systems and Hodge theory of character varieties: the case A_{1} ", Ann. of Math. (2) $\mathbf{1 7 5}$ (2012), no. 3, p. 1329-1407.
[2] E. Formanek, "The invariants of $n \times n$ matrices", in Invariant theory, Lecture Notes in Math., vol. 1278, Springer, Berlin, 1987, p. 18-43.
[3] R. Fricke \& F. Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bände 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttg art, 1965, Band I: xiv+634 pp.; Band II: xiv+668 pages.
[4] T. Hausel, E. Letellier \& F. Rodriguez-Villegas, "Arithmetic harmonic analysis on character and quiver varieties", Duke Math. J. 160 (2011), no. 2, p. 323-400.
[5] T. Hausel \& F. Rodriguez-Villegas, "Mixed Hodge polynomials of character varieties", Invent. Math. 174 (2008), no. 3, p. 555-624, With an appendix by Nicholas M. Katz.
[6] M.-A. Inaba, K. Iwasaki \& M.-H. Saito, "Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I", Publ. Res. Inst. Math. Sci. 42 (2006), no. 4, p. 987-1089.
[7] ——, "Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. II", in Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, p. 387432.
[8] M.-A. Inaba \& M.-H. Saito, "Moduli of unramified irregular singular parabolic connections on a smooth projective curve", http://arxiv.org/abs/1203.0084.
[9] K. IwASAKI, "An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation", Comm. Math. Phys. 242 (2003), no. 1-2, p. 185-219.
[10] M. Jimbo, "Monodromy problem and the boundary condition for some Painlevé equations", Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, p. 1137-1161.
[11] F. C. Kirwan, "Partial desingularisations of quotients of nonsingular varieties and their Betti numbers", Ann. of Math. (2) 122 (1985), no. 1, p. 41-85.
[12] S. Lawton, "Generators, relations and symmetries in pairs of 3×3 unimodular matrices", J. Algebra 313 (2007), no. 2, p. 782-801.
[13] B. M. S. Martin, "Compactifications of a representation variety", J. Group Theory 14 (2011), no. 6, p. 947-963.
[14] D. Mumford, J. Fogarty \& F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994, xiv+292 pages.
[15] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978, vi+183 pages.
[16] S. Payne, "Boundary complexes and weight filtrations", http://arxiv.org/abs/ 1109.4286.
[17] C. Procesi, "The invariant theory of $n \times n$ matrices", Advances in Math. 19 (1976), no. 3, p. 306-381.
[18] C. T. Simpson, "Towards the boundary of the character variety", Reference not found.
[19] ——, "Harmonic bundles on noncompact curves", J. Amer. Math. Soc. 3 (1990), no. 3, p. 713-770.
[20] ——, "Moduli of representations of the fundamental group of a smooth projective variety. I", Inst. Hautes Études Sci. Publ. Math. (1994), no. 79, p. 47-129.
[21] ——, "Moduli of representations of the fundamental group of a smooth projective variety. II", Inst. Hautes Études Sci. Publ. Math. (1994), no. 80, p. 5-79 (1995).
[22] D. A. Stepanov, "A remark on the dual complex of a resolution of singularities", Uspekhi Mat. Nauk 61 (2006), no. 1(367), p. 185-186.
[23] A. Thuillier, "Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels", Manuscripta Math. 123 (2007), no. 4, p. 381-451.

Manuscrit reçu le 6 juin 2013, révisé le 24 octobre 2014, accepté le 27 novembre 2014.

Arata KOMYO
Department of Mathematics,
Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 (Japan) akomyo@math.kobe-u.ac.jp

[^0]: Keywords: character variety, geometric invariant theory.
 Math. classification: 14L24, 14L30.
 (*) The author would like to thank Professor Kentaro Mitsui, Professor Masa-Hiko Saito and Professor Carlos Simpson, and for many comments and discussions. He thanks Professor Masa-Hiko Saito for warm encouragement.

