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ON COMPACTIFICATIONS OF CHARACTER
VARIETIES OF n-PUNCTURED PROJECTIVE LINE

by Arata KOMYO (*)

Abstract. — In this paper, we construct compactifications of SL2(C)-chara-
cter varieties of n-punctured projective line and study the boundary divisors of the
compactifications. This study is motivated by a conjecture for the configurations
of the boundary divisors, due to C. Simpson. We verify the conjecture for a few
examples.
Résumé. — Dans cet article, nous construisons des compactifications de SL2(C)-

variétés de caractères d’une droite projective moins n points et étudions les divi-
seurs au bord des compactifications. Cette étude est motivée par une conjecture,
due à C. Simpson, sur les configurations des diviseurs au bord. Nous vérifions
quelques cas de la conjecture.

1. Introduction

Let C be a compact Riemann surface of genus g, and let {t1, . . . , tn}
be the set of n-distinct points on C. For a positive integer r > 0, denote
by Pr the set of partitions of r, and fix µ = (µ1, . . . , µn) ∈ (Pr)n where
µi = (µi1, . . . , µiri

) ∈ Pr. For each partition µi ∈ Pr, let us fix semisim-
ple conjugacy classes C1, . . . , Cn ⊂ SLr(C) which is generic in the sense
of [4, Definition 2.1.1] and type µ1, . . . , µn, that is, the multiplicities of
eigenvalues of matrices in Ci are given by µi = (µi1, µi2, . . .). We consider a
monodoromy SLr(C)-semisimple representation

ρ : π1(C \ {t1, . . . , tn}, ∗) −→ SLr(C)

Keywords: character variety, geometric invariant theory.
Math. classification: 14L24, 14L30.
(*) The author would like to thank Professor Kentaro Mitsui, Professor Masa-Hiko Saito
and Professor Carlos Simpson, and for many comments and discussions. He thanks
Professor Masa-Hiko Saito for warm encouragement.



1494 Arata KOMYO

of type (g,µ) which satisfies the condition ρ(γi) ∈ Ci for each i where γi is a
anticlockwise loop around the point ti. We can define the SLr(C)-character
variety Rg,µ of the n-punctured compact Riemann surface of genus g by
the following categorical quotient

Rg,µ := {(A1, B1, . . . , Ag, Bg;M1, . . . ,Mn) ∈ SLr(C)2g × C1 × · · · × Cn
| (A1, B1) · · · (Ag, Bg)M1 · · ·Mn = Ir}//SLr(C).

Here, we set (A,B) = ABA−1B−1 and Ir is the identity matrix. The variety
depends on the actual choice of eigenvalues, but for simplicity we drop this
choice from the notation. The categorical quotient Rg,µ can be considered
as a moduli space of monodoromy SLr(C)-semisimple representations of
type (g,µ). The variety Rg,µ, if nonempty, is a nonsingular affine variety
of dimension

dg,µ := r2(2g − 2 + n)−
∑
i,j

(µij)2 + 2− 2g.

(See [4]). In the case where g = 0 and dg,µ = 2, SLr(C)-character varieties
can be classified into four cases, which can be listed as follows:

(1.1)

µ = ((1, 1), (1, 1), (1, 1), (1, 1))
µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1))
µ = ((2, 2), (1, 1, 1, 1), (1, 1, 1, 1))
µ = ((3, 3), (2, 2, 2), (1, 1, 1, 1, 1, 1)).

In the first and second types, the SLr(C)-character varieties are known to
be an affine cubic surface. ([3], [10], [9], [12]).
The purpose of this paper is to study the configuration of boundary

divisor of compactifications of SLr(C)-character varieties. This study is
motivated by a conjecture due to Simpson [18], which is explained as
follows. We choose a smooth compactification Rg,µ of Rg,µ such that
DB
g,µ = Rg,µ \ Rg,µ is a divisor with normal crossings. We call the divisor

DB
g,µ a boundary divisor of the compactification Rg,µ. Let N

B
g,µ be a small

neighborhood of DB
g,µ in Rg,µ, and let NB

g,µ = N
B
g,µ ∩Rg,µ = N

B
g,µ \DB

g,µ.
Let ∆(DB

g,µ) be a simplicial complex whose n-dimensional simplices cor-
respond to the irreducible components of intersections of k + 1 distinct
components of DB

g,µ. This is called the boundary complex or Stepanov
complex of a compactification of Rg,µ (see [22], [23], and [16]).

Theorem 1.1 ([22], [23], and [16]). — The homotopy type of boundary
complex ∆(DB

g,µ) is independent of the choice of compactifications.

ANNALES DE L’INSTITUT FOURIER
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We have a continuous map, well-defined up to homotopy,

(1.2) NB
g,µ −→ ∆(DB

g,µ).

On the other hand, letMg,µ be the moduli space of parabolic Higgs bun-
dles, which is diffeomorphic to the character variety Rg,µ via the non-
abelian Hodge theory [19]. In particular, we have dimMg,µ = dg,µ. We
have the Hitchin fibration Mg,µ → A

dg,µ
2 . The moduli space Mg,µ has

a canonical orbifold compactification, where the divisor at infinity is the
quotient

DDol
g,µ :=M∗g,µ/C∗.

Here,M∗g,µ is the complement of the nilpotent cone. Let NDol
g,µ be a small

neighborhood of DDol
g,µ , and let NDol

g,µ = N
Dol
g,µ ∩ Rg,µ = N

Dol
g,µ \ DDol

g,µ . The
Hitchin fibration gives us a continuous map to the sphere at infinity in the
Hitchin base

(1.3) NDol
g,µ −→ Sdg,µ−1.

Conjecture 1.2 ([18]).
(1) There exists a homotopy-commutative diagram

NDol
g,µ

∼=−−−−→ NB
g,µy y

Sdg,µ−1 ∼=−−−−→ ∆(DB
g,µ).

(2) In particular, there exists a non-singular compactification of Rg,µ
such that the boundary complex is a simplicial decomposition of
sphere Sdg,µ−1.

Remark 1.3 (See [18]). — The assertion (1) of Conjecture 1.2 is true in
the first case of the list (1.1).

The main theorem of this paper is the following

Theorem 1.4 (Theorem 6.2). — The assertion (2) of Conjecture 1.2 is
true in the following cases:

(1) g = 0, r = 3, n = 3,µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1)), dg,µ = 2;
(2) g = 0, r = 2, n = 5,µ = ((1, 1), (1, 1), (1, 1), (1, 1), (1, 1)), dg,µ = 4.

For the case (1) of Theorem 1.4, the assertion (2) of Conjecture 1.2 can
be verified by the classical invariant theory. ([3], [10], [9], [12]). However, it
seems that the application of the classical invariant theory is difficult for
general cases. Then, we construct compactifications of SLr(C)-character

TOME 65 (2015), FASCICULE 4



1496 Arata KOMYO

varieties as follows. Following [13], we can construct a compactification of
the representation variety [13]

Repg,µ := {(A1, B1, . . . , Ag, Bg;M1, . . . ,Mn) ∈ SLr(C)2g × C1 × · · · × Cn
| (A1, B1) · · · (Ag, Bg)M1 · · ·Mn = Ir}.

Then, we take the GIT quotient of this compactification of Repg,µ, which
gives a compactification Rg,µ of Rg,µ. As special cases, we consider the
case where g = 0, r = 2, n > 4,µ = ((1, 1), . . . , (1, 1)). For n = 4, we obtain
the same result as the classical invariant theory [3]. For n = 5 (i.e., the
case (2) of Theorem 1.4), Rg,µ has singular points. A suitable blowing up
of Rg,µ shows that the assertion (2) of Conjecture 1.2 holds. It seems that
the configuration of the boundary divisor DB

0,µ is rather complicated for
n > 6.

Conjecture 1.2 is related to the P=W conjecture due to Hausel et al
([1]). First, we consider compact curve cases. The non-abelian Hodge theory
for compact curves states that character varieties R are diffeomorphic to
moduli spacesM of semi-stable Higgs bundles. Then, we have the induced
isomorphism between the rational cohomology groups of R and M. The
P=W conjecture assert that the isomorphism of the rational cohomology
groups exchanges the weight filtration on the cohomology groups of R with
the perverse Leray filtration associated with the Hitchin fibration on the
cohomology groups ofM. The P=W conjecture is verified in the case where
r = 2 ([1]). We may extend the conjecture to punctured curve cases. On the
other hand, there exists a natural isomorphism from the reduced homology
of the boundary complex ∆(DB

g,µ) to the 2l-th graded piece of the weight
filtration on the cohomology of Rg,µ:

H̃i−1(∆(DB
g,µ),Q) ∼= GrW2l H

2l−i(Rg,µ,Q).

(For example, see [16, Theorem 4.4]). By the isomorphism, the assertion
(2) of Conjecture 1.2 implies that there exists only 1-dimensional weight
2dg,µ part in the middle degree dg,µ cohomology of the character variety,
which is also a consequence of the P=W conjecture.

Remark 1.5. — The structure groups of character varieties studied in
[1] are GLn(C), PGLn(C) and SLn(C). However, for g = 0, those character
varieties are the same.

The organization of this paper is as follows. In Section 2, we give the
definition of a SLr(C)-character variety. In Section 3, we consider the case
where g = 0, r = 2, n = 4 and g = 0, r = 3, n = 3. In those cases, the
character varieties are describe by invariants and a relation of invariants.

ANNALES DE L’INSTITUT FOURIER
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We recall that the character varieties are affine cubic surfaces. In Section
4, we consider the construction of compactifiations of SL2(C)-character
varieties of g = 0,µ = ((1, 1), . . . , (1, 1)). In Section 5 and 6, we describe
the boundary divisor of the compactifiations of the cases where n = 4 and
n = 5.

2. Preliminaries

We fix integers g, r, n with g > 0, r > 0, n > 0, and let (C, t) =
(C, t1, . . . , tn) be an n-pointed compact Riemann surface of genus g, which
consists of a compact Riemann surface C of genus g and a set of n-
distinct points t = {ti}16i6n on C. We put D(t) = t1 + · · · + tn for each
(C, t) = (C, t1, . . . , tn). We denote by

(2.1) ΓC,t := π1(C \D(t), ∗)

the fundamental group of C \D(t) with the base point ∗ ∈ C \D(t). The
group ΓC,t is generated by (2g+n)-element α1, . . . , αg, β1, . . . , βg, γ1, . . . , γn
with one relation

(α1, β1) · · · (αg, βg)γ1 · · · γn = 1.

Here, we set (α, β)=αβα−1β−1. The set of generators α1, . . . , αg, β1, . . . , βg,

γ1, . . . , γn is called canonical generators of ΓC,t.
Definition 2.1. — An SLr(C)-representation of the fundamental group

ΓC,t is a group homomorphism

(2.2) ρ : ΓC,t −→ SLr(C).
Let Hom(ΓC,t, SLr(C)) be the set of all SLr(C)-representations of ΓC,t.

If we fix a set of canonical generators of ΓC,t, we have the identification

Hom(ΓC,t, SLr(C)) '−→ SLr(C)2g+n−1.

Definition 2.2. — Two SLr(C)-representations ρ1 and ρ2 are isomor-
phic to each other, if and only if there exists a matrix P ∈ SLr(C) such
that

ρ2(γ) = P−1 · ρ1(γ) · P for all γ ∈ ΓC,t.
Let Rr(g,n−1) denote the affine coordinate ring of SLr(C)2g+n−1. We con-

sider the simultaneous action of SLr(C) on SLr(C)2g+n−1 as

P y(A1, . . . , Ag, B1, . . . , Bg;M1, . . . ,Mn−1)

7→ (P−1A1P, . . . , P
−1AgP, P

−1B1P, . . . , P
−1BgP ;

P−1M1P, . . . , P
−1Mn−1P ).

TOME 65 (2015), FASCICULE 4



1498 Arata KOMYO

The invariant ring (Rr(g,n−1))Ad(SLr(C)) is finitely generated. For any (C, t),
there exists the universal categorical quotient map

Φr(C,t) : Hom(ΓC,t, SLr(C)) ∼= SLr(C)2g+n−1

→ Rr(C,t) = SLr(C)2g+n−1//SLr(C)

where

Rr(C,t) = Spec[(Rr(g,n−1))Ad(SLr(C))].

The following lemme is due to Simpson.

Lemma 2.3 ([21, Proposition 6.1]). — The closed points of Rr(C,t) rep-
resent the Jordan equivalence classes of SLr(C)-representations of ΓC,t.

Let us set

A(n)
r :=

{
a = (a(i)

j )16i6n
16j6r−1 ∈ Cnr−n

}
.

For a = (a(i)
j ) ∈ A(n)

r , we set

χi(s) := sr + a
(i)
r−1s

r−1 + · · ·+ a
(i)
1 s+ (−1)r, (i = 1, . . . , n).

Moreover, we define the morphism

φr(C,t) : Rr(C,t) → A(n)
r

by the relation

det(sIr − ρ(γi)) = χi(s)

where [ρ] ∈ Rr(C,t) and γi is a anticlockwise loop around the point ti. The
fiber of φr(C,t) at a ∈ A(n)

r is given by the affine subscheme of Rr(C,t):

Rr(C,t),a := (φr(C,t))−1(a)
= {[ρ] ∈ Rr(C,t) | det(sIr − ρ(γi)) = χi(s), 1 6 i 6 n}.

For a ∈ A(n)
r , let µi = (µi1, µi2, . . .) be the partition of r which implies

the multiplicity of the solutions of the equation χi(s) = 0. Put µ =
(µ1, . . . , µn), called the multiplicity of a ∈ A(n)

r . Moreover, we define the
subvariety

A(n)
r,µ :=

{
a = (a(i)

j )16i6n
16j6r−1 ∈ Cnr−n

∣∣∣ the multiplicity of a is µ
}
⊂ A(n)

r .

ANNALES DE L’INSTITUT FOURIER
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Definition 2.4. — We fix a k-tuple µ of partitions of r. Let a be a
element of A(n)

r,µ. Then, we define

Rr,s(C,t),µ,a := {[ρ] ∈ Rr(C,t) | det(sIr − ρ(γi)) = χi(s), ρ(γi) :
diagonalizable, 1 6 i 6 n}

= {(A1, B1, . . . , Ag, Bg;M1, . . . ,Mn) ∈ SLr(C)2g×C1×· · ·×Cn
| (A1, B1) · · · (Ag, Bg)M1 · · ·Mn = Ir}//SLr(C)

where Ci = {M ∈ SLr(C) | det(sIr −M) = χa(i)(s), M : diagnalizable}.
In Section 1, we denoted by Rg,µ the variety instead of Rr,s(C,t),µ,a, for
simplicity. The affine subvariety Rr,s(C,t),µ,a is called a SLr(C)-character
variety of the n-punctured compact Riemann surface of genus g. In par-
ticular, we denote by Rrn,a this variety in the case where g = 0,µ =
((1, . . . , 1), . . . , (1, . . . , 1)).

If we take a generic a ∈ A(n)
r,µ, the affine algebraic variety Rr,s(C,t),µ,a is a

non-singular irreducible variety of dimension

dg,µ := r2(2g − 2 + n)−
∑
i,j

(µij)2 + 2− 2g,

and has a holomorphic symplectic structure, if nonempty. (See [4],[6]). In
particular, for g = 0,µ = ((1, . . . , 1), . . . , (1, . . . , 1)), the dimension of Rrn,a
is

d0,((1,1),...,(1,1)) = 2n− 6.

3. Invariant ring

We recall the explicit description of the invariant ring (Rr(g,n−1))Ad(SLr(C))

for the two cases g = 0, r = 2, n = 4 and g = 0, r = 3, n = 3. The following
proposition follows from the fundamental theorem for matrix invariants.
(See [2] or [17]).
Proposition 3.1.

(Rr(0,n−1))Ad(SLr(C)) = C[Tr(Mi1Mi2 · · ·Mik ) | 1 6 i1, . . . , ik 6 n− 1].

In particular, for r = 2, the elements Tr(Mi1Mi2 · · ·Mik ) of degree k 6 3
generate the invariant ring, that is,

(R2
(0,n−1))Ad(SL2(C))

= C[Tr(Mi),Tr(MiMj),Tr(MiMjMk) | 1 6 i, j, k 6 n− 1].

TOME 65 (2015), FASCICULE 4



1500 Arata KOMYO

First, we consider the case where g = 0, r = 2, n = 4. Let (i, j, k) be a
cyclic permutation of (1, 2, 3). Then, the invariant ring (R2

(0,3))Ad(SL2(C))

is generated by
xi := Tr(MkMj) (i = 1, 2, 3),
ai := Tr(Mi) (i = 1, 2, 3),
a4 := Tr(M3M2M1).

(3.1)

The following proposition is due to Frike-Klein, Jimbo, and Iwasaki, ([3],
[10], [9]).

Proposition 3.2. — The invariant ring (R2
(0,3))Ad(SL2(C))) is generated

by seven elements x1, x2, x3, a1, a2, a3, a4 and there exists a relation

fa(x) := x1x2x3 + x2
1 + x2

2 + x2
3 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a) = 0

where

θi(a) = aia4 + ajak (i, j, k),

θ4(a) = a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4 − 4.

Therefore, we have an isomorphism

(R2
(0,3))Ad(SL2(C))) ∼= C[x1, x2, x3, a1, a2, a3, a4]/(fa(x)).

We have the surjective morphism

φ2
(P1,0,1,t,∞) : R2

(P1,0,1,t,∞) = Spec[(R2
(0,3))Ad(SL2(C)))]

→ A(4)
2 = Spec[C[a1, a2, a3, a4]]

where t is a point of P1 such that t 6= 0, 1,∞. The fiber at a ∈ A(4)
2 , such

that the type of the multiplicities of eigenvalues is ((1,1), (1,1), (1,1), (1,1)),
is an affine cubic hypersurface in C3. Hence, the SL2(C)-character variety
of the 4-punctured projective line is an affine cubic hypersurface

R4,a ∼= {(x1, x2, x3) ∈ C3 | fa(x) = 0}.

The affine cubic hypersurface is called a Fricke-Klein cubic surface.
We consider the natural compactification C3 ↪→ P3 as follows. Set x1 =

X/W, x2 = Y/W, x3 = Z/W . Then, we obtain the following homogeneous
polynomial

XY Z +X2W + Y 2W + Z2W − θ1(a)XW 2

− θ2(a)YW 2 − θ3(a)ZW 2 + θ4(a)W 3 = 0.

SubstituteW = 0 to this equation. Then, we obtain the equationXY Z = 0.
Hence, the boundary divisor of the natural compactification ofR4,a consists

ANNALES DE L’INSTITUT FOURIER
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X = 0

Y = 0

Z = 0

XY Z = 0

boundary
complex

Figure 3.1

Proposition 3.3. — The invariant ring (R3
(0,2))

Ad(SL3(C)) is generated
by

a1 := Tr(M1) a2 := Tr(M−1
1 )

b1 := Tr(M2) b2 := Tr(M−1
2 )

c1 := Tr(M−1
1 M−1

2 ) = Tr(M3) c2 := Tr(M1M2) = Tr(M−1
3 )

x1 := Tr(M1M
−1
2 ) x2 := Tr(M−1

1 M2)

x3 := Tr(M1M2M
−1
1 M−1

2 ),

and there exists a relation

x2
3 − fx3 + g = 0

where f, g are polynomials of x1, x2 over C[a1, a2, b1, b2, c1, c2], more pre-

cisely,

f = x1x2 − a2b1x1 − a1b2x2 + (constant terms in x1, x2)

g = x3
1 + x3

2 + (terms that order is at most 2 in x1, x2).

We consider the subringA
(3)
3 = C[a1, a2, b1, b2, c1, c2] of (R3

(0,2))
Ad(SL3(C)).

We have a natural morphism

φ3
(P1,0,1,∞) : R3

(P1,0,1,∞) = Spec[(R3
(0,2))

Ad(SL3(C))]→ A(3)
3 = Spec[A

(3)
3 ].

The fiber at a ∈ A(3)
3 , such that the type of the multiplicities of eigenvalues

is ((1, 1, 1), (1, 1, 1), (1, 1, 1)), is an affine cubic hypersurface in C3. Hence,

the SL3(C)-character variety of the 3-punctured projective line is an affine

cubic hypersurface

R3
3,a
∼= {(x1, x2, x3) ∈ C3 | x2

3 − fx3 + g = 0}.
We consider the compactification C3 ↪→ P3 as follows. Set x1 = X/W, x2 =

Y/W, x3 = Z/W . Then, we obtain the following homogeneous polynomial

X3 + Y 3 −XY Z + (term containing W ) = 0.

SUBMITTED ARTICLE : PREPRINT.TEX

Figure 3.1.

of three lines. The boundary complex is shown in Figure 3.1. The boundary
complex is a simplicial decomposition of S1.
Next, we consider the case where g = 0, r = 3, n = 3. We describe

generators and defining relations for the invariant ring (R3
(0,2))Ad(SL3(C)).

The following proposition is due to Lawton [12].

Proposition 3.3. — The invariant ring (R3
(0,2))Ad(SL3(C)) is generated

by

a1 := Tr(M1) a2 := Tr(M−1
1 )

b1 := Tr(M2) b2 := Tr(M−1
2 )

c1 := Tr(M−1
1 M−1

2 ) = Tr(M3) c2 := Tr(M1M2) = Tr(M−1
3 )

x1 := Tr(M1M
−1
2 ) x2 := Tr(M−1

1 M2)

x3 := Tr(M1M2M
−1
1 M−1

2 ),

and there exists a relation

x2
3 − fx3 + g = 0

where f, g are polynomials of x1, x2 over C[a1, a2, b1, b2, c1, c2], more pre-
cisely,

f = x1x2 − a2b1x1 − a1b2x2 + (constant terms in x1, x2)

g = x3
1 + x3

2 + (terms that order is at most 2 in x1, x2).

We consider the subringA(3)
3 = C[a1, a2, b1, b2, c1, c2] of (R3

(0,2))Ad(SL3(C)).
We have a natural morphism

φ3
(P1,0,1,∞) : R3

(P1,0,1,∞) = Spec[(R3
(0,2))Ad(SL3(C))]→ A(3)

3 = Spec[A(3)
3 ].

The fiber at a ∈ A(3)
3 , such that the type of the multiplicities of eigenvalues

is ((1, 1, 1), (1, 1, 1), (1, 1, 1)), is an affine cubic hypersurface in C3. Hence,

TOME 65 (2015), FASCICULE 4
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boundary

X3 + Y 3 −XY Z = 0

complex

Figure 3.2

We substitute W = 0 to this equation. Then, we obtain the equation X3+

Y 3 −XY Z = 0. This equation defines a plane cubic curve having a node.

The boundary complex is shown in Figure 3.2. The boundary complex is a

simplicial decomposition of S1.

4. A compactification of the character variety

We construct a compactification of the SL2(C)-character variety Rn,k

(k of the n-punctured projective line is date of coefficient of characteristic

polynomials) by means of the geometric invariant theory for a compactifi-

cation of the following variety

Definition 4.1. — We put

(4.1)
Repn,k := {(M1, . . . ,Mn−1) ∈ C1 × · · · × Cn−1|M−1

n−1 · · ·M−1
1 ∈ Cn}

= {(M1, . . . ,Mn−1) ∈ C1 × · · · × Cn−1|Tr(M−1
n−1 · · ·M−1

1 ) = kn}
where Ci = {M ∈ SL2(C) | Tr(M) = ki} and k = (k1, . . . , kn) ∈ Cn. The

affine variety Repn,k is said to the SL2(C)-representation variety of the

n-punctured line.

We will introduce a compactification of the representation variety due

to Benjamin [1]. First, we consider a construction of a compactification

of the algebraic group SL2(C). We pick an embedding α : SL2(C) ↪→
PGL3(C). Such an embedding always exists: we consider the natural em-

bedding SL2(C)→ GL2(C) and we take the composition of the embedding

and the map GL2(C)
ξ−→ GL3(C)→ PGL3(C) where

ξ(A) =

(
A

1

)

and the second arrow is the canonical projection. We regard PGL3(C) as
an open subvariety of P(M3(C)), and define the compactification SL2(C)
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Figure 3.2.

the SL3(C)-character variety of the 3-punctured projective line is an affine
cubic hypersurface

R3
3,a
∼= {(x1, x2, x3) ∈ C3 | x2

3 − fx3 + g = 0}.

We consider the compactification C3 ↪→P3 as follows. Set x1 =X/W, x2 =
Y/W, x3 = Z/W . Then, we obtain the following homogeneous polynomial

X3 + Y 3 −XY Z + (term containing W ) = 0.

We substitute W = 0 to this equation. Then, we obtain the equation X3 +
Y 3 −XY Z = 0. This equation defines a plane cubic curve having a node.
The boundary complex is shown in Figure 3.2. The boundary complex is a
simplicial decomposition of S1.

4. A compactification of the character variety

We construct a compactification of the SL2(C)-character variety Rn,k
(k of the n-punctured projective line is date of coefficient of characteristic
polynomials) by means of the geometric invariant theory for a compactifi-
cation of the following variety

Definition 4.1. — We put
(4.1)

Repn,k := {(M1, . . . ,Mn−1) ∈ C1 × · · · × Cn−1|M−1
n−1 · · ·M

−1
1 ∈ Cn}

= {(M1, . . . ,Mn−1) ∈ C1 × · · · × Cn−1|Tr(M−1
n−1 · · ·M

−1
1 ) = kn}

where Ci = {M ∈ SL2(C) | Tr(M) = ki} and k = (k1, . . . , kn) ∈ Cn. The
affine variety Repn,k is said to the SL2(C)-representation variety of the
n-punctured line.
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We will introduce a compactification of the representation variety due
to Benjamin [13]. First, we consider a construction of a compactification
of the algebraic group SL2(C). We pick an embedding α : SL2(C) ↪→
PGL3(C). Such an embedding always exists: we consider the natural em-
bedding SL2(C)→ GL2(C) and we take the composition of the embedding
and the map GL2(C) ξ−→ GL3(C)→ PGL3(C) where

ξ(A) =
(
A

1

)
and the second arrow is the canonical projection. We regard PGL3(C) as
an open subvariety of P(M3(C)), and define the compactification SL2(C)
of SL2(C) as the closure of α(SL2(C)) in P(M3(C)), that is,

SL2(C) =


 a b

c d

e

 ∈ P(M3(C))

∣∣∣∣∣∣ ad− bc = e2

 .

Then, we obtain a compactification of the semisimple conjugacy class Ci,
denoted by Ci, that is,

Ci =


 a b

c d

e

 ∈ P(M3(C))

∣∣∣∣∣∣ ad− bc = e2, a+ d = kie

 .

We can define a compactification of the representation variety.

Definition 4.2. — We put

Repn,k := {(M1, . . . ,Mn−1) ∈ C1 × · · · × Cn−1 |
Tr(A1 · · ·An−1) = kne1 · · · en−1}

(4.2)

where

M1 =
(
A1

e1

)
, . . . ,Mn−1 =

(
An−1

en−1

)
.

Remark 4.3. — In general, for X ∈ SL2(C), there is no inverse. Since

Tr(A−1
n−1 · · ·A

−1
1 ) = Tr(A1 · · ·An−1)

for ∀Ai ∈ SL2(C), we use the condition Tr(A1 · · ·An−1) = kn, instead of
Tr(A−1

n−1 · · ·A
−1
1 ) = kn.
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We have the following action of SL2(C) on Repn,k, which is compatible
with the simultaneous action of SL2(C) on Repn,k

(4.3)
P y

((
A1

e1

)
, . . . ,

(
An−1

en−1

))
7−→

((
PA1P

−1

e1

)
, . . . ,

(
PAn−1P

−1

en−1

))
.

We regard Repn,k ⊂ C1 × · · · × Cn−1 as the closed subset in P4 × · · · ×
P4. Then, we obtain an embedding in the projective space by the Segre
embedding. Let L be an ample line bundle associated with this embedding,
that is,

L =
n−1⊗
i=1

p∗i (OP4(1))

where pi : Repn,k → P4 is the i-th projection. Then, L admits the SL2(C)-
linearization with respect to the action.
For x = (M1, . . . ,Mn−1) ∈ Repn,k, we put

Inil := {i ∈ {1, . . . , n− 1} |Mi is nilpotent i.e. ei = 0 }.

If Inil is not empty, we decompose

(4.4) Inil = Inil1 ∪ · · · ∪ Inilk

where the index set Inill ⊂ Inil (1 6 l 6 k) consists of indexes of same
matrices, that is, matrices indexed by elements of Inill are same each other
and two matrices which respectively have indexes in Inill and Inill′ where
l 6= l′ are not equal. Let ]Inill be the cardinality of Inill , and let m1 be a
maximum value in ]Inil1 , . . . , ]Inilk . We put

Jl := {j ∈ {1, . . . , n− 1} |

Mj is not nilpotent, Mj ∗Mi = Mi ∗Mj = Mi, i ∈ Inill }.

Here, we define the product ∗ as

M ∗M ′ :=
(
AA′

e

)
∈ PM3(C)

for M :=
(
A

e

)
and M ′ :=

(
A′

e′

)
.

Note that the product ∗ is well-defined in the case where M (resp. M ′) is
nilpotent and M ′ (resp. M) is not nilpotent where M ∈ C and M ′ ∈ C′.
Let m2 be a maximum value in {]Jl | l is satisfied ]Inill = m1, 1 6 l 6 k}.
If Inil is empty, then we put m1 = m2 = 0.
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Remark 4.4. — Let (M1, . . . ,Mn−1) ∈ Repn,k. Suppose that i ∈ Inil.
We normalize the nilpotent matrix Mi:

(4.5) Mi =

 0 1
0 0

0

 .

For a matrix Mj (j 6= i), the condition which, by this transformation, the
matrix Mj is transformed to the following form(

aj bj
0 di

)
is equivalent to the condition Mj ∗Mi = Mi ∗Mj = Mi.

Proposition 4.5. — The point x = (M1, . . . ,Mn−1) is semi-stable
(resp. stable) point if and only if x is satisfied the following condition,

(4.6) n− 1 > 2m1 +m2 (resp. > ).

Proof. — For any integer r > 0, let λr be the 1-parameter subgroup
(1-PS) of SL2(C) given by

(4.7) λr : t 7−→
(
tr 0
0 t−r

)
, t ∈ C×.

The matrix λr(t) acts on Repn,k as follows.

(
tr 0
0 t−r

)
y

 a1 b1
c1 d1

e1

 , . . . ,

 an−1 bn−1
cn−1 dn−1

en−1


7−→

 a1 t2rb1
t−2rc1 d1

e1

 , . . . ,

 an−1 t2rbn−1
t−2rcn−1 dn−1

en−1

 .

We put n′ := 5n−1. Let An′ be the affine cone over the projective space
Pn′−1 which is the target space of the Segre embedding. We take a base
change of the affine cone An′ via Repn,k ↪→ Pn′−1, denoted by the same
notation An′ . Let x∗ = (M∗1 , . . . ,M∗n−1) be the closed point of An′ lying
over x ∈ Repn,k, that is, x∗ 6= 0 and x∗ projects to x. The action (4.3) and
the linearization L define a linear action of SL2(C) on An′ . In particular,
the matrix λr(t) acts on An′ as follows. For each i = 1, . . . , n − 1, let
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e
(i)
1 , . . . , e

(i)
5 be a basis of A5 such that the matrix

M∗i =

 ai bi
ci di

ei


is describe by

M∗i = aie
(i)
1 + bie

(i)
2 + cie

(i)
3 + die

(i)
4 + eie

(i)
5 .

Let ei1,...,in−1 be the base e(1)
i1
⊗ · · · ⊗ e(n−1)

in−1
of An′ where i1, . . . , in−1 ∈

{1, . . . , 5}. Then, the action of λr(t) on A5 is given by

λr(t) · ei1,...,in−1 = t
2r(r+

i1,...,in−1
−r−

i1,...,in−1
)
ei1,...,in−1

where i1, . . . , in−1 ∈ {1, . . . , 5} and r+
i1,...,in−1

(resp. r−i1,...,in−1
) is the num-

ber of 2 (resp. 3) in the index set {i1, . . . , in−1}. For x∗ ∈ An′ lying over
x ∈ Repn,k, we write x∗ =

∑
x∗i1,...,in−1

ei1,...,in−1 , so that

λr(t) · x∗ =
∑

t2rri1,...,in−1x∗i1,...,in−1
ei1,...,in−1

where ri1,...,in−1 = r+
i1,...,in−1

− r−i1,...,in−1
, and we put

(4.8)

µL(x, λr) := max{−ri1,...,in−1 | i1, . . . , in−1 such that x∗i1,...,in−1
6=0}

= ]

{
i

∣∣∣∣ Mi =
(
ai bi
ci di

)
, ci 6= 0

}
− ]
{
i

∣∣∣∣ Mi =
(

0 1
0 0

)
, ei = 0

}
.

On the other hand, we have

]

{
i

∣∣∣∣ Mi =
(
ai bi
ci di

)
, ci 6= 0

}
= (n− 1)− ]

{
i

∣∣∣∣ Mi =
(

0 1
0 0

)
, ei = 0

}
− ]
{
i

∣∣∣∣ Mi =
(
ai bi
0 di

)
, ei 6= 0

}
.

Then, we have

(4.9)

µL(x, λr)

= (n− 1)− 2]
{
i

∣∣∣∣ Mi =
(

0 1
0 0

)
, ei = 0

}
− ]
{
i

∣∣∣∣ Mi =
(
ai bi
0 di

)
, ei 6= 0

}
.
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By the Hilbert-Mumford criterion (see [14, Theorem 2.1] or [15, Propo-
sition 4.11]), the point x is stable (resp. semi-stable) for this action if and
only if µL(g ·x, λr) > 0 (resp. > 0) for every g ∈ SL2(C) and every 1-PS λr
of the form (4.7). If the point x satisfies the condition 2m1 < ]Inil, then we
have µL(g · x, λr) > 0 for any g ∈ SL2(C). On the other hand, we consider
the case where the point x satisfies the condition 2m1 > ]Inil. There are
at most two components of the decomposition (4.4) of Inil such that the
cardinalities are m1. We denote by Inilmax the union of the components. If
the index set Inil \ Inilmax is nonempty, then we have µL(g · x, λr) > 0 for
g ∈ SL2(C) such that gMig

−1 is the matrix (4.5) where i ∈ Inil \Inilmax. For
g ∈ SL2(C) such that gMig

−1 is the matrix (4.5) where i ∈ Inilmax, we have

(4.10) µL(g · x, λr) > (n− 1)− (2m1 +m2).

If the index i ∈ Inilmax of the normalized matrix is a element of Inill such
that ]Inill = m1 and ]Jl = m2, then the equality of (4.10) holds. For the
other matrix g ∈ SL2(C), we have µL(g · x, λr) > 0. We have thus proved
the proposition. �

We obtain a compactification of the character variety Rn,k.

Definition 4.6. —

Rn,k := Proj H0(Repn,k, L⊗r)Ad(SL2(C)).

The variety Rn,k is a projective algebraic variety. This variety may have
singular points on the boundary. Then, we should take a resolution of singu-
lar points of Rn,k. In general, it is not easy to give a systematic resolution
of singularities for any n. On the following sections, we treat the cases for
n = 4, 5. We will show that Rn,k is non-singular and the boundary divisor
is a triangle of P1. On Section 6, we will treat the case for n = 5.

5. n = 4

Let

(5.1)

 a1 b1
c1 d1

e1

 ,

 a2 b2
c2 d2

e2

 ,

 a3 b3
c3 d3

e3

 ∈ Rep4,k.

The compactification Rep4,k is defined by the following equations in P4 ×
P4 × P4

(5.2) ai + di = kiei, (i = 1, 2, 3),
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(5.3) aidi − bici = e2
i , (i = 1, 2, 3),

(5.4) Tr
((

a1 b1
c1 d1

)(
a2 b2
c2 d2

)(
a3 b3
c3 d3

))
= k4e1e2e3.

We analyze the stability. If ei = 0 and ejek 6= 0 (j, k ∈ {1, 2, 3}\{i}), then
x is an unstable point if and only if x is a point of the orbit of (M1,M2,M3)
where

Mi =

 0 1
0 0

0

 ,Mj =

 aj bj
0 dj

ej

 ,Mk =

 ak bk
0 dk

ek

 .

If ei = 0, ej = 0, then x is an unstable point if and only if x is a point of
the orbit of (M1,M2,M3) where two matrices in M1,M2,M3 are 0 1

0 0
0

 .

Lemma 5.1. — The point x ∈ Rep4,k is stable if and only if x is
semistable.

Proof. — The point x = (M1,M2,M3) is not stable if only x is normal-
ized as follows.

Mi =

 0 1
0 0

0

 ,Mj =

 aj bj
cj dj

ej

 , where cj 6= 0,

Mk =

 ak bk
0 dk

ek

 ,

or

Mi =

 0 1
0 0

0

 ,Mj =

 0 0
1 0

0

 ,Mk =

 ak bk
0 dk

ek

 .

However, the matrices are not satisfied the equation (5.4). Then, there are
no strictly semistable points. �

The following theorem shows that our compactification R4,k of R4,k has
the same configuration of the boundary divisor as the natural compactifi-
cation of the Fricke-Klein cubic surface.

Theorem 5.2. — The boundary divisor of the compactification R4,k is
a triangle of three projective lines.
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Proof. — We describe the boundary divisor explicitly. Let Ei be the
image of the divisor [ei = 0] on Rep4,k by the quotient Rep4,k → R4,k
(i = 1, 2, 3). First, we describe [e1 = 0]. We normalize M1 by the SL2(C)-
conjugate action as the matrix (4.5). The stabilizer subgroup of the matrix

is
{(

a b

0 1/a

)}
.

By the stability, we obtain c2 6= 0 and c3 6= 0. Since c2 6= 0, the matrices
of the component [e1 = 0] are normalized by the action of this stabilizer
subgroup:

(5.5)

 0 1
0 0

0

 ,

 0 −e2
2

c2
2 k2c2e2

c2e2

 ,

 a3 b3
c3 d3

e3

 .

The stabilizer subgroup of the normalized matrices is the torus group{(
a 0
0 a−1

)}
.

Before we consider the quotient by the torus group, we consider the
normalized matrices (5.5). The normalized matrices are defined by the fol-
lowing equations

(5.6)


a3 + d3 = k3e3,

a3d3 − b3c3 = e2
3,

c2a3 + k2e2c3 = 0

in the Zariski open set c2c3 6= 0 of P1×P4. By the equations a3 +d3 = k3e3
and a3d3 − b3c3 = e2

3, we obtain the equation

(−a2
3 + k3a3e3 − e2

3)− b3c3 = 0.

Note that the equation define a hypersurface of degree 2 in P3, which is
isomorphic to P1×P1. We put the coordinate ([S3 : T3], [U3 : V3]) ∈ P1×P1

such that

(S3U3)(T3V3) = −a2
3 + k3a3e3 − e2

3 = −(a3 − α+
3 e3)(a3 − α−3 e3)

S3V3 = b3

T3U3 = c3
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where α+
i , α

−
i are eigenvalues of a matrix of the semisimple conjugacy class

Ci. Then, we obtain the following transformation from P1 × P1 to the hy-
persurface of degree 2 on P3:

(5.7)

a3 = α−3 S3U3 + α+
3 T3V3

α+
3 − α

−
3

, b3 = S3V3,

c3 = T3U3, d3 = α+
3 S3U3 + α−3 T3V3

α+
3 − α

−
3

,

e3 = S3U3 + T3V3

α+
3 − α

−
3

.

Therefore, the normalized matrices are defined by

(5.8) c2(α−3 S3U3 + α+
3 T3V3) + k2(α+

3 − α
−
3 )e2(T3U3) = 0

in the Zariski open set c2T3U3 6= 0 of P1 × (P1 × P1).
We consider the quotient by the torus group. The torus action on P1 ×

(P1 × P1) is(
a 0
0 a−1

)
y([c2 : e2], [S3 : T3], [U3 : V3])

7−→ ([a−1c2 : ae2], [aS3 : a−1T3], [a−1U3 : aV3]).

We consider the SL2(C)-linearization L =
⊗3

i=1 p
∗
i (OP4(1)) on Rep4,k. We

take a pull-back of L via the embedding

(5.9) pe1 : P1 × (P1 × P1) ↪→ Rep4,k

defined by the matrices (5.5) and the transform (5.7). Let Le1 be the pull-
back of L on P1× (P1×P1). We obtain the T -linearization on Le1 induced
by the SL2(C)-linearization L on Rep4,k. We consider the dual action on
H0(P1 × (P1 × P1), Le1). We have the following basis of the subspace con-
sisting of invariant sections:

(5.10)
s1 = b1 ⊗ c2

2 ⊗ S3U3, s2 = b1 ⊗ c2
2 ⊗ T3V3,

s3 = b1 ⊗ c2e2 ⊗ T3U3

where b1 ∈ H0(P1 × (P1 × P1), (pe1 ◦ p1)∗(OP4(1))) corresponding to the
(1, 2)-entry of the matrix M1. The sections have the relation

α−3 s1 + α+
3 s2 + k2(α+

3 − α
−
3 )s3 = 0

by the equation (5.8). Therefore, we obtain E1 ∼= P1. In the same way, we
also obtain Ei ∼= P1 (i = 2, 3).
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We show that E1 and E2 intersect at one point. We substitute e2 = 0
for (5.6). Then, we have the following equations

a3 + d3 = k3e3,

a3d3 − b3c3 = e2
3,

a3 = 0.

The locus defined by the equations above is a quadric curve in P2, which is
isomorphic to P1. There are two unstable points in the locus, [b3 : c3 : e3] =
[0 : 1 : 0] and [b3 : c3 : e3] = [1 : 0 : 0]. The intersection is the quotient
of P1 minus the two points by the torus action. Then, the intersection is a
point. In the same way, the intersection of E2 and E3 (resp. E3 and E1) is
a point. �

6. n = 5

Let a1 b1
c1 d1

e1

 ,

 a2 b2
c2 d2

e2

 ,

 a3 b3
c3 d3

e3

 ,

 a4 b4
c4 d4

e4

 ∈ Rep5,k.

The compactification Rep5,k is defined by the following equations in (P4)4

(6.1) ai + di = kiei, (i = 1, 2, 3, 4),

(6.2) aidi − bici = e2
i , (i = 1, 2, 3, 4),

(6.3) Tr
((

a1 b1
c1 d1

)(
a2 b2
c2 d2

)(
a3 b3
c3 d3

)(
a4 b4
c4 d4

))
= k5e1e2e3e4.

We consider the stability condition.

Lemma 6.1. — The closures of orbits of properly semistable points con-
tain the point

(6.4) s1 =

 0 1
0 0

0

 ,

 0 1
0 0

0

 ,

 0 0
1 0

0

 ,

 0 0
1 0

0
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or

(6.5) s2 =

 0 1
0 0

0

 ,

 0 0
1 0

0

 ,

 0 0
1 0

0

 ,

 0 1
0 0

0

 .

Expect for the points of the orbits of s1 and s2, the stabilizer groups of
every points are finite. Each stabilizer group of the orbits of s1 and s2 is

conjugate to the torus group T =
{(

a 0
0 a−1

)}
.

Proof. — Let x = (M1, . . . ,M4) be a property semistable point. By
Proposition 4.5, we have 2m1 +m2 = 4. First, we consider the case where
m1 = 1,m2 = 2. We put

Mi1 =

 0 1
0 0

0

 ,

Mi3 =

 ∗ ∗0 ∗
∗

 ,

Mi2 =

 ∗ ∗0 ∗
∗

 ,

Mi4 =

 ∗ ∗
ci4 ∗

∗


(6.6)

where {i1, . . . , i4} = {1, . . . , 4} and ci4 6= 0. However, by the condition
ci4 6= 0, the matrices do not satisfy the equation (6.3).
Second, we consider the case where m1 = 2,m2 = 0. We put

Mi1 =

 0 1
0 0

0

 ,

Mi3 =

 ∗ ∗
ci3 ∗

∗

 ,

Mi2 =

 0 1
0 0

0

 ,

Mi4 =

 ∗ ∗
ci4 ∗

∗


(6.7)

where {i1, . . . , i4} = {1, . . . , 4}, ci3 6= 0, and ci3 6= 0. If (i1, i2) = (1, 3) or
(2, 4), then the matrices do not satisfy the equation (6.3). Therefore, we
consider the case where (i1, i2) = (1, 2), (2, 3), or (3, 4). The 1-parameter
subgroup (4.7) acts on the matrices (6.7). For the matrices Mi1 and Mi2 ,
the action is trivial. The actions of the 1-parameter subgroup λr(t) on Mi3
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and Mi4 are
(6.8)

λr(t) ·Mi3 =

 ∗ t2r∗
t−2rci3 ∗

∗

 λr(t) ·Mi4 =

 ∗ t2r∗
t−2rci4 ∗

∗


=

 t2r∗ t4r∗
ci3 t2r∗

t2r∗

 , =

 t2r∗ t4r∗
ci4 t2r∗

t2r∗

 .

Then, the limit limt→0 λr ·M is the matrices (6.4) or (6.5).
Since the orbits of the points s1 and s2 are closed, the orbits have the

maximum dimension of the stabilizer group, which is one dimension. �

We consider a resolution of properly semistable points. We take the blow-
ing up along the orbits of s1 and s2:

(6.9) R̃ep5,k −→ Rep5,k.

The simultaneous action of SL2(C) on Rep5,k induces an action on R̃ep5,k.
By taking the blowing up (6.9), the condition for stability and unstability
is unchanging. On the other hand, the points of the exceptional divisors are
stable points. The points of orbits which are not closed are unstable points.
Hence, there is no properly semistable point in R̃ep5,k. (See [11, Section
6]). We will show that the quotient of the blowing up is non-singular. First,
we describe the blowing up of Rep5,k along the orbit of s1. Let U1 and
U2 be the Zariski open sets U1 = [b1 6= 0, b2 6= 0, c3 6= 0, c4 6= 0] and
U2 = [c1 6= 0, c2 6= 0, b3 6= 0, b4 6= 0] of Rep5,k ⊂ C1 × · · · × C4. Note that
the orbit of s1 is contained in U1 ∪ U2. Since Ci ∼= P1 × P1 for i = 1, . . . , 4
by the transformation (5.7), we have

(6.10) Ui ⊂ Rep5,k ⊂ (P1 × P1)4 for i = 1, 2.

In the open sets U1 and U2, we put the following affine coordinates

([1 : x1], [y1 : 1]), ([1 : x2], [y2 : 1]), ([x3 : 1], [1 : y3]), ([x4 : 1], [1 : y4]),

and

([z1 : 1], [1 : w1]), ([z2 : 1], [1 : w2]), ([1 : z3], [w3 : 1]), ([1 : z4], [w4 : 1]),
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respectively. In the open set U1, the ideal of the orbit of s1 is (X1, X2, X3,

X4, X5) where

X0 := e1 = y1 + x1

α+
1 − α

−
1
, X1 := e2 = y2 + x2

α+
2 − α

−
2
,

X2 := e3 = y3 + x3

α+
3 − α

−
3
, X3 := e4 = y4 + x4

α+
4 − α

−
4
,

X4 := x1 − x2, X5 := x3 − x4.

We can extend the torus action on Rep5,k to the torus action on R̃ep5,k by(
a 0
0 a−1

)
y[X0 : X1 : X2 : X3 : X4 : X5]

7−→ [a−2X0 : a−2X1 : a2X2 : a2X3 : a−2X4 : a2X5].
On the other hand, in the open set U2, the ideal of the orbit of s1 is
(Y1, Y2, Y3, Y4, Y5) where

Y0 := e1 = z1 + w1

α+
1 − α

−
1
, Y1 := e2 = z2 + w2

α+
2 − α

−
2
,

Y2 := e3 = z3 + w3

α+
3 − α

−
3
, Y3 := e4 = z4 + w4

α+
4 − α

−
4
,

Y4 := z1 − z2, Y5 := z3 − z4.

We can extend the torus action on Rep5,k to the torus action on R̃ep5,k by(
a 0
0 a−1

)
y[Y0 : Y1 : Y2 : Y3 : Y4 : Y5]

7−→ [a2Y0 : a2Y1 : a−2Y2 : a−2Y3 : a2Y4 : a−2Y5].
Hence, we have

R̃ep5,ks1
↪→ (Rep5,k \ U1 ∪ U2) ∪ (U1 × P5) ∪ (U2 × P5)

where R̃ep5,ks1
is the blowing up along the orbit of s1. The stabilizer group

of any point in the exceptional divisor is{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
.

This action is trivial. In the same way, we can describe the blowing up
along the orbit of s2.

Theorem 6.2. — In the case of n = 5, there exists a non-singular com-
pactification of R5,k such that the boundary complex is a simplicial de-
composition of sphere S3.
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Proof. — The outline of the proof is as follows. We put

R̃5,k := R̃ep5,k//SL2(C).

We have the six components of the boundary divisor of R̃5,k: the quo-
tients of the proper transformations of the divisors [e1 = 0], [e2 = 0], [e3 =
0], [e4 = 0] of Rep5,k and the quotients of the exceptional divisors asso-
ciated with blowing up along s1 and s2. We denote by E1, E2, E3, E4 and
ex1, ex2 each component. In Step 1, we describe the components E1, E2, E3
and E4 explicitly. In Step 2, we describe the intersections Ei ∩ Ej , i 6= j.
In particular, the intersections Ei ∩ Ei+1, i = 1, 2, 3, 4 (where E5 implies
E1) are nonempty and irreducible. On the other hand, the intersections
Ei ∩ Ei+2, i = 1, 2 are not irreducible. The intersection Ei ∩ Ei+2 consists
of two components, denoted by E+

i,i+2, E
−
i,i+2. Then, we take the blowing

up along the components E+
1,3, E

−
1,3, E

+
2,4, E

−
2,4:

(6.11) X̃ −→ X := R̃5,k.

We use the same notation Ei which is the proper transform of Ei. We de-
note by ex+

1,3, ex
−
1,3, ex

+
2,4, ex

−
2,4 the exceptional divisors associated with the

blowing up (6.11). Consequently, the components of the boundary divisor
of the compactification X̃ of R5,k are

E1, E2, E3, E4, ex1, ex2, ex
+
1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4.

Next, we see how exi and the other components intersect. In Step 3, we
describe the 2-dimensional simplices and the 3-dimensional simplices. Fi-
nally, we can describe the boundary complex of the boundary divisor of
the compactification of the character variety.

Step 1. — We describe the component Ei (i.e. [ei = 0]//SL2(C)) explic-
itly. We consider the case where e1 = 0. Let Di be the divisor [ei = 0] on
Rep5,k for i = 1, . . . , 4. Let (M1, . . . ,M4) be a point on D1. We normalize
the matrix M1 by the SL2(C)-conjugate action as the matrix (4.5). The
stabilizer subgroup of the matrix is the group of upper triangular matrices.
From the stability, we obtain c2 6= 0, c3 6= 0 or c4 6= 0. In the case of
c2 6= 0, the matrices of the divisor D1 are normalized by the action of this
stabilizer subgroup:
(6.12) 0 1

0 0
0

,
 0 −e2

2
c2

2 k2c2e2
c2e2

,
 a3 b3
c3 d3

e3

,
 a4 b4
c4 d4

e4

 .
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Then, we have the locus defined by the following equations

(6.13)



a3 + d3 = k3e3

a3d3 − b3c3 = e2
3

a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

c2a3a4 + k2e2c3a4 + c2b3c4 + k2e2d3c4 = 0

in (P1 × (P4 × P4)) ∩ [c2 6= 0]. The locus defined by ai + di = kiei and
aidi − bici = e2

i in P4 is isomorphic to P1 × P1. We put the coordinates
S3, T3, U3, V3 and S4, T4, U4, V4 of (P1×P1)2 in the same way as in Section
5. Then, the locus of the normalized matrices is defined by the following
equation

c2(α−3 S3U3 + α+
3 T3V3)(α−4 S4U4 + α+

4 T4V4)

+ k2e2(α+
3 − α

−
3 )(T3U3)(α−4 S4U4 + α+

4 T4V4)

+ c2(α+
3 − α

−
3 )(α+

4 − α
−
4 )(S3V3)(T4U4)

+ k2e2(α+
4 − α

−
4 )(α+

3 S3U3 + α−3 T3V3)(T4U4) = 0

in (P1)5 ∩ [c2 6= 0]. Let Dc2 6=0
1 be the Zariski open set of the hypersrface in

(P1)5. The torus action on Dc2 6=0
1 is the following action:(

a 0
0 a−1

)
y ([c2 : e2], [S3 : T3], [U3 : V3], [S4 : T4], [U4 : V4])

7→ ([a−1c2 : ae2], [aS3 : a−1T3], [a−1U3 : aV3],

[aS3 : a−1T3], [a−1U3 : aV3]).

In the same way as in the case c2 6= 0, we have the Zariski open sets of
the hypersurfaces in (P1)5 corresponding to c3 6= 0 and c4 6= 0, denoted by
Dc3 6=0

1 and Dc4 6=0
1 . We glue Dc2 6=0

1 , Dc3 6=0
1 and Dc4 6=0

1 , denoted by D′1. We
take the blowing up (6.9). Let D̃′1 be the proper transform of D′1. Then, the
component of the boundary divisor E1 is the quotient of D̃′1 by the torus
action. Similarly, we may describe the components Ej (j = 2, 3, 4).

Step 2. — We denote by Di,j the intersection of the divisors [ei = 0]
and [ej = 0] on Rep5,k. First, we consider the intersection of E1 and E2.
We substitute e2 = 0 for (6.13). Then, we have the locus defined by the
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following equations 

a3 + d3 = k3e3

a3d3 − b3c3 = e2
3

a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

a3a4 + b3c4 = 0

in (P1× (P4)2)∩ [c2 6= 0]. By the transform (5.7), we have the Zariski open
set of the hypersurface in (P1)5, denoted by Dc2 6=0

12 . Next, we consider the
case where c3 6= 0. In the same way as in the case where c2 6= 0, we have
the locus defined by the following equations

a2 + d2 = 0
a2d2 − b2c2 = 0
a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

d2c
2
3a4 − c2e

2
3c4 + k3d2c3e3c4 = 0

in (P1× (P4)2)∩ [c3 6= 0]. Since we may put
(
a b

c d

)
=
(
st s2

−t2 −st

)
where

a+ d = 0, ad− be = 0, we have
a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

t(sc2
3a4 − te2

3c4 + k3sc3e3c4) = 0.

By the transform (5.7), we have the Zariski open set of the hypersurface
in (P1)5, denoted by Dc3 6=0

1,2 . The locus Dc3 6=0
1,2 is not irreducible. Now, we

take the blowing up along the orbits of s1 and s2. Let D̃c3 6=0
1,2 be the proper

transform of Dc3 6=0
1,2 . Since an orbit of a point of

(6.14) [t = 0] \ ([t = 0] ∩ [sc2
3a4 − te2

3c4 + k3sc3e3c4]) ⊂ Dc3 6=0
1,2

are not closed, the points of the inverse image of (6.14) on D̃c3 6=0
1,2 are unsta-

ble (see [11, Lemma 6.6]). Then, the quotient of D̃c3 6=0
1,2 by the torus action

is irreducible. Next, we consider the case where c4 6= 0. In the same way as
in the case where c3 6= 0, we have the Zariski open set of the hypersurface
in (P1)5, denoted by Dc4 6=0

1,2 . We glue Dc2 6=0
1,2 , Dc3 6=0

1,2 and Dc4 6=0
1,2 , denoted by

D′1,2. We take the proper transform of D′1,2 of the blowing up along the
orbits of s1 and s2, denoted by D̃′1,2. Then, the intersection of E1 and E2 is
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the quotient of D̃′1,2 by the torus action, denoted by E1,2. The intersection
E1,2 is irreducible.

Second, we consider the intersection of E1 and E3. We substitute e3 = 0
for (6.13). Then, we have the locus defined by the following equations

a3 + d3 = 0
a3d3 − b3c3 = 0
a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

c2a3a4 + k2e2c3a4 + c2b3c4 + k2e2d3c4 = 0

in (P1 × (P4)2) ∩ [c2 6= 0]. We put a3 = st, b3 = s2, c3 = −t2, d3 = −st.
Then, we have the equations

(6.15)


a4 + d4 = k4e4

a4d4 − b4c4 = e2
4

(ta4 + sc4)(c2s− k2e2t) = 0.

We denote the two components [ta4 + sc4 = 0] and [c2s − k2e2t = 0] by
Dc2 6=0,+

1,3 and Dc2 6=0,−
1,3 .

Remark 6.3. — Any point (M1,M2,M3,M4) on Dc2 6=0,+
1,3 is conjugate

to the following matrices
(6.16) 0 1

0 0
0

 ,

 a2 b2
c2 d2

e2

 ,

 0 0
1 0

0

 ,

 0 b4
c4 d4

e4

 .

In fact, we normalize the third matrix M3 instead of M2. Then, we have

M3 =

 0 1
0 0

0

 or

 0 0
1 0

0

 .

In the former case, by the stability, we have c4 6= 0. However, the matrices
do not satisfy the condition (6.3). In the latter case, the equation ta4+sc4 =
0 implies that a4 = 0. On the other hand, any point onDc2 6=0,−

1,3 is conjugate
to the following matrices
(6.17) 0 1

0 0
0

 ,

 a2 b2
c2 0

e2

 ,

 0 0
1 0

0

 ,

 a4 b4
c4 d4

e4

 .
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We consider the cases where c3 6= 0 and c4 6= 0. In the same way as in
the case where c2 6= 0, we have the Zariski open sets

Dc3 6=0,+
1,3 , Dc3 6=0,−

1,3 , Dc4 6=0,+
1,3 , Dc4 6=0,−

1,3

of the hypersurfaces in (P1)5. We glue Dc2 6=0,+
1,3 , Dc3 6=0,+

1,3 and Dc4 6=0,+
1,3 (resp.

Dc2 6=0,−
1,3 ,Dc3 6=0,−

1,3 andDc4 6=0,−
1,3 ), denoted by ′D+

1,3 (resp. ′D−1,3). We take the
blowing up (6.9). Let ′D̃+

1,3 and ′D̃−1,3 be the proper transforms of ′D+
1,3 and

′D−1,3, respectively. Then, the intersections of E1 and E3 are the quotients
of ′D̃+

1,3 and ′D̃−1,3 by the torus action, denoted by E+
1,3 and E−1,3.

We consider the intersections E2∩E3, E3∩E4 and E1∩E4. In the same
way as in the case E1 ∩ E2, the intersections are irreducible, denoted by
E2,3, E3,4 and E1,4.
We consider the intersection of E2 and E4. In the same way as in the

case E1 ∩ E3, the intersection E2 ∩ E4 is not irreducible. The intersection
has two components, denoted by E+

2,4 and E−2,4. Here, the components E+
2,4

and E−2,4 correspond respectively to the following matrices a1 b1
c1 d1

e1

 ,

 0 1
0 0

0

 ,

 a3 b3
c3 0

e3

 ,

 0 0
1 0

0


and 0 b1

c1 d1
e1

 ,

 0 1
0 0

0

 ,

 a3 b3
c3 d3

e3

 ,

 0 0
1 0

0

 .

Now, we take the blowing up along the components E+
1,3, E

−
1,3, E

+
2,4, E

−
2,4:

X̃ −→ X := R̃5,k.

We use the same notation Ei which is the proper transforms of Ei. We
denote by ex+

1,3, ex
−
1,3, ex

+
2,4, ex

−
2,4 the quotients of the exceptional divisors

associated with this blowing up. Consequently, we have the ten components
of the boundary divisor of the compactification X̃ of R5,k

E1, E2, E3, E4, ex1, ex2, ex
+
1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4,

and we obtain that the intersections

E1 ∩ E2, E2 ∩ E3, E3 ∩ E4, E4 ∩ E1

and
E1 ∩ ex±1,3, E3 ∩ ex±1,3, E2 ∩ ex±2,4, E4 ∩ ex±2,4

are nonempty and irreducible.
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E1

E2

E3

E4

ex+1,3

ex−1,3

ex−2,4

ex+2,4

Figure 6.1

Step 3. We draw the vertexes and the 1-dimensional simplices except

ex1 and ex2. Then, we obtain the graph of Figure 6.1. We consider the

following sphere

R4 ⊃ S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1}.

We arrange the vertexes except ex1 and ex2 on S2 = S3 ∩ [w = 0] and

arrange the vertexes ex1 and ex2 at (0, 0, 0, 1) and (0, 0, 0,−1) respectively.
We glue together the vertex exi (i = 1, 2) and each vertex on S2 = S3∩[w =

0].

Next, we describe the 2-dimensional simplices. First, we consider the

intersections E1∩E2∩ex+1,3 and E2∩E3∩ex+1,3. The intersection E1∩E2∩
E3 = E+

1,3 ∩ E2 is nonempty and irreducible in R̃5,k. We take the blowing

up along E+
1,3. Then, the intersections E1 ∩ E2 ∩ ex+1,3 and E2 ∩ E3 ∩ ex+1,3

are irreducible. Second, we consider the intersections E1 ∩ ex+1,3 ∩ ex−1,3 and

E3 ∩ ex+1,3 ∩ ex−1,3. We substitute d2 = 0 for the matrices (6.16). Then,

we have that Dc2 �=0,+
1,3 ∩ [d2 = 0] is irreducible. Therefore, the intersection

E+
1,3 ∩ E−1,3 is irreducible. We take the blowing up along E+

1,3. Then, the

intersections E1 ∩ ex+1,3 ∩ ex−1,3 and E3 ∩ ex+1,3 ∩ ex−1,3 are irreducible. Then,

we glue together the triangles

(E1, E2, ex
+
1,3), (E2, E3, ex

+
1,3), (E1, ex

+
1,3, ex

−
1,3) and (E3, ex

+
1,3, ex

−
1,3)

in the graph of Figure 6.1. In the same way as above, we glue together

each triangle. Then, we obtain that the complex of Figure 3 is a simplicial

decomposition of S2. Third, we consider the intersection of 3-tuple of com-

ponents of the boundary divisor containing ex1 or ex2. The divisors ex1 and

ex2 are the exceptional divisors of the blowing up along the orbits of s1 and

s2. The orbits of s1 and s2 are contained in Di ∩Di+1 (i = 1, . . . , 4), D+
1,3,

SUBMITTED ARTICLE : PREPRINT.TEX

Figure 6.1.

We describe the intersections of the other pairs. We consider the inter-
section of ex+

1,3 and E4. If we substitute e4 = 0 for the matrix (6.16), then
we have d4 = 0. Moreover, we have b4 = 0 or c4 = 0. Then, we obtain that

′D+
1,3 ∩ [e4 = 0] = {s1, s2} ∪ [points whose orbits are not closed].

By the blowing up along s1 and s2, we obtain that the intersection of E+
1,3

and E4 is empty (see [11, Lemma 6.6]). Then, the intersection of ex+
1,3 and

E4 is empty. In the same way as above, the intersections

ex−1,3 ∩ E2, ex+
2,4 ∩ E3, ex−2,4 ∩ E1

are empty. On the other hand, the intersections

ex+
1,3 ∩ E2, ex

−
1,3 ∩ E4, ex

+
2,4 ∩ E1, ex

−
2,4 ∩ E3, ex

+
1,3 ∩ ex

−
1,3, ex

+
2,4 ∩ ex

−
2,4

are nonempty and irreducible. Next, we consider the intersections of the
pairs containing ex1 or ex2. The orbit of the point s1 (resp. s2) is contained
in the components D1, . . . , D4 and D±1,3, D

±
2,4, respectively. Here, D±1,3 and

D±2,4 are the irreducible components of D1,3 and D2,4. Then, the intersec-
tions exi ∩Ej and exi ∩ ex±k,k+2 are nonempty and irreducible for i = 1, 2,
j = 1, . . . , 4 and k = 1, 2. On the other hand, the orbits of the point s1 and
s2 are not intersect. Then, the intersection of ex1 and ex2 is empty.

Step 3. — We draw the vertexes and the 1-dimensional simplices except
ex1 and ex2. Then, we obtain the graph of Figure 6.1. We consider the
following sphere

R4 ⊃ S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1}.

We arrange the vertexes except ex1 and ex2 on S2 = S3 ∩ [w = 0] and
arrange the vertexes ex1 and ex2 at (0, 0, 0, 1) and (0, 0, 0,−1) respectively.
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We glue together the vertex exi (i = 1, 2) and each vertex on S2 = S3∩[w =
0].
Next, we describe the 2-dimensional simplices. First, we consider the

intersections E1∩E2∩ex+
1,3 and E2∩E3∩ex+

1,3. The intersection E1∩E2∩
E3 = E+

1,3 ∩ E2 is nonempty and irreducible in R̃5,k. We take the blowing
up along E+

1,3. Then, the intersections E1 ∩E2 ∩ ex+
1,3 and E2 ∩E3 ∩ ex+

1,3
are irreducible. Second, we consider the intersections E1∩ ex+

1,3∩ ex
−
1,3 and

E3 ∩ ex+
1,3 ∩ ex

−
1,3. We substitute d2 = 0 for the matrices (6.16). Then,

we have that Dc2 6=0,+
1,3 ∩ [d2 = 0] is irreducible. Therefore, the intersection

E+
1,3 ∩ E

−
1,3 is irreducible. We take the blowing up along E+

1,3. Then, the
intersections E1 ∩ ex+

1,3 ∩ ex
−
1,3 and E3 ∩ ex+

1,3 ∩ ex
−
1,3 are irreducible. Then,

we glue together the triangles

(E1, E2, ex
+
1,3), (E2, E3, ex

+
1,3), (E1, ex

+
1,3, ex

−
1,3) and (E3, ex

+
1,3, ex

−
1,3)

in the graph of Figure 6.1. In the same way as above, we glue together
each triangle. Then, we obtain that the complex of Figure 3 is a simplicial
decomposition of S2. Third, we consider the intersection of 3-tuple of com-
ponents of the boundary divisor containing ex1 or ex2. The divisors ex1 and
ex2 are the exceptional divisors of the blowing up along the orbits of s1 and
s2. The orbits of s1 and s2 are contained in Di ∩Di+1 (i = 1, . . . , 4), D+

1,3,
D−1,3, D

+
2,4 and D−2,4, respectively. Then, the intersections Ei ∩ Ei+1 ∩ exj ,

E+
k,k+2∩exj and E

−
k,k+2∩exj are nonempty and irreducible for i = 1, . . . , 4,

j = 1, 2, and k = 1, 2. We take the blowing up along E+
1,3 and E−1,3. Then,

we can glue together the 3-tuples which have either exi or exi in the graph.
Lastly, we describe the 3-dimensional simplices. We can glue together

the 4-tuples of components of the boundary divisor such that the 4-tuples
have either exi or exi and 3-tuples expect exi or exi are glued together. On
the other hand, the intersections of the 4-tuples which have the vertexes
expect exi or exi are empty. Then, we obtain that the boundary complex
of the compactification X̃ of R5,k is simplicial decomposition of S3. �
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