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INVERSE SCATTERING AT A FIXED ENERGY FOR
DISCRETE SCHRÖDINGER OPERATORS ON THE

SQUARE LATTICE

by Hiroshi ISOZAKI & Hisashi MORIOKA (*)

Abstract. — We study an inverse scattering problem for the discrete Schrö-
dinger operator on the square lattice Zd, d > 2, with compactly supported poten-
tial. We show that the potential is uniquely reconstructed from a scattering matrix
for a fixed energy.
Résumé. — Nous étudions un problème inverse de diffusion pour l’opérateur

de Schrödinger discret sur un réseau carré Zd, d > 2, avec un potentiel à support
compact. Nous montrons que le potentiel est uniquement determiné en utilisant la
matrice de diffusion à énergie fixée.

1. Introduction

1.1. Inverse scattering

Let Zd = {n = (n1, · · · , nd) ; ni ∈ Z, 1 6 i 6 d} be the square lat-
tice, and e1 = (1, 0, · · · , 0), · · · , ed = (0, · · · , 0, 1) the standard basis of
Zd. Throughout the paper, we shall assume that d > 2. The Schrödinger
operator Ĥ on Zd is defined by

Ĥ = Ĥ0 + V̂ ,

where for f̂ = {f̂(n)}n∈Zd ∈ `2(Zd) and n ∈ Zd(
Ĥ0f̂

)
(n) = −1

4

d∑
j=1

{
f̂(n+ ej) + f̂(n− ej)

}
+ d

2 f̂(n),
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(V̂ f̂)(n) = V̂ (n)f̂(n).
We impose the following assumption on V̂ :

(A) V̂ is real-valued, and V̂ (n) = 0 except for a finite number of n.

Under this assumption, σ(Ĥ0) = σess(Ĥ) = [0, d], and the wave operators

(1.1) Ŵ (±) = s− lim
t→±∞

eitĤe−itĤ0 (in `2(Zd))

exist and are asymptotically complete, i.e. their ranges coincide with
Hac(Ĥ), the absolutely continuous subspace for Ĥ. Hence the scattering
operator

(1.2) Ŝ =
(
Ŵ (+))∗Ŵ (−)

is unitary. Associated with Ĥ0, we have a unitary spectral representation

F̂0 : `2(Zd)→ L2((0, d);L2(Mλ); dλ),

where

(1.3) Mλ =
{
x ∈ Td ; d−

d∑
j=1

cosxj = 2λ
}
,

(1.4) Td = Rd/(2πZd) = [−π, π]d.

Then F̂0Ŝ(F̂0)∗ has the following direct integral representation

(1.5) F̂0Ŝ(F̂0)∗ =
∫ d

0
⊕S(λ) dλ.

Here S(λ) is a unitary operator on L2(Mλ), and is called the S-matrix.
Our main concern in this paper is the inverse scattering, i.e. reconstruc-

tion of the potential V̂ from the knowledge of the S-matrix. In [10] (see
also [6]), it has been proven that given S(λ) for all energy λ ∈ (0, d) \ Z,
one can uniquely reconstruct the potential.
It is worthwhile to recall the case of the continuous model, i.e. the

Schrödinger operator −∆ + V (x) in L2(Rd). In this case, it is known that
only one arbitrarily fixed energy λ > 0 is sufficient to reconstruct the com-
pactly supported (and also exponentially decaying) potential V (x) from the
S-matrix S(λ). This was proved for d > 3 in 1980’s by Sylvester-Uhlmann
[22], Nachman [15], Khenkin-Novikov [12], Novikov [18]. There are two
methods. One way is applicable to the compactly supported potential and
based on the equivalence of the S-matrix and the Dirichlet-Neumann map
(called D-N map hereafter) for the boundary value problem in a bounded
domain. The other way relies on Faddeev’s theory for the multi-dimensional
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DISCRETE SCHRÖDINGER OPERATORS 1155

inverse scattering, in particular, on Faddeev’s scattering amplitude, and al-
lows exponentially decaying potentials. In both cases, Sylvester-Uhlmann’s
complex geometrical optics solutions to the Schrödinger equation, or Fad-
deev’s exponentially growing Green function played a crucial role. (See e.g.
an expositiory article [9].) However, since both of these methods use the
complex Born approximation, the case d = 2 remained open rather a long
time. Note that for the potential of the form coming from electric conduc-
tivities, the 2-dim. inverse scattering problem for a fixed energy was solved
by Nachman [16]. See also [8]. Recently Bukhgeim [2] proved that, based on
Carleman estimates, the D-N map determines the potential for the 2-dim.
boundary value problem. For the partial data problem, see [7]. This result
can be applied to the inverse scattering and to derive an affirmative answer
to the uniqueness of the potential for a given potential of fixed energy.

1.2. Main result

To study the inverse scattering from a fixed energy for the discrete model,
we adopt the above-mentioned former approach. Namely, we assume that
the potential is compactly supported, and derive the equivalence of the
S-matrix and the D-N map in a bounded domain.

We take a bounded set Ωint ⊂ Zd which contains the support of V̂ , and
define Ĥint = Ĥ0 + V̂ on Ωint with Dirichlet boundary condition (see §6).
We need to restrict the energy in some interval. Let

(1.6) Id =
{

(0, 1) ∪ (1, 2), for d = 2,
(0, 1/2) ∪ (d− 1/2, d), for d > 3.

The following theorem is our main aim.

Theorem 1.1. — Fix λ ∈ Id \ σ(Ĥint) arbitrarily. Then from the S-
matrix S(λ), one can uniquely reconstruct the potential V̂ .

Our proof not only states the uniqueness, but also explains the procedure
of the reconstuction of the potential. In fact, in Theorem 7.6, we derive
an explicit formula relating the S-matrix with the D-N map, which is a
discrete analogue of the formula known in the continuous case ([15], [8],
[17]). Furthermore, in the discrete case, there exists a finite procedure for
the reconstruction of the potential from the D-N map, which is a discrete
layer-stripping method.

TOME 65 (2015), FASCICULE 3
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1.3. The plan of the proof

After the preparation of basic spectral results in §2 and §3, the first task
is to relate the S-matrix with the far-field pattern at infinity of the gener-
alized eigenfunction of Ĥ. This is done in §4 by observing the asymptotic
expansion at infinity of the Green operator of Ĥ. In §5, we introduce the
radiation condition for the Helmholtz equation and prove the uniqueness
theorem for the solution. We then study the spectral theory for the exterior
problem in §6, with the aid of which we obtain in §7 the equivalence of the
S-matrix and the D-N map for a boundary value problem in a bounded
domain (Theorem 7.6). The potential is then reconstructed from the D-N
map in §8 via a constructive procedure.
Although the main stream of the proof is the same as the continuous

case, we need to be careful about the difference in the case of the discrete
model. The first one is the asymptotic expansion of the resolvent at infinity.
This is based on the stationary phase method on the surfaceMλ defined by
(1.3), which is not strictly convex in general. This is the reason we restrict
the energy on Id. The second one, which is more serious, occurs when
we compare the far-field patterns of solutions to Schrödinger equations
in the whole space with those of the exterior domain. We need a Rellich
type theorem (see Theorem 5.7) and a unique continuation property for the
discrete Helmholtz equation, which do not seem to be well-known. However,
the former’s precursor has been given by Shaban-Vainberg [21], and the
latter follows rather easily from it. As a byproduct, it proves the non-
existence of embedded eigenvalues for Ĥ ([11]). We then go into the final
step of computing the potential from the D-N map. In the continuous case,
this is an elliptic Cauchy problem from the boundary, hence is ill-posed.
However, in the discrete case, this is a finite dimensional problem, therefore
a finite computational procedure. The whole proof does not depend on the
space dimension. In contrast, it took a long time to get the 2-dim. result
in the continuous case.

1.4. Remarks for references

There are important precursors of this paper. The work of Eskina [6]
has already announced the result of the inverse scattering for discrete
Schrödinger operators. In particular, this paper stresses the effectiveness
of several complex variables in the study of discrete Schrödinger operators.
Shaban-Vainberg [21] studied the spectral theory of discrete Schrödinger

ANNALES DE L’INSTITUT FOURIER
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operators. They introduced the radiation condition, proved the limiting ab-
sorption principle, and derived the asymptotic expansion of the resolvent
at infinity including the case of non-convex surface.
The computation of the D-N map for the discrete interior boundary value

problem was done in the work of Oberlin [19]. See also Curtis-Morrow [4]
and Curtis-Mooers-Morrow [3].

1.5. Notation

C’s denote various constants. For any x, y ∈ Rd, x · y = x1y1 + · · ·+xdyd
denotes the ordinary scalar product in the Euclidean space where xj and yj
are j-th component of x and y respectively. For any x ∈ Rd, |x| = (x ·x)1/2

is the Euclidean norm. Note that even for n = (n1, · · · , nd) ∈ Zd, we use
|n| =

(∑d
j=1 |nj |2

)1/2. For two Banach spaces X and Y , B(X;Y ) denotes
the space of bounded operators from X to Y . For a self-adjoint operator
A on a Hilbert space, σ(A), σess(A), σdisc(A), σac(A) and σp(A) denote
its spectrum, essential spectrum, discrete spectrum, absolutely continuous
spectrum and point spectrum, respectively. For a set S, #S denotes the
number of elements in S. We use the notation

〈t〉 = (1 + t2)1/2, t ∈ R.

2. Momentum representation

2.1. Discrete Fourier transform

From the view point of dynamics on the lattice, the torus Td in (1.4)
plays the role of momentum space. Let U be the unitary operator from
`2(Zd) to L2(Td) defined by

(U f̂)(x) = (2π)−d/2
∑
n∈Zd

f̂(n)e−in·x.

Using this discrete Fourier transformation, the Hamiltonian Ĥ is repre-
sented by

H = U Ĥ U∗ = H0 + V, H0 = U Ĥ0 U∗, V = U V̂ U∗,

where H0 is the multiplcation operator:

(2.1) H0 = 1
2

(
d−

d∑
j=1

cosxj
)

=: h(x),

TOME 65 (2015), FASCICULE 3



1158 Hiroshi ISOZAKI & Hisashi MORIOKA

and V is the convolution operator

(V u)(x) = (2π)−d/2
∫
Td
V (x− y)u(y)dy,

V (x) = (2π)−d/2
∑
n∈Zd

V̂ (n)e−in·x.

2.2. Sobolev and Besov spaces

We define operators N̂j and Nj by(
N̂j f̂)(n) = nj f̂(n), Nj = UN̂jU∗ = i

∂

∂xj
.

We put N = (N1, · · · , Nd), and let N2 be the self-adjont operator defined
by

N2 =
d∑
j=1

N2
j = −∆, on Td,

where ∆ denotes the Laplacian on Td = [−π, π]d with periodic boundary
condition. We put

|N | =
√
N2 =

√
−∆.

For s ∈ R, let Hs be the completion of D(|N |s) with respect to the norm
‖u‖s = ‖〈N〉su‖ :

Hs = {u ∈ D′(Td) ; ‖u‖s = ‖〈N〉su‖ <∞},

where D′(Td) denotes the space of distribution on Td. Put H = H0 =
L2(Td).
For a self-adjoint operator T , let χ(a 6 T < b) denote the operator

χI(T ), where χI(λ) is the characteristic function of the interval I = [a, b).
The operators χ(T < a) and χ(T > b) are defined similarly. Using the
series {rj}∞j=0 with r−1 = 0, rj = 2j (j > 0), we define the Besov space B
by

B =
{
f ∈ H ; ‖f‖B =

∞∑
j=0

r
1/2
j ‖χ(rj−1 6 |N | < rj)f‖ <∞

}
.

Its dual space B∗ is the completion of H by the following norm

‖u‖B∗ = sup
j>0

r
−1/2
j ‖χ(rj−1 6 |N | < rj)u‖.

The following Lemma 2.1 is proved in the same way as in [1].

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — (1) There exists a constant C > 0 such that

C−1‖u‖B∗ 6
(

sup
R>1

1
R
‖χ(|N | < R)u‖2

)1/2
6 C‖u‖B∗ .

Therefore, in the following, we use

‖u‖B∗ =
(

sup
R>1

1
R
‖χ(|N | < R)u‖2

)1/2

as a norm on B∗.
(2) For s > 1/2, the following inclusion relations hold :

Hs ⊂ B ⊂ H1/2 ⊂ H ⊂ H−1/2 ⊂ B∗ ⊂ H−s.

We also put Ĥ = `2(Zd), and define Ĥs, B̂, B̂∗ by replacing N by N̂ .
Note that Ĥs = U∗Hs and so on. In particular, Parseval’s formula implies
that

‖u‖2Hs = ‖û‖2
Ĥs

=
∑
n∈Zd

(1 + |n|2)s|û(n)|2,

‖u‖2B∗ = ‖û‖2
B̂∗

= sup
R>1

1
R

∑
|n|<R

|û(n)|2,

û(n) being the Fourier coefficient of u(x).

2.3. Resolvent estimate

Lemma 2.2. — (1) σ(Ĥ0) = σac(Ĥ0) = [0, d].
(2) σess(Ĥ) = [0, d], σdisc(Ĥ) ⊂ R \ [0, d].
(3) σp(Ĥ) ∩ (0, d) = ∅.

Proof. — The assertions (1), (2) follow from (2.1) and Weyl’s theorem.
The assertion (3) is proven in [11]. �

Let R̂(z) = (Ĥ − z)−1.

Theorem 2.3. — (1) Let s > 1/2 and λ ∈ (0, d) \ Z. Then there exists
a norm limit R̂(λ ± i0) := limε→0 R̂(λ ± iε) ∈ B(Ĥs; Ĥ−s). Moreover, we
have

(2.2) sup
λ∈J
‖R̂(λ± i0)‖B(B̂;B̂∗) <∞.

for any compact interval J in (0, d) \ Z. The mapping (0, d) \ Z 3 λ 7→
R̂(λ ± i0) is norm continuous in B(Ĥs; Ĥ−s) and weakly continuous in

TOME 65 (2015), FASCICULE 3



1160 Hiroshi ISOZAKI & Hisashi MORIOKA

B(B̂ ; B̂∗).
(2) Ĥ has no singular continuous spectrum.

For the proof of Theorem 2.3, see Lemma 2.5 and Theorem 2.6 of [10].
Note that

(2.3) ∇h(x) = 0⇐⇒ h(x) ∈ {0, 1, · · · , d}.

This is the reason why the set of thresholds {0, 1, · · · , d} appears.

3. Spectral representations and S-matrices

We recall spectral representations and S-matrices derived in §3 of [10].

3.1. Spectral representation on the torus

We begin with the spectral representation in the momentum space. Let
us note

h(x) = 1
2

(
d−

d∑
j=1

cosxj
)

=
d∑
j=1

sin2
(xj

2

)
,

which suggests that the variables y = (y1, · · · , yd) ∈ [−1, 1]d:

yj = sin xj2 , xj = 2 arcsin yj

are convenient to describe H0. Note that for λ ∈ (0, d) \ Z

(3.1) x(
√
λθ) =

(
2 arcsin(

√
λθ1), · · · , 2 arcsin(

√
λθd)

)
, θ ∈ Sd−1,

gives a parametric representation of

(3.2) Mλ =
{
x ∈ Td ; h(x) = λ

}
.

We equip Mλ with the measure

dM̃λ = (
√
λ)d−2

2 J(
√
λθ)dθ,

J(y) = χ(y)
d∏
j=1

2
cos(xj/2) = χ(y)

d∏
j=1

2√
1− y2

j

,

χ(y) being the characteristic function of [−1, 1]d. Then we have

dx = J(y)dy = dM̃λ dλ, dM̃λ = dMλ

|∇xh(x)| ,

ANNALES DE L’INSTITUT FOURIER
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where dMλ is the measure on Mλ induced from dx. Let L2(Mλ) be the
Hilbert space with inner product

(ϕ,ψ)L2(Mλ) =
∫
Mλ

ϕψ dM̃λ.

We define F0(λ)f = TrMλ
f , where TrMλ

is the trace onMλ. More precisely,

(3.3) (F0(λ)f) (θ) = f(x(
√
λθ)).

It then follows for R0(z) = (H0 − z)−1

1
2πi ((R0(λ+ i0)−R0(λ− i0))f, g)L2(Td) = (F0(λ)f,F0(λ)g)L2(Mλ),

for λ ∈ (0, d) \ Z and f, g ∈ C1(Td). We then have by (2.2)

(3.4) F0(λ) ∈ B(B;L2(Mλ)).

Using this formula, we can derive the spectral representations of H0 and
H. However, we omit it.

3.2. Spectral representation on the lattice

We define the distribution δ(h(x)− λ) ∈ D′(Td) by∫
Td
f(x)δ(h(x)− λ)dx :=

∫
Mλ

f(x) dM̃λ, f ∈ C∞(Td).

Then, from the definition of F0(λ)∗:(
F0(λ)f, φ

)
L2(Mλ) =

(
f, F0(λ)∗φ

)
L2(Td),

we see that F0(λ)∗ defines a distribution on Td by the following formula

F0(λ)∗φ = φ(x)δ(h(x)− λ).

Here the right-hand side makes sense when, for example, φ ∈ C∞(Mλ)
and is extended to a C∞-function near Mλ. Then F̂0(λ)∗φ = U∗F0(λ)∗φ
is computed as

(2π)−d/2
∫
Td
ein·xφ(x)δ(h(x)− λ)dx

=(2π)−d/2
∫
Mλ

ein·xφ(x) dM̃λ

=(2π)−d/2
∫
Sd−1

ein·x(
√
λθ)φ(x(

√
λθ)) (

√
λ)d−2

2 J(
√
λθ) dθ.

(3.5)

TOME 65 (2015), FASCICULE 3
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In the lattice space, we define ψ̂(0)(λ, θ) =
{
ψ̂(0)(n, λ, θ)

}
n∈Zd , where

ψ̂(0)(n, λ, θ) = (2π)−d/2 (
√
λ)d−2

2 ein·x(
√
λθ)J(

√
λθ)

= (2π)−d/22d−1(
√
λ)d−2χ(

√
λθ) ein·x(

√
λθ)∏d

j=1 cos
(
xj(
√
λθ)/2

) .

(3.6)

Here χ(y) is the characteristic function of [−1, 1]d, and x(
√
λθ) is defined

by (3.1). By (3.5) and (3.6), we have for φ ∈ L2(Mλ)

(F̂0(λ)∗φ)(n) = (2π)−d/2
∫
Mλ

ein·xφ(x) dM̃λ

=
∫
Sd−1

ψ̂(0)(n, λ, θ)φ(x(
√
λθ)) dθ.

We can also see for rapidly decreasing f̂ on Zd

(F̂0(λ)f̂)(x(
√
λθ)) = (2π)−d/2

∑
n∈Zd

e−in·x(
√
λθ)f̂(n).

The spectral representation for Ĥ is constructed as follows. We put

(3.7) F̂ (±)(λ) = F̂0(λ)
(

1− V̂ R̂(λ± i0)
)
, λ ∈ (0, d) \ Z.

Then by (3.4) and (2.2)

F̂ (±)(λ) ∈ B(B̂ ;L2(Mλ)).

We define the operator F̂ (±) by
(
F̂ (±)f

)
(λ) = F̂ (±)(λ)f for f ∈ B̂.

Theorem 3.1. — (1) F̂ (±) is uniquely extended to a partial isometry
with initial set Hac(Ĥ) and final set L2(Td). Moreover it diagonalizes Ĥ:

(3.8)
(
F̂ (±)Ĥf̂

)
(λ) = λ

(
F̂ (±)f̂

)
(λ), f̂ ∈ Hac(Ĥ).

(2) The following inversion formula holds:

(3.9) f̂ = s− lim
N→∞

∫
IN

F̂ (±)(λ)∗
(
F̂ (±)f̂

)
(λ)dλ, f̂ ∈ Hac(Ĥ),

where IN is a union of compact intervals in (0, d) \ Z such that IN →
(0, d) \ Z.
(3) F̂ (±)(λ)∗ ∈ B(L2(Mλ) ; B̂∗) is an eigenoperator for Ĥ in the sense that

(Ĥ − λ)F̂ (±)(λ)∗φ = 0, φ ∈ L2(Mλ).

(4) The wave operators

Ŵ (±) = s− lim
t→±∞

eitĤe−itĤ0

ANNALES DE L’INSTITUT FOURIER
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exist and are complete. Moreover,

Ŵ (±) =
(
F̂ (±))∗F̂0.

3.3. Scattering matrix

The scattering operator Ŝ is defined by

Ŝ =
(
Ŵ+

)∗
Ŵ−.

We conjugate it by the spectral representation. Let

S = F̂0Ŝ(F̂0)∗,

which is unitary on L2((0, d);L2(Mλ); dλ). Since S commutes with Ĥ0, S
is written as a direct integral

S =
∫

(0,d)
⊕S(λ)dλ.

The S-matrix, S(λ), is unitary on L2(Mλ) and has the following represen-
tation.

Theorem 3.2. — Let λ ∈ (0, d) \ Z. Then S(λ) is written as

S(λ) = 1− 2πiA(λ),

where

(3.10) A(λ) = F̂0(λ)
(

1− V̂ R̂(λ+ i0)
)
V̂ F̂0(λ)∗ = F̂ (+)(λ)V̂ F̂0(λ)∗,

and is called the scattering amplitude.

4. Asymptotic expansion of the resolvent at infinity

4.1. Stationary phase method on a surface

Let S be a compact C∞-surface in Rd of codimension 1, and dS the
measure on S induced from the Euclidean metric. For a(x) ∈ C∞(S) and
k ∈ Rd, we put

(4.1) I(k) =
∫
S

eix·ka(x)dS.

TOME 65 (2015), FASCICULE 3
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Theorem 4.1. — Let N(x) be an outward unit normal field on S, and
W (x), K(x) the Weingarten map and the Gaussian curvature at x ∈ S,
respectively. Assume that there exists a finite number of points x(j)

± ∈ S,
j = 1, · · · , ν, such that

k/|k| = ±N(x(j)
± ),

and that K(x(j)
± ) 6= 0, j = 1, · · · , ν. Then we have as ρ = |k| → ∞

I(k) = ρ−(d−1)/2
ν∑
j=1

eik·x
(j)
+ A+(x(j)

+ )

+ ρ−(d−1)/2
ν∑
j=1

eik·x
(j)
− A−(x(j)

− ) +O(ρ−(d+1)/2),
(4.2)

where

(4.3) A±(x) = (2π)(d−1)/2|K(x)|−1/2e∓sgnW (x)πi/4a(x).

and sgnW (x) = n+−n−, n+ (n−) being the number of positive (negative)
eigenvalues of W (x).

For the proof, see Lemma and appendix of [14]. See also [13]. If S is
represented by xd = f(x′), x′ = (x1, · · · , xd−1), the Gaussian curvature is
given by

(4.4) K(x) =
( d−1∑
i=1

( ∂f
∂xi

(x′)
)2 + 1

)−(d+1)/2
det
(
− ∂2f

∂xi∂xj
(x′)

)
.

For d = 2, the Gaussian curvature of the curve f(x1, x2) = 0 is computed
as

(4.5)
∣∣K(x1, x2)

∣∣ =
∣∣fx2x2 · f2

x1
− 2fx1x2 · fx1fx2 + fx1x1 · f2

x2

∣∣
(f2
x1

+ f2
x2

)3/2 .

4.2. Convexity of Mλ

As will be seen below, the shape of Mλ depends highly on the space
dimension and λ. We know that ∇h(x) 6= 0 on Mλ if λ 6∈ Z. Assume that
at a point in Mλ, ∂h/∂xd = (sin xd)/2 6= 0. We take x1, · · · , xd−1 as local
coordinates, and differentiate h(x) = λ to get

sin xi + sin xd
∂xd
∂xi

= 0,

δij cosxj + cosxd
∂xd
∂xi

∂xd
∂xj

+ sin xd
∂2xd
∂xi∂xj

= 0,
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for i, j = 1, · · · , d− 1. We put ϕ =
∑d
j=1 kjxj . Then we have on Mλ

∂ϕ

∂xi
= ki + kd

∂xd
∂xi

= ki − kd
sin xi
sin xd

,

∂2ϕ

∂xi∂xj
= kd

∂2xd
∂xi∂xj

= − kd
(sin xd)3

(
δij cosxj(sin xd)2 + sin xi sin xj cosxd

)
.

Suppose ∂ϕ/∂xi = 0, i = 1, · · · , d− 1. Then

ki = ρ sin xi, i = 1, · · · , d,

ρ = |k|
(
(sin x1)2 + · · ·+ (sin xd)2)−1/2

.

Therefore we have

(4.6) ∂2ϕ

∂xi∂xj
= − 1

(sin xd)2ρ

(
δijk

2
d cosxj + kikj cosxd

)
.

Now let us compute the determinant det
(
∂2ϕ/∂xi∂xj

)
.

(1) The case d = 2. Using ki = ρ sin xi, we have
k2

2 cosx1 + k2
1 cosx2 = ρ2(cosx1 + cosx2)(1− cosx1 cosx2)

= 2ρ2(1− λ)(1− cosx1 cosx2).
Since λ 6= 1, this vanishes if and only if cosx1 = cosx2 = ±1, i.e. x1 = 0
or π, and x2 = 0 or π. However in this case, h(x) =

∑2
i=1 sin2(xi/2) ∈ Z.

This implies that

(4.7) ∂2ϕ/∂x2
1 6= 0 for λ ∈ (0, 1) ∪ (1, 2).

ThereforeMλ is a closed curve in T2, and convex in the fundamental domain
R2/(2πZ)2, as is seen from the figures (Figures 4.1, 4.2, 4.3) below. Let us
remark here, in view of Figure 3, in the case 1 < λ < 2, it is convenient to
shift the fundamental domain so that R2/(2πZ)2 = [0, 2π]2.
(2) The case d = 3. By a direct computation, we have

det
(
δijk

2
3 cosxj + kikj cosx3

)
= k2

3
(
k2

1 cosx2 cosx3 + k2
2 cosx3 cosx1 + k2

3 cosx1 cosx2
)
,

which can vanish when e.g. cosx1 = cosx2 = 0, cosx3 = 1/2. Therefore in
3-dimensions, Mλ may not be convex. The following Figures 4.4, 4.5, 4.6
explain the situation in 3-dimensions.
Here, we note the following simple lemma.

Lemma 4.2. — If −1 6 yi 6 1, i = 1, · · · , d, and d−1 < y1+· · ·+yd < d,
we have yi > 0, i = 1, · · · d.
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Figure 4.1. d = 2, λ = 0.25. Figure 4.2. d = 2, λ = 0.75.

Figure 4.3. d = 2, λ = 1.25.

Figure 4.4. d = 3, λ = 0.45. Figure 4.5. d = 3, λ = 2.55.
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Figure 4.6. d = 3, λ = 1.45.

Proof. — Suppose e.g. yd 6 0. Then

y1 + y2 + · · ·+ yd 6 y1 + · · ·+ yd−1 6 d− 1,

which is a contradiction. �

By (4.6), we have
d−1∑
i,j=1

∂2ϕ

∂xi∂xj
ξiξj = − 1

(sin xd)2ρ

(
k2
d

d−1∑
i=1

(
cosxi

)
ξ2
i +

(
cosxd

)( d−1∑
i=1

kiξi

)2
)

which has a definite sign if cosxi > 0, i = 1, · · · , d and sin xd > 0. By
virtue of Lemma 4.2, it happens for 0 < λ < 1/2. Let us also note that for
d−1/2 < λ < d, we have the same conclusion since cosxi < 0 (i = 1, · · · , d),
sin xd < 0. Recall that when d > 3 the definition of the Gaussian curvature
depends on the choice of direction of the unit normal N(x) on S. We choose
N(x) in such a way that K(x) > 0 on S.

With this convention, we have proven the following lemma. Recall the
interval Id defined by (1.6).

Lemma 4.3. — If λ ∈ Id, all the principal curvature of Mλ are positive.

As has been noted above, in the case 1 < λ < 2 (d = 2) or d−1/2 < λ <

d (d > 3), we should shift the fundamental domain so that Rd/(2πZ)d =
[0, 2π]d (See Figures 3, 4, 5). To fix the idea, in the sequel, we deal with
the case Rd/(2πZ)d = Td = [−π, π]d.
Under the assumption of Lemma 4.3, Mλ is strictly convex. Let N(x) be

the unit normal field on Mλ specified as above. Then for any ω ∈ Sd−1,
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there exists a unique pair of points x±(λ, ω) in Mλ such that

(4.8) N(x±(λ, ω)) = ±ω.

Since N(−x) = −N(x), we see that x−(λ, ω) = −x+(λ, ω). Therefore, we
let

(4.9) x±(λ, ω) = ±x∞(λ, ω).

We can now compute the asymptotic expansion of the free resolvent(
R̂0(z)f̂

)
(m) =

∑
n∈Zd

r0(m− n, z)f̂(n),(4.10)

r0(k, z) = (2π)−d
∫
Td

eik·x

h(x)− z dx.(4.11)

We put

(4.12) ωk = k/|k|, k ∈ Rd \ {0}.

Lemma 4.4. — Assume λ ∈ Id. Then we have as |k| → ∞

r0(k, λ± i0)

= ±i(2π|k|)−(d−1)/2e±i(k·x∞(λ,ωk)−(d−1)π/4)K(x±(λ, ωk))−1/2

|∇xh(x±(λ, ωk))|
+O(|k|−(d+1)/2).

Proof. — Take ε > 0 small enough so that

(λ− 2ε, λ+ 2ε) ⊂
{

(0, 1), d = 2,
(0, 1/2), d > 3.

Let χ(t) ∈ C∞0 (R) be such that χ(t) = 1 for |t| < ε/2, χ(t) = 0 for |t| > ε,
and assume that |Re z − λ| < ε/4. We split r0(k, z) into two parts

r0(k, z) = A(k, z) +B(k, z),

A(k, z) = (2π)−d
∫
Td

χ(h(x)− λ)
h(x)− z eik·xdx.

Then, by integration by parts, for all N > 0

B(k, z) = O(|k|−N ), |k| → ∞.

Letting S(t) =
{
x ∈ Td ; h(x) = t

}
, we write A(k, z) as

A(k, z) = (2π)−d
∫ λ+ε

λ−ε

a(t, k)
t− z

dt, a(t, k) =
∫
S(t)

eik·x
χ(t− λ)
|∇xh(x)|dS(t).
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We then have

(4.13)
∫ λ+ε

λ−ε

a(t, k)
t− λ∓ i0dt = ±iπa(λ, k) + p.v.

∫ λ+ε

λ−ε

a(t, k)
t− λ

dt.

By Theorem 4.1, for t ∈ (λ− ε, λ+ ε), a(t, k) admits the asymptotic expan-
sion

a(t, k) = a0(t, k) +O(|k|−(d+1)/2),

a0(t, k) =
(2π
|k|

)(d−1)/2
eik·x∞(t,ωk)−(d−1)πi/4χ(t− λ)K(x+(t, ωk))−1/2

|∇xh(x+(t, ωk))|

+
(2π
|k|

)(d−1)/2
e−ik·x∞(t,ωk)+(d−1)πi/4χ(t− λ)K(x−(t, ωk))−1/2

|∇xh(x−(t, ωk))|
=: a(+)

0 (t, k) + a
(−)
0 (t, k),

(4.14)

where x±(t, ωk) is a stationary phase point on S(t).
We compute the asymptotic expansion of the 2nd term of the right-hand

side of (4.13). Differentiating h(x±(t, ωk)) = t, we have

∇xh(x±(t, ωk)) · ∂tx±(t, ωk) = 1.

Therefore, letting

s = ωk · x±(t, ωk)− ωk · x±(λ, ωk),

we have
ds

dt
= ωk · ∂tx±(t, ωk) = ∇xh(x±(t, ωk))

|∇xh(x±(t, ωk)| · ∂tx±(t, ωk) = 1
|∇xh(x±(t, ωk))| ,

which implies
t− λ = s|∇xh(x±(λ, ωk))|+O(s2).

We then have
1

t− λ
χ(t− λ)K(x±(t, ωk))−1/2

|∇xh(x±(t, ωk)|
dt

ds
= b±(s, ωk)

s
,

where b±(s, ωk) is a smooth function such that

b±(0, ωk) = K(x±(λ, ωk))−1/2

|∇xh(x±(λ, ωk))| .

Taking δ > 0 small enough, we have by integration by parts

p.v.
∫ δ

−δ

e±i|k|s

s
b±(s, ωk)ds = ±2i

∫ |k|δ
0

sin s
s
ds b±(0, ωk) +O(|k|−1)

= ±πi b±(0, ωk) +O(|k|−1),
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which implies

p.v.
∫ λ+ε

λ−ε

a
(±)
0 (t, k)
t− λ

dt

=
(2π
|k|

)(d−1)/2
e±ik·x∞(λ,ωk)∓(d−1)iπ/4p.v.

∫ δ

−δ

e±i|k|s

s
b±(s, ωk)ds

+O(|k|−(d+1)/2)

= ±iπ
(2π
|k|

)(d−1)/2
e±ik·x∞(λ,ωk)∓(d−1)iπ/4 K(x±(λ, ωk))1/2

|∇xh(x±(λ, ωk))|
+O(|k|−(d+1)/2).

(4.15)

Plugging (4.13), (4.14) and (4.15), we obtain the lemma. �

Lemma 4.5. — We have as |m| → ∞

(m− n) · x±(λ, ωm−n) = (m− n) · x±(λ, ωm) +O(|m|−1).

Proof. — We extend x±(λ, k) as a function of homogeneous degree 0 in
k. Letting ε = 1/|m|, we have

ωm−n = (ωm − εn)/|ωm − εn| = ωm + ε((ωm · n)ωm − n) +O(ε2).

Using h(x±(λ, ωm−n)) = λ, we have

∇xh(x±(λ, ωm−n)) · d
dε
x±(λ, ωm−n)

∣∣∣
ε=0

= 0.

Since ∇xh(x±(λ, ω)) is parallel to ω, we then have

ωm ·
d

dε
x±(λ, ωm−n)

∣∣∣
ε=0

= 0,

which implies

m · x±(λ, ωm−n) = m · x±(λ, ωm) +O(|m|−1),

and the lemma follows immediately. �

Lemmas 4.4 and 4.5 imply the following lemma.

Lemma 4.6. — If λ ∈ Id and f̂(n) is compactly supported, we have as
|k| → ∞

(
R̂0(λ± i0)f̂

)
(k)

= e±(3−d)πi/4(2π|k|)−(d−1)/2e±ik·x∞(λ,ωk)a±(λ, ωk)
∑
n

e∓in·x∞(λ,ωk)f̂(n)

+O(|k|−(d+1)/2),
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(4.16) a±(λ, ωk) = K(x±(λ, ωk))−1/2

|∇xh(x±(λ, ωk))| .

Recalling the definition of x(
√
λθ) in (3.1) and the fact that the Gauss

map is a diffeomorphism for a strictly convex surface, define θ(λ, ω) by the
relation x(

√
λ θ(λ, ω)) = x∞(λ, ω), i.e.

(4.17) θj(λ, ω) = 1√
λ

sin
(1

2 x∞j(λ, ω)
)
, j = 1, · · · , d.

We define the reparametrized Fourier transforms Ĝ0(λ) and Ĝ(±)(λ) by

(4.18)
(
Ĝ0(λ)f

)
(ω) =

(
F̂0(λ)f̂

)
(θ(λ, ω)),

(4.19) Ĝ(±)(λ) = Ĝ0(λ)(1− V̂ R̂(λ± i0)).

Lemma 4.6, the definition (3.7) and the resolvent equation imply the fol-
lowing theorem.

Theorem 4.7. — If λ ∈ Id and f̂(n) is compactly supported, we have
as |k| → ∞

(
R̂(λ± i0)f̂

)
(k)

= e±(3−d)πi/4√2π|k|−(d−1)/2e±ik·x∞(λ,ωk)a±(λ, ωk)
(
Ĝ(±)(λ)f̂

)
(±ωk)

+O(|k|−(d+1)/2).

5. Radiation conditions on Zd

The aim of this section is to introduce the radiation condition (Definition
5.5) and prove the uniqueness theorem (Theorem 5.9).

5.1. Green’s formula

For m,n ∈ Zd, we write m ∼ n, if |m − n| = 1, i.e. there exists j such
that m = n± ej . We define the discrete Laplacian ∆disc on Zd by

(5.1) (∆discû)(n) = −(Ĥ0û)(n) = 1
4
∑
m∼n

(
û(m)− û(n)

)
.
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A set Ω ⊂ Zd is said to be connected if for any m,n ∈ Ω, there exist
m(j) ∈ Ω, j = 0, · · · , k such that m(j) ∼ m(j+1), j = 0, · · · , k − 1, and
m(0) = m, m(k) = n. A connected subset Ω ⊂ Zd is called a domain. For a
domain Ω ⊂ Zd, we define

(5.2) Ω′ = {n 6∈ Ω ; ∃m ∈ Ω s.t. m ∼ n},

and put

(5.3) D = Ω ∪ Ω′.

For this set D, we define

(5.4)
◦
D= Ω,

(5.5) ∂D = Ω′.

The normal derivative at the boundary is defined by

(5.6)
(
∂Dν û

)
(n) = 1

4
∑

m∈
◦
D,m∼n

(
û(n)− û(m)

)
, n ∈ ∂D.

Note that, compared with (5.1), m and n are interchanged. Then the fol-
lowing Green’s formula holds (see e.g [5] and [11]):∑

n∈
◦
D

(
(∆discû)(n) · v̂(n)− û(n) · (∆discv̂)(n)

)
=
∑
n∈∂D

(
(∂Dν û)(n) · v̂(n)− û(n) · (∂Dν v̂)(n)

)
.

(5.7)

5.2. Radiation condition

For m,n such that m ∼ n, we define the difference operator ∂m−n by(
∂m−nf̂

)
(n) = f̂(m)− f̂(n).

Lemma 5.1. — (1) Let n(s) = n + s(m − n), where m ∼ n. Then we
have

∂m−n(n · x∞(λ, ωn)) =
∫ 1

0
(m− n) · x∞(λ, ωn(s))ds.

(2) If m ∼ n, we have as |n| → ∞

∂m−n(n · x∞(λ, ωn)) = (m− n) · x∞(λ, ωn) +O(|n|−1),

∂m−n

(
ein·x∞(λ,ωn)

)
=
(
ei(m−n)·x∞(λ,ωn) − 1

)
ein·x∞(λ,ωn) +O(|n|−1).
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Proof. — Differentiating h(x∞(λ, ωn(s))) = λ, we have

(∇xh)(x∞(λ, ωn(s))) ·
d

ds
x∞(λ, ωn(s)) = 0.

Since (∇xh)(x∞(λ, ωn(s))) is parallel to n(s), we then have

n(s) · d
ds
x∞(λ, ωn(s)) = 0,

which implies
d

ds
(n(s) · x∞(λ, ωn(s))) = (m− n) · x∞(λ, ωn(s)).

Integrating this equality, we obtain (1). Since ωn(s) = ωn + O(|n|−1), (2)
follows from (1). �

We now introduce the rectangular domain D(R) such that

(5.8)
◦

D(R)=
{
n ∈ Zd ; n ∈ [−R,R]d

}
, R > 0,

and the radial derivative ∂rad by

(∂rad û)(k) = 1
4

∑
m∈∂D(R(k)),m∼k

(û(m)− û(k)),(5.9)

R(k) = max
16j6d

|kj |, k ∈ Zd.(5.10)

We put
(5.11)

A±(λ, ωk) = 1
4

∑
m∈∂D(R(k)),m∼k

(
e±i(m−k)·x∞(λ,ωk) − 1

)
, ωk = k

|k|
.

Lemma 5.2. — (1) The right-hand side of (5.11) does not depend on
|k|.
(2) There exists a constant ε0(λ) > 0 such that

±ImA±(λ, ωk) > ε0(λ),

for any ωk.

Proof. — If m ∼ k, m ∈ ∂D(R(k)), then m− k = ±ej for some j. This
±ej depends only on ωk, which proves (1).
Recall that ∇h(x) = 1

2 (sin x1, · · · , sin xd), hence letting ωk,j be the j-th
component of ωk, we have

sin(x∞j(λ, ωk)) = cωk,j

for some constant c > 0. Suppose m ∼ k, m ∈ ∂D(R(k)). If ωk,j > 0,
then either mj = kj or mj = kj + 1. If ωk,j < 0, then either mj = kj or
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mj = kj − 1. We then have that sin((m− k) ·x∞(λ, ωk)) = c|ωk,j | for some
j such that ωk,j 6= 0. Since

±ImA±(λ, ωk) = 1
4

∑
m∈∂D(R(k)),m∼k

sin((m− k) · x∞(λ, ωk))

= c

4
∑

m∈∂D(R(k)),m∼k

|ωk,j |,

and
∑
j ω

2
k,j = 1, the lemma follows. �

Let us introduce two auxiliary norms, B̂∗R-norm and B̂∗Z-norm, on B̂∗ by

‖û‖2
B̂∗R

= sup
R>1,R∈R

1
R

∑
n∈

◦
D(R)

|û(n)|2,

‖û‖2
B̂∗Z

= sup
ρ>1,ρ∈Z

1
ρ

∑
n∈

◦
D(ρ)

|û(n)|2.

Lemma 5.3. — These three norms ‖ · ‖B̂∗ , ‖ · ‖B̂∗R , and ‖ · ‖B̂∗Z are equiv-
alent.

Proof. — Let A(R) = {z ∈ Cd; (
∑d
j=1 |zj |2)1/2 < R}, B(R) = {z ∈

Cd; maxj |zj | < R}. Then there is a constant δ > 0 such that A(δR) ⊂
B(R) ⊂ A(R/δ), ∀R > 0. This implies

1
R

∑
|n|<δR

|û(n)|2 6 1
R

∑
n∈

◦
D(R)

|û(n)|2 6 1
R

∑
|n|<R/δ

|û(n)|2.

Taking the supremum with respect to R > δ or R > 1/δ, we get the
equivalence of ‖ · ‖B̂∗ norm and ‖ · ‖B̂∗R norm.
Next we show the equivalence of the ‖ · ‖B̂∗R and ‖ · ‖B̂∗Z norms. Note that

f(r) =
∑
n∈

◦
D(r)
|û(n)|2 is a right-continuous non-decreasing step function

on (0,∞) with jump at integers. For R > 1, we take ρ(R) = [R] = the
largest positive integer such that ρ(R) 6 R. Then we have

sup
R>1

1
R

∑
n∈

◦
D(R)

|û(n)|2 6 sup
R>1

1
ρ(R)

∑
n∈

◦
D(ρ(R))

|û(n)|2.

The converse inequality is proven by the following inequality

sup
R>1

1
ρ(R)

∑
n∈

◦
D(ρ(R))

|û(n)|2 6 sup
R>1

2
R

∑
n∈

◦
D(R)

|û(n)|2. �

�
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Lemma 5.4. — (1) If f̂ ∈ `∞(Zd) satisfies |f̂(n)| 6 C(1 + |n|)−(d−1)/2,
then

(5.12) sup
R>1

1
R

∑
|n|<R

|f̂(n)|2 <∞, i.e. f̂ ∈ B̂∗.

(2) If |f̂(n)| 6 C(1 + |n|)−(d−1)/2−ε, ε > 0, then

(5.13) lim
R→∞

1
R

∑
|n|<R

|f̂(n)|2 = 0.

Proof. — We compute the norm ‖f̂‖B̂∗Z . We first show

(5.14)
∑

n∈
◦

D(ρ)\
◦

D(ρ−1)

|f̂(n)|2 = O(1),

as ρ→∞. In fact, for any ρ ∈ Z, ρ > 1 and n ∈
◦

D(ρ) \
◦

D(ρ− 1), we have

ρ−1 < |n| 6
√
dρ. Since #

{
n ∈

◦
D(ρ) \

◦
D(ρ− 1)

}
= (2ρ+1)d−(2ρ−1)d 6

Cρd−1, ∑
n∈

◦
D(ρ)\

◦
D(ρ−1)

|f̂(n)|2 6 Cρ−(d−1) #{n ∈ ◦
D(ρ) \

◦
D(ρ− 1)

}
6 C.

On the other hand, since∑
n∈

◦
D(R)

|f̂(n)|2 =
R∑
ρ=1

∑
n∈

◦
D(ρ)\

◦
D(ρ−1)

|f̂(n)|2 + |f̂(0)|2,

for every positive integer R, we have
∑
n∈

◦
D(R)

|f̂(n)|2 = O(R) by (5.14).

This proves (1) by Lemma 5.3.
Assume |f̂(n)| 6 C(1 + |n|)−(d−1)/2−ε for some ε > 0. By the similar

computation, we have
∑
n∈

◦
D(R)

|f̂(n)|2 = o(R), which proves (2). �

For f̂ , ĝ ∈ B̂∗, we write

(5.15) f̂ ' ĝ ⇐⇒ lim
R→∞

1
R

∑
|n|<R

|f̂(n)− ĝ(n)|2 = 0.

As we have seen above, (5.15) is equivalent to

lim
R→∞

1
R

∑
n∈

◦
D(R)

|f̂(n)− ĝ(n)|2 = 0.
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Now let us consider the equation on Zd:

(5.16) (Ĥ − λ)û = f̂ .

Definition 5.5. — A solution û(k) ∈ B̂∗ of (5.16) is said to be outgoing
(for +) or incoming (for −) if it satisfies

(5.17) (∂radû)(k) ' A±(λ, ωk)û(k),

in the sense of (5.15).

Theorem 5.6. — Let λ ∈ Id. If f̂ is compactly supported, R̂(λ± i0)f̂ is
an outgoing (for +) or incoming (for −) solution of the equation (Ĥ−λ)û =
f̂ .

Proof. — Since x∞(λ, ωk) is homogeneous of degree 0 in k (see also the
proof of Lemma 4.5), we have as |k| → ∞

x∞(λ, ωk±ej ) = x∞(λ, ωk) +O(|k|−1).

Then we have for any fixed n ∈ Zd

(5.18) e±in·x∞(λ,ωk±ej ) − e±in·x∞(λ,ωk) = O(|k|−1), |k| → ∞.

If f̂ is compactly supported,
(
Ĝ(±)(λ)f̂

)
(ωk) is smooth with respect to k,

so that we have from (5.18)

(5.19) ∂m−k

(
a±(λ, ωk)

(
Ĝ(±)(λ)f̂

)
(±ωk)

)
= O(|k|−1).

We put û(±) = R̂(λ± i0)f̂ . Theorem 4.7 yields

(∂radû(±))(k)

= C±|k|−(d−1)/2

 ∑
m∈∂D(R(k)),m∼k

(
∂m−kΦ(±)

λ

)
(k)

+O(|k|−(d+1)/2),

(5.20)

as |k| → ∞, where

C± = 1
4e
±(3−d)πi/4√2π,

Φ(±)
λ (k) = e±ik·x∞(λ,ωk)a±(λ, ωk)

(
Ĝ(±)(λ)f̂

)
(±ωk).

Lemma 5.1 (2) and (5.19) imply the theorem. �
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5.3. Rellich type theorem

The following is an analogue of the Rellich type theorem for Schrödinger
operators in Rd ([20]).

Theorem 5.7. — Let λ ∈ (0, d)\Z. Suppose a sequence {û(n)} defined
for |n| > R0 > 0 satisfies

(−∆disc − λ)û = 0, |n| > R0,

lim
R→∞

1
R

∑
R0<|n|<R

|û(n)|2 = 0.

Then there exists R1 > R0 such that û(n) = 0 for |n| > R1.

For the proof, see [11], Theorem 1.1.

5.4. Uniqueness theorem

Theorem 5.8. — Let λ ∈ Id, and suppose that f̂ is compactly sup-
ported. Let û(±) be the outgoing (for +) or incoming (for −) solution of
the equation (Ĥ − λ)û(±) = f̂ . Then

(û(±), f̂)− (f̂ , û(±)) = 2i lim
R→∞

∑
k∈

◦
D(R)\

◦
D(R−1)

ImA±(λ, ωk)|û(±)(k)|2.

Proof. — By Green’s formula, we have∑
k∈

◦
D(ρ)

(
(∆discû

(±))(k) · û(±)(k)− û(±)(k) · (∆discû(±))(k)
)

=
∑

k∈∂D(ρ)

(
(∂D(ρ)
ν û(±))(k) · û(±)(k)− û(±)(k) · (∂D(ρ)

ν û(±))(k)
)
.

The left-hand side converges to (û(±), f̂)−(f̂ , û(±)) by the equation. Chang-
ing the order of the summation,we can see that the right-hand side is equal
to

1
4

∑
k∈∂D(ρ)

∑
m∈

◦
D(ρ),m∼k

(
û(±)(k) · û(±)(m)− û(±)(m) · û(±)(k)

)

=
∑

m∈
◦

D(ρ)\
◦

D(ρ−1)

(
(∂radû(±))(m) · û(±)(m)− û(±)(m) · (∂radû(±))(m)

)
.
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As ρ → ∞, we can replace ∂radû(±) by A±(λ, ωk)û(±), and prove the the-
orem. �

Theorem 5.9. — Let λ ∈ Id. If f̂ is compactly supported, then the
outgoing solution of (5.16) is unique and given by R̂(λ+i0)f̂ . The incoming
solution is also unique and given by R̂(λ− i0)f̂ .

Proof. — In view of Theorem 5.6, we have only to prove the uniqueness.
Let û be the outgoing solution of (Ĥ−λ)û = 0. Then, by Theorem 5.8 and
Lemma 5.2 (2), we have limR→∞

∑
k∈

◦
D(R)\

◦
D(R−1)

|û(k)|2 = 0. This implies

lim
R→∞

1
R

∑
k∈

◦
D(R)

|û(k)|2 = 0,

i.e. û ' 0. We can then use the Theorem 5.7 and the unique continuation
theorem (see [11], Theorem 2.1) to see that û = 0. �

6. Exterior problem

6.1. Helmholtz equation in an exterior domain

Let D(R) be a rectangular domain in (5.8), and take a sufficiently large
integer R0 > 0 such that

(6.1) supp V̂ ⊂
◦

D(R0) .

We put

Ωint = D(R0),(6.2)

Ωext = Zd\
◦
Ωint .(6.3)

Therefore
◦
Ωint=

◦
D(R0) = [−R0, R0]d ∩ Zd, and

(6.4) ∂Ωint = ∂Ωext =
d⋃
j=1

{
n ; |ni| 6 R0, (i 6= j), |nj | = R0 + 1

}
.

The spaces B̂, B̂∗ and Ĥs on
◦
Ωext are defined in the same way as in the

whole space. Let Ĥext = −∆disc on Ωext with Dirichlet boundary condition,
which is defined as follows. Let

`20(Ωext) = {f̂ ∈ `2(Ωext) ; f̂ = 0 on ∂Ωext},
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which is naturally unitarily equivalent to `2(
◦
Ωext), and

P̂0 : `2(Ωext)→ `20(Ωext)

be the associated orthogonal projection. In view of (5.7), −P̂0∆discP̂0 is
self-adjoint on `2(Ωext). Here, we extend any v̂ ∈ `2(Ωext) to be 0 outside
Ωext so that ∆disc can be applied to v̂. As a total Hilbert space, we take

Ĥ = `20(Ωext) ' `2(
◦
Ωext),

and define
Ĥext = −P̂0∆discP̂0

∣∣∣
Ĥ
.

Then, Ĥext is self-adjoint on Ĥ. As mentioned above,we extend v̂ ∈ `2(
◦
Ωext)

to be 0 outside
◦
Ωext, so that v̂ = 0 on ∂Ωext. Let

R̂ext(z) = (Ĥext − z)−1 = P̂0(Ĥext − z)−1,

which can be applied to any f̂ ∈ `2(Zd) by restricting f̂ to
◦
Ωext. Letting

û = R̂ext(z)f̂ = R̂ext(z)
(
f̂
∣∣◦
Ωext

)
,

and computing

(−∆disc − z)û = (−P̂0∆discP̂0 − z)û+ (P̂0∆discP̂0 −∆disc)û

= f̂
∣∣◦
Ωext

+ (P̂0∆discP̂0 −∆disc)û,

we have, since P̂0û = û,

(6.5)
{

(−∆disc − z)û = f̂ , in
◦
Ωext,

û = 0, on ∂Ωext.

Lemma 6.1. — (1) Ĥext is self-adjoint, and σ(Ĥext) = [0, d].
(2) σp(Ĥext) ∩ (0, d) = ∅.

Proof. — The assertion (1) follows from the standard perturbation the-
ory, and (2) is proved in Theorem 2.4 of [11]. �

For the solution of the equation (−∆disc−λ)û = f̂ in
◦
Ωext, the radiation

condition is defined in the same way as in §5. The following theorem is
proved in the same way as in Theorem 5.9.

Theorem 6.2. — Let λ ∈ Id. Then the solution of the equation
(−∆disc − λ)û = 0 in

◦
Ωext, satisfying the Dirichlet boundary contidion

and the outgoing (or incoming) radiation condition vanishes identically on
Ωext.
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We prove the limiting absorption principle for R̂ext(z).

Theorem 6.3. — (1) For λ ∈ Id and f̂ ∈ B̂, the weak ∗-limit exists

lim
ε→0

R̂ext(λ± iε)f̂ =: R̂ext(λ± i0)f̂ ∈ B̂∗.

(2) For any compact set J ⊂ Id, there exists a constant C > 0 such that

‖R̂ext(λ± i0)f̂‖B̂∗ 6 C‖f̂‖B̂, λ ∈ J.

(3) For f̂ , ĝ ∈ B̂,
Id 3 λ 7→

(
R̂ext(λ± i0)f̂ , ĝ

)
is continuous.
(4) If f̂ is compactly supported, R̂ext(λ ± i0)f̂ satisfies the outgoing (for
+) or incoming (for −) radiation condition.

Proof. — We prove the theorem for λ+ i0. We extend f̂ ∈ B̂ and û(z) =
R̂ext(z)f̂ to be 0 outside Ωext. Then it satisfies

(Ĥ0 − z)û(z) = K̂û(z) + f̂ on Zd,

where K̂ =
∑
n cnP̂ (n) is a finite sum of projections P̂ (n) to the site n.

Therefore

(6.6) û(z) = R̂0(z)K̂û(z) + R̂0(z)f̂ .

Let J be a compact set in Id, and take s > 1/2. We first show that there
exists a constant C > 0 such that

(6.7) ‖û(λ+ iε)‖Ĥ−s 6 C‖f̂‖B̂, ∀λ ∈ J, ∀ε > 0.

In fact, if this does not hold, there exists zµ = λµ + iεµ, f̂µ ∈ B̂, such that
ûµ = R̂ext(zµ)f̂µ satisfies

(6.8) zµ → λ ∈ J, ‖f̂µ‖B̂ → 0, ‖ûµ‖Ĥ−s = 1 as µ→∞.

One can then select a subsequence, which is denoted by {ûµ} again, such
that ûµ converges weakly in Ĥ−s. Since K̂ is a finite dimensional operator,
K̂ûµ converges in B̂. Therefore, in view of (6.6), we see that ûµ converges
in B̂∗, hence in Ĥ−s, to û such that ‖û‖Ĥ−s = 1. It satisfies

(−∆disc − λ)û = 0, û = R̂0(λ+ i0)K̂û, in
◦
Ωext .

Moreover, û satisfies the Dirichlet boundary condition, since so does ûµ.
Therefore û is an outgoing solution. By Theorem 6.2, û = 0, which is a
contradiction.
We next prove that for s > 1/2 and f̂ ∈ B̂, R̂ext(λ + iε)f̂ converges

strongly in Ĥ−s as ε → 0. To prove it, we consider a sequence uµ =
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R̂ext(λ+iεµ)f̂ , εµ → 0. Then by the same arguments as above, one can show
that any subsequence of {uµ} contains a sub-subsequence {uµ′}, which
converges in H−s to one and the same limit (independent of the choice of
sub-subsequence). This proves the convergence of R̂ext(λ + iε)f̂ as ε → 0.
Arguing similarly, one can also show that

Id 3 λ 7→ R̂ext(λ+ i0)f̂ ∈ Ĥ−s

is strongly continuous. The assertions of the theorem then follow from those
for R̂0(λ+ i0) and the formula

R̂ext(λ+ i0) = R̂0(λ+ i0)
(
1 + K̂R̂ext(λ+ i0)

)
.

�

6.2. Exterior and interior D-N maps

Let Ĥint = −∆disc + V̂ be defined on Ωint with Dirichlet boundary
condition. The interior D-N map is defined by

(6.9) Λ
V̂

(λ)f̂ = ∂Ωint
ν ûint

∣∣∣
∂Ωint

, λ 6∈ σ(Ĥint),

where ûint is the solution of the equation

(6.10) (−∆disc + V̂ − λ)ûint = 0 in
◦
Ωint, ûint

∣∣∣
∂Ωint

= f̂ .

The exterior D-N map is defined by

(6.11) Λ(±)
ext (λ)f̂ = −∂Ωext

ν û
(±)
ext

∣∣∣
∂Ωext

, λ ∈ Id,

where û(±)
ext ∈ B̂∗ is the unique outgoing (for +) and incoming (for −)

solution of the equation

(6.12) (−∆disc − λ)û(±)
ext = 0 in

◦
Ωext, û

(±)
ext

∣∣∣
∂Ωext

= f̂ .

The existence of û(±)
ext is shown by extending f̂ to be zero on Zd \ ∂Ωext,

putting

(6.13) û
(±)
ext = f̂ − R̂ext(λ± i0)(−∆disc − λ)f̂ ,

and using (6.5). The uniqueness follows from Theorem 6.2.
We represent û(±)

ext in terms of exterior and interior D-N maps. In the
following, for a subset A in Zd, we use χA to mean both of the operator of
restriction

(6.14) χA : `∞(Zd) 3 f̂ 7→ f̂
∣∣∣
A
,
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and the operator of extension

(6.15) χA : `∞(A) 3 f̂ 7→
{

f̂ , on A,

0, on Zd \A,

which will not confuse our argument. We put

C(R0) = ∂Ωint = ∂Ωext = Ωint ∩ Ωext,

ŜC(R0) = 1
4

d∑
j=1

χC(R0)
(
Ŝj + (Ŝj)∗

)
χC(R0),(6.16)

(Ŝj û)(n) = û(n+ ej), ((Ŝj)∗û)(n) = û(n− ej),

and also for n ∈ C(R0)

(6.17) d̃egC(R0)(n) = 1
4 #

{
m ∈ C(R0) ; |m− n| = 1

}
.

For λ ∈ Id \ σ(Ĥint), we define the operator B(±)
C(R0)(λ) ∈ B(`2(C(R0))) by

(6.18) B
(±)
C(R0)(λ) = Λ

V̂
(λ)− Λ(±)

ext (λ)− λ+ 1
4d̃egC(R0) − ŜC(R0),

where d̃egC(R0) is the operator of multiplication by d̃egC(R0)(n).

Lemma 6.4. — Assume that λ ∈ Id \ σ(Ĥint), f̂ ∈ `2(C(R0)). Let û(±)
ext

and ûint be the solutions of (6.12) and (6.10), respectively, and put

û(±) = χ◦
Ωint

ûint + χ◦
Ωext

û
(±)
ext + χC(R0)f̂ .

Then we have

(6.19) û(±)(n) = (R̂(λ± i0)χC(R0)B
(±)
C(R0)(λ)f̂)(n), n ∈ Zd.

In particular,

û
(±)
ext (n) = (R̂(λ± i0)χC(R0)B

(±)
C(R0)(λ)f̂)(n), n ∈

◦
Ωext,(6.20)

f̂(n) = (R̂(λ± i0)χC(R0)B
(±)
C(R0)(λ)f̂)(n), n ∈ C(R0).(6.21)

Proof. — Let r̂(n,m;λ± i0) be the resolvent kernel, i.e.

r̂(n,m;λ± i0) =
(
R̂(λ± i0)δ̂m

)
(n),
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where δ̂m(n) = δmn. As in the proof of Theorem 5.8, by Green’s formula,

∑
n∈(

◦
Ωint∪

◦
Ωext)∩

◦
D(R)

(
(∆discû

(±))(n)r̂(n,m;λ± i0)

− û(±)(n)(∆discr̂)(n,m;λ± i0)
)

=
∑

n∈∂Ωint

(
(∂Ωint
ν û(±))(n)r̂(n,m;λ± i0)

− û(±)(n)(∂Ωint
ν r̂)(n,m;λ± i0)

)
+

∑
n∈∂Ωext

(
(∂Ωext
ν û(±))(n)r̂(n,m;λ± i0)− û(±)(n)(∂Ωext

ν r̂)(n,m;λ± i0)
)

+
∑

n∈
◦

D(R)\
◦

D(R−1)

(
(∂radû(±))(n)r̂(n,m;λ± i0)

− û(±)(n)(∂radr̂)(n,m;λ± i0)
)
,

(6.22)

for sufficiently large integer R > 0. By the equations (6.10) and (6.12), the
left-hand side of (6.22) is equal to

∑
n∈(

◦
Ωint∪

◦
Ωext)∩

◦
D(R)

û(±)(n)((−∆disc + V̂ − λ)r̂)(n,m;λ± i0)

=
∑

n∈(
◦
Ωint∪

◦
Ωext)∩

◦
D(R)

û(±)(n)δnm,
(6.23)

for any m ∈ Zd. Note that, by our definitions of Λ
V̂

(λ) and Λ(±)
ext (λ),

∂Ωint
ν û(±) = ∂Ωint

ν ûint = Λ
V̂

(λ)f̂ ,

∂Ωext
ν û(±) = ∂Ωext

ν û
(±)
ext = −Λ(±)

ext (λ)f̂ .
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The sum
∑
n∈∂Ωint +

∑
n∈∂Ωext in the right-hand side of (6.22) is then equal

to

∑
n∈C(R0)

(
(Λ

V̂
(λ)f̂)(n)r̂(n,m;λ± i0)− f̂(n)(∂Ωint

ν r̂)(n,m;λ± i0)
)

−
∑

n∈C(R0)

(
(Λ(±)

ext (λ)f̂)(n)r̂(n,m;λ± i0) + f̂(n)(∂Ωext
ν r̂)(n,m;λ± i0)

)
=

∑
n∈C(R0)

r̂(n,m;λ± i0)χC(R0)(n)
(

(Λ
V̂

(λ)− Λ(±)
ext (λ))f̂

)
(n)

−
∑

n∈C(R0)

f̂(n)
(
(∂Ωint
ν + ∂Ωext

ν )r̂
)

(n,m;λ± i0).

(6.24)

For n ∈ C(R0),(
(∂Ωint
ν + ∂Ωext

ν )r̂
)

(n,m;λ± i0)

=1
4

∑
k∈
◦
Ωint∪

◦
Ωext,k∼n

(
r̂(n,m;λ± i0)− r̂(k,m;λ± i0)

)
=− (∆discr̂)(n,m;λ± i0)

− 1
4

∑
k∈C(R0),k∼n

(
r̂(n,m;λ± i0)− r̂(k,m;λ± i0)

)
.

Therefore, the second term of the right-hand side of (6.24) is computed as
follows:

−
∑

n∈C(R0)

f̂(n) (−∆discr̂)(n,m;λ± i0)

+ 1
4

∑
n∈C(R0)

f̂(n)
( ∑
k∈C(R0),k∼n

(
r̂(n,m;λ± i0)− r̂(k,m;λ± i0)

))
= −

∑
n∈C(R0)

f̂(n)δnm +
∑

n∈C(R0)

(
− λ+ 1

4d̃egC(R0)(n)
)
f̂(n) r̂(n,m;λ± i0)

− 1
4

∑
k∈C(R0)

r̂(k,m;λ± i0)
∑

n∈C(R0),n∼k

f̂(n),

where, in the 3rd line, we have used the fact that(
(−∆disc − λ)r̂

)
(n,m;λ± i0) = δnm, n,m ∈ Zd,
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and exchanged the order of summation in the 4th line. Note that∑
n∈C(R0),n∼k

f̂(n) =
d∑
j=1

(
(Ŝj + (Ŝj)∗)χC(R0)f̂

)
(k).

Since we have for any m ∈
◦

D(R)∑
n∈(

◦
Ωint∪

◦
Ωext)∩

◦
D(R)

û(±)(n)δnm +
∑

n∈C(R0)

f̂(n)δnm = û(±)(m),

(6.22) turns out to be

û(±)(m) =
∑

n∈C(R0)

r̂(n,m;λ± i0)
(
(Λ

V̂
(λ)− Λ(±)

ext (λ))f̂
)
(n)

+
∑

n∈C(R0)

(
− λ+ 1

4d̃egC(R0)(n)
)
f̂(n) r̂(n,m;λ± i0)

− 1
4

∑
n∈C(R0)

r̂(n,m;λ± i0)
d∑
j=1

(
(Ŝj + (Ŝj)∗)χC(R0)f̂

)
(n)

+
∑

n∈
◦

D(R)\
◦

D(R−1)

(
(∂radû(±))(n)r̂(n,m;λ± i0)

− û(±)(n)(∂radr̂)(n,m;λ± i0)
)
,

for any m ∈
◦

D(R). In view of (6.18), we have thus arrived at

û(±)(m) =
(
R̂(λ± i0)χC(R0)B

(±)
C(R0)(λ)f̂

)
(m)

+
∑

n∈
◦

D(R)\
◦

D(R−1)

(
(∂radû(±))(n)r̂(n,m;λ± i0)

− û(±)(n)(∂radr̂)(n,m;λ± i0)
)
.

Taking the average of the sum with respect to R in the above equality, we
have

û(±)(m) =
(
R̂(λ± i0)χC(R0)B

(±)
C(R0)(λ)f̂

)
(m)

+ 1
R

∑
n∈

◦
D(R)

(
(∂rad −A±(λ, ωn))û(±))(n)r̂(n,m;λ± i0)

− 1
R

∑
n∈

◦
D(R)

û(±)(n)
(
(∂rad −A±(λ, ωn))r̂

)
(n,m;λ± i0),

(6.25)
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up to a term of O(R−1). By the radiation condition, we have

1
R

∣∣∣∣∣∣∣
∑

n∈
◦

D(R)

(
(∂rad −A±(λ, ωn))û(±))(n)r̂(n,m;λ± i0)

∣∣∣∣∣∣∣
6

 1
R

∑
n∈

◦
D(R)

∣∣((∂rad −A±(λ, ωn))û(±))(n)
∣∣2


1/2

×

 1
R

∑
n∈

◦
D(R)

|r̂(n,m;λ± i0)|2


1/2

,

which tends to zero as R → ∞. The third term of the right-hand side of
(6.25) is estimated similarly. This proves the lemma. �

Lemma 6.5. — Suppose λ ∈ Id \ σ(Ĥint). Then for f̂ , ĝ ∈ `2(C(R0)),
we have

(
Λ
V̂

(λ)f̂ , ĝ
)
`2(C(R0)) =

(
f̂ , Λ

V̂
(λ)ĝ

)
`2(C(R0)),(6.26) (

Λ(±)
ext (λ)f̂ , ĝ

)
`2(C(R0)) =

(
f̂ , Λ(∓)

ext (λ)ĝ
)
`2(C(R0)).(6.27)

Proof. — The first equality (6.26) follows from Green’s formula. We shall
prove (6.27). Let û be the outgoing solution of (6.12), and v̂ the incoming
solution of (6.12) with f̂ replaced by ĝ. For a sufficiently large integer
R > 0, we have by Green’s formula

0 =
∑

n∈(D(R)∩Ωext)◦

(
(−∆disc − λ)û)(n) · v̂(n)− û(n) · ((−∆disc − λ)v̂)(n)

)
=

∑
n∈∂D(R)

(
−(∂D(R)

ν û)(n) · v̂(n) + û(n) · (∂D(R)
ν v̂)(n)

)
+

∑
n∈∂Ωext

(
−(∂Ωext

ν û)(n) · v̂(n) + û(n) · (∂Ωext
ν v̂)(n)

)
.
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As in the proof of Theorem 5.8, we have∑
n∈∂D(R)

(
−(∂D(R)

ν û)(n) · v̂(n) + û(n) · (∂D(R)
ν v̂)(n)

)
=

∑
n∈

◦
D(R)\

◦
D(R−1)

(
−(∂rad û)(n) · v̂(n) + û(n) · (∂rad v̂(n)

)
.

This implies(
Λ(+)
ext (λ)f̂ , ĝ

)
`2(∂Ωext)

−
(
f̂ , Λ(−)

ext (λ)ĝ
)
`2(∂Ωext)

=
∑

n∈
◦

D(R)\
◦

D(R−1)

(
(∂rad û)(n)−A+(λ, ωn)û(n)

)
v̂(n)

−
∑

n∈
◦

D(R)\
◦

D(R−1)

û(n)
(
(∂rad v̂)(n)−A−(λ, ωn)v̂(n)

)
.

Then, taking the average of the sum with respect to R, we have(
Λ(+)
ext (λ)f̂ , ĝ

)
`2(∂Ωext)

−
(
f̂ , Λ(−)

ext (λ)ĝ
)
`2(∂Ωext)

= 1
R

∑
n∈

◦
D(R)

(
(∂rad −A+(λ, ωn))û(n)

)
v̂(n)

− 1
R

∑
n∈

◦
D(R)

û(n)
(
(∂rad −A−(λ, ωn))v̂(n)

)
,

up to a term of O(R−1). By the radiation condition, we can see that the
right-hand side tends to zero as R →∞ as in the estimate of (6.25). This
proves (6.27). �

7. Scattering amplitude and D-N maps

7.1. Far-field pattern

We introduce the operator Γ̂(±)(λ) by

(7.1) Γ̂(±)(λ) = Ĝ(±)(λ)χC(R0)B
(±)
C(R0)(λ) : `2(C(R0))→ L2(Sd−1).

The main purpose of this subsection is to show that Γ̂(±)(λ) is 1 to 1
(Lemma 7.4).
Although defined through Ĝ(±)(λ), Γ̂(±)(λ) does not depend on V̂ . It is

seen by the next lemma which follows from Lemma 6.4 and Theorem 4.7.
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Lemma 7.1. — Suppose λ ∈ Id \ σ(Ĥint). Let û(±)
ext be the solution of

(6.12). Then we have

û
(±)
ext (k)=e±(3−d)πi/4√2π|k|−(d−1)/2e±ik·x∞(λ,ωk)a±(λ, ωk)

(
Γ̂(±)(λ)f̂

)
(±ωk)

+O(|k|−(d+1)/2)

as |k| → ∞.

We need resolvent equations for R̂ext(λ ± i0). Note that by (6.18) and
Lemma 6.5

(B(±)
∂Ω (λ))∗ = Λ

V̂
(λ)− Λ(∓)

ext (λ)− λ+ 1
4d̃egC(R0) − ŜC(R0) = B

(∓)
∂Ω (λ).

Lemma 7.2. —

R̂ext(λ± i0) = R̂0(λ± i0)− R̂(λ± i0)χC(R0)B
(±)
∂Ω (λ)χC(R0)R̂0(λ± i0).

(7.2)

R̂ext(λ± i0) = R̂0(λ± i0)− R̂0(λ± i0)χC(R0)B
(±)
∂Ω (λ)χC(R0)R̂(λ± i0).

(7.3)

Proof. — Since v̂0 = R̂(λ± i0)χC(R0)B
(±)
C(R0)(λ)χC(R0)R̂0(λ± i0)f̂ satis-

fies the equation

(−∆disc − λ)v̂0 = 0 in
◦
Ωext, v̂0|∂Ωext = R̂0(λ± i0)f̂ ,

we have (7.2) by using (6.13). Taking the adjoint, we obtain (7.3). �

We introduce the generalized Fourier transform in the exterior domain.
We put

F̂ (±)
ext (λ) = F̂0(λ)

(
1− χC(R0)B

(±)
C(R0)(λ)χC(R0)R̂(λ± i0)

)
,

for λ ∈ Id \ σp(Ĥint), and, in the same way as (4.18), we define

(Ĝ(±)
ext (λ)f̂)(ω) = (F̂ (±)

ext (λ)f̂)(θ(λ, ω)).

Lemmas 4.6 and 7.2 imply that as |k| → ∞,

(R̂ext(λ± i0)f̂)(k)

= e±(3−d)πi/4√2π|k|−(d−1)/2e±ik·x∞(λ,ωk)a±(λ, ωk)(Ĝ(±)
ext (λ)f̂)(±ωk)

+O(|k|−(d+1)/2).

This formula shows that Ĝ(±)
ext (λ) does not depend on V̂ .
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Lemma 7.3. — For any φ̃ ∈ L2(Sd−1), Ĝ(−)
ext (λ)∗φ̃ satisfies the equation

(−∆disc − λ)Ĝ(−)
ext (λ)∗φ̃ = 0 in

◦
Ωext,

(
Ĝ(−)
ext (λ)∗φ̃

)∣∣∣
∂Ωext

= 0,

and Ĝ(−)
ext (λ)∗φ̃− Ĝ0(λ)∗φ̃ is outgoing.

Proof. — By the definition, we have

Ĝ(−)
ext (λ)∗φ̃ =

(
1− R̂(λ+ i0)χC(R0)B

(+)
C(R0)(λ)χC(R0)

)
Ĝ0(λ)∗φ̃.

By Lemma 6.4, v̂ = R̂(λ + i0)χC(R0)B
(+)
C(R0)(λ)χC(R0)Ĝ0(λ)∗φ̃ satisfies the

equation

(−∆disc − λ)v̂ = 0 in
◦
Ωext, v̂|∂Ωext = Ĝ0(λ)∗φ̃.

The lemma then follows if we note that Ĝ0(λ)∗φ̃ satisfies

(−∆disc − λ)Ĝ0(λ)∗φ̃ = 0 in
◦
Ωext . �

�

Lemma 7.4. — Suppose λ ∈ Id \ σ(Ĥint).
(1) Γ̂(±)(λ) : `2(C(R0))→ L2(Sd−1) is 1 to 1.
(2) Γ̂(±)(λ)∗ : L2(Sd−1)→ `2(C(R0)) is onto.

Proof. — Let us show (1). Suppose Γ̂(±)(λ)f̂ = 0 and let û(±)
ext be the

solution of (6.12). From Lemma 7.1 and the assumption, we have û(±)
ext ' 0.

Then we see that û(±)
ext is compactly supported by Theorem 5.7. By the

unique continuation property (see [11], Theorem 2.3), we then obtain f̂ = 0,
which proves (1). This implies that the range of Γ̂(±)(λ)∗ is dense. Since
`2(C(R0)) is finite dimensional, (2) follows. �

7.2. Scattering amplitude

Recall that the scattering amplitude in the whole space is defined by
(3.10). Passing to Mλ, we rewrite it as

(7.4) A(λ) = Ĝ(+)(λ)V̂ Ĝ0(λ)∗.

The scattering amplitude for the exterior domain is defined by

(7.5) Aext(λ) = F̂ (+)(λ)χC(R0)B
(+)
C(R0)(λ)χC(R0)F̂0(λ)∗.

As in the case of Zd, we use its reparametrization on Mλ:

(7.6) Aext(λ) = Ĝ(+)(λ)χC(R0)B
(+)
C(R0)(λ)χC(R0)Ĝ0(λ)∗.
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Then we have as |k| → ∞

(Ĝ(−)
ext (λ)∗φ̃)(k)− (Ĝ0(λ)∗φ̃)(k)

= −e(3−d)πi/4√2π|k|−(d−1)/2eik·x∞(λ,ωk)a+(λ, ωk)(Aext(λ)φ̃)(ωk)

+O(|k|−(d+1)/2).

(7.7)

In fact, the left-hand side is equal to

−R̂(λ+ i0)χC(R0)B
(+)
C(R0)(λ)χC(R0)Ĝ0(λ)∗φ̃.

Using Theorem 4.7, we obtain (7.7).

7.3. Single layer and double layer potentials

We have already introduced the operator R̂(λ ± i0)χC(R0)B
(±)
C(R0)(λ),

which is an analogue of the double layer potential. We also need a counter
part for the single layer potential, which is an operator on `2(C(R0)) de-
fined by

M
(±)
C(R0)(λ)f̂ =

(
R̂(λ± i0)χC(R0)f̂

) ∣∣∣
C(R0)

for f̂ ∈ `2(C(R0)).
The following lemma is a direct consequence of (6.21) and the fact that

M
(±)
C(R0)(λ) corresponds to χC(R0)R̂(λ± i0)χC(R0).

Lemma 7.5. — For λ ∈ Id\σ(Ĥint),M (±)
C(R0)(λ)B(±)

C(R0)(λ) is the identity
operator on `2(C(R0)).

7.4. S-matrix and interior D-N map

Theorem 7.6. — For λ ∈ Id \ σ(Ĥint), we have

(7.8) Aext(λ)−A(λ) = Γ̂(+)(λ)M (+)
C(R0)(λ)Γ̂(−)(λ)∗.

As a consequence, S(λ) and Λ
V̂

(λ) determine each other.

Proof. — Let us show (7.8). For any φ̃ ∈ L2(Sd−1), let

û = Ĝ(−)(λ)∗φ̃− Ĝ(−)
ext (λ)∗φ̃

= R̂(λ+ i0)
(
χC(R0)B

(+)
C(R0)(λ)χC(R0) − V̂

)
Ĝ0(λ)∗φ̃.

(7.9)

In view of Lemma 7.3, û is the outgoing solution of the equation

(−∆disc − λ)û = 0 in
◦
Ωext, û|∂Ωext = Ĝ(−)(λ)∗φ̃.
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By (6.20), we can rewrite û as

(7.10) û = R̂(λ+ i0)χC(R0)B
(+)
C(R0)(λ)χC(R0)Ĝ(−)(λ)∗φ̃.

By (7.9), we have as |k| → ∞

û(k) = C+|k|−(d−1)/2eik·x∞(λ,ωk)a+(λ, ωk)

×
(
Ĝ(+)(λ)

(
χC(R0)B

(+)
C(R0)(λ)χC(R0) − V̂

)
Ĝ0(λ)∗φ̃

)
(ωk)

+O(|k|−(d+1)/2),

where C+ = e(3−d)πi/4√2π. On the other hand, by (7.10), we have as
|k| → ∞

û(k) = C+|k|−(d−1)/2eik·x∞(λ,ωk)a+(λ, ωk)

×
(
Ĝ(+)(λ)χC(R0)B

(+)
C(R0)(λ)χC(R0)Ĝ(−)(λ)∗φ̃

)
(ωk)

+O(|k|−(d+1)/2).

These two expansions imply

Ĝ(+)(λ)
(
χC(R0)B

(+)
C(R0)(λ)χC(R0) − V̂

)
Ĝ0(λ)∗

= Ĝ(+)(λ)χC(R0)B
(+)
C(R0)(λ)χC(R0)Ĝ(−)(λ)∗.

The left-hand side is equal to Aext(λ)−A(λ). On the right-hand side, we
insert

1 = M
(+)
C(R0)(λ)B(+)

C(R0)(λ) : `2(C(R0))→ `2(C(R0))

after B(+)
C(R0)(λ) to obtain

Ĝ(+)(λ)χC(R0)B
(+)
C(R0)(λ)M (+)

C(R0)(λ)B(+)
C(R0)(λ)χC(R0)Ĝ(−)(λ)∗

= Ĝ(+)(λ)χC(R0)B
(+)
C(R0)(λ)M (+)

C(R0)(λ)
(
B

(−)
C(R0)(λ)

)∗
χC(R0)Ĝ(−)(λ)∗

= Γ̂(+)(λ)M (+)
C(R0)(λ)Γ̂(−)(λ)∗.

We have thus proven (7.8).
We show the equivalence of Λ

V̂
(λ) and A(λ). Due to (6.18), giving Λ

V̂
(λ)

is equivalent to giving B
(+)
C(R0)(λ), which in turn is equivalent to giving

M
(+)
C(R0)(λ) by virtue of Lemma 7.5.
From M

(+)
C(R0)(λ), we can then construct A(λ) by (7.8), since Γ̂(±)(λ)

does not depend on V̂ by Lemma 7.1.

TOME 65 (2015), FASCICULE 3



1192 Hiroshi ISOZAKI & Hisashi MORIOKA

By (7.8), we have

Γ̂(+)(λ)∗ (Aext(λ)−A(λ)) Γ̂(−)(λ)

= Γ̂(+)(λ)∗Γ̂(+)(λ)M (+)
C(R0)(λ)Γ̂(−)(λ)∗Γ̂(−)(λ).

Lemma 7.4 implies that Γ̂(±)(λ)∗Γ̂(±)(λ) is 1 to 1 on the finite dimensional
space `2(C(R0)), hence bijective. Therefore, one can construct M (+)

C(R0)(λ)
from A(λ). �

8. Reconstruction from the D-N map

In this section, we reconstruct V̂ from the D-N map Λ
V̂

(λ).

8.1. Some properties of Schrödinger matrices

We identify−∆disc and Λ
V̂

(λ) with matrices as follows. Let n(1), · · · , n(ν)

are vertices in
◦
Ωint and n(ν+1), · · · , n(ν+µ) are those in ∂Ωint. We put

N0 = {n(1), · · · , n(ν)}, N1 = {n(ν+1), · · · , n(ν+µ)},

and

d̃egΩint(n) =
{

#{m ∈ Ωint ; m ∼ n} = 2d, n ∈
◦
Ωint,

#{m ∈
◦
Ωint ; m ∼ n} = 1, n ∈ ∂Ωint.

In view of the Laplacian on graphs, we construct a (ν+µ)× (ν+µ) matrix
H0 = (h0

ij) as follows (For the definition, see also [5]).

H0 = 1
4(D−A),

D = (dij), dij =
{

d̃egΩint(n
(i)) (i = j)

0 (i 6= j)
,

A = (aij), aij =
{

1, if n(i) ∼ n(j) for n(i) ∈
◦
Ωint or n(j) ∈

◦
Ωint,

0, if n(i) 6∼ n(j), or n(i), n(j) ∈ ∂Ωint.

The potential V̂ is identified the diagonal matrix V = (vij) with

vij =
{

V̂ (n(i)) (i = j, i 6 ν)
0 (i 6= j or i > ν + 1)

.
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Then Ĥ = Ĥ0 + V̂ corresponds to the symmetric matrix H = H0 + V.
Moreover, identifying û with a vector (û(N0), û(N1)) ∈ Cν+µ, the equation

(8.1) (−∆disc + V̂ )û = 0 in
◦
Ωint,

is rewritten as

(8.2) H(N0;N1)û(N1) + H(N0;N0)û(N0) = 0,

where by H(Ni;Nj) we mean a matrix of size #Ni × #Nj . The D-N map
Λ
V̂

: û(N1)→ ĝ is rewritten as

(8.3) H(N1;N1)û(N1) + H(N1;N0)û(N0) = ĝ(N1).

Taking into account the Dirichlet data

(8.4) û|∂Ωint = f̂ ,

the above two equations are rewritten as
(8.5)(

H(N0;N0) H(N0;N1)
H(N1;N0) H(N1;N1)

)(
û(N0)
f̂(N1)

)
=
(

0
φ̂(f̂)

)
, φ̂(f̂) := ĝ(N1).

Assume that zero is not a Dirichlet eigenvalue of −∆disc + V̂ , which
means that if û(N1) = 0 in (8.2), then û(N0) = 0. Hence H(N0;N0) is
nonsingular. Then by using (8.2), the D-N map corresponds to the µ × µ
matrix
(8.6)
ΛV̂f̂(N1) := H(N1;N1)f̂(N1)−H(N1;N0)H(N0;N0)−1H(N0;N1)f̂(N1).

To simplify the explanation, we translate Ωint so that

(8.7)
◦
Ωint= {n ∈ Zd ; 1 6 nj 6M, j = 1, · · · , d}

for a positive integer M . We put
∂Ω+

j = {n ∈ ∂Ωint ; nj = M + 1},

∂Ω−j = {n ∈ ∂Ωint ; nj = 0}, j = 1, · · · , d.

Lemma 8.1. — Given a partial Dirichlet data f̂ on ∂Ωint \ ∂Ω+
1 and a

partial Neumann data ĝ on ∂Ω−1 , there is a unique solution û on
◦
Ωint ∪ ∂Ω+

1
to the equation

(8.8)


(−∆disc + V̂ )û = 0 in

◦
Ωint,

û = f̂ on ∂Ωint \ ∂Ω+
1 ,

∂Ωint
ν û = ĝ on ∂Ω−1 .
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Proof. — From the boundary values f̂(0, n2,· · ·, nd) and ĝ(0, n2,· · ·, nd),
we can determine uniquely û(1, n2, · · · , nd) for all 1 6 nj 6 M for j =
2, · · · , d:

û(1, n2, · · · , nd) = −4 ĝ(0, n2, · · · , nd) + f̂(0, n2, · · · , nd).

From the equality ((−∆disc + V̂ )û)(1, n2, · · · , nd) = 0 and the Dirichlet
data f̂ |∂Ω±

j
for j = 2, · · · , d, we can compute û(2, n2, · · · , nd) as follows:

1
4 û(2, n2, · · · , nd)

= −1
4

d∑
j=2

∑
α=±1

û(1, n2, · · · , nj + α, · · · , nd)−
1
4 f̂(0, n2, · · · , nd)

+ d

2 û(1, n2, · · · , nd) + V̂ (1, n2, · · · , nd)û(1, n2, · · · , nd),

for all 1 6 nj 6 M , j = 2, · · · , d. We repeat this procedure to compute
û(n) for all n1 = 1, · · · ,M + 1. �

For subsets A,B ⊂ ∂Ωint, we denote the associated submatrix of ΛV̂ by
ΛV̂(B;A).

Corollary 8.2. — Let û be the solution of (8.1), (8.4). If f̂ = 0 on
∂Ωint \ ∂Ω+

1 , Λ
V̂
f̂ = 0 on ∂Ω−1 , then û = 0 in Ωint.

Corollary 8.3. — The submatrix ΛV̂(∂Ω−1 ; ∂Ω+
1 ) is nonsingular, i.e.

ΛV̂(∂Ω−1 ; ∂Ω+
1 ) : ∂Ω+

1 → ∂Ω−1 is a bijection.

Proof. Suppose f̂ = 0 on ∂Ωint\∂Ω+
1 and ΛV̂f̂ = 0 on ∂Ω−1 . By Corollary

8.2, the solution û of (8.1), (8.4) vanishes identically. Hence f̂ = 0 on ∂Ω+
1 .

This implies that ΛV̂(∂Ω−1 ; ∂Ω+
1 ) is nonsingular. �

Corollary 8.4. — Given D-N map ΛV̂, partial Dirichlet data f̂2 on
∂Ωint \ ∂Ω+

1 and partial Neumann data ĝ on ∂Ω−1 , there exists a unique f̂
on ∂Ωint such that f̂ = f̂2 on ∂Ωint \ ∂Ω+

1 and ΛV̂f̂ |∂Ω−1
= ĝ on ∂Ω−1 .

Proof. We seek f̂ such that

ΛV̂f̂ |∂Ω−1
= ΛV̂(∂Ω−1 ; ∂Ω+

1 )f̂1 + ΛV̂(∂Ω−1 ; ∂Ωint \ ∂Ω+
1 )f̂2 = ĝ,

where f̂1 = f̂ |∂Ω+
1
. By Corollary 8.3, we take

f̂1 = (ΛV̂(∂Ω−1 ; ∂Ω+
1 ))−1

(
ĝ −ΛV̂(∂Ω−1 ; ∂Ωint \ ∂Ω+

1 )f̂2

)
. �
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8.2. Reconstruction procedure from ΛV̂

We can now reconstruct V̂ from ΛV̂. When d = 2, the procedure has
been already given in [4], [3], [19]. For d > 3, we generalize this method as
follows.

Figure 8.1. The shape of C1(0) in the case d = 3.

We introduce the cone with vertex n ∈ Ωint by

(8.9) C1(n) =
{
m ∈ Ωint ;

∑
k 6=1
|mk − nk| 6 −(m1 − n1)

}
.

If û satisfies the equation (8.8), we have

(8.10) û(n) =
∑

m∈C1(n)\{n}

cmû(m)

for some constants cm. In particular, if û(m) = 0 for all m ∈ C1(n) \ {n},
we see that û(n) = 0 from (8.10) (See also Figure 8.1).

Let Π(p) be the rectangular domain defined by
(8.11)
Π(p) =

{
(n1, · · · , nd) ∈ Ωint ; n1 + nd = p, 1 6 ni 6M (2 6 i 6 d− 1)

}
,

whereM is from (8.7), and for r′ = (r2, · · · , rd−1) ∈ [1,M ]d−2, we consider
its section

(8.12) Π(p; r′) =
{

(n1, n
′, nd) ∈ Π(p) ; n′ = r′

}
.

For d = 3, see Figure 8.2.
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Figure 8.2. Situation of Lemma 8.5.

Lemma 8.5. — Assume M + 1 < p 6 2M , and take a point (p −M −
1, r′,M +1) ∈ Π(p; r′). Let û be the solution of (8.8) with Dirichlet bound-
ary data f̂ such that{

f̂(p−M − 1, r′,M + 1) = 1,

f̂ = 0 on ∂Ωint \
(
∂Ω+

1 ∪ {(p−M − 1, r′,M + 1)}
)
,

and Neumann data ĝ = 0 on ∂Ω−1 . Then we have{
û(n) = 0 if n1 + nd < p,

û(n) = 0 if n1 + nd = p, n′ 6= r′,
(8.13)

û(p−M − 1 + i, r′,M + 1− i) = (−1)i for p−M − 1 + i 6M + 1.
(8.14)

If p = M + 1, taking the Dirichlet data f̂ such that{
f̂(0, r′,M) = 1,

f̂ = 0 on ∂Ωint \
(
∂Ω+

1 ∪ {(0, r′,M)}
)
,

we have the same assertion.
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Proof. — We put m = (p −M − 1, r′,M + 1). First we show that m 6∈
C1(n), if n1 + nd < p. In fact,

− (m1 − n1) = n1 − (p−M − 1) < p− nd − (p−M − 1) = M + 1− nd,

and on the other hand,∑
k 6=1
|mk − nk| > |md − nd| = M + 1− nd.

Then, in view of the condition for f̂ , the Neumann data ∂ν û|∂Ω−1
= 0 and

(8.10), we have û(n) = 0 if n1 + nd < p.
Assume that n1 + nd = p and n′ 6= r′. (See Figure 8.3.) Then

−(m1 − n1) = M + 1− nd.

On the other hand, since n′ 6= r′, we see that∑
k 6=1
|mk − nk| > |md − nd| = M + 1− nd.

They imply m 6∈ C1(n), hence û(n) = 0 as above.
Let us prove (8.14). Using the equation

((−∆disc + V̂ )û)(p−M − 1, r′,M) = 0,

and the fact that

û = 0 for n1 + nd < p, û(p−M − 1, r′,M + 1) = 1,

we have û(p−M, r′,M) = −1. Here we do not use the value of the potential
V̂ (p−M, r′,M). (See Figure 8.4.) Repeating this procedure, we see û(p−
M − 1 + i, r′,M + 1− i) = (−1)i inductively. �

Figure 8.3. Extension of the solution for the case (8.13).
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Figure 8.4. Extension of the solution for the case (8.14).

Now we show the reconstruction procedure.

1st step. We construct the boundary data f̂ such that
f̂(M − 1, r′,M + 1) = 1,

f̂ = 0 on ∂Ωint \
(
∂Ω+

1 ∪ {(M − 1, r′,M + 1)}
)
,

ΛV̂f̂ = 0 on ∂Ω−1 ,

by Corollary 8.4. Then the solution û of (8.1) and (8.4) satisfies the as-
sumption of Lemma 8.5. By virtue of Lemma 8.8, we have

û(n) =
{
−1 (n = (M, r′,M)),
0 (other n ∈

◦
Ωint).

Then, using the equality

((−∆disc + V̂ )û)(M, r′,M) = 0

and the boundary value f̂(M + 1, r′,M), we can compute the value
V̂ (M, r′,M). Applying this procedure for all r′, we recover V̂ on all vertices
(n1, r

′, nd) such that n1 + nd = 2M .

2nd step. Assume that we have recovered V̂ on vertices such that n1+nd >
p for M + 1 < p 6 2M . We construct the boundary data f̂ such that

f̂(p−M − 1, r′,M + 1) = 1,

f̂ = 0 on ∂Ωint \
(
∂Ω+

1 ∪ {(p−M − 1, r′,M + 1)}
)
,

ΛV̂f̂ = 0 on ∂Ω−1 .

By the same argument as in Step 1, the solution û of (8.1) and (8.4) satisfies
(8.13), (8.14). Since we have already recovered V̂ on n1 + nd > p, we can
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compute û(n) on n1 + nd > p using the equation (−∆disc + V̂ )û = 0 and
the boundary data f̂ . Hence, using the equality

((−∆disc + V̂ )û)(p−M − 1 + i, r′,M + 1− i)) = 0,

and the fact that û(p−M − 1 + i, r′,M + 1− i) = (−1)i, we can compute
V̂ (p −M − 1 + i, r′,M + 1 − i) for every i. Applying this procedure for
all r′, we recover V̂ on all vertices (n1, r

′, nd) such that n1 + nd = p with
M + 1 < p 6 2M .

3rd step. For p = M + 1, we construct the boundary data f̂ such that
f̂(0, r′,M) = 1,

f̂ = 0 on ∂Ωint \
(
∂Ω+

1 ∪ {(0, r′,M)}
)
,

ΛV̂f̂ = 0 on ∂Ω−1 .

By the same argument as in Step 1, the solution û of (8.1) and (8.4) satisfies

û(n) =
{

(−1)i−1 (n = (i, r′,M + 1− i)),
0 (n1 + nd < p or n1 + nd = p, n′ 6= r′).

Then we can compute V̂ (i, r′,M + 1− i) for every i as above.

4th step. In the case n1 + nd < M + 1, we have only to rotate the whole
domain.

We have thus completed the proof of Theorem 1.1.
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