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EXISTENCE OF p HARMONIC MULTIPLE VALUED
MAPS INTO A SEPARABLE HILBERT SPACE

by Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

ABSTRACT. —  We study the elementary properties of multiple valued maps
between two metric spaces: their measurability, Lebesgue integrability, continuity,
Lipschitz continuity, Lipschitz extension, and differentiability in case the range and
domain are linear. We discuss F.J. Almgren’s embedding Theorem and we prove
a new, more general, embedding from which a Fréchet-Kolmogorov compactness
Theorem ensues for multiple valued L, spaces. In turn, we introduce an intrinsic
definition of Sobolev multiple valued maps into Hilbert spaces, together with the
relevant Sobolev extension property, Poincaré inequality, Luzin type approxima-
tion by Lipschitz maps, trace theory, and the analog of Rellich compactness. As
a corollary we obtain an existence result for the Dirichlet problem of p harmonic
Hilbert space multiple valued maps of m variables.

RESUME. —  Nous étudions les propriétés élémentaires d’applications multi-
valuées entre espaces métriques : mesurabilité, intégrabilité, continuité, caractére
lipschitzien, extension lipschitzienne, et différentiabilité dans le cas d’espaces vec-
toriels. Nous rappelons le théoréme de plongement de F.J. Almgren et nous démon-
trons un nouveau théoréme de plongement, plus général, dont on déduit ensuite
un théoréme de compacité a la Fréchet-Kolmogoroff pour les espaces L, d’appli-
cations multivaluées. Nous introduisons une définition intrinséque d’applications
de Sobolev multivaluées a valeurs dans un espace de Hilbert et nous développons
les outils classiques dans ce cadre : extension de Sobolev, inégalité de Poincaré,
approximation de type Lusin par des applications lipschitziennes, théorie de trace,
et ’analogue du théoreme de compacité de Rellich. Nous obtenons en corollaire un
résultat d’existence pour le probléeme de Dirichlet des applications multivaluées p
harmoniques de m variables & valeurs dans un espace de Hilbert séparable.

1. Foreword

Given a set Y and a positive integer @, we let 2o (Y") denote the set of
unordered Q-tuples of elements of Y, i.e. members of the quotient of Y@

Keywords: Multiple valued maps, p harmonic.
Math. classification: 49Q20, 35J50.



764 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

by the action of the group of permutations Sg. A @-valued map from a set
XtoYisamap f: X — 2o(Y).

We let [y1,...,yqll denote members of 2¢(Y). If Y is a metric space
then 2g(Y) is given a metric

Lo yn ) = mi d(yi, i) -
%oo([[ylv 7yQ]]a|_[y17 7yQ]]) ;Igég zznll,aX,Q (y’myo-(z))

If X is metric as well, we may thus consider Lipschitz maps f : X —
20(Y). Although these may not admit a decomposition f = [[f1,..., fol
into Lipschitz branches f; : X -> Y, i=1,...,Q, (see the easy example at
the end of Section 2.2) we nevertheless establish, in case X = R™ and Y is
a Banach space with the Radon-Nikodym property, their differentiability
almost everywhere, for an appropriate notion of a derivative D f that con-
trols the variations of f (Theorem 2.5.8 and Proposition 2.5.9). In case Y
is finite dimensional, this had been obtained by F.J. Almgren [2], the third
author [10], and C. De Lellis and E. Spadaro [6]. Our proof in the infinite
dimensional setting follows essentially that given in the last two references.

In case X = ¢5* and Y = ¢4 are finite dimensional Hilbert spaces (i.e
R™ and R™ with the standard Euclidean norms), the Lipschitz Q-valued
f 08 — 2o(ly) were considered by F.J. Almgren in [2] in order to ap-
proximate the support of a mass minimizing integral current T € L, (¢£5**")
near a point 0 € supp T such that M(TLU(0,1)) ~ Qa(m) and the “ex-
cess” of T in U(0, 1) with respect to an m-plane W € G(n, m) is small.
Thus X = ¢ is identified with W, Y = ¢ is identified with W+ and the
graph of f approximates the support of T in U(0,1). The mass minimal-
ity of T implies that f is not too far from minimizing its Dirichlet energy
SU(OJ) | Df | 2d#™, in an appropriate class of Sobolev competitors. F.J.
Almgren’s analysis (i.e. the definition of Sobolev Q-valued maps, their dif-
ferentiability almost everywhere, the lower semicontinuity of their energy,
their trace theory, the Poincaré inequality and the relevant compactness
result) relied on his biLipschitz embedding

&: 2q(65) > RY

where N and Lip&~* depend both upon n and Q. Following C. De Lellis
and E. Spadaro [6], we present this embedding in Theorem 3.3.4. We also
include B. White’s “local isometric” improvement (unpublished) as conclu-
sion (B) of Theorem 3.3.4. Finally, we compare with an earlier biHoélderian
embedding due to H. Whitney [18], Section 3.1.

In this paper we concentrate on the Dirichlet problem for the p-energy,
1 < p < ©, of Q-valued maps f : €5 — 2g(ls2), i.e. Y = {5 is an infinite
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MULTIPLE VALUED MAPS 765

dimensional separable Hilbert space. We don’t know of any useful replace-
ment of Almgren’s embedding in that case. Thus we are led to develop
further the intrinsic approach pioneered in [10] and [6] (yet we cannot dis-
pense completely with the locally isometric embedding, in particular when
proving the lower semicontinuity of the energy in 4.4).

Letting U = U(0, 1) be the unit ball of £5", we consider the Borel measur-
able maps f : U — 2(¢2) with finite L, “norm”, § %( f,Q[[O]])”dfm

0. Their Ly-semidistance is defined as d,(f1, f2) = (§,, 9 (f1, f2 pdipm)

it is complete (Proposition 4.1.1). The Sobolev maps f € W} (U; 2q (62))
are defined to be the limits in this L,-semidistance of sequences of Lipschitz
maps f; : U — Zq(f2) such that sup; SU | Df; |pdfm < oo. This sort
of “weak density” of Lipschitz )-valued maps among Sobolev ones is justi-
fied, in case Y = 3 is finite dimensional, by the fact that U is an extension
domain and that im ¢ is a Lipschitz retract of RY (Theorem 4.3.1). That
Sobolev @-valued maps extend from U to the whole ¢5*, with the appropri-
ate control, is a matter of routine verification (Theorem 4.5.1). We define
the p-energy &P(f; U) of a Sobolev Q-valued map f by relaxation, making it
automatically lower semicontinuous with respect to convergence in the L,-
semidistance (Proposition 4.4.1), and we then embark on showing that f is
differentiable almost everywhere and that &P(f;U) = §, | Df |?d2™.
For this purpose we need to know the corresponding statement for fi-
nite dimensional approximating Sobolev maps U — 2 (¢3) (Proposition
4.4.7), a convergence result for the finite dimensional approximations (The-
orem 4.4.8), a Poincaré inequality (Theorem 4.6.2) from which a stronger
(Luzin type) approximation by Lipschitz Q-valued maps follows (Propo-
sition 4.6.3(1)). The differentiability almost everywhere of a Sobolev Q-
valued map (Theorem 4.6.3(4)) now becomes a consequence of our afore-
mentioned Rademacher type result (Theorem 2.5.8). At that point we also
obtain that &(f;U) = §, | Df | ?d£™ (Theorem 4.6.4), thus the lower
semicontinuity sought for. We prove the existence of a useful trace “op-
erator” 7 in Theorem 4.7.3, verifying the following continuity property:
If {f;} is a sequence of Sobolev maps such that lim; d,(f, f;) = 0 and
sup; §,, | Df; | " d£™ < oo then lim; dy(7 (), 7(f;)) = 0. Finally, our
Rellich compactness Theorem 4.8.2 relies on a Fréchet-Kolmogorov com-
pactness Theorem 4.2.1 and a new embedding Theorem 3.4.1. Given a
Lipschitz ¢g : Bdry U — 2¢(f2) and 1 < p < o0, our main result states that

TOME 65 (2015), FASCICULE 2



766 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

the minimization problem

minimize §;, | Df | ¥ d2™
among f € W) (U; 2¢({2)) such that 7(f) =g

admits a solution.

There are many interesting open questions concerning more general Ba-
nach space multi-valued functions, see 3.3.9 and 4.8.3.

Our section Preliminaries contains general results and proofs that can be
found in [6]. We verify that they apply with an infinite dimensional range
when appropriate.

2. Preliminaries
2.1. Symmetric powers

Let @Q € Ny be a positive integer and let Y be a metric space. Our aim
is to consider unordered Q-tuples of elements of Y. For instance, letting
Y = C and letting P be a polynomial of degree @) with coefficients in C,
the roots of P form such an unordered @-tuple of complex numbers. Thus
the elements under consideration need not be distinct; if some agree they
should be counted with their multiplicity.

Formally the collection 2¢(Y) of unordered Q-tuples in Y may be de-
fined as the quotient of the Cartesian product Y@ under the action of the
symmetric group Sg. An element o € Sq is a permutation of {1,...,Q}. It
acts on Y@ in the obvious way :

YQ - YQ : (ylava) = (ya(l)v" '7y0(Q))‘

We will denote by [[y1,...,yq] the equivalence class of (yi,...,yq) in
2q(Y), so that in particular [y1,...,y0ll = [Yoq),---¥s(q)] for every
o € Sg. On occasions we shall also denote by v a generic element of 2 (Y).
Another way of thinking of a member v = [[y1,...,yg] € Z2g(Y) is to
identify it with the finite measure u, = Z?:l dy, where d,, is the Dirac
mass with atom {y;}. The support of v € 2¢(Y) is, by definition, the sup-
port of the corresponding measure, supp v = supp gy, = {y1,-..,Yyq} where
Y1,-..,Y¢g is a numbering of v, i.e. a map y : {1,...,Q} — Y such that
v =ly1,...,yqll- The multiplicity of y € suppv is defined as p,{y}.

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 767

We now define a metric on Z2¢(Y’) associated with the given metric d of
Y. Let

g(llylv .. ~ayQ]]7 [[ylla s 7y22]]) = ;2}9%

We will sometimes use the notation % for ¢ in order to avoid confusion
with two other useful metrics:

Q
gl([[yh B yQ]]? IIyllﬂ cee 7y/Q]]) = ;2%% Z d(y’ia y(’]’(l)) )
i=1

and

Do (Myrs-- - voll, i, - - .,yb]]) = min maXQd(yi,y’G(i)) .

O'ESQ i=1,...,

Thus %, % and ¥, are equivalent metrics on Z2¢(Y).
We begin with the following easy proposition.

PROPOSITION 2.1.1. — The metric space (Y, d) is complete (resp. com-
pact, separable) if and only if (2¢(Y),¥) is complete (resp. compact, sep-
arable) for every @ € Ny.

A Q-valued function from a set X to Y is a mapping f : X — Zg(Y).
A multiple-valued function from X to Y is a Q-valued function for some
Q € Ny. In case X is a metric space, the notion of continuity (in particular
Lipschitz continuity) of such f now makes sense. If 2 is a c-algebra of
subsets of X we say that f is 2-measurable (or simply measurable when
2A is clear from the context) whenever f~!(B) € 2 for every Borel subset
Bc QQ (Y)

Our coming observation will reveal ubiquitous. We define the splitting
distance of v = [ly1,...,yq] € Lo(Y) as follows:

lit min{d(y;,y;) : 4,7 =1,...,Q and y; # y;} if cardsuppv > 1
splitv =
+0 if cardsuppv =1
LEMMA 2.1.2 (Splitting Lemma). — Let v = [[y1,...,yq]l € 2o(Y)
and v' € 2¢(Y) be such that ¥ (v,v') < % splitv. Choose a numbering of

v = Y1, upll € 2o(Y) so that d(y:,y;) < %splitv, 1=1,...,Q. It
follows that

G (v,v")

Q
> d(yi,v))?
=1

(and the analogous statement for 4 and 9, ).

TOME 65 (2015), FASCICULE 2



768 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

Proof. — We first observe that in case split v = oo the conclusion indeed
holds true. Thus we assume that splitv < o0. Let c € Sg andi=1,...,Q.
We aim to show that d(y:, ;) < d(Yo(i),¥;)- In case y,;) = y; this is
obvious. Otherwise, assuming if possible that d(y.),y;) < d(vi,y;) we
would infer from the triangle inequality

Spht CAS d(yo(i)a yz)
< d(Yo(iy, ¥i) + A5 yi)
< 2d(yi, ;)
< splitw,

a contradiction. Since i = 1,...,Q is arbitrary we obtain

Q Q
i=1 i=1
Since o € Sg is arbitrary, the proof is complete. O

PROPOSITION 2.1.3. — The function o : 2(Y) — Ny : v—cardsupp v
is lower semicontinuous.

Proof. — It follows easily from the definition of splitv that if v,v" €
20(Y) and if ¥ (v',v) < %Split v then card supp v’ = card supp v. a

2.2. Concatenation and splitting

Let @1, Q2 € Ny. We define the concatenation operation
@:2q,(Y) x 20,(Y) > 20,4+, (Y) : (v1,v2) = v1 @ v2

as follows. Write v1 = [[y1.1,...,y1,0, ] and v2 = [[y2,1,.-.,¥2.0, ]|, and put
v1®v2 = [[Y1,1,--,Y1,Q15Y2,15 - - -, Y2,0, |- We observe that this operation
is commutative, i.e. v1 @ vy = vo @ vy. We notice the following associativity
property. If Q1,Q2, Q3 € Ng and v; € 2, (Y), j = 1,2,3, then (v; ®v2) ®
v3 = v1 @ (v2 D vs3) so that v1 D vy Dvs is well defined. It is thus possible to
iterate the definition to the concatenation of any finite number of members
of some 2, (Y'). In this new notation we readily have the identity

[y, vl =[] ®.. . ®lvol = &, [vill-

We leave the obvious proof of the next result to the reader.

ANNALES DE L’INSTITUT FOURIER
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ProrosSITION 2.2.1. — Let Q1,...,Qk € Ng. The concatenation opera-
tion

QQl(Y) X ... X QQR(Y) - QQ1+___+Q,C(Y) : (’Ul,...,’l)k) — v @...Dvg

is Lipschitz continuous.

In fact if each 2¢o(Y") appearing in the statement is equipped with the
metric ¢, and if the Cartesian product is considered as an ¢; “product”,
then the Lipschitz constant of the above mapping equals 1.

Given @ maps fi,...,fg : X — Y we define their concatenation f :
X — 2¢g(Y) by the formula

f@) =[fi(@),.... fo@)] = @ [fi(2)]. =€ X.

Abusing notation in the obvious way we shall also write

f=15, fol-

In writing f as above we will call fi,..., fo branches of f. It is most ob-
vious that such splitting of f into branches is always possible, and equally
evident that branches are very much not unique unless X is a singleton.
It ensues from the above proposition that if f; : X - Y, i=1,...,Q, are
measurable (resp. continuous, Lipschitz continuous) then so is their con-
catenation f = (—D?:l[[ fill- Now, if f has some of these properties, can it be
split into branches fi,. .., fo having the same property? The answer is pos-
itive for measurability, as we shall see momentarily, but not for continuity.
Consider f : C — 25(C) defined by f(2) = [[v/z, —+/z]]. Thus f is (Holder)
continuous (for a recent account of such continuity, consult e.g. [4]). We
claim however that f does not decompose into two continuous branches. In
fact we shall argue that the restriction of f to the unit circle, still denoted
/s
f:St = 25(SY) i 2 [Vz, —V7]

does not admit a continuous selection. Suppose if possible that there are
continuous maps f1, fo : S* — S! such that f = [f1, f2]]. Let g : S* — St :
z — 22, From the identity ids1 = g o fi we infer that 1 = deg(go f1) =
deg(g) o deg(f1) = 2deg(f1), contradicting deg(f,) € Z.

2.3. Measurability
This section is also contained in [6]. The process of splitting v € Zg(Y)

(such that splitv < o0) into v1 € 2¢,(Y) and v € 20,(Y), Q@ = Q1 + Q2
and @1 # 0 # @2, is locally well-defined and continuous.

TOME 65 (2015), FASCICULE 2



770 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

PROPOSITION 2.3.1. — Let v € 2¢o(Y) be such that s = splitv < co.
There then exist Q1,Q2 € Ny with @ = @1 + Q2 and continuous mappings

Yp: 20(Y) n{v 1 Gy (v,0) < s/2} > 20, (Y), k=1,2,

such that
v =11 (V) @b (V).

When Y is a metric space we let By denote the og-algebra of Borel subsets
of Y.

PROPOSITION 2.3.2. — Let (X,2l) be a measurable space and let Y be
a separable metric space.

(A) If f1,..., fo : X = Y are (™, By )-measurable then f =[f1,..., foll
is (A, B o, (v))-measurable.

(B) If f : X — Z2(Y) is (A, B o, (v))-measurable then there exist
(A, By )-measurable maps fi,...,fg : X — Y such that f =
[fi,---, fell

Proof. — (A) Since (2¢(Y), %) is separable (Proposition 2.1.1), each
open subset of 2¢(Y) is a finite or countable union of open balls. Thus it
suffices to show that f~!(Bg, (v,7)) € A whenever v € 2o(Y) and r > 0.
Writing v = [[y1, ..., yq]] we simply notice that

fYBg, (v,7)) = X n{z: 9 (f(x),v) <r}

=Xn {x : min max d(fi(x), Yo i) < T}

oceSq i=1,...,

Q
- U () 7 (Byog),r)) e 2.

oeSq i=1

(B) The proof is by induction on . The case @ = 1 being trivial,
we henceforth assume that @@ > 2. We start by letting F' = Zg(Y) n
{v : cardsuppv = 1}. Notice F' is closed, according to Proposition 2.1.3,
thus Ag = f~1(F) € 2. There readily exist identical (2, By )-measurable
maps f?,...jg : Ap — Y such that fla, = [f?,...,f(%]]. We next in-
fer from Proposition 2.3.1 that to each v € Zg(Y)\F there correspond
a neighborhood %, of v in 2¢(Y)\F, integers Q}, Q3 € Ny such that
Q = Qf + @3, and continuous maps ¥y @ % — Zg(Y), k = 1,2,
such that ¥} @ ¥y = idg,. Since Zg(Y)\F is separable we find a se-
quence {v;} such that 2o(Y)\F = Ujen,%,,. Thus we find a disjointed
sequence {#;} of Borel subsets of 2¢(Y) such that 2o(Y)\F = Ujen, %;
and #B; < U,, for every j. Define A; = f~1(%;) € 2, j € Ny. For each
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MULTIPLE VALUED MAPS 771

j € Ny the induction hypothesis applies to the two multiple-valued func-
tions ¥,” o (fla,): A; — 2,2 (Y), k= 1,2, to yield (2, By)-measurable
k

decompositions [[f7, ..., 1 v; || and [[ferQuj e fé]] (the numberings are
chosen arbjtrarily). We delﬁne fi o X - Y, i = 1,...,Q, by letting
fita, = f!, j € No. It is now plain that each f; is (A, By )-measurable

and that f = [[f1,..., fol- O

2.4. Lipschitz extensions

The Lipschitz extension Theorem 2.4.3 is due to F.J. Almgren in case
Y is finite dimensional (see [2, 1.5]), a former version is found in [1] for a
different notion of multiple-valued function). Here we merely observe that
it extends to the case when Y is an arbitrary Banach space (in case @ = 1
this observation had already been recorded in [12], the method being due
to H. Whitney [17]). Our exposition is very much inspired by that of [6]
(see also [13] for a comprehensive study of the extension techniques used
here). This extension Theorem in case Y is finite dimensional is equivalent
to the fact that 2 (R™) is an absolute Lispschitz retract (see Theorem
3.3.6). The latter is proved “by hand” in [2, 1.3].

Given a map f : X — Y between two metric spaces, and r > 0, we recall
that the oscillation of f at r is defined as

osc(f;r) = sup{dy (f(z1), f(z2)) : x1,22 € X and dx(z1,22) < 7} € [0, +0]
In this section 2¢(Y") will be equipped with its metric .

PROPOSITION 2.4.1. — Let Q > 2. Assume that

(1) X and Y are metric spaces, xg € X, and § = diam X < o0;

(2) f:X > 2(Y) and f(zo) = [y1(20), - - -,y (xo)]l;
(3) There are i1,is € {1,...,Q} such that

dY (yil ('TO)’ Yis (l‘o)) > 3(Q - 1) OSC(f; 6) .
It follows that there are Q1,Q2 € Ny such that Q1 + Q2 = Q, and fi, fo :
X — 2¢(Y) such that f = f1 ® fo and osc(f;;-) < osc(f;-), j=1,2.

Proof. — We let ¢ denote the family of all those J < {1,...,Q} such
that i, € J and for every j1,j2 € J,

(2.1) dy (Y5, (z0), Yj, (x0)) < 3(card J — 1) osc(f;0) .

Notice that ¢ # & (because {i1} € ), and let J; € _# be maximal
with respect to inclusion. Also define J = {1,...,Q}\J1, so that Jo # &:

TOME 65 (2015), FASCICULE 2



772 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

according to hypothesis (3), Jo contains at least io. We notice that for every
71 € J1 and every j3 € Jy one has

(2.2) dy (y5, (20), Yjo (x0)) > Bosc(f;4).
For each x € X we choose a numbering f(x) = [y1(z),...,yo(z)] such
that
Yoo (f(20), f(x)) = ,max dy (yi(o), yi(z)) -

yeeny

We let Q1 = cardJy, Q2 = card @2, and we define f; : X — 24(Y),
j =1,2, by the formula f;(x) = [y:(z) : i € J;], so that f = f1 @ fa.
For each pair z, 2’ € X we choose 0, 4, € Sg such that

Go(f(x), f(z") = ,max dy (Yi(2), Yo, . (i) (z')).

We now claim that o, ,/(J1) = J1 and o4 4 (J2) = Ja, and this will readily
finish the proof. Assume if possible that there exist j; € J; and js € Jo
such that o, . (j1) = j2. Thus dy (y;, (), yj, (2)) < Y (f(2), f(2')), and it
would follow from Equation (2.2) that
3osc(f;6) < dy (y;, (wo), yj, (o))
< dy (Y5, (x0), yj, (2)) + dy (45, (), Y5 () + dy (5, ("), yj (20))
< Do (f (@), f (@) + Do (f (), f(2")) + Do (f (), f(0))
< 3osc(f;0),
a contradiction. O
PROPOSITION 2.4.2. — For each ) € Ny there is a constant co 4.2(Q) =
1 with the following property. Assume that
(1) X and Y are Banach spaces;
(2) C < X is a closed ball;
(3) f:(BdryC,| - |) = (20(Y),%) is Lipschitz.
It follows that f admits an extension f : (C,|-]) — (29(Y),9%) such
that
Lip f < €2.4.2(Q) Lip f,
and
max{%, (f(z),v) : x € C} < (6Q + 2) max{%,(f(z),v) : « € Bdry C}
for every ve 2¢(Y).

Proof. — There is no restriction to assume that C = B(0, R), R > 0, is
a ball centered at the origin. Note that it is enough to construct a Lipschitz
extension f of f on a dense subset of C, for example on C\{0}. The proof is
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by induction on @, and we start with the case @ = 1. Choose zy € Bdry C.
We define

Foy = (1= B0 a4 Sl (75)  ae v,

This is readily an extension of f to B(0, R)\{0}. In order to estimate its

l

Lipschitz constant, we let x,2’ € B(0, R)\{0}, we put r = |z||, v’ = |2/,

and we assume r < /. We define 2/ = 2% such as |z| = |2”| and we

r’

w () ()l
(1) <x|)’

<P )|~

< 2(Lip f)|z — 2|,

1) 1)

2(Lip f)fx — 2’|

observe that

|/ (2) = F(a")]

R

and

|/ ") = fa)] =

Therefore,
Lipf <4Lip f.

Moreover, if v € Y and = € C', we compute

f<x>—v|<( ”C)|f<> o + 12

< _
< max_|7(€) ol

()

We are now ready to treat the case when @ > 1.
First case. Assume there are i1,iz € {1,...,Q} and xy € Bdry C such
that

i (o) = yia (w0) || > 3Q 0sc(f; 2R)
> 3(Q — 1) osc(f; 2R) .
where f(zo) = [v1(z0),-..,yo(x0)]]. We infer from Proposition 2.4.1
(applied with X = Bdry C) that f decomposes into f = f1 @ fo with
fj :BdryC — 2q,(Y) and Lip f; < Lip f, j = 1,2. The induction hypoth-
esis implies the existence of extensions fj :C — 2q,(Y) of f;, such that
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Lip fj < c2.4.2(Q;) Lip fj, j = 1,2. We put f = f1 @fg and we notice that

Lip f/ < max{c2.42(Q1), c2.4.2(Q2)} Lip f
and
osc(f; 2R) < osc(f;2R) .

Let K > 0 a constant to be determined later.

e First subcase. Suppose that

N

Kosc(f;2R) < Y (v, f(x0))-

Then, for any x € C, one has

N

G (v, f(2)) < Do (v, f(20)) + Do (f(20), f())
< Yo (v, f(zo)) + osc(f; 2R)
< (1+ K% (v, f(20))
1+ K™Y max @o(v, f(£)).

e Second subcase. Suppose that
Kosc(f,2R) > % (v, f(x0)).

We will use the same notations as in the proof of Proposition 2.4.1.
Recall that fi(z) = @je, [[yi(x)] for 2 € Bdry C and I € {1, 2}.

We choose a numbering v = [[v,. .., vg]| such that %, (v, f(z¢)) =
maxi<i<q ||vi—vi(zo) |- Weset vy, = @jey, [vi]] and vy, = Bic, [v:]]-
We claim that for any z € C,

(2.3) Goo (v, f(2)) = max(D (v, f1(2)), Goo (v, fo()))-

This together with the inductive hypothesis will complete the proof.
Suppose if possible that (2.3) is not valid. Switching J; and Jo
if necessary, it follows that there are j; € J; and jo € Jo with
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G (v, f(x)) = |vj, — 9;,(x)]. Therefore, using (2.1) and (2.2),

K osc(f;2R) > 9o (v, f(x0))
)
V52 = G
Yiy (20) — Yis (o)
= iy (o) =y (@o) | = s, (w0) — vy, ||
= 93z (o) — ¥ (xo) | = lyjo(w0) — G2 ()]
— osc(f;2R)
= [y, (z0) — i, (o)
— 3(card J; — 1) osc(f; 2R) — G (v, f(0))
— 3(card Jy — 1) osc(f; 2R) — Do (f (20), f(2))
— osc(f;2R)
> (3Q — 3(Q — 2) — K — 2) osc(f; 2R)

If K =2, one gets a contradiction.

Second case. Assume that for every iy,is € {1,...,Q} and for every
x € Bdry C one has

lyir () = yi, (2) | < 3Qosc(f;2R) < 6QRLip f .

where f(x) = [y1(2),...,yo(x)] is an arbitrary numbering. We pick some
o € Bdry C and we define ¢, : C\{0} — Y by®

R T Rx R— |z
9i(z) = %yz ( ) + RH Hy1($0)a

|z

e C\{0} and i = 1,...,Q. We define f : C\{0} - 2(Y) by f(z) =
[91(2), ..., d0(x)], x € C\{0}. We first show that Lip(f} Bdry B(0,r)) <
Lipf, 0 < r < R. Indeed given z,2' € C with |z| = ||2’| = r, we define
T = % and 7' = RT””/, and we select o € Sg such that

(), /@) = max_ [5:(@) = oo (@)

.....

(*) Note we don’t claim any regularity about the y; nor the g;, not even measurability
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We notice that
~ ~ T - -
19i(2) = oy (2")] = T 19:(@) = yo) (@]
T . - -
< S (Lip 7 — 7|
= (Lip f)[z — 2’ .

Therefore

Go(F(@), Fa) < s 13s(2) = o ()] < (Lip e — ']
Next, given z € Bdry C, we choose j € {1,...,Q} such that |y;(z) —
y1(zo)| < Yo(f(x), f(xo)) < (Lip f)2R. For each 0 < t; < t3 < 1 and
i=1,...,Q one has

|9 (t2x) = Gi(ti2) | = (t2 — t1)|lys(2) — y1(o)|
< (t2 = 1) (Jwi(2) = y; (@) + y; (@) = v1 (o))
< (t2—t1) (3Q + 1) 2R Lip f

ltox — t1z] (6Q + 2) (Lip f)

thus

oo (f(t2x), f(t12)) < (6Q + 2) (Lip f)[tox — tr2] .

We conclude from the triangle inequality that for any z, 2’ € C\{0}, r =
=], 7" =[]

f
<Y (A(x),f (f)) +9 (f (rf) ,f(x’))

+ (6@ 1&&2{@ caq2(k) + 2)

)

x
2= lel 5
< <6Q max cg42(k) + 4) (Lip )|z — /|
1<k<@
Regarding the second part of the Proposition, we choose some v = [[vy, ...

...,vq]|, ordered such that %, (f(zo),v) = maxi<i<q |yi(xo) — vif|. Let
x € C\0 and o such that
Ry
PONRT)

Rx
2 (1(55) ) =
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One has
E%O(]E(:E),U)
< ma My fie -I—Ri”zHy(x)—v-
S asi<o| R 77U\ x| R U
_ [l Rz R— ||
=2 R \wo () ~%) t TR Wl )
<9 (1(%). )+ max 11 (x0) — il

< %o (£ ) o) + pmg (o) = il + Do) = )
< 2€Eré1darx Go(f(&),v) + 3Qosc(f; 2R).
Note that
ose(f;2R) = max  Fo(f(§1), [(£2))
S max(Fn(f(60),0) + G (v, £(€2)))
<2 max 9(f(£),v).
Thus the proof is complete. O
THEOREM 2.4.3. — For every @ € Ny and every m € Ny there exists a

constant cg 4.3(m,Q) = 1 with the following property. Assume that

(1) X is a finite dimensional Banach space withm = dim X, and A € X
is closed;
(2) Y is a Banach space;
(3) f:A— 2¢(Y) is Lipschitz.
It follows that f admits an extension f : X — 2(Y) with

Lip f < ca.4.3(m, Q) Lip f,
and
Sup (o (F(2),0) : 7 € X} < €2.03(m, Q) sup{ (f(2)0) - 2 € A}
for every ve 2¢(Y).

Proof. — Because they are lipeomorphic, there is no restriction to as-
sume that X and ¢ coincide: an isomorphism 7" : X — ¢ will multiply
the constant cy.4.3(m, Q) by a factor |T| - |[T~!| (where | - | denotes the
operator norm), yet one can always find a 7" such that | T[T~ is smaller
than a constant depending only on m, since the Banach-Mazur compactum
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of m dimensional spaces is bounded. We consider a partition of X\ A into
dyadic semicubes {C;}; with the following property

diSt(Cj y A)

2

for every j € N. With each C; and k = 0,...,m we associate it k-skeleton
Z,(Cy), ie. Fn(C;) = {ClosC,} and 5@(0) is the collection of those
maximal &k dimensional convex subsets of the (relative) boundary of each
F e S4+1(C;). We also set .7 = U jen-%(C;). We now define, by upwards
induction on k, mappings

feiao (UsA) - 2av)
which coincide with f on A and such that
(2.4) Lip fil (F o ((J4(C))) < C(k @) Lin f

for each F' € .%;4+1(C)), j € N, (where C(k, Q) is a constant dependmg only
on k and Q). Furthermore, if £ > 1 then fk is an extension of fk 1-

Definition of fo. With each x € A U % we associate £, € A such that
|z — &| = dist(x, A), and we put fo(z) = f(&). For & € A we obviously
have fo(z) = f(z). If z € C; then

|z — & | = dist(z, A) < diam C; + dist(Cj, A) < 3diam C} .

< diam Cj < dlSt(CJ,A)

Consequently, if z,z’ € C; then
|6 — &l < 1€e — 2]l + |z — 2| + 2" — & || < Tdiam Cj = 7|z — 2.
Thus

Go(fo(@), fola") = Do (f (&), (&) < T(Lip f)]z — 2’| .

This indeed proves (2.4) in case k = 0.

Definition of fk by induction on k > 1. We say a k-face F' € % is
minimal if there is no k-face F' € . such that F/ € F and F' # F.
We observe that each k-face contains a minimal one, and that two distinct
minimal k-faces have disjoint (relative) interiors. If F' € .} is a minimal k-
face then its “ boundary” 0F (relative to the k dimensional affine subspace
containing it) equals F'nu.#%_1(C;) where Cj is so that F' € #;,(C};), hence
Lip fk_l 10F < C(k — 1,Q)Lip f according to the induction hypothesis
(2.4). Thus Proposition 2.4.2 guarantees the existence of an extension fj,
of fe_1 from OF to F so that Lip(filF) < c2.42(Q)C(k — 1,Q)Lip f.
This completes the definition of fk to uU.%;. By construction fk verifies
(2.4) for every minimal k-face F' € .. Since each k-face is the union of
(finitely many) minimal k-faces all contained in the same k dimensional
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affine subspace of X, it is an easy matter to check that (2.4) is also verifies
for arbitrary F € .%.
According to Proposition 2.4.2, for k > 1 and v e 2¢(Y), one has

sup  Go(v, fr(x)) <2QLiprLipdy ' sup  %o(v, fr_1(z))
z€AU(VS%) 2€AU(VSk—1)

where ¢, denote a lipeomorphism from a £ ball to a k cube. Moreover, one
has easily

sup (v, fo(w)) = sup @i (v, f(2)).
zeAu(LS) zeA

Those two facts implies that
SUP{Gos (frn (2),0) 1 @ € X} < C2.43(m, Q) sup{¥(f(2),v) 1 w € A}

if c243(m, Q) = (2Q)™ HZ;(UP ¢ Lip ¢ 1).

We now check that f,, is Lipschitz. Let z,2' € X and we define the
line segment [z,2'] = X n{z +t(z’ —z) : 0 < t < 1}. We distinguish
between several cases according to the positions of these points. First
case : if z,a' € A, the clearly % (fim(2), fm(z) = 9o (f(z), f(2)) <
(Lip f)|lz — 2’||. Second case : z,2’ € ClosC; for some j € N. It then
follows that % (fim (), fm(z')) < C(m,Q)(Lip f)|z — 2/| according to
(2.4). Third case : [z,2'] n A = . One then checks that J = Nn {j :
[z,2'] n Clos C; # J} is finite and we apply the previous case to conclude
that also G (fin (), frm (")) < C(m, Q)(Lip f)|lz — 2'|. Fourth case : x ¢ A
and =’ € A. We choose j € N such that « € C; and we choose arbitrarily
z" e S(Cj). It follows that

|z —2"|| < diam C; < dist(Cj, A) < |z — 2|
and
[z — & | < |z —2"|| + |2" — & < diam Cj + 3diam C; < 4|z — 2/||.
Thus
Goo(fn (@), fn (@) < Do (fin (@), i (&) + Do (fo ("), fo(a"))

< (Lip fm | Clos Cj)|x — «"[| + (Lip f)|&r — /|
< 6(C(m, Q) + 1)(Lip f)fx — 2| .

Fifth case : [x,2'] n A # & and either x or 2’ does not belong to A. We
let a (resp. a’) denote the point [z, 2] N A closest to x (resp. z’) and we
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observe that

PN A

Goo (fn (@), fm ("))
< Do (@), fn(0) + Do (f(a), £(0) + Do (fin (@), fin(a))
<6(C(m,Q) +1)(Lip f)||z — af
+ (Lip f)a — d|| + 6(C(m, Q) + 1)(Lip f)[a’ — /|
< 6(C(m,Q) + 1)(Lip f)| — 2’ .
O
Question 2.4.4. — Given a pair of Banach spaces X and Y we here

denote by ¢(X,Y, Q) the best constant occurring in Theorem 2.4.3 corre-
sponding to these Banach spaces. Thus ¢(X,Y, Q) < c2.4.3(dim X, Q) < o0
in case X is finite dimensional. Kirszbraun’s Theorem says that c(¢5*, £5', 1)
= 1for every n, N € Ny, thus it follows from Theorem 3.3.6 that c(¢5*, £, Q)
< Lip p,, ¢ is bounded independently of m. Is it true that c(¢3', f2, Q) < o0
for every @ > 17 That would be an analog of Kirszbraun’s Theorem
for multiple-valued functions. On the other hand, it is well-known that
c(X,lyp,1) = 1 for every X. Is it true that c(X, /¢y, Q) < oo for every
@ > 1 and every finite dimensional Banach space X7 See also Question
3.3.9.

2.5. Differentiability

The results contained in this section are standard in case ¥ = /{3 is
Euclidean. The notion of (approximate) differentiability was introduced
(under the name (approximate) affine approximatability) by F.J. Almgren
in [2]. We call unambiguously differentiable what Almgren calls strongly
affinely approximatable. “Intrinsic” proofs (i.e. avoiding the embedding de-
fined in section 3.3) of the analog of Rademacher’s Theorem have been given
in [10] and [6].

In this section X is a finite dimensional Banach space, m = dim X, X is
a Haar measure on X, and Y is a separable Banach space.

We say that g : X — 2¢(Y) is affine (resp. linear) if there are affine
maps A1, ..., Ag from X to Y (resp. linear maps Lq,...,Lg from X to Y)
such that g = @2, [A;] (resp. g = @2, [[Ls])). Our first task is to observe
that the A;’s are uniquely determined by g.

LEMMA 2.5.1. — Let Ay,...,Ag, A}, ... ,A’Q be affine maps from X to
Y, g =82 Al ¢ = ®%L,[4,], and S = X. If g(x) = ¢ () for every
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x € S and A(S) > 0, then there exists ¢ € Sq such that A; = A;(
i=1,....Q.

i)
Proof. — For each o € S we define
Wo=Xn{o: Ai(x) = A, (2),i=1,...,Q},

and we notice that W, is an affine subspace of X. If z € S then x € W,
for some o € Sg. Thus § S Uses, W,. Therefore there exists o such that
A(Wy) > 0, hence W, = X. O

Let f,g: X — Z¢(Y) be Borel measurable, and a € X. We say that f
and g are approximately tangent at a if for every € > 0,

" (AL {z:9(f(z),9(x)) > e|z —al},a) = 0.

It is plain that the distance & can be replaced by 4 or ¥, without changing
the scope of the definition.

PROPOSITION 2.5.2. — Let g,¢' : X — Z¢g(Y) be affine and approxi-
mately tangent at some a € X. It follows that g = ¢'.

Proof. — Write g = @?:1[[141']]7 g = (—BiQ:l[[A;]], where Aj,...,Aq,
Al,..., A are affine from X to Y, and A; = L; + b;, A} = L + b,
b;, b, € Y and the L;’s and L}’s are linear. With 0 < & < 1 we associate

Ge = X nfz:%(9(x) ¢ () < el —al}

so that ©™ (AL G, a) = 1 by assumption, because G, is Borel measurable.
Define

n = inf{|Ai(a) — Aj(a)] 24,5 =1,...,Q and A;(a) # A’(a)} € (0,00].

Suppose n < o0, the case 7 = o being easier to prove. Choose § > 0 small
enough for

0(1 +2Q max{[[ Lo, - s [ LQloo, ILA oo - - [ L llec}) < -
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Let z € G¢ n B(a,d) and write © = a + h. There exists 0 € Sg such that
elh| = %(gla+h),g'(a + h))

(a+h)— A (a+h)|

— L iy(a) = b,y + Li(h) = L,y (h)]

(2.5)

I M@ ||'M© I M@ ||'M©

= Ayy(@) + Li(h) = L,y (h)]

0(1 H - Z HL (h>” )
whence

Q

D Ai(a) — ALy (a)]

i=1

< |l + 2Q| A max{[[ L1]oo, - - - [ LQlloos [ L1 Noos -5 [ L llo} < m

since ||h]| < §. The definition of 7 then implies that A;(a) = A; @) (a) for
eacht=1,...,Q. Multiplying (2.5) by t > 0 we obtain

efth] = ZHL (th) = Lo ;) (th)]
=1

Q

= [ Ai(a + th) — Ay (a + th)]
=1

> % (g(a+th),g' (a+th)).

In other words, we have established that for every 0 < ¢ < 1 and every
t>0,ifa+heG.n B(a,0) then a + th € G..
Letting e, = k', k € Ny, we choose 0 < r, < § such that

MGe, N Bla,r1)) = (1 - 41k> A B(a,rg)) -

If hy : B(a,rr) — B(a,1) maps a+h to a—H‘lzlh then the above paragraph
says that hi(G., n B(a,rt)) € Ge, n B(a,1). Consequently,

AMGe, n B(a,1)) = AM(hi(Ge, n B(a,rt)))
=1, "ANG., n B(a,m1))

> (1 - 41k) A(B(a,1)).
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Summing over k € Ny we obtain

A(ﬂ G5k>>0

keNp

and the conclusion now follows from Lemma 2.5.1. O

COROLLARY 2.5.3. — If f : X — 2¢(Y) is Borel measurable, ¢,¢" :
X — 2¢(Y) are both affine and both approximately tangent to f at a,
then g = ¢'.

Proof. — Observe that g and ¢’ are approximately tangent (to each
other) at a and apply Proposition 2.5.2. |

Let f: X — 2¢(Y) and a € X. We say that f is approximately differ-
entiable at a if there exists an affine Q-valued g : X — Z¢(Y) which
is approximately tangent to f at a. According to the above corollary,
the existence of such g implies its uniqueness. It will be subsequently
denoted as Af(a). Writing Af(a) = @2,[A;]] we shall see later that
Af(a)(a) = @?:1[[141-((1)]] equals f(a) in case f is approximately con-
tinuous at a. Concatenation of the linear parts L, = A; — A;(0) yields
Df(a) = (43?:1[[@-]] which is uniquely determined by Af(a). It may occur
(but not too often, as we shall later see) that for some pair of distinct
indexes ¢ and j one has A;(a) = Aj(a), yet L; # L;. We now state a
definition to rule this out. We say that f is unambiguously approximately
differentiable at a if Af(a) fulfils the following additional requirement. For
every i,j =1,...,Q, if A;(a) = A;(a) then L; = L,.

Example 2.5.4. — The affine 2-valued map
g=R—>2R):z—[z] @[ -]

is everywhere (approximately) differentiable, but not unambiguously so at
0.

The need for unambiguous differentiation appears when stating the
Euler-Lagrange equation for minimizing multiple-valued maps with respect
to range deformation (so-called “squash deformation” by F.J. Almgren), see
e.g. [2, Theorem 2.6(4)].

Recall the function o defined in Proposition 2.1.3.

LEMMA 2.5.5. — Assumev € Zg(Y), putk =o(v),andlet Q1,...,Qx €

No and y1,...,yx € Y be such that v = @?lejIij]] and Q = Z§=1 Qj.

For every 0 < r < 1splitv the following holds. Whenever v' € 2¢(Y) is

such that 9, (v,v") < r and o(v') = k, there are yi,...,y;, € Y such that
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v o= @leQj[[y;]], ly; — vl < r for every j = 1,...,k, and G(v,v') =
351 Qilly — -
Proof. — Let v’ be as in the statement and choose a numbering v’ =
21,-..,20]. Since % (v,v’") < r, it follows that each z; is r close to some
[[ ) ) Q]] ) 9

y;. In other words there exists 7: {1,...,Q} — {1,...,k} such that ||z; —
Y@yl <r,i=1,...,Q. Thus

Q
gl (Uv U/) = Z ”Zl — Yr @) H
=1

according to the Splitting Lemma. We now observe that if ¢, € {1,...,Q}
are so that 7(i) # 7(¢') then z; # zy. Indeed the converse would yield

=iy = Yran | < lyrqy — il + |zi0 = yrnl < 2r < splito,
a contradiction. Since also o(v') = k we infer that 7(¢) = 7(i’) implies
z; = zy. The proof is complete. O

We now give a criterion implying unambiguous approximate differentia-
bility. Since o o f takes values in Z™*, it is approximately continuous at a
point if and only if it is approximately constant at that point.

PROPOSITION 2.5.6. — Let f : X — 29(Y) be Borel measurable, and
a € X. Assume that

(A) f is approximately continuous at a;
(B) o o f is approximately constant at a;
(C) f is approximately differentiable at a.

It follows that f is unambiguously approximately differentiable at a, and

that Af(a) = f(a).

Proof. — Write Af(a) = @2 ,[A:], and define a = max{|A;]s,...
ooy |Aglleo}- Put k = o(f(a)). There exist fi(a),..., fr(a) € Y and posi-
tive integers Q1, ..., Qr with Z?zl Q; = Q such that

fla) =@, Q;[[f;(a)].
Let 0 <719 < %split f(a) so that Lemma 2.5.5 applies with any 0 < r < rq.
For each ¢ > 0 define

Ge=Xnn{z:%(f(x), f(a) <ecand o(f(z)) =k
and %, (f(x), Af(a)(x)) < =l — all}.
Given 1 > 0 there exists 71(¢,7) > 0 such that
AGe n B(a,r)) = (1 =n)A(B(a,7))
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whenever 0 < r < r1(g,n). From now on we shall further assume that

1
€ < min {8 split f(a), 1}
and
. 1.
r < min {l,ro,rl(s,n), o split f(a)} .
For each x € G. n B(a,r) there are fi(z),..., fx(z) € Y such that

fl@) =@ _1Q; ()]

and
k
(2.6) G (f(x), f(a) = ), Qjlfi(x) — fi(a)| < e
j=1

according to Lemma 2.5.5. Associated with such x, there are also partitions
Ipv,..., Ip of {1,...,Q} such that

k
(2.7) % (f(x), A =, Z Ifi(x) = Ai(z)| < ellz —al.
j=liel,,

In view of (2.6) there also holds

k
Z > Ifi(a) = Ai(@)] < e(1+ o —al) < 2

1iel,
This already implies that f(a) = Af(a)(a). Now let z,2" € G n B(a,r)
and j,j € {1,...,k}. If i e I, ; n Iy j then

[£i(a) = fir(@)| < [ f5(a) — Ai(@)] + [Ai(z) — Ai(2")| + [Ai(2") = fi(a)

de + aflz — 2|

< split f(a)
according to our choice of € and r, thus j = j'. This in turn readily implies
that I, ; = Iy ; = I;, j = 1,... k. It follows from (2.7) above that if
z€G.nB(a,r)and i,3' € I;, j =1,...,k, then

|Ai(z) — A (@) < [Ai(z) — fi (@) + [1f;(2) — Air(x)

< 2|z —al.

NN

Since n > 0 and € > 0 are arbitrarily small we see that A; and A; are
approximately tangent at a. Thus A; = A; according to Proposition 2.5.2
applied with @ = 1. Finally if ¢ € I, ¢ € Ij;, and j # j' then A;(a) =
fi(a) # fj(a) = Ay (a). The proof is complete. O
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Example 2.5.7. — Consider

2[[0] if 2 <0

f:Rﬂgz(R)ixH{[[mz]]@[[_xQ]] ifr>0.

One readily checks that f is (approximately) continuous at 0 and unam-
biguously (approximately) differentiable at 0, yet oo f is not approximately
constant at 0.

We are ready to state and prove a useful generalization of Rademacher’s
Theorem. We recall that X is a finite dimensional Banach space, and Y
a Banach space. In case f : X — 2g(Y) is approximately differentiable
at a € X we let Af(a) = EBZQ:l[Ai]] and we define L; = A; — A;(0), i =
1,...,Q, the linear part of the affine approximation. We introduce the new
notation

Df(a) = ®Li[Li] € Lo(Hom(X,Y))
where Hom(X,Y") denotes the space of linear operators X — Y (these are

automatically continuous). Letting the latter be equipped with some norm
I IF we let

| Df(a) | =%(Df(a),Ql0]) =

Q
DLl
i=1

THEOREM 2.5.8. — Let f : X — 2¢g(Y) be Lipschitz continuous and
assume that Y has the Radon-Nikodym property. It follows that

(A) For X\ almost every a € X, f is unambiguously approximately dif-
ferentiable at a, and Af(a)(a) = f(a);
(B) The map X — Zo(Hom(X,Y)): x — Df(z) is (Bx,B 2, (Hom(x,v))
measurable;
(C) If f is approximately differentiable at a € X then it is differentiable
at a in the sense that
o U @), AS@(@)

v=a |z =

and | Df(a) | < +/QLip f;

(D) For every injective Lipschitzian curve v : [0,1] — X such that
|7/ (t)| = 1 and f is approximately differentiable at ~(t) for £*
almost every 0 < t < 1, one has

=0,

G(7(1),7(0)) < f | Df(x) | d (z).

im -y
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Proof. — For each k= 1,...,Q define
By, =Xn{z:0(f(x)) =k}.

Notice By is Borel since o is Borel measurable according to Proposition
2.1.3. Fix k and let a € By. Put 7, = split f(a). Choose 0 < 7 < 31,
small enough for % (f(z), f(a)) < %1, whenever x € B(a,r). It follows
from Lemma 2.5.5 that there exist positive integers @1, ..., Q such that
Z§=1 Q; = Q and each f(z), z € B(a,r) n By, can be decomposed as

f(z) = @51 Q;[[f; ()]
in such a way that || f;(a) — f;(z)| <r,j=1,...,k, and

k
G(f(2), f(a)) = X, Qjllf5(a) = f5()].

In particular, for j # j', we infer that

1fi (@) = fir @) = [ fi(a) = fi (@) = [ f5(@) = fi(a)| = fj(a) = fi ()]
= %na.

Thus 7, := split f(z) > 3n,. If ,2” € B(a,r) N By, then

1£5@) = £ < 165@) — K@)+ 6@ — £@)] < 20 < 3

1 27735

so that .
G (f(x), f(2') = Y Qilfi(z) — f;(a")]
j=1

according to the Splitting Lemma. Thus each f; is Lipschitz continuous
on B(a,r) n By, and hence it is differentiable at A almost every point of
B(a,r) n By, since it can be extended to the whole X (see [12]) and Y has
the Radon-Nikodym property. Now if each f; is differentiable at a density
point x of B(a,r) n By, one easily checks that
g =@5_,Q;[[fi(a) + Dfj]

is approximately tangent to f at x. Thus we have shown that assumption
(C) of Proposition 2.5.6 occurs at A almost every a € X. Since this is also
the case of assumptions (A) and (B) (according to [9, 2.9.13] and the Borel
measurability of f and of o o f), conclusion (A) is now a consequence of
that proposition.

In order to prove conclusion (B) we use the same notation By, a € By
and r > 0 as above. It follows that the restriction

Df : By n B(a,r) = 2o(Hom(X,Y)) : 2 — @2, [Df;]
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is Borel measurable according to Proposition 2.3.2(A), because each x —
D f;(z) is itself Borel measurable. Since By, is Lindeldf the restriction Df | By,
is Borel measurable for each k = 1,...,Q, and the Borel measurability of
D f follows immediately.

The proof of the first part of conclusion (C) is inspired by [9, Lemma
3.1.5] and exactly similar to [10]. In order to prove the second part of
conclusion (C) we assume that f is differentiable at a and we write Af(a) =
®% [AJ and L; = A;— A;(0),i = 1,...,Q. Observe that A;(h) = A;(0)+
Li(h) = fi(a)+ Li(h),i=1,...,Q, according to (A). Observe that for each
x € X we have

Q
(2.8) % (Af(a)(2), f(@)® < |z —al® (Z ILiI2>
i=1

and, given z, let o € Sg be a permutation such that

(2.9) G2 (Af(a) Z Ifi(a (x —a) = forn(a)|?.
Assuming that f;(a) # f,;)(a), for some i = 1,...,Q, and that
1 ..
| = af max{|L1]..... [ Lal} < 5 split f(a)

we infer that the right member of (2.9) is bounded below by 1 (split f(a))?,

in contradiction with (2.8) provided ||z — a Z 1 ILi|? < isplit f(a).
Thus, if |z — a| is small enough then (2.9) becomes

Q
Z |Li(z — a)[* = 92(Af(a)(2), f(a))
< %(Af(a)(z), f(2) + % (f(2), f(a)) .-

Upon letting * — a we obtain

(2.10) sup Z [Li(R)||? : h e X and |[h| < <Lipf.

Let j =1,...,Q be such that ||L;| = max{|L],...,|Lgll}- The above in-
equality implies that |L;| < Lip f. Finally | Df(a | = (Z * I )
VQLip f.

It remains to establish conclusion (D). We define g : [0,1] — R by the
formula g(t) = %(v(t),7(0)), 0 < t < 0. We will show that g is Lipschitzian
and that |¢/(t)] < | Df(v(t)) | at each ¢t such that f is differentiable at
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~(t), so that our conclusion will become a consequence of a Theorem of
Lebesgue applied to g:

1

% (7(1),7(0)) = g(1) — 9(0) = f g (t)dL(t)

0

<[ Ipro@ | azie = | |Ds@) | an'ia)
0

im ~y

according to the area formula applied to v. Write Df (y(t)) = ®i:1 IL: ()]
For each t,t + h € [0, 1] one has

g(t +h) —g(t) = %(f(y(t +h)),7(0) = %(f(v(1),7(0))
SGD(f(y(Et+h)), fF(v(?))

which shows that Lip g < Lip(f o+); and assuming further that f is differ-
entiable at y(t), we obtain:

S G(Af(v(@)(v(t + h)), fF(7(1)))
+ Go(Af(v()(v(t + h)), f(y(t + R)))

(Z ILi(y () (v (¢ + ) = (t))|2>

+ely(t+h) =@

Nl=

where the last inequality holds provided h is small enough according to
g, split f(y(¢)) and | L1 (y(t)|,- .., |Lo(vy(¢))| (recall the proof of (C)). Di-
viding by |h|, letting h — 0, and recalling that Lipy < 1 we infer that

'(t)] < | Df(y(t)) | provided that g is differentiable at ¢. O

Given f: X — 2g(Y) and a € X we now define

lip, f :=limsup sup w.

r—0 zeB(a,r) HI - G“H

If f is Lipschitz then clearly lip, f < Lipf < oo for every a € X. We
leave it to the reader to check the following partial “product rule”: if f and
A : X — R are Lipschitz then

(2.11) lip,(A\f) < (lipg A) | f(a) | + [M(a)|(lip, f)-
PROPOSITION 2.5.9. — If f : X — 2¢(Y") is Lipschitz then

lip, f < | Df(a) | <+/Qlip, f)

for ™ almost every a € X.
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Proof. — The second inequality is proved in exactly the same way as
Theorem 2.5.8(C) on noticing that in (2.10) Lip f can be replaced by lip, f.
In order to prove the first inequality we assume that f is differentiable at
a and that a is a Lebesgue point of z +— | Df(z) |. Given 0 < & < 1 we
define

Ge=Xn{z: |Df(z)| <e+ |Df(a)|}.
There exists ro > 0 such that for every 0 < r < ry one has
ZL™(B(a,r) nGE) <27 a(m — 1)r™.

Fix 0 < r < ro/2. Given = € B(a,r), x # a, we put p = ||z — a| and we
consider the set

H = B(0,ep) n span{z — a}*.
With each h € H we associate the line segment S; joining a + h and z + A,
and we define the “cylinder”

C = UneraSh -
We observe that C' € B(a,2p) and that
LM(C) = pa(m —1)e™ T = e la(m — 1)p™.
Therefore,
LMCnG)=2L"(C)-ZL™(CnGY
> la(m —1)p™ — 27" a(m — 1)(2p)™
=" la(m—1)p™ 1 —e)p.

According to Fubini’s Theorem, Chebyshev’s inequality and Theorem 2.5.8,
there exists h € H such that

HN(ShnG) =z (1—e)p

and f is differentiable ' almost everywhere on Sj,. For such h, recalling
Theorem 2.5.8(D), we infer that

G(f(x+h), fla+h))
f | Df(2) | a7 (2)

N

J | Df(2) | d%l(z)+J | Df(z) | dot (z)
ShnGe ShnGE

(e+ | Df(a)]) )p+/Q(Lip fep.
Since ||h|| < ep, the triangle inequality implies that

G(f(z), f(a)) << (e+ | Df(a) | )p+ (2 +/Q)(Lip f)ep,

N
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thus
Y(f(x), fla)) <e+ | Df(a)]| +(2++/Q)(Lip f)e

|z — al

3. Embeddings
3.1. Whitney bi-Ho6lder embedding — The case Y = (5 (K)

Here we report on [18, Appendix V]. We let K =R or K = C. We start
by recalling the usual embedding

n:29(K) > K?: v (mv),...,m01v)).
Given v = [[z1,...,zq] we let n;(v) € K, i = 1,...,Q, be the coefficients
of the Weierstrass polynomial of v:
Q

Q
Py(x) = [ [(&—2:) =29 + D mi(v)2? " e K[a].
i=1 i=1
Readily the 7;(v) are the @ symmetric functions of ) variables, and their
(Lipschitz) continuity follows. In case K = C, n is a bijection and n~! is
Holder continuous (see e.g. [15, Theorem (1,4)]).

We now treat the case of K. We will define a mapping
n: 29(K") - KV

where N = N(n,Q). Given u € C" and v = [[z1,...,zq] € Zo(K") we
define a polynomial

::]e

—u,x)) € Klug, . .., U, ]

z:l

whose coefficients 7, (v) form the components of n:

Pux—xQ+ZZna coulng QT

i=1 aeN"™
o =i

N(n,Q) = <QZ”) _1.

One shows ([18, Appendix V Theorem 6A]) that n is injective, continuous,
that n(2¢(K")) is closed in KV, and that ! is continuous as well. In
case K = C, it follows from the Proper Mapping Theorem that 1(2¢(C"))

One computes that
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is an irreducible analytic variety in C", see [18, Chapter 5 Theorem 5A].
In fact (2 (C")) is a Hélder continuous retract of CV, see Remark 3.3.7.

3.2. Splitting in case Y =R

We now state an easy and important observation on how to compute the
%, distance of two members of 2o (R). The order of R plays the essential
role. This is taken from [2, 1.1(4)].

PROPOSITION 3.2.1. — Let v,v" € 2¢(R) and choose numbering v =

[y1,-- - yQll and v' = [lyi,...,ypll such that y1 < yo2 < ... < yg and
Yy < Y5 < ...<ygq. It follows that

g2(v7 U/) =

3.3. Almgren-White locally isometric embedding — The case
Y = 3(R)

This section is devoted to the case Y = (3, i.e. R™ equipped with its
Euclidean norm ||| and inner product <, -). Proposition 3.3.1 and Theorem
3.3.4 are due to F.J. Almgren [2, 1.2]. The presentation we give here is
(inspired by) that of C. De Lellis and E.N. Spadaro [6]. Part (B) of Theorem
3.3.4 is due to B. White [16].

Let e € R™ be such that |le| = 1. We define a map

7 : 2o(R") — RY
by the requirement that . ([[y1,...,yq]) be the list of inner products

yrse), ... {yg,e).

numbered in increasing order. Notice that we need indeed to explain how
we choose to order these real numbers if we want the values of 7. to belong
to R@, for otherwise they would merely belong to 2¢(R).

ProrosiTION 3.3.1. — Let e1,...,e, be an orthonormal basis of R™.
The mapping

& Z2o(R") — R : p — (e, (V)y ..y 7e, (V)

has the following properties:
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(A) Lipg, = 1;

(B) For every v € 2o(R"™) there exists r > 0 such that for each v’ €
Zo(R™), if Gy(v,v') <7 then [§y(v) — &o(v')] = %a(v,v');

(C) For every v e Z¢o(R") one has [|€y(v)| = % (v, Q[O]).

Proof. — (A) Let v,v" € 2o(R™) and write v = [[y1,...,yq] and v/ =
[vi,---,ygll. For each j = 1,...,n there exists 7; € Sg such that

Yr,1),€5) < - < (Yryq),¢j) and there exists 77 € Sg such that

<y’T;(1), ejy<...< <y’TJ{(Q),ej>. By definition of 7., we have

[7re; (v) — e, (v ZK@/TJ(Z €)= Wiy el -

=1

There also exists o € Sg such that

Q

2

= Z ly: — y;(i) 1=
1=1

It remains to observe that

Jeo(6) — &) = 32 ) Ky, — WP

j=1li=1

which, by Proposition 3.2.1, is bounded by

Z [Wire5) = Yoy, e

Mo T M:

1 = Yoii) I?

-.
Il
—

Il

[\V)
—_

<
d\
~—
[\V]

(B) Let v € 2o(R™) and write v = [[y1,...,y¢g]l- Foreach j =1,...,n
choose 7; € Sq such that (y. 1),e;) < ... < {(Yr,(q),€j)- Define r =
s min{splitme, (v) : j = 1,...,n} and let v/ € Z¢(R™) be such that
“(v,v") < 1. Choose a numbering v' = [[y1, ..., yg] so that

Q

2 7112

= >l —wil?
i=1
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Notice that for every j = 1,...,n one has
!/
(Jnax [y i), €5) = Wiy iy €50
I
< Tax, 1y i) = Yoy iy | < Go(v,0) < 5 split 7, (v)

which implies, according to the Splitting Lemma, Proposition 3.2.1 and the
definition of 7, that

Q
2 iy e = Wiy P = Galme, (v), e, ()P
i=1

Q
= Z K%j(i), ej) — <y;-1’.(i)v €j>|2
1=1

where 7] € Sq is such that <y’T((1), ey <...< <y’T<(Q), e;. Therefore,

10 (v) — & (v)]* = ZZK?JW €j) = Wrr iy €)1

j=1li=1
n Q
= Z Z [<Ur,y (i)s €50 = Yoy €01
Q n
= 20> Kyires) = i el
i=1j=1
Q
= 2 lyi — viI?
=1
= Gy(v,0")?.

(C) Writing v = [[y1,- -, yqll, it suffices to observe that

&0 (w)* = ZZK%%NQ ZH%II2 % (v, QO]

j=1li=1

O

Remark 3.3.2. — The Lipschitz mapping &, defined above is usually not
injective. Consider for instance the case when @Q = 2, n = 2, and let eq, e
be an orthonormal basis of R2. We define v = [ —e; +ez, e1]). It follows that
&) =(-1,1,0,1) = &,(v") where v/ = [[ — e1,e1 + ez]. Clearly v # v,

The lack of injectivity of &, is overcome by considering a lot of orthonor-
mal bases instead of just one, i.e. we shall replace &, by many copies of &,
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corresponding to various bases. The main observation to obtain injectivity
is the following.

ProPOSITION 3.3.3. — Given integers n and L there are € > 0 and unit
vectorses,...,ex € S*! with the following property. For every vy, ..., v, €
R™ there exists k = 1,..., K such that

e, vi)l = elluil|
foreachl =1,...,L.

Proof. — We first notice that the measure ;#"~1 _S"~! is doubling, i.e.
there exists C' > 1 such that " 1(S"1 A U(e,2r)) < Co"1(S" 1
Ul(e,r)) whenever e € S"~! and r > 0. Given e € S"~! and & > 0 we define
the slab

See=S""tn{w: [{e,w)| <e}.

)

Now we choose € > 0 small enough for

n—1/Qn—1
H"H(See) < %
whenever e € S"~!. We choose a maximal collection of points ey, ..., ex €
Sm=1 such that the (open) balls U(ey, ), k = 1,..., K, are pairwise disjoint.
Such a collection exists because s#"~1(S"~1) is finite and #"~1(S"~1 N
Ule,€)) does not depend on e € S*~!. By maximality, we have that S"~! =
U?:l Ul(ex, 2¢).

Let now vy,...,v, € R™ be arbitrary. We define £ = {1,...,L} n {l :
v; # 0} and for [ € £ we set w; = v|vy| 1. Our claim is that for some k, ey
does not belong to any of the slabs Sy, ., [ € £. Suppose if possible that
foreach k =1,..., K, e € S where

S = Swi.e-

leg

If [ € £ corresponds to k so that e, € Sy, . then in fact at least “half”
the ball U(eg,e) must be contained in Sy, ¢, thus #"~1(S n Ulex,¢)) >
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1m1(S""! A Ulex, €)). We would then obtain

K
ATHETH < Y AT A Ulex, 2€))
k=1

K
<C Z NS A Uleg,€))
k=1

K

<2C Z H"HS A Ule,€))
k=1

<204771(S)

<20 ) A" (Suyc)

leg

2
< 7%7171(877,71)’
3
a contradiction. O

THEOREM 3.3.4. — There exist an integer N = N(n,Q), a real number
a=a(n,Q) <1 and a mapping

£: 2o[R") —RY

with the following properties.

(A) For every v,v" € 2(R"), a¥(v,v") < [€(v) — &) < Da(v,v');

(B) For every v € 2¢(R™) there exists r > 0 such that for each v’ €
20(R"), if %2(v,v") < r then [&(v) — E(V)|| = Da(v,v);

(C) For every v e 2¢(R™) one has |€(v)| = % (v, Q[O]).

Proof. — Letting L = Q2 we choose € and ey, ...,ex according to
Proposition 3.3.3. For each £ = 1,..., K we choose an orthonormal basis
€1,k,---»€en,k Of R™ such that e; ;, = e;. We then define

£: 20R") > RY 1w (& (v),...,€x(v))

where N = QnK and we have abbreviated §; (v) = (7, , (v),..., e, , (v)).
Thus each &, is a mapping of the type &, considered in Proposition 3.3.1,
corresponding to the basis ej x,. .., e, . We therefore infer from Proposi-
tion 3.3.1(A) that for every v,v" € 2o(R"),

[€(v) — €()]* = Z”€k (V)* < Ka(v,v').
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On the other hand, letting v = [[y1,...,yql and v" = [y}, ..., yg |, we infer
from Proposition 3.3.3 that there exists k = 1,..., K such that
‘<61,kayl yj>| 6Hy1 *y] H

for every i,j = 1,...,Q. Let 0 € Sg be such that {y,),e1x) < ... <
WYo(q)s €1,k) and let 7 € Sg be such that <y’T(1), ey <...< <y’T(Q), 1 k-
Observe that

Q
< 2 1Yo (i) = Yo i) I?
i=1

Q
e Z Yo i)s €1,6) — <?/T(i)v e1i)l?
i=1
= e ey, (v) = Ty, (V)2
<e’g(v) — £)[*.
We now turn to proving conclusions (B) and (C). Given v € 2¢o(R")
and k =1,..., K we choose 7, > 0 according to Proposition 3.3.1(B). Let
r=min{ry,...,rx}. If ve 2o(R") and %(v,v’") < r then

[€(v) — €@ = leﬁk ()|* = K% (v,v)*.

Also, regarding conclusion (C), we observe that for every v € Zg(R"),

[€@)]* = K% (v, Q[0]),

according to Proposition 3.3.1(C). This means that the mapping K~/2¢
verifies the conclusions of the present proposition. O

B. White’s addition (B) to F.J. Almgren’s embedding Theorem 3.3.4 has
the following rather useful consequence. Here the linear spaces Hom(R™, R")
(v =nor v = N) are equipped with the norm

LI = ZZ (), ex)?

corresponding to the canonical bases of R™ and R”.

PROPOSITION 3.3.5. — Assume that f : R™ — 25(R"), a € R", and
that both f and & o f are differentiable at a'?). It follows that

| Df(a) | =D& Ha)ll.

() For f this is in the sense of Theorem 2.5.8(C)
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Proof. — For each j =1,...,m we have
6 a+t So a 2
loy( o F)(@)? = lim [ESNOH10s) 2 (80 T)l0)]
_ i 22U (@t te)), f(a))?
t—0 12

(according to Theorem 3.3.4(B))
o BAR@)a 1), [(0)?

t—0 t2

(because f is differentiable at a)

iy St 1£i(@) = A,y (@) = Loy (te)) |
— 50 12 ’

where, as usual, D f(a) = (—BZQ:l[[Ai]], L,=A4;,—A4;,(0),i=1,...

is a permutation o € Sg for which the quantity

S| fila) - Ag(iy(a) — Lo (tej)|?
t2

,Q and oy

is minimal. Since the above limit exists and is finite, we infer that o; € Sg
must be such that fi(a) = A,,;)(a) when t is small enough, i = 1,...,Q.

Thus,
[0;(&0 f)(a)|? = ZHL (e)]?,

and in turn,

m Q
IID(& o f)(a)]? = ZHM la)? = ZZ
Q
2

IL:||1? = | Df(a) | ®
1

O

THEOREM 3.3.6. — Let N = N(n,Q) and & be as in Theorem 3.3.4.

There exists a Lipschitz retraction

p:RY — £(2(R")).

Proof. — Apply Theorem 2.4.3 with X = ¢), A = £(2¢(R")), Y

=

and f = €', Letting f be a Lipschitz extension of f, the mapping p = £o f

verifies the conclusion.
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Remark 3.3.7. — The exact same proof shows that there exists a Hélder

continuous retraction
p:CYN —n(2o(CM))

where N = N(n,Q) and n are as in Section 3.1. This follows indeed from
the fact that p~! is Holder continuous (reference [15, Theorem (1,4)]). In
the same vein one can prove the following, based on [3, Theorem 1.12] and
Theorem 3.3.6: If w : RT™ — R is concave then for every A € {5 and
every f 1 A — 2¢(¢3) such that osc(f;-) < w, there exists an extension
[ty — 20(63) of f such that osc(f;-) < (Lip p,, o)w. Here p,, o is
the Lipschitz retraction of Theorem 3.3.6, and 2 (¢%) is equipped with its
metric %.

We recall that a metric space Z is an absolute Lipschitz retract if and
only if each isometric embedding Z — Z’ into another metric space Z’
has a Lipschitz right inverse p : Z/ — Z. In other words, Z is a Lipschitz
retract of any of its metric superspaces. This is equivalent to asking that
any partially defined Lipschitz map into Z extends to a Lipschitz map into
Z, see [3, Proposition 1.2]. For instance £ is an absolute Lipschitz retract,
and hence the following holds.

COROLLARY 3.3.8. — Zg(R") is an absolute Lipschitz retract.

Question 3.3.9. — If Y is an absolute Lipschitz retract, is 2¢(Y") also
one? Are 2¢({y) and Z¢(C[0,1]) absolute Lipschitz retracts? Are they
absolute uniform retracts?

3.4. Lipeomorphic embedding into Lip, (Y)*

Let (Y,y0) be a pointed metric space, i.e. a metric space Y together
with a distinguished point yo € Y. We denote by Lip, (V) the collection
of those Lipschitz continuous functions « : ¥ — R vanishing at yg. This
is a Banach space equipped with the norm |ullr;, = Lipu. With each
v=1ly1,...,yqll € Lo(Y) we associate a linear functional

Q
(3.1) ¢(v) : Lip,, (V) > R:u— > u(y;).

i=1

One readily checks that ¢(v) is continuous and

HC( H(Lle Z yzayO
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In particular [(v)|(ripyy* < Q(diamY’) so that ¢ is bounded when Y is.
Notice also that ¢(Q[yo]]) = 0. We shall now show that

¢:2q(Y) — Lip,, (Y)*
is a lipeomorphic embedding.

THEOREM 3.4.1. — There exists cg > 0 such that for every pointed
metric space (Y,yo) and every v,v' € 2o(Y) one has

c@%(v,v") < [¢(v) = C(V)[Lipy)yx < %i(v,0).

Proof. — We start with the second inequality. Let v,v" € Zo(Y) and
choose numberings v=[[y1, ..., ygll and v = [y, .. ., yi | so that 4 (v,0") =
2?:1 d(yi,yl). It is clear that

Q Q
D) = > uly

i=1 i=1

)|t we Lip, (V)

I¢(v) — C(”/)H(LipY)* = sup {

and Lipu < 1}

Q
= gl(vw).

We now turn to proving the first inequality, by induction on Q. If Q@ =1
then the inequality is verified with ¢; = 1. Indeed, given v = [[y1] and
v = [[y1]] we let u(y) = d(y1,y) —d(y1, o) so that u € Lip, (Y), Lipu < 1,
and

[¢() = €Wl wipyys = ulyr) — u())| = d(y1, 1) = (v, 0").

We now assume the conclusion holds for () and we establish it for Q + 1.
Let v,v" € 2g41(Y) and write v = G—)Q Myl and o = QH[[yl]] We let
a > 0 to be determined later, and we distinguish between two cases.

First case. We assume that

dist (supp iy, Supp i) = min{d(y;, y;) = i,5 = 1,...,Q + 1} > a%(v,v") .

We define ug : (supp py) U (supp por) — R by letting ug(y;) = 0 and
uo(yl) = o (v,v'), i = 1,...,Q + 1. It is most obvious that Lipug < 1
and we let @y be an extension of ug to Y such that Lipdg < 1, whose
existence follows from the McShane-Whitney Theorem. Finally we let u =
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fip — o (yo) 1y and we observe that

Q+1 Q+1
I60) = €@ wiprye = | 25 ulwo) = 3, ulyl)| = al@ + D% (w.0).

Second case. We assume that

dist (supp iy, SUPP por) < @ (v,0') .

Choose ig, jo € {1,...,Q+1} such that d(y;,,y ) = dist(supp f,, Supp p.r).
Define 9,7 € 2g(Y) by

v = @z;ﬁzo lIyz]] and ' = ®J#Jo [[yy]]

According to the induction hypothesis there exists u € Lip, (Y) with
Lipu <1 and

> uly) = D) uly))
1#i0 J#Jjo
Since readily 41 (9,7") + d(yiy, yj,) = %1 (v,v") we infer that
Q+1 Q+1
D uly) — ) u(y))
i=1 j=1
C o
> (5,9) — ulyiy) — uly,)
c c
= ﬁgl (va/) - EQd(yioay;'O) - d(yzoayéo)
cQ cQ )
> —_—
( 3 —a(i+3))he)
et

We now choose o > 0 small enough for

1 5 B c .
= §||C(’U) —¢(0)] (Lip vy = ?Q%(’U,’U )

I¢(v) — C(U/)”(Lipy)* =

)
( Q)>Oandweset
cQ+1 :min{ (Q@+1), (

so that, in both cases,
1€ (v) — C(U/)H(Lip y)® = cQr1%(v,0").

cQ
2
Q

4. Sobolev classes
4.1. Definition of L,(X, 2¢(Y))

Let (Y, yo) be a pointed metric space as usual, let (X, 2, 1) be a measure
space, and let 1 < p < co. We denote by L, (X, 2¢(Y)) the collection of
mappings f: X — 2g(Y) verifying the following requirements:
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(A) fis (™A, B o, (v)) measurable;
(B) The function X -> R :z — %(f(x), Q[lyo]])? is p summable.

In the remaining part of this paper we shall abbreviate

| f(z) | =%(f(z),Qllyol) »

x € X, and we keep in mind that no ambiguity should occur from the lack
of mention of yy in the abbreviation™. If f € L,(X, 2¢(Y)) we also set
the notation

|f|Lp::<J; Iflpdu>p

Of course L, (X, 2¢(Y)) need not be a linear space. It is most obvious that
the formula

1
P

dy(f,9) = (L 9 (f, g)pdu)

defines a semimetric on L, (X, 2¢(Y)). As in the scalar case, we have:

PROPOSITION 4.1.1. — Assume that Y is a complete metric space. It
follows that L,(X, 2q(Y))[dp] is a complete semimetric space, and each
Cauchy sequence contains a subsequence converging pointwise almost ev-
erywhere.

4.2. Analog of the Fréchet-Kolmogorov compactness Theorem

THEOREM 4.2.1. — Assume that 1 < p < o0 and that:

(A) (X,%Bx, ) is a finite dimensional Banach space with a Haar mea-
sure \ defined on the o algebra B x of Borel subsets of X;

(B) Y is a compact metric space, and yo € Y’;

(C) F < Ly(X,Z2¢(Y)) is a family subjected to the following require-
ments:

() sup{ | f 1 1, : fe T} <0
(ii) For every € > 0 there exists a neighbourhood U of 0 in X such
that

sup{d,(mn.f, f): fe F} <e
whenever h € U, where (15, f)(z) := f(x + h);

() In case Y is a Banach space it will be implicitly assumed that yg = 0
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(iii) For every € > 0 there exists a compact K € X such that

sup{dy(f, fx) : f € F} <e,

where

Qllyoll  ifz¢ K.
It follows that % is relatively compact in L,(X, 2¢o(Y))[dp]-

fK(x)_{f(x) ifre K

Proof. — In this proof we will abbreviate || - | = | - [(Lipy)*. In view
of the completeness of L,(X, 2¢(Y)) (Proposition 4.1.1) we need only to
show that .# is totally bounded. Let € > 0 and choose U and K according
to hypotheses (C)(ii) and (C)(iii). There is no restriction to assume that
Clos U is compact. We next secure a continuous function ¢ : X — R* such
that suppp € U and Sx wd\ = 1. Given f € % we consider the map

¢o fx: X — Lip, (Y)*

and we observe that it is (Bx, %Lipyo(y)*)-measurable, separably valued
(in fact im o fx < im ¢ and the latter is compact according to the continu-
ity of ¢, Theorem 3.4.1, and the compactness of 24 (Y"), Proposition 2.1.1).
It therefore ensues from the Pettis measurability Theorem, [7, Chap. I §1
Theorem 2], that ¢ o fi is strongly measurable, i.e. the pointwise A almost
everywhere limit of a sequence of (By, %Lipyo(y)*)—measurable functions
with finite range. Furthermore ¢ o fx is bounded (because Y is) and com-
pactly supported (because ¢(Q[yo]]) = 0), so that the Lebesgue integral
§ [¢ o fx|d\ < oo. Thus ¢ o fx is Bochner integrable. We define the
convolution product of ¢ and ¢ o fx by means of the Bochner integral:

(p+¢ofi)a) = (B) | ph)(Cofio)a+marn).  aeX.
We now claim that each ¢ * (¢ o fx) is continuous and, in fact, that the

family C(X, Lip, (Y)*) n{p* ({0 fx) : f € F} is equicontinuous. Given
z,x’ € X we simply observe that

Hw*C fr)(@) = (¢ = Co fx) (@)

= () [ (6l = ottt = (€ o i)+ M)

<( f (o(h) — plh + & — /)| 757 dwz))l; (JLice e+ h>||pdA<h>);

_1
<osc(p, |z — 2’| x)AU + Bx (0, & — 2’| x)) "% | f 4,
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according to [7, Chap. IT §2 Theorem 4(ii)], Holder’s inequality, and Theo-
rem 3.4.1. The equicontinuity follows from the uniform continuity of ¢ and
hypothesis (C)(i).

We denote by C the closed convex hull of im{ in the Banach space
Lip,, (Y)*. As im ¢ is compact it ensues from Mazur’s Theorem that C'is
compact as well. Furthermore, the definition of the convolution product
guarantees that (¢ * ¢ o fx)(z) € C for every x € X. It therefore follows
from Ascoli’s Theorem, [8, 0.4.11], that the family C'(X, Lip,, (Y)*) n {p *
(Cofx): f e F}isrelatively compact in C.(X, Lip, (Y)*) with respect to
uniform convergence (note that supp(p = o fx) € K + ClosU, a compact
set independent of f). Consequently there are f!,..., f* € .Z such that for
every f € .7 there exists k € {1,...,k} with

(4.1) l(p*Cofr)(@) — (p*Co i) ()] < eA(K + ClosU) 7

for every z € X.

Now given f € .% we choose k so that (4.1) holds and we aim at showing
that d,(f, f¥) < De where D is a suitable constant; this will complete the
proof. We start with the observation that

dyp(fo ) < dp(f, fre) + dp(fres F) + dp(fics [¥) < 26 + dy(fc, [5)

according to hypothesis (C)(iii). Next we infer from Theorem 3.4.1 and
(4.1) that

cQdy(fr, o) < (L I(¢o fic) — (Cof]’“()l’d,\>’1”
< (L I(¢o fx) - <¢*gofK)|pdA)%
* (‘[K+ClosU [(p=Cofr)—(pxCo flk()|pd)\>;
+ (JX l(p*Cofk)— (goff(”pd/\)p
S (JX [(Cofx)—(pxCo fK)|pd)\) g e

1
+ ([ onco st - o siora)
X
Thus it remains only to find a uniform small upper bound of

[ iee 5= ex o fopar
X
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whenever f e .Z. Let x € X, abbreviate u = ALy, and observe that
(€ o fr)(@) — SD*C fr)(@)]

H (¢ o fr)(a) — <<ofK><x+h>)dA<h>H
< JX G (fr(x), nfr(x))du(h).

It then follows from Jensen’s inequality applied to the probability measure
u, and from Fubini’s Theorem that

L (¢ o fie)(@) — (0 C o i) (@)|PdA(z)

< [ 0@ ([ aun@mscenmm)

< JX dA(x) L G (frc (), 7 frc (@))Pdp(h)
= Q2 JU dp(h)dy (fre, Thfrc )P

< Q"2 supdy(fic, T fx )P -
heU

Consequently,

([ 1tcosi-torconapa) <avae
according to hypotheses (C)(ii) and (iii). Therefore,

(fK7 fK CQ 1 + 6\/7
and finally,

d,(f. f*) < (2+c 1—1—6\/»)

4.3. Definition of W, (U; 2¢(Y))

In this section X is a finite dimensional Banach space with Haar measure
A, U € X is either X itself or a bounded open subset having the extension
property® | Y is a Banach space having the Radon-Nikodym property, and
1 < p < o0. The space Hom(X,Y) is given a norm || - ||. We recall that each

®)ie. for every 1 < p < o0 there exists an extension operator W}(U) — W (X) for
classical Sobolev spaces; for instance U has Lipschitz boundary
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Lipschitz map f : U — 2(Y) extends to a Lipschitz map f : X — 24(Y)
according to Theorem 2.4.3, and that f is differentiable at A almost every
z € U, according to Theorem 2.5.8. For such z, writing D f(z) = @2, [ L],
we recall that we have defined

| Df(z) | =

Q
2 L.
i=1

We define the Sobolev class W, (U; 2¢(Y)) to be the subset of L, (U; 24(Y)
consisting of those f : U — Z¢(Y) for which there exists a sequence {f;}
of Lipschitz mappings X — Z2¢(Y") with the following properties
(1) fj € Lp(U; 29(Y)) and SU | Df; | Pa\ < oo for every j =1,2,..;
(2) sup; SU | Df; | Pax < oo
(3) dp(f,fj) > 0asj— .
In case U is bounded, (1) is redundant.

We define W, (U; 2¢(Y')) to be the quotient of W} (U; 24(Y)) relative
to the equivalence relation f1 ~ fo iff A{f1 # fo} = 0. We now recall the
definition of F.J. Almgren’s Sobolev class Y, (U; 2¢(¢%)). Here X = ¢5* and
Y = (3. This is simply the collection of Borel functions f : U — RY (where
N = N(n,Q) is as in 3.3.4) such that f is a member of the classical Sobolev
space W (U;RY), and f(z) € £(¢3) for £™ almost every x € U. This is
reminiscent of the definition of Sobolev mappings between Riemannian
manifolds, except for Zg(¢5) is not a Riemannian manifold, but merely
a stratified space. We also let Y, (U; 2¢(€5)) denote the corresponding
quotient relative to equality £ almost everywhere. We finally recall that
Hom (€5, %) is equipped with the following norm

m 14
LN = | 25 D <E(es), en)?

j=1k=1

that appears in the following result.
THEOREM 4.3.1. — Assuming that X = ¢3" and Y = {3, the mapping
T: W, (U; 20(63)) = Yy (Us 20(63)) : f > €0 f
yields a bijection
Y : W, (U; 20(63)) — Y, (U; 20(63))

and

(1) Sy %(f(2), QIONPdL™ (x) = § | T(f)(2)[PdL™ (x);
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(2) If f is Lipschitz then
| 1pr@ |7z @ - | 10T @I @),

Proof. — We first show that & o f € Y,(U;Z2¢(¢3)) whenever f €
W, (U; 24(£3)). Tt is clear that f : U — RY is Borel measurable and
also that

fns H@)Pdzm (@ j %(f(2), QLO])PdL™ (x) < 0,

according to Theorem 3.3.4(C), thus &€ o f is a member of the classical
Lebesgue space L, (U; RY) and conclusion (1) is proved. Assuming that f be
also Lipschitz then so is £o f, thus conclusion (2) holds according to Proposi-
tion 3.3.5 (in conjunction with Theorem 2.5.8 and the classical Rademacher
Theorem), whence £ o f belongs to the classical Sobolev space W) (U; RN).
If we now return to merely assuming that f € W) (U; 2¢(f3)) in our def-
inition, there then exists a sequence {f;} of Lipschitz maps X — 2 (¢3)
such that sup, §,, | Df; | " d£™ < o0 and lim; §,, %(f, f;)PdL™ = 0. We
infer from conclusions (1) and (2) that {£ o f;} is a bounded sequence in
W (U;RY). Since W, (U;RY) is a reflexive Banach space, there exists a
subsequence {§ o fi(;)} converging weakly to some g € WI}(U;RN ). Since
U has the extension property, the weak convergence corresponds to con-
vergence in L,

i [ 160 fip) — glPd 2™ =0
U

and therefore £o f = g .£™ almost everywhere, which readily implies that
€0 f eV, (U 20(63)).

We next observe that the equivalence class of T(f) depends only upon
the equivalence class of f, because & maps null sets to null sets. Since the
same is true about £ ', we infer that Y is injective. It remains to show
that Y is surjective. Let g € Y,(U; 2¢(¢5)). There is no restriction to
assume that g(z) € £(£3) for all z € U, and we define f = £ ' o g; it is
obviously Borel measurable. Since g € WI}(U; RY) and U has the extension
property, there exists § € I/Vp1 (R™; RY) such that § is compactly supported
in a neighborhood of U and §lU = g. Choosing {¢.;} a smooth compactly
supported approximation to the identity, we define

fi=&"opolpe*0).

TOME 65 (2015), FASCICULE 2



808 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET
We observe that the f; : X — 2¢(¢3) are Lipschitz and
| sy prazr = | @6t o po (o ). g az
<a(m@)" | oo (e, 20 = pogdz

< a(n, Q)" (Lip p)fﬂf e, * 4 — g|Pd™
U
—0asj— .

Finally, if f; and p o (¢., * §) are both differentiable at a € U, then
Proposition 3.3.5 implies that

| Dfi(a) |” = | D& opo o +9))(@) |
I1D(p o (e, * §))(a)]|”
< (Lip p)"[|D (e, = g)(a)[I”-
Since this occurs that .£™ almost every a € U, according to Theorem 2.5.8
and the classical Rademacher Theorem, we infer that

sup f | Df;(a) | d2™ < (Lip p)? sup j ID(g., * 3)|Pde™
J U J U

< (Lipp)” f IDglPdz™.
U
Thus f e W, (U; 2¢(43)). O

Remark 4.3.2. — It is worth observing that in case p = 1 the above The-
orem would not be valid, as our definition would yield a space of mappings
U — 2¢(¢y) of bounded variation rather than Sobolev.

Remark 4.3.3. — We recall that U is assumed to have the extension
property. This means that there exists a continuous linear operator

. 1 N 1 m, N
E: WL(U;RY) > WLR™RY).

Given f € W}D(Rm;RN) and f € f, one easily checks that p o f
€ Ypl (R™; 20 (¢3)) and that the equivalence class of p o f depends only
upon that of f. Thus the formula

E(f) = T (po B(Y (£)
defines an “extension mapping”

W, (U3 2q(63)) — W, (R™; 24(63)) .-
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PROPOSITION 4.3.4. — Let f € W} (U; 2¢(¢3)) and t > 0. Define

Ay = U n{z : %(f(2), QION)" + (M|IDE(Y(f))IN? (z) < 7},

where M denotes the maximal function operator and E(Y(f)) is a repre-
sentant of the class E(Y(f)). There then exists a Lipschitzian map h : U —
20(€3) such that

(1) h(z) = f(x) for L™ almost every x € Ay;

(2) Liph < 4™ la(n, Q) tea.a.3(m, Q)t where a(n, Q) is as in Theorem
3.3.4;

(3) % (h(x),Q[O0]) < c2.4.5(m,Q)t for every x € U;

(4) For £™ almost every x € Ay, [ is approximately differentiable at
zand | Df(z)| = | Dh(z) | .

Proof. — Write u = E(Y(f)) € Wy (R™;RY). We let A, denote the Borel
subset of A; consisting of those x such that u(z) = lim,_,q+ (wg*u)( ) where
{pe}e=0 is a given approximate identity. Given distinct x,2’ € A, we let
Q= U(x,2r) n U2/, 2r), where r = |z — 2’| > 0, and we infer from [14,
Lemma 1.50] (adapted in the obvious way to the case of vectorvalued maps)
that

m 1Du@l o
ol Jo Te = gmT 47 W)

u(x) _J[ udL™| <
Q

and

, I Duy)]|
— dL™| < f daLm
)~ v ‘ ma(m) Jo [ —yjm1 W)

It follows from the potential estimate [14, Theorem 1.32(i)] that
D D
[ A2 o [ LA i,
Q U(

|z —ylm1 z2r) |2 —y[™?
< ma(m)2|x — 2’| M (|| Dul]) (z) .

Since the same holds with x replaced by z’, we obtain
Ju(z) — u(@’)| < 4™tz — 2|

whenever z, 2’ € A,. The first three conclusions now follow from Theorems
3.3.4 and 2.4.3. Conclusion (4) follows from the fact that h and f are
approximately tangent at each Lebesgue density point of A;, together with
the differentiability Theorem 2.5.8. ]

Remark 4.3.5. — We shall see in Proposition 4.6.3 that the constant in
(2) does not in fact depend upon n.
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COROLLARY 4.3.6. — Let f € W, (U; 2¢((3)). It follows that f and
Y(f) are approximately differentiable ™ almost everywhere, and that

| Df (@) | = IDY(f)()]]
at each point x € U where both are approximately differentiable.

Proof. — That Y(f) be approximately differentiable (in the usual sense)
Z™ almost everywhere follows from standard Sobolev theory (see e.g. [14,
Theorem 1.72]). The analogous property of f follows from Proposition
4.3.4(4) and the arbitrariness of ¢ > 0. The last conclusion is a consequence
of Proposition 3.3.5. O

4.4. The p energy

In this section, X, Y, U and p are subject to the same requirements as
in the last section, and sometimes more. Given f € W (U; 2¢(Y)) and an
open subset V < U, we define the p energy of f in V by the formula

EX(f; V) = inf { limjinf J;/ | Df; | P\ : {f;} is a sequence of
Lipschitz mappings U — Z2¢(Y) such that d,(f, f;) > 0as j — oo} .

We notice that &P(f; V) < &P(f;U) < co. Clearly,

PROPOSITION 4.4.1. — Given f € W) (U; 2¢(Y)) and an open subset
V < U, there exists a sequence of Lipschitz mappings U — 2g(Y") such
that lim; d,(f, f;) = 0 and

é;?(f;V)=hmf | Df; | dA.
i v

As the p-energy is defined by relaxation, we easily prove its lower semi-
continuity with respect to weak convergence.

PrOPOSITION 4.4.2. — Let f, f1, f2,... be members of WZ}(U;QQ(Y))
and assume that d,(f, f;) — 0 as j — oo. It follows that

EV(f;V) < limjinfé;f’(fj; V)

for every open subset V < U.
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If W €Y is a linar subspace and P : Y — W is a continuous linear
retract we define
2q(P): 20(Y) = 2¢(W)
by the formula 2¢(P)([v1,---.y0ll) = [P(¥1),---,P(yo)]- It is a trivial
matter to check that
%(2q(P)(v), 2q(P)(v')) < (Lip P)2>(v,v')
whenever v,v' € 2 (Y).

PROPOSITION 4.4.3. — Assume that

(1) W CY is a linear subspace and P : Y — W is a continuous linear
retract;

(2) g:U — 2¢(Y) is approximately differentiable at a € U;

(3) Hom(X,Y) and Hom(X, W) are equipped with norms such that
||P o L|| < (Lip P)||L|| whenever L € Hom(X,Y).

It follows that 2¢(P) o g is approximately differentiable at a and
| D(2q(P)og)(a)| < (LipP) | Dg(a) |

Proof. — Write Ag(a) = @?:1[[/11]]7 with A; : X — Y affine maps.
Observe that

ap lim ” ((QQ(P) °9)(), (QQ(P) © ®z‘Q=1[[Ai]]> (l"))

z—a |z — al

< (Lip P)ap lim % <g($)’ (@?:1[[141']]) (x))

v=a |z —al
Since 2¢(P) 0 ®2,[A;]] = @2,[[P o A], and the P o A; are affine as
well, we infer that 2o (P) o g is differentiable at a and A(2¢g(P)cg)(a) =
@ZQ:1|1P o A;]. Next note that if L; is the linear part of A;, then Po L; is
the linear part of P o A;. Consequently,

=0.

Q
| D(24(P) o g)(a) | * = Y IIP o Li|?
=1

Q
. . 2
< (Lip P)* Y ||Li|I*> = (Lip P)* | Dg(a) |~ .
=1
O
PROPOSITION 4.4.4. — Assume that

(1) W € Y is a linear subspace and ¢« : W — Y is the canonical
injection;

TOME 65 (2015), FASCICULE 2



812 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

(2) g:U — 2¢(W) is differentiable at a € U;
(3) Hom(X,Y) and Hom(X, W) are equipped with norms such that
|leo L|| = ||L|| whenever L € Hom (X, W).

It follows that 2¢(1) o g is differentiable at a and

| D(2q(:)09)(a) | = | Dg(a) | .
Proof. — The proof is similar to that of Proposition 4.4.3. O
Remark 4.4.5. — Hypotheses (3) of Proposition 4.4.3 and 4.4.4 are ver-
ified in two cases of interest. First when || - || is the operator norm. Second
when
m
LI = v (Z L(Uj)Y6j>
j=1
where v is a norm on R™, m = dim X, eq,...,e,, is the canonical basis of
R™, and uq,...,u,, is a basis of X.
PROPOSITION 4.4.6. — Assume that

(1) W < Y is a linear subspace, P : Y — W is a continuous linear
retraction, and ¢ : W — Y is the canonical injection;

(2) g€ W, (U; 29(W));

(3) Hom(X,Y) and Hom (X, W) are equipped with norms such that
||IP o L|| < (Lip P)||L|| whenever L € Hom(X,Y), and ||c o L|| =
|IL|| whenever L € Hom(X, W).

It follows that 2q(1) o g€ W, (U; 2¢(Y) and
(Lip P)7?&7(g; V) < &7(2q(0) 0 g; V) < E7(g; V),

for every V. < U open.

Proof. — Choose a sequence {g;} of Lipschitz mappings U — Zg(W)
such that dy(g,9;) — 0 and &P(g; V) = lim; | Dg; |pd)\, according
to Proposition 4.4.1. Notice that 2¢(¢) o g are Lipschitz mappings U —
20(Y) and that

limsup d,(Z2q(t) 0 9, 2q(¢) 0 g;) < li;rn dy(g,95) =0.
j

Therefore,

&7 (2q(t)og; V) < lim.inff | D(Z2¢(1) 0 g5) | P dx
i Jv
< limsupf | Dy, |pd)\
J 1%

=& (g V),
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according to Proposition 4.4.4. The case V' = U of this computation implies
that 2q(t) o g € W, (U; 2¢(Y)), by definition of this Sobolev class, and
the general case yields the second inequality of our conclusion.

The other way round choose a sequence {f;} of Lipschitz mappings
U — 2¢(Y) such that d,(Z2g(t) 0 g, f;) — 0 and EP(ZLg(1) 0 g;V) =
lim; §,, | Df; | P d\. Notice that the mappings 2q(P)o f; : U — 2¢o(W)
are Lipschitz and, since g = 2¢(P) o 2¢(¢) o g, one has

dp(9, 2q(P) © f;) = dp(2q(P) 0 2q(1) 0 g, 2¢(P) © f;)
<dy(Z2¢g(t)og, fj) > 0asj— 0.
Thus,

EX(g;V) < limlian | D(2¢(P)o f)) | Pax
i v

< (Lip P)plimjinff | Df; |7 dA
\4
= (Lip P)P&2(2o(1) 0 g; V).
O

For the remaining part of this paper we will only consider the cases when
either Y = (5 for some n € N\{0} or Y = {3, and X is a finite dimensional
Banach space as usual. The norm || - || on Hom(X,Y') is associated with a
basis uq, ..., uy, of X as follows:

Ll = | D5 ILuy)]?
j=1

where | - | is the Hilbert norm on Y. According to Remark 4.4.5, Propo-
sitions 4.4.3 and 4.4.4 apply. When Y = /5 and n € N\{0} we also de-
fine an n dimensional subspace of Y, W,, = span{ey,...,e,}, and we let
P, : Y — W, be the orthognal projection and ¢, : W,, — Y be the canon-
ical injection.

The following guarantees that the p energy is the expected quantity in
case Y = (3. Notice the statement makes sense since g is almost everywhere
approximately differentiable (recall Corollary 4.3.6).

PROPOSITION 4.4.7. — If g€ W) (U; 2¢(¢3)) for some n € N\{0} then

E7(g:V) :fv | Dg |7 dx

for every open set V < U.
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Proof. — If {g;} is a sequence of Lipschitz mappings U — Zg(¢4) such
that dp(g,9;) — 0 as j — o, then [§og—&ogj|r, — 0as j — oo where
& is the Almgren embedding described in Theorem 3.3.4. Thus

f ID(€ o g)|[PdA < lim in j ID(€ o g;) [P
1% J 1%

according to classical finite dimensional Sobolev theory: the above func-
tional is weakly lower semicontinuous because it satisfies the hypotheses of
[5, Section 3.3, Theorem 3.4]. It then follows from Corollary 4.3.6 that

J | Dg |?d\ < lim.infj | Dg; | " dx.
v J v
Choosing the sequence {g;} according to Proposition 4.4.1 we infer that
J | Dg | ?dX < &P(g;V).
v

We turn to proving the reverse inequality. We let u = E(Y(g)) €
Wy (R™;RN) so that the maximal function M(||Dul) € L,(U) (see e.g.
[14, Theorem 1.22]). For each j € N\{0} we define

Aj =U n{z: %(g(2), Q[O])" + M(|[|Dul)" (z) < 5"}
and we infer that

lim 7*A(U\A) < lim JU\A‘ (“2(g(x), QION” + M (|| Dul[)?(x)) dA(x) = 0.

We let g; : U — 2¢(¢5) be the Lipschitz mapping associated with f = g
and t = j in Proposition 4.3.4. We see that

1
P

J

limd,(gj,g) = lim ( g2(9j79)pd)‘($)>
J U\AJ

1
P

< lim (J “5(g;, Q[[O]])%M(x))
i \Jo\a,

+ lim ( (g, Q[[O]])pdk(w)y
U\A;

J

< li]m (C2.4.3(m7Q)J’p>\(U\Ag‘))% + li;n (IU\A I%(Q,Q[[O]])pd)\(xap

=0,
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thus &7(g; V) < liminf; §,, | Dg; | P d\. Furthermore,

hm_inff | Dg; |"dX < lim_inff | Dg; |” X+ limsupf | Dg; | dx
J 1% J VﬁAj J U\AJ

< limvinff | Dg | P dX\+ Q% lim supf (Lip g;)” dA
J VﬁA]‘ ] U\AJ

<J | Dg |?d\
174

+ lim sup Q%4p(m+1)a(n7 Q) Pca.a3(m, Q)pjp)\(U\Aj)
J

= f | Dg | Pd\.
1%
This completes the proof. O

THEOREM 4.4.8. — Let f € W, (U; 2¢({2)). The following hold.

(A) 2¢(Py) o feW,(U; 2¢((y)) for each n € N\{0};
(B) For every open set V < U one has

V) =tim | | D(@a(Po)o P ars

(C) The sequence { | D(2¢(P,) o f) |p}n is nondecreasing A almost
everywhere and bounded in Ly (U).

Proof. — (A) Choose a sequence { f;} of Lipschitz mappings U — 2 ({2)
such that d,(f;,f) — 0 and sup; §,, | Df; | "d\ < oo. Notice that the
20(Pp)o f:U— Zg(¢y) are Lipschitz,

1i§ndp(a%(Pn) o fj, 2q(Pn)o f) < li§ndp(fj,f) =0
and

supJ |D(QQ(Pn)ofj)|pdA<supJ |ij|pd)\<oo
i Ju i Ju

J

according to Proposition 4.4.3. Thus f e W} (U; 2¢((3)).
(B) We note that for every x € U one has

lim %, (f(2), (2q(tn) © 2o (Pn) © f) (z)) =0,
and also
G(f,2q(n) 0 2o(Pn) © f) < %(f, Q[O])
+95(2q(in) 0 2q(Fn) o f,Q[0])
< 2%(f,Q[o]).
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Thus
limd, (f, 2(1n) 0 2o(P) o f) = 0
n
according to the Dominated Convergence Theorem. Therefore,
EV(f;V) < limninf EX(2q(tn) 0 2q(Pn)o f;V)
= liminf £(2¢(P,) o f; V)
n

= ]jminff | D(,@Q(Pn) of) |pd>\7
n 14

according respectively to Propositions 4.4.2, 4.4.6 and 4.4.7. The other
way round, we choose a sequence {f;} of Lipschitz mappings U — 2 ({2)
such that d,(f;, f) — 0 and &P(f; V) = lim; {,, | Df; | P d\, according to
Proposition 4.4.1. For each fixed n we have

f | D(20(Py) o f)|Pdr < lim.inff | D(24(P.)o f;) | " dx
% i Jv
(according to the proof of (A) and Proposition 4.4.2 and 4.4.7)
< lim.inff | Df; |7 dx
i Jv
(according to Proposition 4.4.3)
=& (f:V).

Therefore limsup,, §,, | D(2¢(P,) o f) |"dX < EP(f; V).
(C) That the sequence { | D(2¢(Py) o f) | "1, be nondecreasing follows

as in the proof of Proposition 4.4.3; its boundedness in L1(U) is a conse-
quence of (B). O

We now turn to defining the function |df | € L,(U) associated with
f e WH(U; 2¢(fy)). It follows from Theorem 4.4.8(C) and the Monotone
Convergence Theorem that

n

f lim | D(2¢(P,) o f) |”dA=11mf | D(2q(Pn)o f) | dA,
\% noJv

V < U open. We define, for A almost every = € U,

(4.2) 16f 1 (z) =lim | D(2¢(Pn) o f)(2) | -

It follows therefore from Theorem 4.4.8(B) that

(43) sV = | variras.
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4.5. Extension

The following is the obvious analog of [14, Theorem 1.63].
THEOREM 4.5.1. — Let U = U(0, 1) be the unit ball in R™. There exists

a mapping
E:Wy(U; 2¢(t2)) = W, (R™; 2¢(l2))
with the following properties.

(A) For every f € W}(U;2q(l2)) one has E(f)(x) = f(z) for every
reU;
(B) For every f1, f2 € W, (U; 2¢(f2) one has

dp(B(1), B(f2)) < 20dy(fr, fo);
(C) For every f e W, (U;2q({2)) one has
EHER™) < (1+QE2) (62(10) + 1 117) 5

(D) For every x € R™\U(0,2) one has E(f)(z) = Q[0];
(E) If 0 € C < {5 is convex and f(z) € ,@Q(C) for every x € U, then
E(f)(z) e 2¢(C) for every x € R™.

Proof. — We start the proof by associating with each Lipschitz map
f:U — 2¢(¢2) a Lipschitz map Ey(f) : R™ — 2 (¢2) verifying (A), (B),
(D) and (E) above (for Lipschitz maps f, f1, f2) and (C) replaced with

(C’) For every Lipschitz f: U — Z¢(¢3) one has

fm|DE0 2) |Pdg™(x) < C’mp(f|Df )| " deL™ () + |f|5)
Given [ we write f(z) = ®i=1[[fi(x)]], 2 € U, and we define

(x) = {@?J{(m ~Df@]if 2] =
Qo] if || <
The conscientious reader will check that g is Lipschitz on U. In fact, it

follows from Proposition 2.5.9 and the paragraph preceding it (in particular
equation (2.11)) that

| Dy(c) | <\/@( | DIG) | +2 |f<x>|)

for almost every x € U (0, 1)\B(0,1/2). Therefore,

(4.4) L | Dg | Pde™ < Q2P <JU |Df|pd,$m+JU |f|pd$m> .

N N
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We now define a Lipschitz mapping ¢: U (0,3/2)\U(0,1) — B(0,1)\B(0,1/2)
by the formula

and Eo(f) by

>
Eo(f)(x) = { glp(x)) 1<z <3
f(z) if |z < 1.
We notice that conclusions (A), (D) and (E) are verified by Fo(f). Regard-
ing conclusions (B) and (C’) we first observe that the differential of x/|z|

at a point x # 0 is the orthogonal projection onto the plane orthogonal to
x. Therefore Jy = 1 and we apply the change of variable formula:

dy(Eo(f1)Eolf2))? <f G(fr, PP dL™ + f G(g1 0 9,92 0 Q)P dL™
U B(0,3/2)\B(0,1)

< f G(fr, )P dL™ + f Do 06,92 0 9 Tpd L™
U B(0,3/2)\B(0,1)

<2 fU%(fl,fanzm

(because ¥ (g1,92) < 9(f1, f2)), and similarly,

f |DE0(f)|pd$m<f|Df|pd.$m+J |D(go<p)|pd$m
R™ U B(0,3/2)\B(0,1)

<J |Df|pd.$m+f (| Dg|Pog)dL™
U B(0,3/2)\B(0,1)
(because Lipp < 1)

<f |Df|pd.$m+f (1 Dg 17 o) Jpd 2™
U B(0,3/2)\B(0,1)

< (1+Q%zp) UU |Df|szm+fU |f|”d$m>

according to (4.4).

We now define E(f), f € W) (U; 2¢(£2)), as follows. We choose a se-
quence {f;} of Lipschitz mappings U — Z(¢2) associated with f as in
Proposition 4.4.1 and we observe that {Ey(f;)} is Cauchy in L,(R™) : for
E(f) we choose a limit of this sequence (that verifies conclusion (A)). That
conclusions (B), (C), (D) and (E) are valid is now a matter of routine
verification. O
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4.6. Poincaré inequality and approximate differentiability
almost everywhere

We start with a modification of Theorem 4.4.8.

THEOREM 4.6.1. — Let f € W}(U;2¢(l)). There then exist a se-
quence {f,} of Lipschitz mappings U — 2q(¢2) and a sequence {A,} of
Borel subsets of U such that

(A) limy, dy(fn, f) = 0;
(B) For every open set V < U,

SV) = tim | 1Df,17ax.

(C) lim, £™(U\A,) = 0 and, for each n, | Dfn(z)| < |6f] (x) for
L™ almost every x € Ay;
(D) lim,, | Dfy(x)| = |61 (x) for £™ almost every z € U.

Proof. — With each n € N\{0} we associate g, = 2g(P,) o f €
Wy (U; 2q(03)) as well as

un = G2(gn, QION” + M([[DY(gn)[)" € Lo (U)-

Letting A, = U n {z : uy(z) <2} we can choose t, > 0 large enough for
1
(4.5) max fm(U\An),C4,3,4(n,m,Q)pJ UndA p < —,
U\A,, n

where we have put c43.4(n,m,Q) = 4™ ta(n, Q) tca4.3(m, Q). We then
let hy, : U — Z2¢g(£5) be a Lipschitz mapping associated with g,, and ¢,, as
in Proposition 4.3.4, and we define f,, = 2¢(t) 0 by : U > Zg(¢2) which
is Lipschitz as well. We observe that
dp(fr, [) < dp(2q(tn) © hny 2o (tn) © Lo(Pn) © )
T (2o (n) 0 2(P) o £, f)
< dp(hn, gn) + dp(2q(tn) 0 2o(Pn) o f, f) -

Notice that

hrrlndp(gQ(Ln) 0 2q(Py)of,f)=0
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according to the Dominated Convergence Theorem, whereas

1

P

dp(hn, gn) = ( L Gy (hn, gn)w>

_ (J %(hn,gn)i’dx> '
U\A,,

< (J %(hn,Q[[O]])pdA> ' + (J %(gn,QHOD)PdA>
U\A, U\A,

< (J 02.4.3(m7Q)ptﬁd)\> + (J %(ng[[O]])pd)‘>
U\A, U\A,

1

< (14 c24.3(m,Q)) (JU\A und)\> ’

—0asn— w0,

8=

o=

from what conclusion (A) follows. Consequently,
EV(f;V) < limninffv | Df, | PdX.
Furthermore, for each n we have
| 1pgarran= [ 1om, 17 an
% %

(according to Proposition 4.4.6)

<| 1Dg1rixe | QfeiastnmQrimay
VA, V\A,,
(according to Proposition 4.3.4)
< J | D(2¢g(P,)o f) |pd)\ + Q%c4_3.4(n,m,Q)pJ UpdA
v

\A,,
It now follows from (4.5) and Theorem 4.4.8(B) that

limsupf | Df,, | PdX
n v

< limf | D(2q(P,)o f) | P dX + lim sup QgC4.3‘4(TL, m, Q)pf Upd\
n Jv n U\A,,
=& (f;V).

This proves conclusion (B).
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The first part of conclusion (C) is a consequence of (4.5) and the second
part follows from the fact that h,, = g, on A,, therefore Dh, (x) = Dg,(z)
at Z™ almost every x € A, and for those z it follows from Proposition
4.4.4, the definition of | df | and Theorem 4.4.8(C) that

| D fo () I = I D(‘QQ(%) o hp)() I < I Dhip(z) I
= | Dgn(2) | = | D(2q(Pn)o f)(z) | < 16f1] (2).
Conclusion (D) is an easy consequence of (B) and (C). O

We are now ready to prove the analog of the Poincaré inequality.

THEOREM 4.6.2. — There exists a constant ¢4.6.2(m) > 1 with the fol-
lowing property. Let f € W, (U; 2q(f2)), 1 < q¢ < p, and let V < U be
a bounded open convex subset of U. It follows that for Z™ almost every
zeV,

| @@ swrazn ) < @y | LT G gom sy

v lo—a!

Furthermore there exists v € 2g({2) such that

j %(f(z), 0)1d.L™ ()
1%

< c1.62(m)(diam V)? (W)m [ roriraze.

Proof. — We start with the case when f is Lipschitz. Given =z € V it
follows from Theorem 2.5.8(D) that

G(f(2). f () < f | Df(2) | 4 ()

Sa,y

— ey j | Df(a + t(y —2)) | 4L (1)
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for £™ almost every y € V, where S, , denotes the line segment joining x
and y. Now, given s > 0, we observe that

L G (f (), ()1 ()

nBdry B(z,s)

<SqJ d%m_l(y)f |Df(x+t(y—x))|qd$1(t)
v 0

nBdry B(z,s)

1
_ SQJ 4L (t) J | Df(a + iy — ) | “doe™ ()
0 VnBdry B(z,s)

1
=qu tlfmd.zl(t)f | Df(2) | dot™ (2)
0 V ABdry B(z,ts)

1 D q
< Sq+m71J\ dfl(t)f | f |1 dm— 1( )
0 V nBdry B(z,ts) HZ - m”m
D q
:qumeZJ\ | f |1d°2pm( )
VnB(z,s) Hz—x“m

Hence,

J D (f y)4dL™ (y)

diam V'
- f M(s)f G(f (), f())1dA™ (y)

0 V nBdry B(z,s)

diam V' D q
< J s1tm=2q 1 (S)J Mdﬁ’”( )
|4

0 NnB(x,s) ”z_me !

< (diam V)‘Hm_lf | D= | AL (z).

vz —=|mt

We now merely assume that f € W) (U; 2¢(f2)) and we choose a sequence
of Lipschitz mappings {f,} as in Theorem 4.6.1. Thus (4.6) applies to each
fn. Let 2 € V be such that lim,, %(f(z), fn(z)) = 0. In order to establish
our first conclusion we can readily assume that

161 (@)

V-R:z
Iz — 2™t
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is summable. In that case, it follows from Theorem 4.6.1(A) and (D), from
(4.6) and from the Dominated Convergence Theorem that

J “(f y)1dZL" (y) _hmf Go(fu(2), fn(y))?dLT (y)
q
< (diamV)“m*lliTan V|||ZD_f7;|m|1d$m( )

_ (@iam vyt [ LG om

vz =zt

We now turn to proving the second conclusion. Integrating the inequality
above with respect to x, and applying standard potential estimates (see e.g.
[14, Lemma 1.31] applied with p = 1) we obtain

f L™ () J G(f(2), () 1d.L™ ()
174 \%

< (diam V)‘Hm—lf
14

4™ () f LS gy

v |z =zt

< C(m)(diam V)11 2™ (V) J [6f]9de™.
14

Thus there exists z € V' such that

f @(f(z), f ()L™ (y) <
(diam V)atm=1 gm(y )J
C(m 5f19dL™.
m) 161
Letting v = f(x) completes the proof. O

PROPOSITION 4.6.3. — Let U = U(0,1) be the unit ball in R™, let
fe W) (U; 2¢(f2)) and t = 0. Define

Ae=Un{z: %(f(2),Q0])" + (M | 6E(f) | )" (2) < t7},

where M denotes the maximal function operator and FE denotes the exten-
sion operator defined in Theorem 4.5.1. There then exists a Lipschitzian
map h: U — 2g(ls2) such that
(1) h(z) = f(z) for L™ almost every x € Ay;
(2) Liph < 6ma(m)ca.a.3(m, Q)t;
(3) %(h(x),Q[O]) < c2.4.3(m, Q)¢ for every x € U;
(4) For ™ almost every x € At, f is approximately differentiable at
x and | Df(x | | Dh(x | .
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Proof. — The proof is similar to that of Proposition 4.3.4. We abbreviate
f = E(f). We choose a countable dense set D = R™ and we consider the
collection ¥ of subsets V' of R™ of the type V = U(z,r) n U(z',r) where
z,7' € D and r € Q. Thus ¥ is countable and for each V € ¥ there exists
Ny < V such that .Z™(V\Ny) = 0 and for every x € V\Ny one has

i d£L™(z),

vz —a|mt

(4.7 J 9(f y))dL"(y) < (diam V)™
according to Theorem 4.6.2 applied with ¢ = 1. Let N = Uyey Ny. Given
z,z' € R™\N we choose r € Q* such that

|z — ']

O<r—|z—2a <
r—le - < 5

and we choose 7, %’ € D such that

max {le - 2. |a' — &} < .
Defining V' = U(Z,2r) n U(Z',2r) € ¥ we easily infer that z,2’ € V.
Therefore (4.7) applies to both pairs 2,V and z’, V. We define

A A la1n 5
G—Vm{y:w(x),f(y)) o V f|| fl”dosf"%z)},

as well as

A A iam V)™ 5A
G’—Vn{y:g<f<ac'>,f<y>><3(da V) )fv 571 @) 4, )}

Zm(V) |z — '™t
One readily infer from (4.7) that
Zm™(V)
3
and hence G n G’ # &. We choose y € G n G’ and we set v = f(y). Thus
senm ¢ |of] @)

a(m)rm Jy |z —z[mt

max {.£™(V\G), L™ (V\G')} <

9 (f(x),0) <

and ) |
A 3(2r) 5f
G(f(« <5
(f(@"),v) T‘mf |z — 2|1
It follows from the potentlal estlmate [14, Lemma 1.32(i)] that

5 5f | (=
J f | dZL™(2) < J |f7|(_)d.$m(z)
‘ U(z,2r ‘

|z — |t ) Iz ==t

< ma(m)(2r)M ( | of | ) (x) < 3ma(m)|z — 2'|M ( | of | ) (x)

L™ (z).
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and similarly

5f | / N /
| Sz ) < smatmle o/t (|67 ]) )
If furthermore z, 2’ € A; then max{M ( | fl )(z), M( | f I )(z")} <t and it
ensues from the above inequalities that

G(f(2), f(a) < 6ma(m)|z —o'|¢.

One now concludes like in Proposition 4.3.4. ]

The following is the analog of Proposition 4.4.7 for an infinite dimensional
target.

COROLLARY 4.6.4. — Let U = U(0,1) be the unit ball in R™ and let
fe Wpl(U; 2¢(l2)). It follows that f is approximately differentiable £™
almost everywhere and that

EP(f;V) = J|Df )| P dL™(x)

for every open set V < U.

Proof. — Letting {¢,} be an increasing unbounded sequence in Rt we ob-
serve that £ (U\As;) — 0 as j — oo (where A, is defined as in the state-

ment of Proposition 4.6.3) because both 4(f(-), Q[[0]))) and M ( | of | )

belong to L,(R™). Letting h; be a Lipschitz mapping U — Zg(¢2) which
coincides with f almost everywhere on A;,, we easily infer that f is approx-
imately differentiable at each Lebesgue point z € A;, of Ay, at which h;
is approximately differentiable. Since this is the case of £ almost every
a € Ay, according to Theorem 2.5.8, our first conclusion follows.

In order to prove our second conclusion, consider a point = € U of ap-
proximate differentiability of f. Reasoning as in the proof of Proposition
4.4.3 we write Af(z) = ®2,[A;] and we infer that for each integer n,
A(2¢(P,) o f)(a) = @2, [P, o A;]]. Since the linear part of P, o A; is
P, o L;, where L; is the linear part of A;, we see that

Q
| D(2o(Pa)o )| = 2 [1Pno Ll = Z Z | Pa(Li(es))] -

i=175=1
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Thus
Q m
lim | D(Zo(Pa) o f)(@) |~ =lim Y} 7| Pu(Lile;)]
i=1j5=1
=2 2 i)
i=1j=1
2
= |Df(x)|".
Therefore | Df(z) | = 16f | (x), according to (4.2), and the conclusion
follows from (4.3). O
4.7. Trace

PROPOSITION 4.7.1. — Let U = U(0,1) be the unit ball in R™. For
every € > 0 there exists 8 > 0 such that

j uPdrm! < 9f ufPd. g™ + f IVulrde™
Bdry U U U

whenever u : ClosU — R is Lipschitz.

Proof. — Given € > 0 we choose a smooth function ¢ : [0,1] — [0,1]
such that ¢(0) = ¢(1) =1 and

)

where ¢ is the exponent conjugate to p, and we put

1 0
o= ([ 1)
0
For every x € Bdry U and y € U we observe that
u(z) = u(y)|

01 S (#0ut+ tla =) )az' o)

Jl (@’(t)u(y +t(x —y) + o) (Vuly + t(x —y)), z — y>> dfl(t)‘

0

< (J: |<p'|q>‘11 (Ll lu(y + t(x — y))|pd$l(t));l7
+ (Ll ¢Q>; (Ll IVu(y + t(z —y)|P |z — ylpdgl(t)y |
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Therefore,

(4.8)  |u(z) —u(y)l’ < 2”*1@10 uly + t(x —y))|PdL (1)

1
2 o =72 | [Vuly + to — 9) P2 (0).
0

In order to integrate with respect to x € Bdry U, we first note that the
jacobian of the map [0,1] x BdryU — U : (t,z) — y + t(x — y) at (¢,2)
equals |z — y[[t™ 1. Since |z — y|| < 2, the area formula therefore implies
that

1
g2 deryUdffm () f fuy + t(z — )AL (8)

Lo luy +tlx =y ;e
= L d2(1) JBdryU |2 — y||m—2 AT ()

_ ! 1 lu(y + t(x —y))| z— ylem1 m=1(,,
[ W e e T R

[P
_L dL™(2).

ly — 2=t

Since the similar inequality holds for the gradient term, we infer from (4.8)
that

. p
[ ) -t < oremsg [ R ggmsy
Bdry U v ly— 2|
p
+22p+m—35 ”vu(zr)nu_l gm(z)
v ly ==l
Thus,
| @@ < 2 mam)u)
ry
m—4A u(z)|P m i A Vu(z)|P m
+ 2%p% 49J 7” |_(Z|)|ln_1d$ (z)+23p+ ig |”_(|2n|_1d$ (2),
v Y uly—=
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according to the triangle inequality. We now integrate with respect toy € U
and, referring to the potential estimate [14, Lemma 1.31], we obtain

| upaent <ot | quraz)

dry U
|lu(z)[P

ly = =m=1

2 ta(m) 6| 42 | 7m(2)

it [ gy [ AVHEE
+2 oy te| a2 | R A

<m(2P7! 4+ 22“’”*4@)] |u|Pd.L™
U
+ m23p+m*4éf |Vu|PdL™.
U

O

Remark 4.7.2. — Tt follows in particular from Proposition 4.7.1 that

f Pd ™! < C (f luPdL™ + f vmmgm)
Bdry U U U

for some C' > 0. Thus there exists a unique continuous trace operator
T : W, (U) — Ly(Bdry U; 2™ ")

defined by 7 (u) = u whenever u is Lipschitz. Of course, being continuous,
Z is also weakly continuous. The inequality in Proposition 4.7.1 shows that
7 is completely continuous, i.e. if {uy} converges weakly in W, (U) then
{7 (u)} converges strongly in L, (Bdry U; 5™~ 1). Using Proposition 4.7.1
(more precisely, an RY valued version) in conjunction with the embedding
Theorem 3.3.4 we obtain that for every ¢ > 0 there exists #,, > 0 such that

f G(f1, f2)PdA™ ! < Q”J G (fr, f2)PdL™
Bdry U U

+5<J | Dfy |PdL™ + | Dfs |Pd$m>
U

whenever fi, fo : U — 2g(¢3) are Lipschitz. The dependence of § upon n
is caused by a constant a(n, @Q)~! (the biLipschitz constant of the Almgren
embedding). This leads to a proper definition of a trace “operator” for
maps f € W}(U; 24(£3)) but not for maps f € W} (U; 2¢(f2)). We use
a different approach in our next result, avoiding altogether the embedding
of Theorem 3.3.4.
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THEOREM 4.7.3. — There exists a map
T WHU: 2o(ta)) — Ly (Bdry Us 2o (£2))
verifying the following properties.
(A) If f : ClosU — 2¢(¢s) is Lipschitz then 7 (f)(x) = f(z) for every

z € Bdry U;
(B) For every € > 0 there exists § > 0 such that

f G(T(f1), 7 (f2))Pdst™ ! <0J G (fr, f2)PdL™
Bdry U U

+5<J | Dfi |PdZL™ + | Dfs |Pd$m)
U

whenever f1, fo € WZ}(U; 20l2);
(C) There exists C > 0 such that for every f e W) (U; 2q((2)),

J |9(f)|pdf%pm—1<0<.[‘ |flpdgm+J IDflpdogT'L).
Bdry U U U

Proof. — Owing to definition of W, (U; 2¢(f2)) (the weak density of
Lipschitz maps), and to Propositions 4.1.1, 4.4.1 and 4.6.4, it suffices to
show that the map & defined for Lipschitz f by (A), verifies conclusions
(B) and (C) for Lipschitz f1, fa, f.

Given f1, fo : ClosU — 2 (¢2) we define u : ClosU — R by the formula
u(x) =9 (f1(x), fo(x)), z € U. Given z € U and h € R™ such that t+h e U
we infer from the triangle inequality that

u(e + h) —u(@)| < |F(fr(z + h), falx + 1)) =G (f1(z), fa(x + )]
+ 19 (fr(2), fol + 1)) =G (f1(2), f2(2))
<Y (fi(z +h), (@) + G (fa(z + h), fa(2)) .

This shows at once that w is Lipschitz. Furthermore Proposition 2.5.9 im-
plies that

[Vu(z)| < | Dfi(z) | + | Dfo(z) |
at each x € U where u, f; and fy are differentiable. Conclusion (B) now
follows from Proposition 4.7.1, and conclusion (C) is a consequence of (B)
with f1 = f, fo = Q[[0] and & = 1. O

4.8. Analog of the Rellich compactness Theorem
LEMMA 4.8.1. — Let f € W, (R™; 2¢((2)) and h € R™. It follows that

Y(f(o+ ). f@)Pd2" () < [P | 1D aLm.

R”

RmM
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Proof. — According to Propositions 4.1.1 and 4.4.1, it suffices to prove
it when f is Lipschitz as well. In that case it follows from Theorem 2.5.8(D)
and Jensen’s inequality that

G(f(x + b, f(@))P < (|h|f0 | DfGe + h) | w(t))

1
< thpf | Df(a +th) | dL'(8).
0
The conclusion follows upon integrating with respect to x € R™. (|

THEOREM 4.8.2. — Let U = U(0,1) be the unit ball in R™ and let { f;}
be a sequence in W, (U; 2q((2)) such that

(1) There exists a compact set C < {5 such that f;(x) € 2¢o(C) for
every x € U and every j = 1,2,..;
(2) sup, §,, | Df; |7 dg™ < 0.
It follows that there exists a subsequence {fy;)} and f e W} (U; 2¢({2))
such that lim; d,(f, fi;)) = 0.

Proof. — We show that the compactness Theorem 4.2.1 applies to the
sequence {E(f;)} in L,(R™; 29(C)). Our hypothesis (1) and Theorem
4.5.1(D) guarantee that the extension E(f;) take their value in Zg(C).
We now check that the hypotheses of Theorem 4.2.1 are verified:

(i) follows from the fact that C is bounded, thus
f | E(f;) |7 d2™ < 2™ a(m)Q* (diam C)?
Rm

for every j =1,2,..;
(ii) follows from Lemma 4.8.1 and Theorem 4.5.1(C):

wp | S+ ). B @)L (@

J

< | |G| Az

< [[PC(m, p, Q) sup ( [ 1n1razn« | o5 pd.ﬁf’”)
J

(iii) follows from the fact that E(f;) = E(f;)k for each j = 1,2,...,
where K = B(0,2), according to Theorem 4.5.1(D).

Thus there exists f € L,(R™; 2¢(f2)) such that lim; dp(E(fk(j)),f) = 0.

It remains to notice that the restriction f}U belongs to Wy (U; 2¢(£2)).

This is because for each j = 1,2,... we can choose a Lipschitz map g; :
R™ — 2q(¢3) such that dy(E(fy(),9;) < 3 and §g,. | Dg; |7 dg™ <
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R . |E(fk(j)2 | dZ™. Therefore lim;d,(f|U,g;!U) = 0 and
sup; §,; | D(g;1U) | " dg™ < 0. O

Remark 4.8.3. — It would be interesting to know whether or not all the
results proved so far in this paper hold when the range /5 is replaced by an
infinite dimensional Banach space Y which is separable, a dual space, and
admits a monotone Schauder basis.

4.9. Existence Theorem

LEMMA 4.9.1. — Assume that

(A) X is a compact metric space;

(B) Y is a metric space;

(C) g: X — 2¢(Y) is continuous.
It follows there exists a compact set C' €'Y such that g(z) € 2¢(C) for
everyxeY.

Proof. — Welet C =Y n{y : y € supp g(x) for some z € X}. One easily
checks that C' is closed, thus it suffices to show it is totally bounded. Since
im g itself is compact, given € > 0 there are z1,...,x, € X such that for
each x € X there exists k = 1,...,k with 9(f(z), f(xx)) < . We write
Flzr) = @2, [yF]. It it now obvious that C < Uf_, UL | By (yF,e). O

THEOREM 4.9.2. — Let U = U(0,1) be the unit ball in R™ and let g :
Bdry U — Z¢(¢2) be Lipschitz. It follows that the minimization problem

minimize §, | Df | P dZ™
among f € W, (U; 2q({2)) such that 7 (f) = g

admits a solution.

Proof. — The class of competitors is not empty according to the exten-
sion Theorem 2.4.3. We let Cy < ¢5 be a compact set associated with g in
Lemma 4.9.1 and we let C' be the convex hull of Cy u {0} (so that C is
compact as well). We denote by P : {5 — C the nearest point projection.
Given a minimizing sequence {f;} we consider the sequence {2 (P) o f;}
which, we claim, is minimizing as well. That these be Sobolev maps, and
form a minimizing sequence, follows from the inequalities

j 9(29(P)o f,2¢(P) o fYPdL™ <f 9(f, L™
U U
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(recall the paragraph preceding Proposition 4.4.3) and
j | D(2q(P)o f)|"deL™ <J | Df | PdzL™
U U

(because Lip P < 1) valid for every Lipschitz f, " : U — 2¢(¢2), and
hence for every f, f' € W) (U; 2q(£2)) as well. It also follows from these
inequalities and Theorem 4.5.1(B) and (C) that

T(2q(P)o f) = T(f)

whenever f € W) (U; 2¢({2)). Thus 7 (2q(P)o f;) = g,j = 1,2,.... Since
all these 2o (P) o f; take their values in 2¢(C), it follows from Theorem
4.8.2 that there are integers k(1) < k(2) < ... and f € W}(U; 2¢(f2))
such that lim; d,(f, fr(;)) = 0. Theorem 4.7.3(B) implies that 7 (f) = g.
Proposition 4.4.1 and Corollary 4.6.4 guarantee the required lower semi-
continuity. O

BIBLIOGRAPHY

(1] F. ALMGREN, “Deformations and multiple-valued functions”, in Geometric measure
theory and the calculus of variations (Arcata, Calif., 1984), Proc. Sympos. Pure
Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, p. 29-130.

F. J. ALMGREN, JR., Almgren’s big regularity paper, World Scientific Monograph
Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge,
NJ, 2000, Q-valued functions minimizing Dirichlet’s integral and the regularity of
area-minimizing rectifiable currents up to codimension 2, With a preface by Jean
E. Taylor and Vladimir Scheffer, xvi+955 pages.

Y. BENYAMINI & J. LINDENSTRAUSS, Geometric nonlinear functional analysis. Vol. 1,

American Mathematical Society Colloquium Publications, vol. 48, American Math-
ematical Society, Providence, RI, 2000, xii+488 pages.

2

3

[4

D. BrINK, “Hoélder continuity of roots of complex and p-adic polynomials”, Comm.
Algebra 38 (2010), no. 5, p. 1658-1662.

B. DACOROGNA, Direct methods in the calculus of variations, Applied Mathematical
Sciences, vol. 78, Springer-Verlag, Berlin, 1989, x+308 pages.

C. DE LELLIS & E. N. SPADARO, “Q-valued functions revisited”, Mem. Amer. Math.
Soc. 211 (2011), no. 991, p. vi+79.

J. DIESTEL & J. J. UHL, JR., Vector measures, American Mathematical Society,
Providence, R.1., 1977, With a foreword by B. J. Pettis, Mathematical Surveys, No.
15, xiii4-322 pages.

[8] R. E. EDWARDS, Functional analysis, Dover Publications, Inc., New York, 1995,
Theory and applications, Corrected reprint of the 1965 original, xvi+783 pages.

5

6

7

[9

H. FEDERER, Geometric measure theory, Die Grundlehren der mathematischen
Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969,
xiv+676 pages.

[10] J. GOBLET, “A selection theory for multiple-valued functions in the sense of Alm-
gren”, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, p. 297-314.

, “Lipschitz extension of multiple Banach-valued functions in the sense of
Almgren”, Houston J. Math. 35 (2009), no. 1, p. 223-231.

(1]

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 833

[12] W. B. JOHNSON, J. LINDENSTRAUSS & G. SCHECHTMAN, “Extensions of Lipschitz
maps into Banach spaces”, Israel J. Math. 54 (1986), no. 2, p. 129-138.

[13] U. LANG & T. SCHLICHENMAIER, “Nagata dimension, quasisymmetric embeddings,
and Lipschitz extensions”, Int. Math. Res. Not. (2005), no. 58, p. 3625-3655.

[14] J. MALY & W. P. ZIEMER, Fine regularity of solutions of elliptic partial differential
equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical
Society, Providence, RI, 1997, xiv+291 pages.

[15] M. MARDEN, Geometry of polynomials, Second edition. Mathematical Surveys, No.
3, American Mathematical Society, Providence, R.I., 1966, xiii+243 pages.

[16] B. WHITE, Personal communication.

[17] H. WHITNEY, “Analytic extensions of differentiable functions defined in closed sets”,
Trans. Amer. Math. Soc. 36 (1934), no. 1, p. 63-89.

, Complex analytic varieties, Addison-Wesley Publishing Co., Reading,

Mass.-London-Don Mills, Ont., 1972, xii+399 pages.

18]

Manuscrit regu le 24 septembre 2012,
accepté le 3 avril 2014.

Philippe BOUAFIA

ENSEA

6 avenue du Ponceau

95014 Cergy-Pontoise Cdex (France)

philippe.bouafia@math.u-psud.fr

Thierry DE PAUW

Institut de Mathmatiques de Jussieu - PRG
UMR 7586

Equipe Gomtrie et Dynamique

Btiment Sophie Germain

Case 7012

75205 Paris cedex 13 (France)
thierry.de-pauw@imj-prg.fr

Jordan GOBLET

Institut de recherche en mathmatique et physique
Chemin du cyclotron, 2

1348 Louvain-la-Neuve (Belgique)
jordan.goblet@vadis.com

TOME 65 (2015), FASCICULE 2


mailto:philippe.bouafia@math.u-psud.fr
mailto:thierry.de-pauw@imj-prg.fr
mailto:jordan.goblet@vadis.com

	1. Foreword
	2. Preliminaries
	2.1. Symmetric powers
	2.2. Concatenation and splitting
	2.3. Measurability
	2.4. Lipschitz extensions
	2.5. Differentiability

	3. Embeddings
	3.1. Whitney bi-Hölder embedding — The case Y = 2n(K)
	3.2. Splitting in case Y = R
	3.3. Almgren-White locally isometric embedding — The case Y = 2n(R)
	3.4. Lipeomorphic embedding into `39`42`"613A``45`47`"603ALipy0(Y)*

	4. Sobolev classes
	4.1. Definition of Lp(X,QQ(Y))
	4.2. Analog of the Fréchet-Kolmogorov compactness Theorem
	4.3. Definition of W1p(U;QQ(Y))
	4.4. The p energy
	4.5. Extension
	4.6. Poincaré inequality and approximate differentiability almost everywhere
	4.7. Trace
	4.8. Analog of the Rellich compactness Theorem
	4.9. Existence Theorem

	Bibliography

