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EXISTENCE OF p HARMONIC MULTIPLE VALUED
MAPS INTO A SEPARABLE HILBERT SPACE

by Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

Abstract. — We study the elementary properties of multiple valued maps
between two metric spaces: their measurability, Lebesgue integrability, continuity,
Lipschitz continuity, Lipschitz extension, and differentiability in case the range and
domain are linear. We discuss F.J. Almgren’s embedding Theorem and we prove
a new, more general, embedding from which a Fréchet-Kolmogorov compactness
Theorem ensues for multiple valued Lp spaces. In turn, we introduce an intrinsic
definition of Sobolev multiple valued maps into Hilbert spaces, together with the
relevant Sobolev extension property, Poincaré inequality, Luzin type approxima-
tion by Lipschitz maps, trace theory, and the analog of Rellich compactness. As
a corollary we obtain an existence result for the Dirichlet problem of p harmonic
Hilbert space multiple valued maps of m variables.
Résumé. — Nous étudions les propriétés élémentaires d’applications multi-

valuées entre espaces métriques : mesurabilité, intégrabilité, continuité, caractère
lipschitzien, extension lipschitzienne, et différentiabilité dans le cas d’espaces vec-
toriels. Nous rappelons le théorème de plongement de F.J. Almgren et nous démon-
trons un nouveau théorème de plongement, plus général, dont on déduit ensuite
un théorème de compacité à la Fréchet-Kolmogoroff pour les espaces Lp d’appli-
cations multivaluées. Nous introduisons une définition intrinsèque d’applications
de Sobolev multivaluées à valeurs dans un espace de Hilbert et nous développons
les outils classiques dans ce cadre : extension de Sobolev, inégalité de Poincaré,
approximation de type Lusin par des applications lipschitziennes, théorie de trace,
et l’analogue du théorème de compacité de Rellich. Nous obtenons en corollaire un
résultat d’existence pour le problème de Dirichlet des applications multivaluées p
harmoniques de m variables à valeurs dans un espace de Hilbert séparable.

1. Foreword

Given a set Y and a positive integer Q, we let QQpY q denote the set of
unordered Q-tuples of elements of Y , i.e. members of the quotient of Y Q

Keywords: Multiple valued maps, p harmonic.
Math. classification: 49Q20, 35J50.



764 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

by the action of the group of permutations SQ. A Q-valued map from a set
X to Y is a map f : X Ñ QQpY q.

We let rry1, . . . , yQss denote members of QQpY q. If Y is a metric space
then QQpY q is given a metric

G8prry1, . . . , yQss, rry
1
1, . . . , y

1
Qssq “ min

σPSQ

max
i“1,...,Q

dpyi, y
1
σpiqq .

If X is metric as well, we may thus consider Lipschitz maps f : X Ñ

QQpY q. Although these may not admit a decomposition f “ rrf1, . . . , fQss

into Lipschitz branches fi : X Ñ Y , i “ 1, . . . , Q, (see the easy example at
the end of Section 2.2) we nevertheless establish, in case X “ Rm and Y is
a Banach space with the Radon-Nikodým property, their differentiability
almost everywhere, for an appropriate notion of a derivative Df that con-
trols the variations of f (Theorem 2.5.8 and Proposition 2.5.9). In case Y
is finite dimensional, this had been obtained by F.J. Almgren [2], the third
author [10], and C. De Lellis and E. Spadaro [6]. Our proof in the infinite
dimensional setting follows essentially that given in the last two references.
In case X “ `m2 and Y “ `n2 are finite dimensional Hilbert spaces (i.e

Rm and Rn with the standard Euclidean norms), the Lipschitz Q-valued
f : `m2 Ñ QQp`

n
2 q were considered by F.J. Almgren in [2] in order to ap-

proximate the support of a mass minimizing integral current T P Imp`m`n2 q

near a point 0 P suppT such that MpT Up0, 1qq „ Qαpmq and the “ex-
cess” of T in Up0, 1q with respect to an m-plane W P Gpn,mq is small.
Thus X “ `m2 is identified with W , Y “ `n2 is identified with WK and the
graph of f approximates the support of T in Up0, 1q. The mass minimal-
ity of T implies that f is not too far from minimizing its Dirichlet energy
ş

Up0,1q
Df

2 dLm, in an appropriate class of Sobolev competitors. F.J.
Almgren’s analysis (i.e. the definition of Sobolev Q-valued maps, their dif-
ferentiability almost everywhere, the lower semicontinuity of their energy,
their trace theory, the Poincaré inequality and the relevant compactness
result) relied on his biLipschitz embedding

ξ : QQp`
n
2 q Ñ RN

where N and Lip ξ´1 depend both upon n and Q. Following C. De Lellis
and E. Spadaro [6], we present this embedding in Theorem 3.3.4. We also
include B. White’s “local isometric” improvement (unpublished) as conclu-
sion (B) of Theorem 3.3.4. Finally, we compare with an earlier biHölderian
embedding due to H. Whitney [18], Section 3.1.
In this paper we concentrate on the Dirichlet problem for the p-energy,

1 ă p ă 8, of Q-valued maps f : `m2 Ñ QQp`2q, i.e. Y “ `2 is an infinite

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 765

dimensional separable Hilbert space. We don’t know of any useful replace-
ment of Almgren’s embedding in that case. Thus we are led to develop
further the intrinsic approach pioneered in [10] and [6] (yet we cannot dis-
pense completely with the locally isometric embedding, in particular when
proving the lower semicontinuity of the energy in 4.4).
Letting U “ Up0, 1q be the unit ball of `m2 , we consider the Borel measur-

able maps f : U Ñ QQp`2q with finite Lp “norm”,
ş

U
G pf,Qrr0ssqpdLm ă

8. Their Lp-semidistance is defined as dppf1, f2q “
`ş

U
G pf1, f2q

pdLm
˘

1
p ;

it is complete (Proposition 4.1.1). The Sobolev maps f P W 1
p pU ; QQp`2qq

are defined to be the limits in this Lp-semidistance of sequences of Lipschitz
maps fj : U Ñ QQp`2q such that supj

ş

U

Dfj
p

dLm ă 8. This sort
of “weak density” of Lipschitz Q-valued maps among Sobolev ones is justi-
fied, in case Y “ `n2 is finite dimensional, by the fact that U is an extension
domain and that im ξ is a Lipschitz retract of RN (Theorem 4.3.1). That
Sobolev Q-valued maps extend from U to the whole `m2 , with the appropri-
ate control, is a matter of routine verification (Theorem 4.5.1). We define
the p-energy E p

p pf ;Uq of a SobolevQ-valued map f by relaxation, making it
automatically lower semicontinuous with respect to convergence in the Lp-
semidistance (Proposition 4.4.1), and we then embark on showing that f is
differentiable almost everywhere and that E p

p pf ;Uq “
ş

U

Df
p dLm.

For this purpose we need to know the corresponding statement for fi-
nite dimensional approximating Sobolev maps U Ñ QQp`

n
2 q (Proposition

4.4.7), a convergence result for the finite dimensional approximations (The-
orem 4.4.8), a Poincaré inequality (Theorem 4.6.2) from which a stronger
(Luzin type) approximation by Lipschitz Q-valued maps follows (Propo-
sition 4.6.3(1)). The differentiability almost everywhere of a Sobolev Q-
valued map (Theorem 4.6.3(4)) now becomes a consequence of our afore-
mentioned Rademacher type result (Theorem 2.5.8). At that point we also
obtain that E p

p pf ;Uq “
ş

U

Df
p dLm (Theorem 4.6.4), thus the lower

semicontinuity sought for. We prove the existence of a useful trace “op-
erator” T in Theorem 4.7.3, verifying the following continuity property:
If tfju is a sequence of Sobolev maps such that limj dppf, fjq “ 0 and
supj

ş

U

Dfj
p

dLm ă 8 then limj dppT pfq,T pfjqq “ 0. Finally, our
Rellich compactness Theorem 4.8.2 relies on a Fréchet-Kolmogorov com-
pactness Theorem 4.2.1 and a new embedding Theorem 3.4.1. Given a
Lipschitz g : BdryU Ñ QQp`2q and 1 ă p ă 8, our main result states that

TOME 65 (2015), FASCICULE 2



766 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

the minimization problem
#

minimize
ş

U

Df
p dLm

among f PW 1
p pU ; QQp`2qq such that T pfq “ g

admits a solution.
There are many interesting open questions concerning more general Ba-

nach space multi-valued functions, see 3.3.9 and 4.8.3.
Our section Preliminaries contains general results and proofs that can be

found in [6]. We verify that they apply with an infinite dimensional range
when appropriate.

2. Preliminaries

2.1. Symmetric powers

Let Q P N0 be a positive integer and let Y be a metric space. Our aim
is to consider unordered Q-tuples of elements of Y . For instance, letting
Y “ C and letting P be a polynomial of degree Q with coefficients in C,
the roots of P form such an unordered Q-tuple of complex numbers. Thus
the elements under consideration need not be distinct; if some agree they
should be counted with their multiplicity.
Formally the collection QQpY q of unordered Q-tuples in Y may be de-

fined as the quotient of the Cartesian product Y Q under the action of the
symmetric group SQ. An element σ P SQ is a permutation of t1, . . . , Qu. It
acts on Y Q in the obvious way :

Y Q Ñ Y Q : py1, . . . , yQq ÞÑ pyσp1q, . . . , yσpQqq .

We will denote by rry1, . . . , yQss the equivalence class of py1, . . . , yQq in
QQpY q, so that in particular rry1, . . . , yQss “ rryσp1q, . . . , yσpQqss for every
σ P SQ. On occasions we shall also denote by v a generic element of QQpY q.
Another way of thinking of a member v “ rry1, . . . , yQss P QQpY q is to
identify it with the finite measure µv “

řQ
i“1 δyi

where δyi
is the Dirac

mass with atom tyiu. The support of v P QQpY q is, by definition, the sup-
port of the corresponding measure, supp v “ suppµv “ ty1, . . . , yQu where
y1, . . . , yQ is a numbering of v, i.e. a map y : t1, . . . , Qu Ñ Y such that
v “ rry1, . . . , yQss. The multiplicity of y P supp v is defined as µvtyu.

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 767

We now define a metric on QQpY q associated with the given metric d of
Y . Let

G prry1, . . . , yQss, rry
1
1, . . . , y

1
Qssq “ min

σPSQ

g

f

f

e

Q
ÿ

i“1
dpyi, y1σpiqq

2 .

We will sometimes use the notation G2 for G in order to avoid confusion
with two other useful metrics:

G1prry1, . . . , yQss, rry
1
1, . . . , y

1
Qssq “ min

σPSQ

Q
ÿ

i“1
dpyi, y

1
σpiqq ,

and
G8prry1, . . . , yQss, rry

1
1, . . . , y

1
Qssq “ min

σPSQ

max
i“1,...,Q

dpyi, y
1
σpiqq .

Thus G1, G2 and G8 are equivalent metrics on QQpY q.
We begin with the following easy proposition.

Proposition 2.1.1. — The metric space pY, dq is complete (resp. com-
pact, separable) if and only if pQQpY q,G q is complete (resp. compact, sep-
arable) for every Q P N0.

A Q-valued function from a set X to Y is a mapping f : X Ñ QQpY q.
A multiple-valued function from X to Y is a Q-valued function for some
Q P N0. In case X is a metric space, the notion of continuity (in particular
Lipschitz continuity) of such f now makes sense. If A is a σ-algebra of
subsets of X we say that f is A-measurable (or simply measurable when
A is clear from the context) whenever f´1pBq P A for every Borel subset
B Ď QQpY q.
Our coming observation will reveal ubiquitous. We define the splitting

distance of v “ rry1, . . . , yQss P QQpY q as follows:

split v “
#

mintdpyi, yjq : i, j “ 1, . . . , Q and yi ‰ yju if card supp v ą 1
`8 if card supp v “ 1

Lemma 2.1.2 (Splitting Lemma). — Let v “ rry1, . . . , yQss P QQpY q

and v1 P QQpY q be such that G pv, v1q ď 1
2 split v. Choose a numbering of

v1 “ rry11, . . . , y
1
Qss P QQpY q so that dpyi, y1iq ď 1

2 split v, i “ 1, . . . , Q. It
follows that

G pv, v1q “

g

f

f

e

Q
ÿ

i“1
dpyi, y1iq

2

(and the analogous statement for G1 and G8).

TOME 65 (2015), FASCICULE 2



768 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

Proof. — We first observe that in case split v “ 8 the conclusion indeed
holds true. Thus we assume that split v ă 8. Let σ P SQ and i “ 1, . . . , Q.
We aim to show that dpyi, y1iq ď dpyσpiq, y

1
iq. In case yσpiq “ yi this is

obvious. Otherwise, assuming if possible that dpyσpiq, y1iq ă dpyi, y
1
iq we

would infer from the triangle inequality

split v ď dpyσpiq, yiq

ď dpyσpiq, y
1
iq ` dpy

1
i, yiq

ă 2dpyi, y1iq
ď split v ,

a contradiction. Since i “ 1, . . . , Q is arbitrary we obtain
Q
ÿ

i“1
dpyi, y

1
iq

2 ď

Q
ÿ

i“1
dpyσpiq, y

1
iq

2 .

Since σ P SQ is arbitrary, the proof is complete. �

Proposition 2.1.3. — The function σ : QQpY qÑN0 : v ÞÑcard supp v
is lower semicontinuous.

Proof. — It follows easily from the definition of split v that if v, v1 P
QQpY q and if G8pv1, vq ă

1
2 split v then card supp v1 ě card supp v. �

2.2. Concatenation and splitting

Let Q1, Q2 P N0. We define the concatenation operation

‘ : QQ1pY q ˆQQ2pY q Ñ QQ1`Q2pY q : pv1, v2q ÞÑ v1 ‘ v2

as follows. Write v1 “ rry1,1, . . . , y1,Q1ss and v2 “ rry2,1, . . . , y2,Q2ss, and put
v1 ‘ v2 “ rry1,1, . . . , y1,Q1 , y2,1, . . . , y2,Q2ss. We observe that this operation
is commutative, i.e. v1‘ v2 “ v2‘ v1. We notice the following associativity
property. If Q1, Q2, Q3 P N0 and vj P QQj

pY q, j “ 1, 2, 3, then pv1 ‘ v2q ‘

v3 “ v1‘pv2‘ v3q so that v1‘ v2‘ v3 is well defined. It is thus possible to
iterate the definition to the concatenation of any finite number of members
of some QQj pY q. In this new notation we readily have the identity

rry1, . . . , yQss “ rry1ss ‘ . . .‘ rryQss “ ‘
Q
i“1rryiss .

We leave the obvious proof of the next result to the reader.

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 769

Proposition 2.2.1. — Let Q1, . . . , Qk P N0. The concatenation opera-
tion

QQ1pY q ˆ . . .ˆQQk
pY q Ñ QQ1`...`Qk

pY q : pv1, . . . , vkq ÞÑ v1 ‘ . . .‘ vk

is Lipschitz continuous.

In fact if each QQpY q appearing in the statement is equipped with the
metric G1, and if the Cartesian product is considered as an `1 “product”,
then the Lipschitz constant of the above mapping equals 1.
Given Q maps f1, . . . , fQ : X Ñ Y we define their concatenation f :

X Ñ QQpY q by the formula

fpxq “ rrf1pxq, . . . , fQpxqss “ ‘
Q
i“1rrfipxqss , x P X.

Abusing notation in the obvious way we shall also write

f “ rrf1, . . . , fQss .

In writing f as above we will call f1, . . . , fQ branches of f . It is most ob-
vious that such splitting of f into branches is always possible, and equally
evident that branches are very much not unique unless X is a singleton.
It ensues from the above proposition that if fi : X Ñ Y , i “ 1, . . . , Q, are
measurable (resp. continuous, Lipschitz continuous) then so is their con-
catenation f “ ‘Qi“1rrfiss. Now, if f has some of these properties, can it be
split into branches f1, . . . , fQ having the same property? The answer is pos-
itive for measurability, as we shall see momentarily, but not for continuity.
Consider f : CÑ Q2pCq defined by fpzq “ rr

?
z,´

?
zss. Thus f is (Hölder)

continuous (for a recent account of such continuity, consult e.g. [4]). We
claim however that f does not decompose into two continuous branches. In
fact we shall argue that the restriction of f to the unit circle, still denoted
f ,

f : S1 Ñ Q2pS1q : z ÞÑ rr
?
z,´

?
zss

does not admit a continuous selection. Suppose if possible that there are
continuous maps f1, f2 : S1 Ñ S1 such that f “ rrf1, f2ss. Let g : S1 Ñ S1 :
z ÞÑ z2. From the identity idS1 “ g ˝ f1 we infer that 1 “ degpg ˝ f1q “

degpgq ˝ degpf1q “ 2 degpf1q, contradicting degpf1q P Z.

2.3. Measurability

This section is also contained in [6]. The process of splitting v P QQpY q

(such that split v ă 8) into v1 P QQ1pY q and v2 P QQ2pY q, Q “ Q1 `Q2
and Q1 ‰ 0 ‰ Q2, is locally well-defined and continuous.

TOME 65 (2015), FASCICULE 2



770 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

Proposition 2.3.1. — Let v P QQpY q be such that s “ split v ă 8.
There then exist Q1, Q2 P N0 with Q “ Q1 `Q2 and continuous mappings

ψk : QQpY q X tv
1 : G8pv, v

1q ă s{2u Ñ QQk
pY q , k “ 1, 2 ,

such that
v1 “ ψ1pv

1q ‘ ψ2pv
1q .

When Y is a metric space we letBY denote the σ-algebra of Borel subsets
of Y .

Proposition 2.3.2. — Let pX,Aq be a measurable space and let Y be
a separable metric space.

(A) If f1, . . . , fQ : X Ñ Y are pA,BY q-measurable then f“rrf1, . . . , fQss

is pA,BQQpY qq-measurable.
(B) If f : X Ñ QQpY q is pA,BQQpY qq-measurable then there exist

pA,BY q-measurable maps f1, . . . , fQ : X Ñ Y such that f “

rrf1, . . . , fQss.

Proof. — (A) Since pQQpY q,G8q is separable (Proposition 2.1.1), each
open subset of QQpY q is a finite or countable union of open balls. Thus it
suffices to show that f´1pBG8pv, rqq P A whenever v P QQpY q and r ą 0.
Writing v “ rry1, . . . , yQss we simply notice that

f´1pBG8pv, rqq “ X X tx : G8pfpxq, vq ă ru

“ X X

"

x : min
σPSQ

max
i“1,...,Q

dpfipxq, yσpiqq ă r

*

“
ď

σPSQ

Q
č

i“1
f´1
i pBpyσpiq, rqq P A .

(B) The proof is by induction on Q. The case Q “ 1 being trivial,
we henceforth assume that Q ě 2. We start by letting F “ QQpY q X

tv : card supp v “ 1u. Notice F is closed, according to Proposition 2.1.3,
thus A0 “ f´1pF q P A. There readily exist identical pA,BY q-measurable
maps f0

1 , . . . , f
0
Q : A0 Ñ Y such that fæA0 “ rrf0

1 , . . . , f
0
Qss. We next in-

fer from Proposition 2.3.1 that to each v P QQpY qzF there correspond
a neighborhood Uv of v in QQpY qzF , integers Qv1, Qv2 P N0 such that
Q “ Qv1 ` Qv2, and continuous maps ψvk : Uv Ñ QQv

k
pY q, k “ 1, 2,

such that ψv1 ‘ ψv2 “ idUv
. Since QQpY qzF is separable we find a se-

quence tvju such that QQpY qzF “ YjPN0Uvj . Thus we find a disjointed
sequence tBju of Borel subsets of QQpY q such that QQpY qzF “ YjPN0Bj

and Bj Ď Uvj
for every j. Define Aj “ f´1pBjq P A, j P N0. For each

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 771

j P N0 the induction hypothesis applies to the two multiple-valued func-
tions ψvj

k ˝ pfæAj
q : Aj Ñ Q

Q
vj
k

pY q, k “ 1, 2, to yield pA,BY q-measurable
decompositions rrf j1 , . . . , f

j

Q
vj
1
ss and rrf j

1`Q
vj
1
, . . . , f jQss (the numberings are

chosen arbitrarily). We define fi : X Ñ Y , i “ 1, . . . , Q, by letting
fiæAj

“ f ji , j P N0. It is now plain that each fi is pA,BY q-measurable
and that f “ rrf1, . . . , fQss. �

2.4. Lipschitz extensions

The Lipschitz extension Theorem 2.4.3 is due to F.J. Almgren in case
Y is finite dimensional (see [2, 1.5]), a former version is found in [1] for a
different notion of multiple-valued function). Here we merely observe that
it extends to the case when Y is an arbitrary Banach space (in case Q “ 1
this observation had already been recorded in [12], the method being due
to H. Whitney [17]). Our exposition is very much inspired by that of [6]
(see also [13] for a comprehensive study of the extension techniques used
here). This extension Theorem in case Y is finite dimensional is equivalent
to the fact that QQpRnq is an absolute Lispschitz retract (see Theorem
3.3.6). The latter is proved “by hand” in [2, 1.3].
Given a map f : X Ñ Y between two metric spaces, and r ą 0, we recall

that the oscillation of f at r is defined as

oscpf ; rq “ suptdY pfpx1q, fpx2qq : x1, x2 PX and dXpx1, x2q ď ru P r0,`8s

In this section QQpY q will be equipped with its metric G8.

Proposition 2.4.1. — Let Q ě 2. Assume that
(1) X and Y are metric spaces, x0 P X, and δ “ diamX ă 8;
(2) f : X Ñ QQpY q and fpx0q “ rry1px0q, . . . , yQpx0qss;
(3) There are i1, i2 P t1, . . . , Qu such that

dY pyi1px0q, yi2px0qq ą 3pQ´ 1q oscpf ; δq .

It follows that there are Q1, Q2 P N0 such that Q1 ` Q2 “ Q, and f1, f2 :
X Ñ QQpY q such that f “ f1 ‘ f2 and oscpfj ; ¨q ď oscpf ; ¨q, j “ 1, 2.

Proof. — We let J denote the family of all those J Ď t1, . . . , Qu such
that i1 P J and for every j1, j2 P J ,

(2.1) dY pyj1px0q, yj2px0qq ď 3pcard J ´ 1q oscpf ; δq .

Notice that J ‰ H (because ti1u P J ), and let J1 P J be maximal
with respect to inclusion. Also define J2 “ t1, . . . , QuzJ1, so that J2 ‰ H:

TOME 65 (2015), FASCICULE 2



772 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

according to hypothesis (3), J2 contains at least i2. We notice that for every
j1 P J1 and every j2 P J2 one has

(2.2) dY pyj1px0q, yj2px0qq ą 3 oscpf ; δq .

For each x P X we choose a numbering fpxq “ rry1pxq, . . . , yQpxqss such
that

G8pfpx0q, fpxqq “ max
i“1,...,Q

dY pyipx0q, yipxqq .

We let Q1 “ card J1, Q2 “ cardQ2, and we define fj : X Ñ QQpY q,
j “ 1, 2, by the formula fjpxq “ rryipxq : i P Jjss, so that f “ f1 ‘ f2.
For each pair x, x1 P X we choose σx,x1 P SQ such that

G8pfpxq, fpx
1qq “ max

i“1,...,Q
dY pyipxq, yσx,x1 piq

px1qq .

We now claim that σx,x1pJ1q “ J1 and σx,x1pJ2q “ J2, and this will readily
finish the proof. Assume if possible that there exist j1 P J1 and j2 P J2
such that σx,x1pj1q “ j2. Thus dY pyj1pxq, yj2px

1qq ď G8pfpxq, fpx1qq, and it
would follow from Equation (2.2) that
3 oscpf ; δq ă dY pyj1px0q, yj2px0qq

ď dY pyj1px0q, yj1pxqq ` dY pyj1pxq, yj2px
1qq ` dY pyj2px

1q, yj2px0qq

ď G8pfpx0q, fpxqq ` G8pfpxq, fpx
1qq ` G8pfpx

1q, fpx0qq

ď 3 oscpf ; δq ,

a contradiction. �

Proposition 2.4.2. — For each Q P N0 there is a constant c2.4.2pQq ě

1 with the following property. Assume that
(1) X and Y are Banach spaces;
(2) C Ď X is a closed ball;
(3) f : pBdryC, } ¨ }q Ñ pQQpY q,G8q is Lipschitz.

It follows that f admits an extension f̂ : pC, } ¨ }q Ñ pQQpY q,G8q such
that

Lip f̂ ď c2.4.2pQqLip f ,
and

maxtG8pf̂pxq, vq : x P Cu ď p6Q` 2qmaxtG8pfpxq, vq : x P BdryCu

for every v P QQpY q.

Proof. — There is no restriction to assume that C “ Bp0, Rq, R ą 0, is
a ball centered at the origin. Note that it is enough to construct a Lipschitz
extension f̂ of f on a dense subset of C, for example on Czt0u. The proof is
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by induction on Q, and we start with the case Q “ 1. Choose x0 P BdryC.
We define

f̂pxq “

ˆ

1´ }x}
R

˙

fpx0q `
}x}

R
f

ˆ

Rx

}x}

˙

, x P Czt0u .

This is readily an extension of f to Bp0, Rqzt0u. In order to estimate its
Lipschitz constant, we let x, x1 P Bp0, Rqzt0u, we put r “ }x}, r1 “ }x1},
and we assume r ď r1. We define x2 “ rx1

r1 , such as }x} “ }x2} and we
observe that

}f̂pxq ´ f̂px2q} “

›

›

›

›

}x}

R
f

ˆ

Rx

}x}

˙

´
}x2}

R
f

ˆ

Rx2

}x2}

˙
›

›

›

›

“
r

R

›

›

›

›

f

ˆ

Rx

}x}

˙

´ f

ˆ

Rx1

}x1}

˙
›

›

›

›

ď rpLip fq
›

›

›

›

x

}x}
´

x1

}x1}

›

›

›

›

ď 2pLip fq}x´ x1} ,

and

}f̂px2q ´ f̂px1q} “

›

›

›

›

}x2} ´ }x1}

R

ˆ

f

ˆ

Rx1

}x1}

˙

´ fpx0q

˙
›

›

›

›

ď 2pLip fq}x´ x1}

Therefore,
Lip f̂ ď 4 Lip f .

Moreover, if v P Y and x P C, we compute

}f̂pxq ´ v} ď

ˆ

1´ }x}
R

˙

}fpx0q ´ v} `
}x}

R

›

›

›

›

f

ˆ

Rx

}x}

˙

´ v

›

›

›

›

ď max
ξPBdryC

}fpξq ´ v}.

We are now ready to treat the case when Q ą 1.
First case. Assume there are i1, i2 P t1, . . . , Qu and x0 P BdryC such

that
}yi1px0q ´ yi2px0q} ą 3Q oscpf ; 2Rq

ě 3pQ´ 1q oscpf ; 2Rq .

where fpx0q “ rry1px0q, . . . , yQpx0qss. We infer from Proposition 2.4.1
(applied with X “ BdryC) that f decomposes into f “ f1 ‘ f2 with
fj : BdryC Ñ QQj

pY q and Lip fj ď Lip f , j “ 1, 2. The induction hypoth-
esis implies the existence of extensions f̂j : C Ñ QQj

pY q of fj , such that
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Lip f̂j ď c2.4.2pQjqLip fj , j “ 1, 2. We put f̂ “ f̂1 ‘ f̂2 and we notice that

Lip f̂ ď maxtc2.4.2pQ1q, c2.4.2pQ2quLip f

and

oscpf̂ ; 2Rq ď oscpf ; 2Rq .

Let K ą 0 a constant to be determined later.

‚ First subcase. Suppose that

K oscpf̂ ; 2Rq ď G8pv, fpx0qq.

Then, for any x P C, one has

G8pv, f̂pxqq ď G8pv, fpx0qq ` G8pfpx0q, f̂pxqq

ď G8pv, fpx0qq ` oscpf̂ ; 2Rq

ď p1`K´1qG8pv, fpx0qq

ď p1`K´1q max
ξPBdryC

G8pv, fpξqq.

‚ Second subcase. Suppose that

K oscpf̂ , 2Rq ą G8pv, fpx0qq.

We will use the same notations as in the proof of Proposition 2.4.1.
Recall that flpxq “ ‘iPJl

rryipxqss for x P BdryC and l P t1, 2u.
We choose a numbering v “ rrv1, . . . , vQss such that G8pv, fpx0qq“

max1ďiďQ }vi´yipx0q}. We set vJ1 “‘iPJ1rrviss and vJ2 “‘iPJ2rrviss.
We claim that for any x P C,

(2.3) G8pv, f̂pxqq “ maxpG8pvJ1 , f̂1pxqq,G8pvJ2 , f̂2pxqqq.

This together with the inductive hypothesis will complete the proof.
Suppose if possible that (2.3) is not valid. Switching J1 and J2
if necessary, it follows that there are j1 P J1 and j2 P J2 with
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G8pv, f̂pxqq “ }vj1 ´ ŷj2pxq}. Therefore, using (2.1) and (2.2),

K oscpf̂ ; 2Rq ą G8pv, fpx0qq

ě G8pv, f̂pxqq ´ G8pf̂pxq, fpx0qq

ě }vj1 ´ ŷj2pxq} ´ oscpf̂ ; 2Rq
ě }yi1px0q ´ yi2px0q}

´ }yi1px0q ´ yj1px0q} ´ }yj1px0q ´ vj1}

´ }yi2px0q ´ yj2px0q} ´ }yj2px0q ´ ŷj2pxq}

´ oscpf̂ ; 2Rq
ě }yi1px0q ´ yi2px0q}

´ 3pcard J1 ´ 1q oscpf̂ ; 2Rq ´ G8pv, fpx0qq

´ 3pcard J2 ´ 1q oscpf̂ ; 2Rq ´ G8pfpx0q, f̂pxqq

´ oscpf̂ ; 2Rq

ě p3Q´ 3pQ´ 2q ´K ´ 2q oscpf̂ ; 2Rq

If K “ 2, one gets a contradiction.

Second case. Assume that for every i1, i2 P t1, . . . , Qu and for every
x P BdryC one has

}yi1pxq ´ yi2pxq} ď 3Q oscpf ; 2Rq ď 6QRLip f .

where fpxq “ rry1pxq, . . . , yQpxqss is an arbitrary numbering. We pick some
x0 P BdryC and we define ŷi : Czt0u Ñ Y by(∗)

ŷipxq “
}x}

R
yi

ˆ

Rx

}x}

˙

`
R´ }x}

R
y1px0q ,

x P Czt0u and i “ 1, . . . , Q. We define f̂ : Czt0u Ñ QQpY q by f̂pxq “

rrŷ1pxq, . . . , ŷQpxqss, x P Czt0u. We first show that Lippf̂æBdryBp0, rqq ď
Lip f , 0 ă r ď R. Indeed given x, x1 P C with }x} “ }x1} “ r, we define
x̃ “ Rx

r and x̃1 “ Rx1

r , and we select σ P SQ such that

G8pfpx̃q, fpx̃
1qq “ max

i“1,...,Q
}yipx̃q ´ yσpiqpx̃

1q} .

(∗)Note we don’t claim any regularity about the yi nor the ŷi, not even measurability
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We notice that

}ŷipxq ´ ŷσpiqpx
1q} “

r

R
}yipx̃q ´ yσpiqpx̃

1q}

ď
r

R
pLip fq}x̃´ x̃1}

“ pLip fq}x´ x1} .

Therefore

G8pf̂pxq, f̂px
1qq ď max

i“1,...,Q
}ŷipxq ´ ŷσpiqpx

1q} ď pLip fq}x´ x1} .

Next, given x P BdryC, we choose j P t1, . . . , Qu such that }yjpxq ´
y1px0q} ď G8pfpxq, fpx0qq ď pLip fq2R. For each 0 ă t1 ă t2 ď 1 and
i “ 1, . . . , Q one has

}ŷipt2xq ´ ŷipt1xq} “ pt2 ´ t1q}yipxq ´ y1px0q}

ď pt2 ´ t1q p}yipxq ´ yjpxq} ` }yjpxq ´ y1px0q}q

ď pt2 ´ t1q p3Q` 1q 2RLip f
“ }t2x´ t1x} p6Q` 2q pLip fq ,

thus

G8pf̂pt2xq, f̂pt1xqq ď p6Q` 2q pLip fq}t2x´ t1x} .

We conclude from the triangle inequality that for any x, x1 P Czt0u, r “
}x}, r1 “ }x1}

G8pf̂pxq, f̂px
1qq

ď G8

ˆ

f̂pxq, f̂

ˆ

rx1

r1

˙˙

` G

ˆ

f̂

ˆ

rx1

r1

˙

, f̂px1q

˙

ď pLip fq
ˆ
›

›

›

›

x´ }x}
x1

r1

›

›

›

›

`

ˆ

6Q max
1ďkăQ

c2.4.2pkq ` 2
˙
›

›

›

›

rx1

r1
´ x1

›

›

›

›

˙

ď

ˆ

6Q max
1ďkăQ

c2.4.2pkq ` 4
˙

pLip fq}x´ x1}

Regarding the second part of the Proposition, we choose some v “ rrv1, . . .

. . . , vQss, ordered such that G8pfpx0q, vq “ max1ďiďQ }yipx0q ´ vi}. Let
x P Cz0 and σ such that

G8

ˆ

f

ˆ

Rx

}x}

˙

, v

˙

“ max
1ďiďQ

›

›

›

›

yσpiq

ˆ

Rx

}x}

˙

´ vi

›

›

›

›

.
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One has
G8pf̂pxq, vq

ď max
1ďiďQ

›

›

›

›

}x}

R
yσpiq

ˆ

Rx

}x}

˙

`
R´ }x}

R
y1px0q ´ vi

›

›

›

›

“ max
1ďiďQ

›

›

›

›

}x}

R

ˆ

yσpiq

ˆ

Rx

}x}

˙

´ vi

˙

`
R´ }x}

R
py1px0q ´ viq

›

›

›

›

ď G8

ˆ

f

ˆ

Rx

}x}

˙

, v

˙

` max
1ďiďQ

}y1px0q ´ vi}

ď G8

ˆ

f

ˆ

Rx

}x}

˙

, v

˙

` max
1ďiďQ

p}yipx0q ´ vi} ` }yipx0q ´ y1px0q}q

ď 2 max
ξPBdryC

G8pfpξq, vq ` 3Q oscpf ; 2Rq .

Note that
oscpf ; 2Rq “ max

ξ1,ξ2PBdryC
G8pfpξ1q, fpξ2qq

ď max
ξ1,ξ2PBdryC

pG8pfpξ1q, vq ` G8pv, fpξ2qqq

ď 2 max
ξPBdryC

G8pfpξq, vq .

Thus the proof is complete. �

Theorem 2.4.3. — For every Q P N0 and every m P N0 there exists a
constant c2.4.3pm,Qq ě 1 with the following property. Assume that

(1) X is a finite dimensional Banach space withm “ dimX, and A Ď X

is closed;
(2) Y is a Banach space;
(3) f : AÑ QQpY q is Lipschitz.

It follows that f admits an extension f̂ : X Ñ QQpY q with

Lip f̂ ď c2.4.3pm,QqLip f ,

and

suptG8pf̂pxq, vq : x P Xu ď c2.4.3pm,Qq suptG8pfpxq, vq : x P Au

for every v P QQpY q.

Proof. — Because they are lipeomorphic, there is no restriction to as-
sume that X and `m8 coincide: an isomorphism T : X Ñ `m8 will multiply
the constant c2.4.3pm,Qq by a factor }T } ¨ }T´1} (where } ¨ } denotes the
operator norm), yet one can always find a T such that }T }¨}T´1} is smaller
than a constant depending only on m, since the Banach-Mazur compactum
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of m dimensional spaces is bounded. We consider a partition of XzA into
dyadic semicubes tCjuj with the following property

distpCj , Aq
2 ď diamCj ă distpCj , Aq

for every j P N. With each Cj and k “ 0, . . . ,m we associate it k-skeleton
SkpCjq, i.e. SmpCjq “ tClosCju and SkpCjq is the collection of those
maximal k dimensional convex subsets of the (relative) boundary of each
F P Sk`1pCjq. We also set Sk “ YjPNSkpCjq. We now define, by upwards
induction on k, mappings

f̂k : AY
´

ď

Sk

¯

Ñ QQpY q

which coincide with f on A and such that

(2.4) Lip f̂kæ
´

F X
´

ď

SkpCjq
¯¯

ď Cpk,QqLip f

for each F P Sk`1pCjq, j P N, (where Cpk,Qq is a constant depending only
on k and Q). Furthermore, if k ě 1 then f̂k is an extension of f̂k´1.
Definition of f̂0. With each x P A Y S0 we associate ξx P A such that

}x ´ ξx} “ distpx,Aq, and we put f̂0pxq “ fpξxq. For x P A we obviously
have f̂0pxq “ fpxq. If x P Cj then

}x´ ξx} “ distpx,Aq ď diamCj ` distpCj , Aq ď 3 diamCj .

Consequently, if x, x1 P Cj then

}ξx ´ ξx1} ď }ξx ´ x} ` }x´ x
1} ` }x1 ´ ξx1} ď 7 diamCj “ 7}x´ x1} .

Thus

G8pf̂0pxq, f̂0px
1qq “ G8pfpξxq, fpξx1qq ď 7pLip fq}x´ x1} .

This indeed proves (2.4) in case k “ 0.
Definition of f̂k by induction on k ě 1. We say a k-face F P Sk is

minimal if there is no k-face F 1 P Sk such that F 1 Ď F and F 1 ‰ F .
We observe that each k-face contains a minimal one, and that two distinct
minimal k-faces have disjoint (relative) interiors. If F P Sk is a minimal k-
face then its “ boundary” BF (relative to the k dimensional affine subspace
containing it) equals FXYSk´1pCjq where Cj is so that F P SkpCjq, hence
Lip f̂k´1æBF ď Cpk ´ 1, QqLip f according to the induction hypothesis
(2.4). Thus Proposition 2.4.2 guarantees the existence of an extension f̂k
of f̂k´1 from BF to F so that Lippf̂kæF q ď c2.4.2pQqCpk ´ 1, QqLip f .
This completes the definition of f̂k to YSk. By construction f̂k verifies
(2.4) for every minimal k-face F P Sk. Since each k-face is the union of
(finitely many) minimal k-faces all contained in the same k dimensional
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affine subspace of X, it is an easy matter to check that (2.4) is also verifies
for arbitrary F P Sk.
According to Proposition 2.4.2, for k ě 1 and v P QQpY q, one has

sup
xPAYpYSkq

G8pv, f̂kpxqq ď 2QLipφk Lipφ´1
k sup

xPAYpYSk´1q

G8pv, f̂k´1pxqq

where φk denote a lipeomorphism from a k ball to a k cube. Moreover, one
has easily

sup
xPAYpYS0q

G8pv, f̂0pxqq “ sup
xPA

G8pv, fpxqq .

Those two facts implies that

suptG8pf̂mpxq, vq : x P Xu ď c2.4.3pm,Qq suptG8pfpxq, vq : x P Au

if c2.4.3pm,Qq ě p2Qqm
śm
k“1pLipφk Lipφ´1

k q.
We now check that f̂m is Lipschitz. Let x, x1 P X and we define the

line segment rx, x1s “ X X tx ` tpx1 ´ xq : 0 ď t ď 1u. We distinguish
between several cases according to the positions of these points. First
case : if x, x1 P A, the clearly G8pf̂mpxq, f̂mpx1qq “ G8pfpxq, fpx1qq ď

pLip fq}x ´ x1}. Second case : x, x1 P ClosCj for some j P N. It then
follows that G8pf̂mpxq, f̂mpx1qq ď Cpm,QqpLip fq}x ´ x1} according to
(2.4). Third case : rx, x1s X A “ H. One then checks that J “ N X tj :
rx, x1s XClosCj ‰ Hu is finite and we apply the previous case to conclude
that also G8pf̂mpxq, f̂mpx1qq ď Cpm,QqpLip fq}x´x1}. Fourth case : x R A
and x1 P A. We choose j P N such that x P Cj and we choose arbitrarily
x2 P S0pCjq. It follows that

}x´ x2} ď diamCj ď distpCj , Aq ď }x´ x1}

and

}x´ ξx2} ď }x´ x
2} ` }x2 ´ ξx2} ď diamCj ` 3 diamCj ď 4}x´ x1} .

Thus

G8pf̂mpxq, f̂mpx
1qq ď G8pf̂mpxq, f̂mpx

2qq ` G8pf̂0px
2q, f̂0px

1qq

ď pLip f̂mæClosCjq}x´ x2} ` pLip fq}ξx2 ´ x1}
ď 6pCpm,Qq ` 1qpLip fq}x´ x1} .

Fifth case : rx, x1s X A ‰ H and either x or x1 does not belong to A. We
let a (resp. a1) denote the point rx, x1s X A closest to x (resp. x1) and we
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observe that

G8pf̂mpxq, f̂mpx
1qq

ď G8pf̂mpxq, f̂mpaqq ` G8pfpaq, fpa
1qq ` G8pf̂mpa

1q, f̂mpx
1qq

ď 6pCpm,Qq ` 1qpLip fq}x´ a}
` pLip fq}a´ a1} ` 6pCpm,Qq ` 1qpLip fq}a1 ´ x1}

ď 6pCpm,Qq ` 1qpLip fq}x´ x1} .

�

Question 2.4.4. — Given a pair of Banach spaces X and Y we here
denote by cpX,Y,Qq the best constant occurring in Theorem 2.4.3 corre-
sponding to these Banach spaces. Thus cpX,Y,Qq ď c2.4.3pdimX,Qq ă 8

in caseX is finite dimensional. Kirszbraun’s Theorem says that cp`m2 , `N2 , 1q
“ 1 for every n,N P N0, thus it follows from Theorem 3.3.6 that cp`m2 , `n2 , Qq
ď Lip ρn,Q is bounded independently of m. Is it true that cp`m2 , `2, Qq ă 8
for every Q ą 1? That would be an analog of Kirszbraun’s Theorem
for multiple-valued functions. On the other hand, it is well-known that
cpX, `8, 1q “ 1 for every X. Is it true that cpX, `8, Qq ă 8 for every
Q ą 1 and every finite dimensional Banach space X? See also Question
3.3.9.

2.5. Differentiability

The results contained in this section are standard in case Y “ `n2 is
Euclidean. The notion of (approximate) differentiability was introduced
(under the name (approximate) affine approximatability) by F.J. Almgren
in [2]. We call unambiguously differentiable what Almgren calls strongly
affinely approximatable. “Intrinsic” proofs (i.e. avoiding the embedding de-
fined in section 3.3) of the analog of Rademacher’s Theorem have been given
in [10] and [6].
In this section X is a finite dimensional Banach space, m “ dimX, λ is

a Haar measure on X, and Y is a separable Banach space.
We say that g : X Ñ QQpY q is affine (resp. linear) if there are affine

maps A1, . . . , AQ from X to Y (resp. linear maps L1, . . . , LQ from X to Y )
such that g “ ‘Qi“1rrAiss (resp. g “ ‘

Q
i“1rrLiss). Our first task is to observe

that the Ai’s are uniquely determined by g.

Lemma 2.5.1. — Let A1, . . . , AQ, A
1
1, . . . , A

1
Q be affine maps from X to

Y , g “ ‘Qi“1rrAiss, g1 “ ‘
Q
i“1rrA

1
iss, and S Ď X. If gpxq “ g1pxq for every
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x P S and λpSq ą 0, then there exists σ P SQ such that Ai “ A1σpiq,
i “ 1, . . . , Q.

Proof. — For each σ P SQ we define

Wσ “ X X tx : Aipxq “ A1σpiqpxq, i “ 1, . . . , Qu ,

and we notice that Wσ is an affine subspace of X. If x P S then x P Wσ

for some σ P SQ. Thus S Ď YσPSQ
Wσ. Therefore there exists σ such that

λpWσq ą 0, hence Wσ “ X. �

Let f, g : X Ñ QQpY q be Borel measurable, and a P X. We say that f
and g are approximately tangent at a if for every ε ą 0,

Θmpλ tx : G pfpxq, gpxqq ą ε}x´ a}u, aq “ 0 .

It is plain that the distance G can be replaced by G1 or G8 without changing
the scope of the definition.

Proposition 2.5.2. — Let g, g1 : X Ñ QQpY q be affine and approxi-
mately tangent at some a P X. It follows that g “ g1.

Proof. — Write g “ ‘
Q
i“1rrAiss, g1 “ ‘

Q
i“1rrA

1
iss, where A1, . . . , AQ,

A11, . . . , A
1
Q are affine from X to Y , and Ai “ Li ` bi, A1i “ L1i ` b1i,

bi, b
1
i P Y and the Li’s and L1i’s are linear. With 0 ă ε ď 1 we associate

Gε “ X X tx : G1pgpxq, g
1pxqq ď ε}x´ a}u

so that Θmpλ Gε, aq “ 1 by assumption, because Gε is Borel measurable.
Define

η “ inft}Aipaq ´A1jpaq} : i, j “ 1, . . . , Q and Aipaq ‰ A1jpaqu P p0,8s.

Suppose η ă 8, the case η “ 8 being easier to prove. Choose δ ą 0 small
enough for

δp1` 2Qmaxt}L1}8, . . . , }LQ}8, }L
1
1}8, . . . , }L

1
Q}8uq ă η .

TOME 65 (2015), FASCICULE 2



782 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

Let x P Gε XBpa, δq and write x “ a` h. There exists σ P SQ such that
ε}h} ě G1pgpa` hq, g

1pa` hqq

“

Q
ÿ

i“1
}Aipa` hq ´A

1
σpiqpa` hq}

“

Q
ÿ

i“1
}Lipaq ` bi ´ L

1
σpiqpaq ´ b

1
σpiq ` Liphq ´ L

1
σpiqphq}

“

Q
ÿ

i“1
}Aipaq ´A

1
σpiqpaq ` Liphq ´ L

1
σpiqphq}

ě

Q
ÿ

i“1
}Aipaq ´A

1
σpiqpaq} ´

Q
ÿ

i“1
}Liphq ´ L

1
σpiqphq} ,

(2.5)

whence
Q
ÿ

i“1
}Aipaq ´A

1
σpiqpaq}

ď ε}h} ` 2Q}h}maxt}L1}8, . . . , }LQ}8, }L
1
1}8, . . . , }L

1
Q}8u ă η

since }h} ď δ. The definition of η then implies that Aipaq “ A1σpiqpaq for
each i “ 1, . . . , Q. Multiplying (2.5) by t ą 0 we obtain

ε}th} ě
Q
ÿ

i“1
}Lipthq ´ L

1
σpiqpthq}

“

Q
ÿ

i“1
}Aipa` thq ´A

1
σpiqpa` thq}

ě G1pgpa` thq, g
1pa` thqq .

In other words, we have established that for every 0 ă ε ď 1 and every
t ą 0, if a` h P Gε XBpa, δq then a` th P Gε.
Letting εk “ k´1, k P N0, we choose 0 ă rk ă δ such that

λpGεk
XBpa, rkqq ě

ˆ

1´ 1
4k

˙

λpBpa, rkqq .

If hk : Bpa, rkq Ñ Bpa, 1q maps a`h to a`r´1
k h then the above paragraph

says that hkpGεk
XBpa, rkqq Ď Gεk

XBpa, 1q. Consequently,
λpGεk

XBpa, 1qq ě λphkpGεk
XBpa, rkqqq

“ r´mk λpGεk
XBpa, rkqq

ě

ˆ

1´ 1
4k

˙

λpBpa, 1qq .
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Summing over k P N0 we obtain

λ

˜

č

kPN0

Gεk

¸

ą 0

and the conclusion now follows from Lemma 2.5.1. �

Corollary 2.5.3. — If f : X Ñ QQpY q is Borel measurable, g, g1 :
X Ñ QQpY q are both affine and both approximately tangent to f at a,
then g “ g1.

Proof. — Observe that g and g1 are approximately tangent (to each
other) at a and apply Proposition 2.5.2. �

Let f : X Ñ QQpY q and a P X. We say that f is approximately differ-
entiable at a if there exists an affine Q-valued g : X Ñ QQpY q which
is approximately tangent to f at a. According to the above corollary,
the existence of such g implies its uniqueness. It will be subsequently
denoted as Afpaq. Writing Afpaq “ ‘

Q
i“1rrAiss we shall see later that

Afpaqpaq “ ‘
Q
i“1rrAipaqss equals fpaq in case f is approximately con-

tinuous at a. Concatenation of the linear parts Li “ Ai ´ Aip0q yields
Dfpaq “ ‘Qi“1rrLiss which is uniquely determined by Afpaq. It may occur
(but not too often, as we shall later see) that for some pair of distinct
indexes i and j one has Aipaq “ Ajpaq, yet Li ‰ Lj . We now state a
definition to rule this out. We say that f is unambiguously approximately
differentiable at a if Afpaq fulfils the following additional requirement. For
every i, j “ 1, . . . , Q, if Aipaq “ Ajpaq then Li “ Lj .

Example 2.5.4. — The affine 2-valued map

g “ RÑ Q2pRq : x ÞÑ rrxss ‘ rr ´ xss

is everywhere (approximately) differentiable, but not unambiguously so at
0.

The need for unambiguous differentiation appears when stating the
Euler-Lagrange equation for minimizing multiple-valued maps with respect
to range deformation (so-called “squash deformation” by F.J. Almgren), see
e.g. [2, Theorem 2.6(4)].

Recall the function σ defined in Proposition 2.1.3.

Lemma 2.5.5. — Assume v PQQpY q, put k “ σpvq, and letQ1, . . . , Qk P

N0 and y1, . . . , yk P Y be such that v “ ‘kj“1Qjrryjss and Q “
řk
j“1Qj .

For every 0 ă r ă 1
2 split v the following holds. Whenever v1 P QQpY q is

such that G8pv, v1q ă r and σpv1q “ k, there are y11, . . . , y1k P Y such that
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v1 “ ‘kj“1Qjrry
1
jss, }yj ´ y1j} ă r for every j “ 1, . . . , k, and G pv, v1q “

řQ
j“1Qj}yj ´ y

1
j}.

Proof. — Let v1 be as in the statement and choose a numbering v1 “
rrz1, . . . , zQss. Since G1pv, v

1q ă r, it follows that each zi is r close to some
yj . In other words there exists τ : t1, . . . , Qu Ñ t1, . . . , ku such that }zi ´
yτpiq} ă r, i “ 1, . . . , Q. Thus

G1pv, v
1q “

Q
ÿ

i“1
}zi ´ yτpiq}

according to the Splitting Lemma. We now observe that if i, i1 P t1, . . . , Qu
are so that τpiq ‰ τpi1q then zi ‰ zi1 . Indeed the converse would yield

}yτpiq ´ yτpi1q} ď }yτpiq ´ zi} ` }zi1 ´ yτpi1q} ď 2r ă split v ,

a contradiction. Since also σpv1q “ k we infer that τpiq “ τpi1q implies
zi “ zi1 . The proof is complete. �

We now give a criterion implying unambiguous approximate differentia-
bility. Since σ ˝ f takes values in Z`, it is approximately continuous at a
point if and only if it is approximately constant at that point.

Proposition 2.5.6. — Let f : X Ñ QQpY q be Borel measurable, and
a P X. Assume that

(A) f is approximately continuous at a;
(B) σ ˝ f is approximately constant at a;
(C) f is approximately differentiable at a.

It follows that f is unambiguously approximately differentiable at a, and
that Afpaq “ fpaq.

Proof. — Write Afpaq “ ‘
Q
i“1rrAiss, and define α “ maxt}A1}8, . . .

. . . , }AQ}8u. Put k “ σpfpaqq. There exist f1paq, . . . , fkpaq P Y and posi-
tive integers Q1, . . . , Qk with

řk
j“1Qj “ Q such that

fpaq “ ‘kj“1Qjrrfjpaqss.

Let 0 ă r0 ă
1
2 split fpaq so that Lemma 2.5.5 applies with any 0 ă r ď r0.

For each ε ą 0 define

Gε “ X X tx : G1pfpxq, fpaqq ď ε and σpfpxqq “ k

and G1pfpxq, Afpaqpxqq ď ε}x´ a}u .

Given η ą 0 there exists r1pε, ηq ą 0 such that

λpGε XBpa, rqq ě p1´ ηqλpBpa, rqq

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 785

whenever 0 ă r ď r1pε, ηq. From now on we shall further assume that

ε ă min
"

1
8 split fpaq, 1

*

and
r ď min

"

1, r0, r1pε, ηq,
1

4α split fpaq
*

.

For each x P Gε XBpa, rq there are f1pxq, . . . , fkpxq P Y such that

fpxq “ ‘kj“1Qjrrfjpxqss

and

(2.6) G1pfpxq, fpaqq “
k
ÿ

j“1
Qj}fjpxq ´ fjpaq} ď ε

according to Lemma 2.5.5. Associated with such x, there are also partitions
Ix,1, . . . , Ix,k of t1, . . . , Qu such that

(2.7) G1pfpxq, Afpaqpxqq “
k
ÿ

j“1

ÿ

iPIx,j

}fjpxq ´Aipxq} ď ε}x´ a} .

In view of (2.6) there also holds
k
ÿ

j“1

ÿ

iPIx,j

}fjpaq ´Aipxq} ď εp1` }x´ a}q ď 2ε .

This already implies that fpaq “ Afpaqpaq. Now let x, x1 P Gε X Bpa, rq

and j, j1 P t1, . . . , ku. If i P Ix,j X Ix1,j1 then

}fjpaq ´ fj1paq} ď }fjpaq ´Aipxq} ` }Aipxq ´Aipx
1q} ` }Aipx

1q ´ fj1paq}

ď 4ε` α}x´ x1}
ă split fpaq

according to our choice of ε and r, thus j “ j1. This in turn readily implies
that Ix,j “ Ix1,j “: Ij , j “ 1, . . . , k. It follows from (2.7) above that if
x P Gε XBpa, rq and i, i1 P Ij , j “ 1, . . . , k, then

}Aipxq ´Ai1pxq} ď }Aipxq ´ fjpxq} ` }fjpxq ´Ai1pxq}

ď 2ε}x´ a} .

Since η ą 0 and ε ą 0 are arbitrarily small we see that Ai and Ai1 are
approximately tangent at a. Thus Ai “ Ai1 according to Proposition 2.5.2
applied with Q “ 1. Finally if i P Ij , i1 P Ij1 , and j ‰ j1 then Aipaq “

fjpaq ‰ fj1paq “ Ai1paq. The proof is complete. �
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Example 2.5.7. — Consider

f : RÑ Q2pRq : x ÞÑ
#

2rr0ss if x ă 0
rrx2ss ‘ rr ´ x2ss if x ě 0 .

One readily checks that f is (approximately) continuous at 0 and unam-
biguously (approximately) differentiable at 0, yet σ˝f is not approximately
constant at 0.

We are ready to state and prove a useful generalization of Rademacher’s
Theorem. We recall that X is a finite dimensional Banach space, and Y

a Banach space. In case f : X Ñ QQpY q is approximately differentiable
at a P X we let Afpaq “ ‘

Q
i“1rrAiss and we define Li “ Ai ´ Aip0q, i “

1, . . . , Q, the linear part of the affine approximation. We introduce the new
notation

Dfpaq “ ‘Qi“1rrLiss P QQpHompX,Y qq

where HompX,Y q denotes the space of linear operators X Ñ Y (these are
automatically continuous). Letting the latter be equipped with some norm
~ ¨ ~ we let

Dfpaq
 “ G2pDfpaq, Qrr0ssq “

g

f

f

e

Q
ÿ

i“1
~Li~2 .

Theorem 2.5.8. — Let f : X Ñ QQpY q be Lipschitz continuous and
assume that Y has the Radon-Nikodým property. It follows that

(A) For λ almost every a P X, f is unambiguously approximately dif-
ferentiable at a, and Afpaqpaq “ fpaq;

(B) The mapXÑQQpHompX,Y qq : x ÞÑDfpxq is pBX ,BQQpHompX,Y qqq

measurable;
(C) If f is approximately differentiable at a P X then it is differentiable

at a in the sense that

lim
xÑa

G pfpxq, Afpaqpxqq

}x´ a}
“ 0 ,

and
Dfpaq

 ď
?
QLip f ;

(D) For every injective Lipschitzian curve γ : r0, 1s Ñ X such that
}γ1ptq} “ 1 and f is approximately differentiable at γptq for L 1

almost every 0 ď t ď 1, one has

G2pγp1q, γp0qq ď
ż

im γ

Dfpxq
 dH 1pxq .
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Proof. — For each k “ 1, . . . , Q define

Bk “ X X tx : σpfpxqq “ ku .

Notice Bk is Borel since σ is Borel measurable according to Proposition
2.1.3. Fix k and let a P Bk. Put ηa “ split fpaq. Choose 0 ă r ă 1

2ηa
small enough for G1pfpxq, fpaqq ă

1
8ηa whenever x P Bpa, rq. It follows

from Lemma 2.5.5 that there exist positive integers Q1, . . . , Qk such that
řk
j“1Qj “ Q and each fpxq, x P Bpa, rq XBk, can be decomposed as

fpxq “ ‘kj“1Qjrrfjpxqss

in such a way that }fjpaq ´ fjpxq} ă r, j “ 1, . . . , k, and

G1pfpxq, fpaqq “
k
ÿ

j“1
Qj}fjpaq ´ fjpxq} .

In particular, for j ‰ j1, we infer that
}fjpxq ´ fj1pxq} ě }fjpaq ´ fj1paq} ´ }fjpxq ´ fjpaq} ´ }fj1paq ´ fj1pxq}

ě
1
2ηa .

Thus ηx :“ split fpxq ě 1
2ηa. If x, x

1 P Bpa, rq XBk then

}fjpxq ´ fjpx
1q} ď }fjpxq ´ fjpaq} ` }fjpaq ´ fjpx

1q} ă
1
4ηa ď

1
2ηx

so that

G1pfpxq, fpx
1qq “

k
ÿ

j“1
Qj}fjpxq ´ fjpx

1q}

according to the Splitting Lemma. Thus each fj is Lipschitz continuous
on Bpa, rq X Bk, and hence it is differentiable at λ almost every point of
Bpa, rq XBk since it can be extended to the whole X (see [12]) and Y has
the Radon-Nikodým property. Now if each fj is differentiable at a density
point x of Bpa, rq XBk one easily checks that

g “ ‘kj“1Qjrrfjpaq `Dfjss

is approximately tangent to f at x. Thus we have shown that assumption
(C) of Proposition 2.5.6 occurs at λ almost every a P X. Since this is also
the case of assumptions (A) and (B) (according to [9, 2.9.13] and the Borel
measurability of f and of σ ˝ f), conclusion (A) is now a consequence of
that proposition.
In order to prove conclusion (B) we use the same notation Bk, a P Bk

and r ą 0 as above. It follows that the restriction

Df : Bk XBpa, rq Ñ QQpHompX,Y qq : x ÞÑ ‘
Q
i“1rrDfjss
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is Borel measurable according to Proposition 2.3.2(A), because each x ÞÑ
Dfjpxq is itself Borel measurable. SinceBk is Lindelöf the restrictionDfæBk
is Borel measurable for each k “ 1, . . . , Q, and the Borel measurability of
Df follows immediately.
The proof of the first part of conclusion (C) is inspired by [9, Lemma

3.1.5] and exactly similar to [10]. In order to prove the second part of
conclusion (C) we assume that f is differentiable at a and we write Afpaq “
‘
Q
i“1rrAiss and Li “ Ai´Aip0q, i “ 1, . . . , Q. Observe that Aiphq “ Aip0q`

Liphq “ fipaq`Liphq, i “ 1, . . . , Q, according to (A). Observe that for each
x P X we have

(2.8) G2pAfpaqpxq, fpaqq
2 ď }x´ a}2

˜

Q
ÿ

i“1
}Li}

2

¸

and, given x, let σ P SQ be a permutation such that

(2.9) G2pAfpaqpxq, fpaqq
2 “

Q
ÿ

i“1
}fipaq ` Lipx´ aq ´ fσpiqpaq}

2 .

Assuming that fipaq ‰ fσpiqpaq, for some i “ 1, . . . , Q, and that

}x´ a}maxt}L1}, . . . , }LQ}u ď
1
2 split fpaq

we infer that the right member of (2.9) is bounded below by 1
4 psplit fpaqq2,

in contradiction with (2.8) provided }x ´ a}

b

řQ
i“1 }Li}

2 ă 1
2 split fpaq.

Thus, if }x´ a} is small enough then (2.9) becomes
g

f

f

e

Q
ÿ

i“1
}Lipx´ aq}2 “ G2pAfpaqpxq, fpaqq

ď G2pAfpaqpxq, fpxqq ` G2pfpxq, fpaqq .

Upon letting xÑ a we obtain

(2.10) sup

$

&

%

g

f

f

e

Q
ÿ

i“1
}Liphq}2 : h P X and }h} ď 1

,

.

-

ď Lip f .

Let j “ 1, . . . , Q be such that }Lj} “ maxt}L1}, . . . , }LQ}u. The above in-

equality implies that }Lj} ď Lip f . Finally
Dfpaq

 “

´

řQ
i“1 }Li}

2
¯

1
2
ď

?
QLip f .
It remains to establish conclusion (D). We define g : r0, 1s Ñ R by the

formula gptq “ G2pγptq, γp0qq, 0 ď t ď 0. We will show that g is Lipschitzian
and that |g1ptq| ď

Dfpγptqq
 at each t such that f is differentiable at
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γptq, so that our conclusion will become a consequence of a Theorem of
Lebesgue applied to g:

G2pγp1q, γp0qq “ gp1q ´ gp0q “
ż 1

0
g1ptqdL 1ptq

ď

ż 1

0

Dfpγptqq
 dL 1ptq “

ż

im γ

Dfpxq
 dH 1pxq

according to the area formula applied to γ. WriteDfpγptqq“ ‘Qi“1rrLipγptqqss.
For each t, t` h P r0, 1s one has

gpt` hq ´ gptq “ G2pfpγpt` hqq, γp0qq ´ G2pfpγptqq, γp0qq
ď G2pfpγpt` hqq, fpγptqq

which shows that Lip g ď Lippf ˝ γq; and assuming further that f is differ-
entiable at γptq, we obtain:

ď G2pAfpγptqqpγpt` hqq, fpγptqqq

` G2pAfpγptqqpγpt` hqq, fpγpt` hqqq

ď

˜

Q
ÿ

i“1
}Lipγptqqpγpt` hq ´ γptqq}

2

¸

1
2

` ε}γpt` hq ´ γptq}

where the last inequality holds provided h is small enough according to
ε, split fpγptqq and }L1pγptq}, . . . , }LQpγptqq} (recall the proof of (C)). Di-
viding by |h|, letting h Ñ 0, and recalling that Lip γ ď 1 we infer that
|g1ptq| ď

Dfpγptqq
 provided that g is differentiable at t. �

Given f : X Ñ QQpY q and a P X we now define

lipa f :“ lim sup
rÑ0

sup
xPBpa,rq

G pfpxq, fpaqq

}x´ a}
.

If f is Lipschitz then clearly lipa f ď Lip f ă 8 for every a P X. We
leave it to the reader to check the following partial “product rule”: if f and
λ : X Ñ R are Lipschitz then

(2.11) lipapλfq ď plipa λq
fpaq

` |λpaq|plipa fq .

Proposition 2.5.9. — If f : X Ñ QQpY q is Lipschitz then

lipa f ď
Dfpaq

 ď
a

Qplipa fq

for Lm almost every a P X.
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Proof. — The second inequality is proved in exactly the same way as
Theorem 2.5.8(C) on noticing that in (2.10) Lip f can be replaced by lipa f .
In order to prove the first inequality we assume that f is differentiable at
a and that a is a Lebesgue point of x ÞÑ

Dfpxq
. Given 0 ă ε ă 1 we

define
Gε “ X X tx :

Dfpxq
 ď ε`

Dfpaq
u .

There exists r0 ą 0 such that for every 0 ă r ď r0 one has

LmpBpa, rq XGcεq ď 2´mεmαpm´ 1qrm .

Fix 0 ă r ď r0{2. Given x P Bpa, rq, x ‰ a, we put ρ “ }x ´ a} and we
consider the set

H “ Bp0, ερq X spantx´ auK .
With each h P H we associate the line segment Sj joining a` h and x` h,
and we define the “cylinder”

C “ YhPHSh .

We observe that C Ď Bpa, 2ρq and that

LmpCq “ ραpm´ 1qεm´1ρm´1 “ εm´1αpm´ 1qρm .

Therefore,
LmpC XGεq “ LmpCq ´LmpC XGcεq

ě εm´1αpm´ 1qρm ´ 2´mεmαpm´ 1qp2ρqm

“ εm´1αpm´ 1qρm´1p1´ εqρ .

According to Fubini’s Theorem, Chebyshev’s inequality and Theorem 2.5.8,
there exists h P H such that

H 1pSh XGεq ě p1´ εqρ

and f is differentiable H 1 almost everywhere on Sh. For such h, recalling
Theorem 2.5.8(D), we infer that

G pfpx` hq, fpa` hqq

ď

ż

Sh

Dfpzq
 dH 1pzq

“

ż

ShXGε

Dfpzq
 dH 1pzq `

ż

ShXGc
ε

Dfpzq
 dH 1pzq

ď pε`
Dfpaq

qρ`a

QpLip fqερ .

Since }h} ď ερ, the triangle inequality implies that

G pfpxq, fpaqq ďď pε`
Dfpaq

qρ` p2`a

QqpLip fqερ ,

ANNALES DE L’INSTITUT FOURIER



MULTIPLE VALUED MAPS 791

thus
G pfpxq, fpaqq

}x´ a}
ď ε`

Dfpaq
` p2`

a

QqpLip fqε .

�

3. Embeddings

3.1. Whitney bi-Hölder embedding — The case Y “ `n2 pKq

Here we report on [18, Appendix V]. We let K “ R or K “ C. We start
by recalling the usual embedding

η : QQpKq Ñ KQ : v ÞÑ pη1pvq, . . . , ηQpvqq .

Given v “ rrx1, . . . , xQss we let ηipvq P K, i “ 1, . . . , Q, be the coefficients
of the Weierstrass polynomial of v:

Pvpxq “
Q
ź

i“1
px´ xiq “ xQ `

Q
ÿ

i“1
ηipvqx

Q´i P Krxs .

Readily the ηipvq are the Q symmetric functions of Q variables, and their
(Lipschitz) continuity follows. In case K “ C, η is a bijection and η´1 is
Hölder continuous (see e.g. [15, Theorem (1,4)]).
We now treat the case of Kn. We will define a mapping

η : QQpKnq Ñ KN

where N “ Npn,Qq. Given u P Cn and v “ rrx1, . . . , xQss P QQpKnq we
define a polynomial

Pvpu, xq “
Q
ź

i“1
px´ xu, xiyq P Kru1, . . . , un, xs

whose coefficients ηαpvq form the components of η:

Pvpu, xq “ xQ `
Q
ÿ

i“1

ÿ

αPNn

|α|“i

ηαpvqu
α1
1 . . . uαn

n xQ´i .

One computes that

Npn,Qq “

ˆ

Q` n

n

˙

´ 1 .

One shows ([18, Appendix V Theorem 6A]) that η is injective, continuous,
that ηpQQpKnqq is closed in KN , and that η´1 is continuous as well. In
case K “ C, it follows from the Proper Mapping Theorem that ηpQQpCnqq
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is an irreducible analytic variety in CN , see [18, Chapter 5 Theorem 5A].
In fact ηpQQpCnqq is a Hölder continuous retract of CN , see Remark 3.3.7.

3.2. Splitting in case Y “ R

We now state an easy and important observation on how to compute the
G2 distance of two members of QQpRq. The order of R plays the essential
role. This is taken from [2, 1.1(4)].

Proposition 3.2.1. — Let v, v1 P QQpRq and choose numbering v “
rry1, . . . , yQss and v1 “ rry11, . . . , y

1
Qss such that y1 ď y2 ď . . . ď yQ and

y11 ď y12 ď . . . ď y1Q. It follows that

G2pv, v
1q “

g

f

f

e

Q
ÿ

i“1
|yi ´ y1i|

2 .

3.3. Almgren-White locally isometric embedding — The case
Y “ `n2 pRq

This section is devoted to the case Y “ `n2 , i.e. Rn equipped with its
Euclidean norm }¨} and inner product x¨, ¨y. Proposition 3.3.1 and Theorem
3.3.4 are due to F.J. Almgren [2, 1.2]. The presentation we give here is
(inspired by) that of C. De Lellis and E.N. Spadaro [6]. Part (B) of Theorem
3.3.4 is due to B. White [16].
Let e P Rn be such that }e} “ 1. We define a map

πe : QQpRnq Ñ RQ

by the requirement that πeprry1, . . . , yQssq be the list of inner products

xy1, ey, . . . , xyQ, ey .

numbered in increasing order. Notice that we need indeed to explain how
we choose to order these real numbers if we want the values of πe to belong
to RQ, for otherwise they would merely belong to QQpRq.

Proposition 3.3.1. — Let e1, . . . , en be an orthonormal basis of Rn.
The mapping

ξ0 : QQpRnq Ñ RQn : v ÞÑ pπe1pvq, . . . ,πen
pvqq

has the following properties:
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(A) Lip ξ0 “ 1;
(B) For every v P QQpRnq there exists r ą 0 such that for each v1 P

QQpRnq, if G2pv, v
1q ă r then }ξ0pvq ´ ξ0pv

1q} “ G2pv, v
1q;

(C) For every v P QQpRnq one has }ξ0pvq} “ G2pv,Qrr0ssq.

Proof. — (A) Let v, v1 P QQpRnq and write v “ rry1, . . . , yQss and v1 “
rry11, . . . , y

1
Qss. For each j “ 1, . . . , n there exists τj P SQ such that

xyτjp1q, ejy ď . . . ď xyτjpQq, ejy and there exists τ 1j P SQ such that
xy1τ 1

j
p1q, ejy ď . . . ď xy1τ 1

j
pQq, ejy. By definition of πej

we have

}πej pvq ´ πej pv
1q}2 “

Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τ 1

j
piq, ejy|

2 .

There also exists σ P SQ such that

G2pv, v
1q2 “

Q
ÿ

i“1
}yi ´ y

1
σpiq}

2 .

It remains to observe that

}ξ0pvq ´ ξ0pv
1q}2 “

n
ÿ

j“1

Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τ 1

j
piq, ejy|

2

which, by Proposition 3.2.1, is bounded by

ď

n
ÿ

j“1

Q
ÿ

i“1
|xyi, ejy ´ xyσpiq, ejy|

2

“

Q
ÿ

i“1
}yi ´ yσpiq}

2

“ G2pv, v
1q2 .

(B) Let v P QQpRnq and write v “ rry1, . . . , yQss. For each j “ 1, . . . , n
choose τj P SQ such that xyτjp1q, ejy ď . . . ď xyτjpQq, ejy. Define r “
1
2 mintsplitπej

pvq : j “ 1, . . . , nu and let v1 P QQpRnq be such that
G2pv, v

1q ă r. Choose a numbering v1 “ rry11, . . . , y1Qss so that

G2pv, v
1q2 “

Q
ÿ

i“1
}yi ´ y

1
i}

2 .
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Notice that for every j “ 1, . . . , n one has

max
i“1,...,Q

|xyτjpiq, ejy ´ xy
1
τjpiq

, ejy|

ď max
i“1,...,Q

}yτjpiq ´ y
1
τjpiq

} ď G2pv, v
1q ă

1
2 split πej pvq

which implies, according to the Splitting Lemma, Proposition 3.2.1 and the
definition of πej

, that
Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τjpiq

, ejy|
2 “ G2pπej

pvq,πej
pv1qq2

“

Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τ 1

j
piq, ejy|

2

where τ 1j P SQ is such that xy1τ 1
j
p1q, ejy ď . . . ď xy1τ 1

j
pQq, ejy. Therefore,

}ξ0pvq ´ ξ0pv
1q}2 “

n
ÿ

j“1

Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τ 1

j
piq, ejy|

2

“

n
ÿ

j“1

Q
ÿ

i“1
|xyτjpiq, ejy ´ xy

1
τjpiq

, ejy|
2

“

Q
ÿ

i“1

n
ÿ

j“1
|xyi, ejy ´ xy

1
i, ejy|

2

“

Q
ÿ

i“1
}yi ´ y

1
i}

2

“ G2pv, v
1q2 .

(C) Writing v “ rry1, . . . , yQss, it suffices to observe that

}ξ0pvq}
2 “

n
ÿ

j“1

Q
ÿ

i“1
|xyi, ejy|

2 “

Q
ÿ

i“1
}yi}

2 “ G2pv,Qrr0ssq2 .

�

Remark 3.3.2. — The Lipschitz mapping ξ0 defined above is usually not
injective. Consider for instance the case when Q “ 2, n “ 2, and let e1, e2
be an orthonormal basis of R2. We define v “ rr´e1`e2, e1ss. It follows that
ξ0pvq “ p´1, 1, 0, 1q “ ξ0pv

1q where v1 “ rr ´ e1, e1 ` e2ss. Clearly v ‰ v1.

The lack of injectivity of ξ0 is overcome by considering a lot of orthonor-
mal bases instead of just one, i.e. we shall replace ξ0 by many copies of ξ0
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corresponding to various bases. The main observation to obtain injectivity
is the following.

Proposition 3.3.3. — Given integers n and L there are ε ą 0 and unit
vectors e1, . . . , eK P Sn´1 with the following property. For every v1, . . . , vL P

Rn there exists k “ 1, . . . ,K such that

|xek, vly| ě ε}vl}

for each l “ 1, . . . , L.

Proof. — We first notice that the measure H n´1 Sn´1 is doubling, i.e.
there exists C ě 1 such that H n´1pSn´1 X Upe, 2rqq ď CH n´1pSn´1 X

Upe, rqq whenever e P Sn´1 and r ą 0. Given e P Sn´1 and ε ą 0 we define
the slab

Se,ε “ Sn´1 X tw : |xe, wy| ă εu .

Now we choose ε ą 0 small enough for

H n´1pSe,εq ď
H n´1pSn´1q

3CL

whenever e P Sn´1. We choose a maximal collection of points e1, . . . , ek P

Sn´1 such that the (open) balls Upek, εq, k “ 1, . . . ,K, are pairwise disjoint.
Such a collection exists because H n´1pSn´1q is finite and H n´1pSn´1 X

Upe, εqq does not depend on e P Sn´1. By maximality, we have that Sn´1 “
ŤK
k“1 Upek, 2εq.
Let now v1, . . . , vL P Rn be arbitrary. We define L “ t1, . . . , Lu X tl :

vl ‰ 0u and for l P L we set wl “ vl|vl|
´1. Our claim is that for some k, ek

does not belong to any of the slabs Swl,ε, l P L. Suppose if possible that
for each k “ 1, . . . ,K, ek P S where

S “
ď

lPL

Swl,ε .

If l P L corresponds to k so that ek P Swl,ε then in fact at least “half”
the ball Upek, εq must be contained in Swl,ε, thus H n´1pS X Upek, εqq ě
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1
2H n´1pSn´1 X Upek, εqq. We would then obtain

H n´1pSn´1q ď
K
ÿ

k“1
H n´1pSn´1 X Upek, 2εqq

ď C
K
ÿ

k“1
H n´1pSn´1 X Upek, εqq

ď 2C
K
ÿ

k“1
H n´1pS X Upek, εqq

ď 2CH n´1pSq

ď 2C
ÿ

lPL

H n´1pSwl,εq

ď
2
3H n´1pSn´1q ,

a contradiction. �

Theorem 3.3.4. — There exist an integer N “ Npn,Qq, a real number
α “ αpn,Qq ď 1 and a mapping

ξ : QQpRnq Ñ RN

with the following properties.

(A) For every v, v1 P QQpRnq, αG2pv, v
1q ď }ξpvq ´ ξpv1q} ď G2pv, v

1q;
(B) For every v P QQpRnq there exists r ą 0 such that for each v1 P

QQpRnq, if G2pv, v
1q ă r then }ξpvq ´ ξpv1q} “ G2pv, v

1q;
(C) For every v P QQpRnq one has }ξpvq} “ G2pv,Qrr0ssq.

Proof. — Letting L “ Q2 we choose ε and e1, . . . , eK according to
Proposition 3.3.3. For each k “ 1, . . . ,K we choose an orthonormal basis
e1,k, . . . , en,k of Rn such that e1,k “ ek. We then define

ξ : QQpRnq Ñ RN : v ÞÑ pξ1pvq, . . . , ξKpvqq

where N “ QnK and we have abbreviated ξkpvq “ pπe1,k
pvq, . . . ,πen,k

pvqq.
Thus each ξk is a mapping of the type ξ0 considered in Proposition 3.3.1,
corresponding to the basis e1,k, . . . , en,k. We therefore infer from Proposi-
tion 3.3.1(A) that for every v, v1 P QQpRnq,

}ξpvq ´ ξpv1q}2 “
K
ÿ

k“1
}ξkpvq ´ ξkpv

1q}2 ď KG2pv, v
1q2 .
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On the other hand, letting v “ rry1, . . . , yQss and v1 “ rry11, . . . , y1Qss, we infer
from Proposition 3.3.3 that there exists k “ 1, . . . ,K such that

|xe1,k, yi ´ y
1
jy| ě ε}yi ´ y

1
j}

for every i, j “ 1, . . . , Q. Let σ P SQ be such that xyσp1q, e1,ky ď . . . ď

xyσpQq, e1,ky and let τ P SQ be such that xy1τp1q, e1,ky ď . . . ď xy1τpQq, e1,ky.
Observe that

G2pv, v
1q2 ď

Q
ÿ

i“1
}yσpiq ´ y

1
τpiq}

2

ď ε´2
Q
ÿ

i“1
|xyσpiq, e1,ky ´ xy

1
τpiq, e1,ky|

2

“ ε´2}πe1,k
pvq ´ πe1,k

pv1q}2

ď ε´2}ξpvq ´ ξpvq}2 .

We now turn to proving conclusions (B) and (C). Given v P QQpRnq
and k “ 1, . . . ,K we choose rk ą 0 according to Proposition 3.3.1(B). Let
r “ mintr1, . . . , rKu. If v P QQpRnq and G2pv, v

1q ă r then

}ξpvq ´ ξpv1q}2 “
K
ÿ

k“1
}ξkpvq ´ ξkpv

1q}2 “ KG2pv, v
1q2 .

Also, regarding conclusion (C), we observe that for every v P QQpRnq,

}ξpvq}2 “ KG2pv,Qrr0ssq ,

according to Proposition 3.3.1(C). This means that the mapping K´1{2ξ

verifies the conclusions of the present proposition. �

B. White’s addition (B) to F.J. Almgren’s embedding Theorem 3.3.4 has
the following rather useful consequence. Here the linear spaces HompRm,Rνq
(ν “ n or ν “ N) are equipped with the norm

~L~ “

g

f

f

e

m
ÿ

j“1

ν
ÿ

k“1
xLpejq, eky2

corresponding to the canonical bases of Rm and Rν .

Proposition 3.3.5. — Assume that f : Rm Ñ QQpRnq, a P Rn, and
that both f and ξ ˝ f are differentiable at a(†) . It follows thatDfpaq

 “ ~Dpξ ˝ fqpaq~ .

(†)For f this is in the sense of Theorem 2.5.8(C)
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Proof. — For each j “ 1, . . . ,m we have

}Bjpξ ˝ fqpaq}
2 “ lim

tÑ0

}pξ ˝ fqpa` tejq ´ pξ ˝ fqpaq}
2

t2

“ lim
tÑ0

G2pfpa` tejq, fpaqq
2

t2

(according to Theorem 3.3.4(B))

“ lim
tÑ0

G2pAfpaqpa` tejq, fpaqq
2

t2

(because f is differentiable at a)

“ lim
tÑ0

řQ
i“1 }fipaq ´Aσtpiqpaq ´ Lσtpiqptejq}

2

t2
,

where, as usual, Dfpaq “ ‘Qi“1rrAiss, Li “ Ai ´ Aip0q, i “ 1, . . . , Q and σt
is a permutation σ P SQ for which the quantity

řQ
i“1 }fipaq ´Aσpiqpaq ´ Lσpiqptejq}

2

t2

is minimal. Since the above limit exists and is finite, we infer that σt P SQ
must be such that fipaq “ Aσtpiqpaq when t is small enough, i “ 1, . . . , Q.
Thus,

}Bjpξ ˝ fqpaq}
2 “

Q
ÿ

i“1
}Lipejq}

2 ,

and in turn,

~Dpξ ˝ fqpaq~2 “
m
ÿ

j“1
}Bjpξ ˝ fqpaq}

2 “
m
ÿ

j“1

Q
ÿ

i“1
}Lipejq}

2

“

Q
ÿ

i“1
~Li~

2 “
Dfpaq

2
.

�

Theorem 3.3.6. — Let N “ Npn,Qq and ξ be as in Theorem 3.3.4.
There exists a Lipschitz retraction

ρ : RN Ñ ξpQQpRnqq .

Proof. — Apply Theorem 2.4.3 with X “ `N2 , A “ ξpQQpRnqq, Y “ `n2
and f “ ξ´1. Letting f̂ be a Lipschitz extension of f , the mapping ρ “ ξ˝f̂

verifies the conclusion. �
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Remark 3.3.7. — The exact same proof shows that there exists a Hölder
continuous retraction

ρ̃ : CN Ñ ηpQQpCnqq
where N “ Npn,Qq and η are as in Section 3.1. This follows indeed from
the fact that η´1 is Hölder continuous (reference [15, Theorem (1,4)]). In
the same vein one can prove the following, based on [3, Theorem 1.12] and
Theorem 3.3.6: If ω : R` Ñ R` is concave then for every A Ď `m2 and
every f : A Ñ QQp`

n
2 q such that oscpf ; ¨q ď ω, there exists an extension

f̂ : `m2 Ñ QQp`
n
2 q of f such that oscpf̂ ; ¨q ď pLip ρn,Qqω. Here ρn,Q is

the Lipschitz retraction of Theorem 3.3.6, and QQp`
n
2 q is equipped with its

metric G2.

We recall that a metric space Z is an absolute Lipschitz retract if and
only if each isometric embedding Z Ñ Z 1 into another metric space Z 1
has a Lipschitz right inverse ρ : Z 1 Ñ Z. In other words, Z is a Lipschitz
retract of any of its metric superspaces. This is equivalent to asking that
any partially defined Lipschitz map into Z extends to a Lipschitz map into
Z, see [3, Proposition 1.2]. For instance `N8 is an absolute Lipschitz retract,
and hence the following holds.

Corollary 3.3.8. — QQpRnq is an absolute Lipschitz retract.

Question 3.3.9. — If Y is an absolute Lipschitz retract, is QQpY q also
one? Are QQp`8q and QQpCr0, 1sq absolute Lipschitz retracts? Are they
absolute uniform retracts?

3.4. Lipeomorphic embedding into Lipy0pY q
˚

Let pY, y0q be a pointed metric space, i.e. a metric space Y together
with a distinguished point y0 P Y . We denote by Lipy0pY q the collection
of those Lipschitz continuous functions u : Y Ñ R vanishing at y0. This
is a Banach space equipped with the norm }u}Lip “ Lipu. With each
v “ rry1, . . . , yQss P QQpY q we associate a linear functional

(3.1) ζpvq : Lipy0pY q Ñ R : u ÞÑ
Q
ÿ

i“1
upyiq .

One readily checks that ζpvq is continuous and

}ζpvq}pLipY q˚ ď

Q
ÿ

i“1
dpyi, y0q .
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In particular }ζpvq}pLipY q˚ ď QpdiamY q so that ζ is bounded when Y is.
Notice also that ζpQrry0ssq “ 0. We shall now show that

ζ : QQpY q Ñ Lipy0pY q
˚

is a lipeomorphic embedding.

Theorem 3.4.1. — There exists cQ ą 0 such that for every pointed
metric space pY, y0q and every v, v1 P QQpY q one has

cQG1pv, v
1q ď }ζpvq ´ ζpv1q}pLipY q˚ ď G1pv, v

1q .

Proof. — We start with the second inequality. Let v, v1 P QQpY q and
choose numberings v“rry1, . . . , yQss and v1“rry11, . . . , y1Qss so that G1pv, v

1q“
řQ
i“1 dpyi, y

1
iq. It is clear that

}ζpvq ´ ζpv1q}pLipY q˚ “ sup
#
ˇ

ˇ

ˇ

ˇ

ˇ

Q
ÿ

i“1
upyiq ´

Q
ÿ

i“1
upy1iq

ˇ

ˇ

ˇ

ˇ

ˇ

: u P Lipy0pY q

and Lipu ď 1
+

ď

Q
ÿ

i“1
dpyi, y

1
iq

“ G1pv, v
1q .

We now turn to proving the first inequality, by induction on Q. If Q “ 1
then the inequality is verified with c1 “ 1. Indeed, given v “ rry1ss and
v1 “ rry11ss we let upyq “ dpy1, yq´dpy1, y0q so that u P Lipy0pY q, Lipu ď 1,
and

}ζpvq ´ ζpv1q}pLipY q˚ ě |upy1q ´ upy
1
1q| “ dpy1, y

1
1q “ G1pv, v

1q .

We now assume the conclusion holds for Q and we establish it for Q ` 1.
Let v, v1 P QQ`1pY q and write v “ ‘Q`1

i“1 rryiss and v1 “ ‘
Q`1
i“1 rry

1
iss. We let

α ą 0 to be determined later, and we distinguish between two cases.
First case. We assume that

distpsuppµv, suppµv1q “ mintdpyi, y1jq : i, j “ 1, . . . , Q` 1u ą αG1pv, v
1q .

We define u0 : psuppµvq Y psuppµv1q Ñ R by letting u0pyiq “ 0 and
u0py

1
iq “ αG1pv, v

1q, i “ 1, . . . , Q ` 1. It is most obvious that Lipu0 ď 1
and we let û0 be an extension of u0 to Y such that Lip û0 ď 1, whose
existence follows from the McShane-Whitney Theorem. Finally we let u “
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û0 ´ û0py0q1Y and we observe that

}ζpvq ´ ζpv1q}pLipY q˚ ě

ˇ

ˇ

ˇ

ˇ

ˇ

Q`1
ÿ

i“1
upyiq ´

Q`1
ÿ

i“1
upy1iq

ˇ

ˇ

ˇ

ˇ

ˇ

“ αpQ` 1qG1pv, v
1q .

Second case. We assume that

distpsuppµv, suppµv1q ď αG1pv, v
1q .

Choose i0, j0 P t1, . . . , Q`1u such that dpyi0 , y1j0
q “ distpsuppµv, suppµv1q.

Define ṽ, ṽ1 P QQpY q by

ṽ “ ‘i‰i0rryiss and ṽ1 “ ‘j‰j0rry
1
jss .

According to the induction hypothesis there exists u P Lipy0pY q with
Lipu ď 1 and

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i‰i0

upyiq ´
ÿ

j‰j0

upy1jq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1
2}ζpṽq ´ ζpṽ1q}pLipY q˚ ě

cQ
2 G1pṽ, ṽ

1q .

Since readily G1pṽ, ṽ
1q ` dpyi0 , y

1
j0
q ě G1pv, v

1q we infer that

}ζpvq ´ ζpv1q}pLipY q˚ ě

ˇ

ˇ

ˇ

ˇ

ˇ

Q`1
ÿ

i“1
upyiq ´

Q`1
ÿ

j“1
upy1jq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
cQ
2 G1pṽ, ṽ

1q ´ |upyi0q ´ upy
1
j0
q|

ě
cQ
2 G1pv, v

1q ´
cQ
2 dpyi0 , y

1
j0
q ´ dpyi0 , y

1
j0
q

ě

´cQ
2 ´ α

´

1` cQ
2

¯¯

G1pv, v
1q .

We now choose α ą 0 small enough for cQ

2 ´ α
`

1` cQ

2
˘

ą 0 and we set

cQ`1 “ min
!

αpQ` 1q, cQ2 ´ α
´

1` cQ
2

¯)

so that, in both cases,

}ζpvq ´ ζpv1q}pLipY q˚ ě cQ`1G1pv, v
1q .

�

4. Sobolev classes

4.1. Definition of LppX,QQpY qq

Let pY, y0q be a pointed metric space as usual, let pX,A, µq be a measure
space, and let 1 ď p ă 8. We denote by LppX,QQpY qq the collection of
mappings f : X Ñ QQpY q verifying the following requirements:
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(A) f is pA,BQQpY qq measurable;
(B) The function X Ñ R : x ÞÑ G2pfpxq, Qrry0ssq

p is µ summable.
In the remaining part of this paper we shall abbreviatefpxq

 “ G2pfpxq, Qrry0ssq ,

x P X, and we keep in mind that no ambiguity should occur from the lack
of mention of y0 in the abbreviation(‡) . If f P LppX,QQpY qq we also set
the notation f


Lp
“

ˆ
ż

X

f
p dµ

˙
1
p

.

Of course LppX,QQpY qq need not be a linear space. It is most obvious that
the formula

dppf, gq “

ˆ
ż

X

G2pf, gq
pdµ

˙
1
p

defines a semimetric on LppX,QQpY qq. As in the scalar case, we have:

Proposition 4.1.1. — Assume that Y is a complete metric space. It
follows that LppX,QQpY qqrdps is a complete semimetric space, and each
Cauchy sequence contains a subsequence converging pointwise almost ev-
erywhere.

4.2. Analog of the Fréchet-Kolmogorov compactness Theorem

Theorem 4.2.1. — Assume that 1 ď p ă 8 and that:
(A) pX,BX , λq is a finite dimensional Banach space with a Haar mea-

sure λ defined on the σ algebra BX of Borel subsets of X;
(B) Y is a compact metric space, and y0 P Y ;
(C) F Ď LppX,QQpY qq is a family subjected to the following require-

ments:
(i) supt

f

Lp

: f P F u ă 8;
(ii) For every ε ą 0 there exists a neighbourhood U of 0 in X such

that
suptdppτhf, fq : f P F u ă ε

whenever h P U , where pτhfqpxq :“ fpx` hq;

(‡) In case Y is a Banach space it will be implicitly assumed that y0 “ 0
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(iii) For every ε ą 0 there exists a compact K Ď X such that

suptdppf, fKq : f P F u ă ε ,

where

fKpxq “

#

fpxq if x P K
Qrry0ss if x R K .

It follows that F is relatively compact in LppX,QQpY qqrdps.

Proof. — In this proof we will abbreviate } ¨ } “ } ¨ }pLipY q˚ . In view
of the completeness of LppX,QQpY qq (Proposition 4.1.1) we need only to
show that F is totally bounded. Let ε ą 0 and choose U and K according
to hypotheses (C)(ii) and (C)(iii). There is no restriction to assume that
ClosU is compact. We next secure a continuous function ϕ : X Ñ R` such
that suppϕ Ď U and

ş

X
ϕdλ “ 1. Given f P F we consider the map

ζ ˝ fK : X Ñ Lipy0pY q
˚

and we observe that it is pBX ,BLipy0 pY q
˚q-measurable, separably valued

(in fact im ζ˝fK Ď im ζ and the latter is compact according to the continu-
ity of ζ, Theorem 3.4.1, and the compactness of QQpY q, Proposition 2.1.1).
It therefore ensues from the Pettis measurability Theorem, [7, Chap. II §1
Theorem 2], that ζ ˝ fK is strongly measurable, i.e. the pointwise λ almost
everywhere limit of a sequence of pBX ,BLipy0 pY q

˚q-measurable functions
with finite range. Furthermore ζ ˝ fK is bounded (because Y is) and com-
pactly supported (because ζpQrry0ssq “ 0), so that the Lebesgue integral
ş

X
}ζ ˝ fK}dλ ă 8. Thus ζ ˝ fK is Bochner integrable. We define the

convolution product of ϕ and ζ ˝ fK by means of the Bochner integral:

pϕ ˚ ζ ˝ fKqpxq “ pBq

ż

X

ϕphqpζ ˝ fKqpx` hqdλphq , x P X .

We now claim that each ϕ ˚ pζ ˝ fKq is continuous and, in fact, that the
family CpX,Lipy0pY q

˚q X tϕ ˚ pζ ˝ fKq : f P F u is equicontinuous. Given
x, x1 P X we simply observe that

}pϕ ˚ ζ ˝ fKqpxq ´ pϕ ˚ ζ ˝ fKqpx
1q}

“

›

›

›

›

pBq

ż

X

pϕphq ´ ϕph` x´ x1qqpζ ˝ fKqpx` hqdλphq

›

›

›

›

ď

ˆ
ż

X

|ϕphq ´ ϕph` x´ x1q|
p

p´1 dλphq

˙1´ 1
p
ˆ
ż

X

}pζ ˝ fKqpx` hq}
pdλphq

˙
1
p

ď oscpϕ, }x´ x1}XqλpU `BXp0, }x´ x1}Xqq1´
1
p

f

Lp

,
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according to [7, Chap. II §2 Theorem 4(ii)], Hölder’s inequality, and Theo-
rem 3.4.1. The equicontinuity follows from the uniform continuity of ϕ and
hypothesis (C)(i).
We denote by C the closed convex hull of im ζ in the Banach space

Lipy0pY q
˚. As im ζ is compact it ensues from Mazur’s Theorem that C is

compact as well. Furthermore, the definition of the convolution product
guarantees that pϕ ˚ ζ ˝ fKqpxq P C for every x P X. It therefore follows
from Ascoli’s Theorem, [8, 0.4.11], that the family CpX,Lipy0pY q

˚q X tϕ ˚

pζ ˝fKq : f P F u is relatively compact in CcpX,Lipy0pY q
˚q with respect to

uniform convergence (note that supppϕ ˚ ζ ˝ fKq Ď K `ClosU , a compact
set independent of f). Consequently there are f1, . . . , fκ P F such that for
every f P F there exists k P t1, . . . , κu with

(4.1) }pϕ ˚ ζ ˝ fKqpxq ´ pϕ ˚ ζ ˝ fkKqpxq} ă ελpK ` ClosUq´
1
p

for every x P X.
Now given f P F we choose k so that (4.1) holds and we aim at showing

that dppf, fkq ă Dε where D is a suitable constant; this will complete the
proof. We start with the observation that

dppf, f
kq ď dppf, fKq ` dppfK , f

k
Kq ` dppf

k
K , f

kq ď 2ε` dppfK , fkKq

according to hypothesis (C)(iii). Next we infer from Theorem 3.4.1 and
(4.1) that

cQdppfK , f
k
Kq ď

ˆ
ż

X

}pζ ˝ fKq ´ pζ ˝ f
k
Kq}

pdλ

˙
1
p

ď

ˆ
ż

X

}pζ ˝ fKq ´ pϕ ˚ ζ ˝ fKq}
pdλ

˙
1
p

`

ˆ
ż

K`ClosU
}pϕ ˚ ζ ˝ fKq ´ pϕ ˚ ζ ˝ fkKq}

pdλ

˙
1
p

`

ˆ
ż

X

}pϕ ˚ ζ ˝ fkKq ´ pζ ˝ f
k
Kq}

pdλ

˙
1
p

ď

ˆ
ż

X

}pζ ˝ fKq ´ pϕ ˚ ζ ˝ fKq}
pdλ

˙
1
p

` ε

`

ˆ
ż

X

}pϕ ˚ ζ ˝ fkKq ´ pζ ˝ f
k
Kq}

pdλ

˙
1
p

Thus it remains only to find a uniform small upper bound of
ż

X

}pζ ˝ fKq ´ pϕ ˚ ζ ˝ fKq}
pdλ
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whenever f P F . Let x P X, abbreviate µ “ λ ϕ, and observe that
}pζ ˝ fKqpxq ´ pϕ ˚ ζ ˝ fKqpxq}

“

›

›

›

›

pBq

ż

X

ϕphq
`

pζ ˝ fKqpxq ´ pζ ˝ fKqpx` hq
˘

dλphq

›

›

›

›

ď

ż

X

G1pfKpxq, τhfKpxqqdµphq .

It then follows from Jensen’s inequality applied to the probability measure
µ, and from Fubini’s Theorem that

ż

X

}pζ ˝ fKqpxq ´ pϕ ˚ ζ ˝ fKqpxq}
pdλpxq

ď

ż

X

dλpxq

ˆ
ż

X

G1pfKpxq, τhfKpxqqdµphq

˙p

ď

ż

X

dλpxq

ż

X

G1pfKpxq, τhfKpxqq
pdµphq

“ Qp{2
ż

U

dµphqdppfK , τhfKq
p

ď Qp{2 sup
hPU

dppfK , τhfKq
p .

Consequently,
ˆ
ż

X

}pζ ˝ fKq ´ pϕ ˚ ζ ˝ fKq}
pdλ

˙
1
p

ď 3
a

Qε

according to hypotheses (C)(ii) and (iii). Therefore,

dppfK , f
k
Kq ď c´1

Q p1` 6
a

Qqε ,

and finally,
dppf, f

kq ď

´

2` c´1
Q p1` 6

a

Qq
¯

ε .

�

4.3. Definition of W 1
p pU ; QQpY qq

In this section X is a finite dimensional Banach space with Haar measure
λ, U Ď X is either X itself or a bounded open subset having the extension
property(§) , Y is a Banach space having the Radon-Nikodým property, and
1 ă p ă 8. The space HompX,Y q is given a norm ~¨~. We recall that each

(§) i.e. for every 1 ă p ă 8 there exists an extension operator W1
ppUq Ñ W1

ppXq for
classical Sobolev spaces; for instance U has Lipschitz boundary
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Lipschitz map f : U Ñ QQpY q extends to a Lipschitz map f̂ : X Ñ QQpY q

according to Theorem 2.4.3, and that f̂ is differentiable at λ almost every
x P U , according to Theorem 2.5.8. For such x, writing Dfpxq “ ‘Qi“1rrLiss,
we recall that we have defined

Dfpxq
 “

g

f

f

e

Q
ÿ

i“1
~Li~2 .

We define the Sobolev classW 1
p pU ;QQpY qq to be the subset of LppU;QQpY qq

consisting of those f : U Ñ QQpY q for which there exists a sequence tfju
of Lipschitz mappings X Ñ QQpY q with the following properties

(1) fj P LppU ; QQpY qq and
ş

U

Dfj
p

dλ ă 8 for every j “ 1, 2, . . .;
(2) supj

ş

U

Dfj
p

dλ ă 8;
(3) dppf, fjq Ñ 0 as j Ñ8.

In case U is bounded, (1) is redundant.
We define W1

ppU ; QQpY qq to be the quotient of W 1
p pU ; QQpY qq relative

to the equivalence relation f1 „ f2 iff λtf1 ‰ f2u “ 0. We now recall the
definition of F.J. Almgren’s Sobolev class YppU ; QQp`

n
2 qq. Here X “ `m2 and

Y “ `n2 . This is simply the collection of Borel functions f : U Ñ RN (where
N “ Npn,Qq is as in 3.3.4) such that f is a member of the classical Sobolev
space W 1

p pU ;RN q, and fpxq P ξp`n2 q for Lm almost every x P U . This is
reminiscent of the definition of Sobolev mappings between Riemannian
manifolds, except for QQp`

n
2 q is not a Riemannian manifold, but merely

a stratified space. We also let YppU ; QQp`
n
2 qq denote the corresponding

quotient relative to equality Lm almost everywhere. We finally recall that
Homp`m2 , `ν2q is equipped with the following norm

~L~ “

g

f

f

e

m
ÿ

j“1

ν
ÿ

k“1
xLpejq, eky2

that appears in the following result.

Theorem 4.3.1. — Assuming that X “ `m2 and Y “ `n2 , the mapping

Υ : W 1
p pU ; QQp`

n
2 qq Ñ YppU ; QQp`

n
2 qq : f ÞÑ ξ ˝ f

yields a bijection

Υ : W1
ppU ; QQp`

n
2 qq Ñ YppU ; QQp`

n
2 qq ,

and
(1)

ş

U
G2pfpxq, Qrr0ssqpdLmpxq “

ş

U
}Υpfqpxq}pdLmpxq;
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(2) If f is Lipschitz then
ż

U

Dfpxq
p

dLmpxq “

ż

U

~DΥpfqpxq~pdLmpxq .

Proof. — We first show that ξ ˝ f P YppU ; QQp`
n
2 qq whenever f P

W 1
p pU ; QQp`

n
2 qq. It is clear that f : U Ñ RN is Borel measurable and

also that
ż

U

}pξ ˝ fqpxq}pdLmpxq “

ż

U

G2pfpxq, Qrr0ssqpdLmpxq ă 8 ,

according to Theorem 3.3.4(C), thus ξ ˝ f is a member of the classical
Lebesgue space LppU ;RN q and conclusion (1) is proved. Assuming that f be
also Lipschitz then so is ξ˝f , thus conclusion (2) holds according to Proposi-
tion 3.3.5 (in conjunction with Theorem 2.5.8 and the classical Rademacher
Theorem), whence ξ ˝ f belongs to the classical Sobolev space W 1

p pU ;RN q.
If we now return to merely assuming that f P W 1

p pU ; QQp`
n
2 qq in our def-

inition, there then exists a sequence tfju of Lipschitz maps X Ñ QQp`
n
2 q

such that supj
ş

U

Dfj
p

dLm ă 8 and limj

ş

U
G2pf, fjq

pdLm “ 0. We
infer from conclusions (1) and (2) that tξ ˝ fju is a bounded sequence in
W 1
p pU ;RN q. Since W1

ppU ;RN q is a reflexive Banach space, there exists a
subsequence tξ ˝ fkpjqu converging weakly to some g P W 1

p pU ;RN q. Since
U has the extension property, the weak convergence corresponds to con-
vergence in Lp :

lim
j

ż

U

}pξ ˝ fkpjqq ´ g}
pdLm “ 0 ,

and therefore ξ ˝ f “ g Lm almost everywhere, which readily implies that
ξ ˝ f P YppU ; QQp`

n
2 qq.

We next observe that the equivalence class of Υpfq depends only upon
the equivalence class of f , because ξ maps null sets to null sets. Since the
same is true about ξ´1, we infer that Υ is injective. It remains to show
that Υ is surjective. Let g P YppU ; QQp`

n
2 qq. There is no restriction to

assume that gpxq P ξp`n2 q for all x P U , and we define f “ ξ´1
˝ g; it is

obviously Borel measurable. Since g PW 1
p pU ;RN q and U has the extension

property, there exists ĝ PW 1
p pRn;RN q such that ĝ is compactly supported

in a neighborhood of U and ĝæU “ g. Choosing tϕεju a smooth compactly
supported approximation to the identity, we define

fj “ ξ´1
˝ ρ ˝ pϕεj

˚ ĝq .

TOME 65 (2015), FASCICULE 2



808 Philippe BOUAFIA, Thierry DE PAUW & Jordan GOBLET

We observe that the fj : X Ñ QQp`
n
2 q are Lipschitz and

ż

U

G2pfj , fq
pdLm “

ż

U

G1pξ
´1
˝ ρ ˝ pϕεj

˚ ĝq, ξ´1
˝ gqpdLm

ď αpn,Qq´p
ż

U

}ρ ˝ pϕεj
˚ ĝq ´ ρ ˝ g}pdLm

ď αpn,Qq´ppLip ρqp
ż

U

}ϕεj ˚ ĝ ´ g}
pdLm

Ñ 0 as j Ñ8 .

Finally, if fj and ρ ˝ pϕεj
˚ ĝq are both differentiable at a P U , then

Proposition 3.3.5 implies thatDfjpaq
p

“
Dpξ´1

˝ ρ ˝ pϕεj ˚ ĝqqpaq
p

“ ~Dpρ ˝ pϕεj
˚ ĝqqpaq~p

ď pLip ρqp~Dpϕεj
˚ ĝqpaq~p .

Since this occurs that Lm almost every a P U , according to Theorem 2.5.8
and the classical Rademacher Theorem, we infer that

sup
j

ż

U

Dfjpaq
p

dLm ď pLip ρqp sup
j

ż

U

~Dpϕεj
˚ ĝq~pdLm

ď pLip ρqp
ż

U

~Dĝ~pdLm .

Thus f PW 1
p pU ; QQp`

n
2 qq. �

Remark 4.3.2. — It is worth observing that in case p “ 1 the above The-
orem would not be valid, as our definition would yield a space of mappings
U Ñ QQp`

n
2 q of bounded variation rather than Sobolev.

Remark 4.3.3. — We recall that U is assumed to have the extension
property. This means that there exists a continuous linear operator

E : W1
ppU ;RN q Ñ W1

ppRm;RN q .

Given f P W1
ppRm;RN q and f P f , one easily checks that ρ ˝ f

P Y 1
p pRm; QQp`

n
2 qq and that the equivalence class of ρ ˝ f depends only

upon that of f . Thus the formula

Ẽpfq “ Υ´1
pρ ˝E pΥ pfqqq

defines an “extension mapping”

W1
ppU ; QQp`

n
2 qq Ñ W1

ppRm; QQp`
n
2 qq .
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Proposition 4.3.4. — Let f PW 1
p pU ; QQp`

n
2 qq and t ě 0. Define

At “ U X
 

x : G2pfpxq, Qrr0ssqp ` pM~DEpΥpfqq~qp pxq ď tp
(

,

where M denotes the maximal function operator and EpΥpfqq is a repre-
sentant of the class EpΥpfqq. There then exists a Lipschitzian map h : U Ñ
QQp`

n
2 q such that

(1) hpxq “ fpxq for Lm almost every x P At;
(2) Liph ď 4m`1αpn,Qq´1c2.4.3pm,Qqt where αpn,Qq is as in Theorem

3.3.4;
(3) G2phpxq, Qrr0ssq ď c2.4.3pm,Qqt for every x P U ;
(4) For Lm almost every x P At, f is approximately differentiable at

x and
Dfpxq

 “
Dhpxq

.

Proof. — Write u “ EpΥpfqq PW 1
p pRm;RN q. We let Ãt denote the Borel

subset of At consisting of those x such that upxq “ limεÑ0`pϕε˚uqpxq where
tϕεuεą0 is a given approximate identity. Given distinct x, x1 P Ãt we let
Ω “ Upx, 2rq XUpx1, 2rq, where r “ }x ´ x1} ą 0, and we infer from [14,
Lemma 1.50] (adapted in the obvious way to the case of vectorvalued maps)
that

›

›

›

›

upxq ´ ´

ż

Ω
udLm

›

›

›

›

ď
4m

mαpmq

ż

Ω

~Dupyq~

}x´ y}m´1 dL
mpyq

and
›

›

›

›

upx1q ´ ´

ż

Ω
udLm

›

›

›

›

ď
4m

mαpmq

ż

Ω

~Dupyq~

}x1 ´ y}m´1 dL
mpyq

It follows from the potential estimate [14, Theorem 1.32(i)] that
ż

Ω

~Dupyq~

}x´ y}m´1 dL
mpyq ď

ż

Upx,2rq

~Dupyq~

}x´ y}m´1 dL
mpyq

ď mαpmq2}x´ x1}M p~Du~q pxq .

Since the same holds with x replaced by x1, we obtain

}upxq ´ upx1q} ď 4m`1t}x´ x1}

whenever x, x1 P Ãt. The first three conclusions now follow from Theorems
3.3.4 and 2.4.3. Conclusion (4) follows from the fact that h and f are
approximately tangent at each Lebesgue density point of At, together with
the differentiability Theorem 2.5.8. �

Remark 4.3.5. — We shall see in Proposition 4.6.3 that the constant in
(2) does not in fact depend upon n.
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Corollary 4.3.6. — Let f P W 1
p pU ; QQp`

n
2 qq. It follows that f and

Υpfq are approximately differentiable Lm almost everywhere, and thatDfpxq
 “ ~DΥpfqpxq~

at each point x P U where both are approximately differentiable.

Proof. — That Υpfq be approximately differentiable (in the usual sense)
Lm almost everywhere follows from standard Sobolev theory (see e.g. [14,
Theorem 1.72]). The analogous property of f follows from Proposition
4.3.4(4) and the arbitrariness of t ě 0. The last conclusion is a consequence
of Proposition 3.3.5. �

4.4. The p energy

In this section, X, Y , U and p are subject to the same requirements as
in the last section, and sometimes more. Given f PW 1

p pU ; QQpY qq and an
open subset V Ď U , we define the p energy of f in V by the formula

E p
p pf ;V q “ inf

"

lim inf
j

ż

V

Dfj
p

dλ : tfju is a sequence of

Lipschitz mappings U Ñ QQpY q such that dppf, fjq Ñ 0 as j Ñ8

*

.

We notice that E p
p pf ;V q ď E p

p pf ;Uq ă 8. Clearly,

Proposition 4.4.1. — Given f P W 1
p pU ; QQpY qq and an open subset

V Ď U , there exists a sequence of Lipschitz mappings U Ñ QQpY q such
that limj dppf, fjq “ 0 and

E p
p pf ;V q “ lim

j

ż

V

Dfj
p

dλ .

As the p-energy is defined by relaxation, we easily prove its lower semi-
continuity with respect to weak convergence.

Proposition 4.4.2. — Let f, f1, f2, . . . be members of W 1
p pU ; QQpY qq

and assume that dppf, fjq Ñ 0 as j Ñ8. It follows that

E p
p pf ;V q ď lim inf

j
E p
p pfj ;V q

for every open subset V Ď U .
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If W Ď Y is a linar subspace and P : Y Ñ W is a continuous linear
retract we define

QQpP q : QQpY q Ñ QQpW q

by the formula QQpP qprry1, . . . , yQssq “ rrP py1q, . . . , P pyQqss. It is a trivial
matter to check that

G2pQQpP qpvq,QQpP qpv
1qq ď pLipP qQ2pv, v

1q

whenever v, v1 P QQpY q.

Proposition 4.4.3. — Assume that
(1) W Ď Y is a linear subspace and P : Y Ñ W is a continuous linear

retract;
(2) g : U Ñ QQpY q is approximately differentiable at a P U ;
(3) HompX,Y q and HompX,W q are equipped with norms such that

~P ˝ L~ ď pLipP q~L~ whenever L P HompX,Y q.
It follows that QQpP q ˝ g is approximately differentiable at a andDpQQpP q ˝ gqpaq

 ď pLipP q
Dgpaq

 .

Proof. — Write Agpaq “ ‘
Q
i“1rrAiss, with Ai : X Ñ Y affine maps.

Observe that

ap lim
xÑa

G2

´

pQQpP q ˝ gqpxq,
´

QQpP q ˝ ‘
Q
i“1rrAiss

¯

pxq
¯

}x´ a}

ď pLipP qap lim
xÑa

G2

´

gpxq,
´

‘
Q
i“1rrAiss

¯

pxq
¯

}x´ a}
“ 0 .

Since QQpP q ˝ ‘
Q
i“1rrAiss “ ‘

Q
i“1rrP ˝ Aiss, and the P ˝ Ai are affine as

well, we infer that QQpP q ˝ g is differentiable at a and ApQQpP q ˝ gqpaq “

‘
Q
i“1rrP ˝ Aiss. Next note that if Li is the linear part of Ai, then P ˝ Li is

the linear part of P ˝Ai. Consequently,

DpQQpP q ˝ gqpaq
2

“

Q
ÿ

i“1
~P ˝ Li~

2

ď pLipP q2
Q
ÿ

i“1
~Li~

2 “ pLipP q2
Dgpaq

2
.

�

Proposition 4.4.4. — Assume that
(1) W Ď Y is a linear subspace and ι : W Ñ Y is the canonical

injection;
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(2) g : U Ñ QQpW q is differentiable at a P U ;
(3) HompX,Y q and HompX,W q are equipped with norms such that

~ι ˝ L~ “ ~L~ whenever L P HompX,W q.
It follows that QQpιq ˝ g is differentiable at a andDpQQpιq ˝ gqpaq

 “
Dgpaq

 .

Proof. — The proof is similar to that of Proposition 4.4.3. �

Remark 4.4.5. — Hypotheses (3) of Proposition 4.4.3 and 4.4.4 are ver-
ified in two cases of interest. First when ~ ¨ ~ is the operator norm. Second
when

~L~ “ ν

˜

m
ÿ

j“1
}Lpujq}Y ej

¸

where ν is a norm on Rm, m “ dimX, e1, . . . , em is the canonical basis of
Rm, and u1, . . . , um is a basis of X.

Proposition 4.4.6. — Assume that
(1) W Ď Y is a linear subspace, P : Y Ñ W is a continuous linear

retraction, and ι : W Ñ Y is the canonical injection;
(2) g PW 1

p pU ; QQpW qq;
(3) HompX,Y q and HompX,W q are equipped with norms such that

~P ˝ L~ ď pLipP q~L~ whenever L P HompX,Y q, and ~ι ˝ L~ “
~L~ whenever L P HompX,W q.

It follows that QQpιq ˝ g PW
1
p pU ; QQpY q and

pLipP q´pE p
p pg;V q ď E p

p pQQpιq ˝ g;V q ď E p
p pg;V q ,

for every V Ď U open.

Proof. — Choose a sequence tgju of Lipschitz mappings U Ñ QQpW q

such that dppg, gjq Ñ 0 and E p
p pg;V q “ limj

ş

V

Dgj
p

dλ, according
to Proposition 4.4.1. Notice that QQpιq ˝ g are Lipschitz mappings U Ñ

QQpY q and that

lim sup
j

dppQQpιq ˝ g,QQpιq ˝ gjq ď lim
j
dppg, gjq “ 0 .

Therefore,

E p
p pQQpιq ˝ g;V q ď lim inf

j

ż

V

DpQQpιq ˝ gjq
p

dλ

ď lim sup
j

ż

V

Dgj
p

dλ

“ E p
p pg;V q ,
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according to Proposition 4.4.4. The case V “ U of this computation implies
that QQpιq ˝ g P W

1
p pU ; QQpY qq, by definition of this Sobolev class, and

the general case yields the second inequality of our conclusion.
The other way round choose a sequence tfju of Lipschitz mappings

U Ñ QQpY q such that dppQQpιq ˝ g, fjq Ñ 0 and E p
p pQQpιq ˝ g;V q “

limj

ş

V

Dfj
p

dλ. Notice that the mappings QQpP q ˝ fj : U Ñ QQpW q

are Lipschitz and, since g “ QQpP q ˝QQpιq ˝ g, one has

dppg,QQpP q ˝ fjq “ dppQQpP q ˝QQpιq ˝ g,QQpP q ˝ fjq

ď dppQQpιq ˝ g, fjq Ñ 0 as j Ñ8 .

Thus,

E p
p pg;V q ď lim inf

j

ż

V

DpQQpP q ˝ fjq
p

dλ

ď pLipP qp lim inf
j

ż

V

Dfj
p

dλ

“ pLipP qpE p
p pQQpιq ˝ g;V q .

�

For the remaining part of this paper we will only consider the cases when
either Y “ `n2 for some n P Nzt0u or Y “ `2, and X is a finite dimensional
Banach space as usual. The norm ~ ¨ ~ on HompX,Y q is associated with a
basis u1, . . . , um of X as follows:

~L~ “

g

f

f

e

m
ÿ

j“1
}Lpujq}2

where } ¨ } is the Hilbert norm on Y . According to Remark 4.4.5, Propo-
sitions 4.4.3 and 4.4.4 apply. When Y “ `2 and n P Nzt0u we also de-
fine an n dimensional subspace of Y , Wn “ spante1, . . . , enu, and we let
Pn : Y ÑWn be the orthognal projection and ιn : Wn Ñ Y be the canon-
ical injection.
The following guarantees that the p energy is the expected quantity in

case Y “ `n2 . Notice the statement makes sense since g is almost everywhere
approximately differentiable (recall Corollary 4.3.6).

Proposition 4.4.7. — If g PW 1
p pU ; QQp`

n
2 qq for some n P Nzt0u then

E p
p pg;V q “

ż

V

Dg
p dλ

for every open set V Ď U .
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Proof. — If tgju is a sequence of Lipschitz mappings U Ñ QQp`
n
2 q such

that dppg, gjq Ñ 0 as j Ñ 8, then }ξ ˝ g ´ ξ ˝ gj}Lp
Ñ 0 as j Ñ 8 where

ξ is the Almgren embedding described in Theorem 3.3.4. Thus
ż

V

~Dpξ ˝ gq~pdλ ď lim inf
j

ż

V

~Dpξ ˝ gjq~
pdλ

according to classical finite dimensional Sobolev theory: the above func-
tional is weakly lower semicontinuous because it satisfies the hypotheses of
[5, Section 3.3, Theorem 3.4]. It then follows from Corollary 4.3.6 that

ż

V

Dg
p dλ ď lim inf

j

ż

V

Dgj
p

dλ .

Choosing the sequence tgju according to Proposition 4.4.1 we infer that
ż

V

Dg
p dλ ď E p

p pg;V q .

We turn to proving the reverse inequality. We let u “ EpΥpgqq P
W 1
p pRm;RN q so that the maximal function Mp~Du~q P LppUq (see e.g.

[14, Theorem 1.22]). For each j P Nzt0u we define

Aj “ U X tx : G2pgpxq, Qrr0ssqp `Mp~Du~qppxq ď jpu

and we infer that

lim
j
jpλpUzAjq ď lim

j

ż

UzAj

pG2pgpxq, Qrr0ssqp `Mp~Du~qppxqq dλpxq “ 0 .

We let gj : U Ñ QQp`
n
2 q be the Lipschitz mapping associated with f “ g

and t “ j in Proposition 4.3.4. We see that

lim
j
dppgj , gq “ lim

j

˜

ż

UzAj

G2pgj , gq
pdλpxq

¸
1
p

ď lim
j

˜

ż

UzAj

G2pgj , Qrr0ssqpdλpxq
¸

1
p

` lim
j

˜

ż

UzAj

G2pg,Qrr0ssqpdλpxq
¸

1
p

ď lim
j
pc2.4.3pm,Qqj

pλpUzAjqq
1
p ` lim

j

˜

ż

UzAj

G2pg,Qrr0ssqpdλpxq
¸

1
p

“ 0 ,
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thus E p
p pg;V q ď lim infj

ş

V

Dgj
p

dλ. Furthermore,

lim inf
j

ż

V

Dgj
p

dλ ď lim inf
j

ż

VXAj

Dgj
p

dλ` lim sup
j

ż

UzAj

Dgj
p

dλ

ď lim inf
j

ż

VXAj

Dg
p dλ`Q

p
2 lim sup

j

ż

UzAj

pLip gjqp dλ

ď

ż

V

Dg
p dλ

` lim sup
j

Q
p
2 4ppm`1qαpn,Qq´pc2.4.3pm,Qq

pjpλpUzAjq

“

ż

V

Dg
p dλ .

This completes the proof. �

Theorem 4.4.8. — Let f PW 1
p pU ; QQp`2qq. The following hold.

(A) QQpPnq ˝ f PW
1
p pU ; QQp`

n
2 qq for each n P Nzt0u;

(B) For every open set V Ď U one has

E p
p pf ;V q “ lim

n

ż

V

DpQQpPnq ˝ fq
p

dλ ;

(C) The sequence t
DpQQpPnq ˝ fq

p
un is nondecreasing λ almost

everywhere and bounded in L1pUq.

Proof. — (A) Choose a sequence tfju of Lipschitz mappings U Ñ QQp`2q

such that dppfj , fq Ñ 0 and supj
ş

U

Dfj
p

dλ ă 8. Notice that the
QQpPnq ˝ f : U Ñ QQp`

n
2 q are Lipschitz,

lim
j
dppQQpPnq ˝ fj ,QQpPnq ˝ fq ď lim

j
dppfj , fq “ 0

and

sup
j

ż

U

DpQQpPnq ˝ fjq
p

dλ ď sup
j

ż

U

Dfj
p

dλ ă 8

according to Proposition 4.4.3. Thus f PW 1
p pU ; QQp`

n
2 qq.

(B) We note that for every x P U one has

lim
n

G2
`

fpxq, pQQpιnq ˝QQpPnq ˝ fq pxq
˘

“ 0 ,

and also
G2pf,QQpιnq ˝QQpPnq ˝ fq ď G2pf,Qrr0ssq

` G2pQQpιnq ˝QQpPnq ˝ f,Qrr0ssq
ď 2G2pf,Qrr0ssq .
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Thus
lim
n
dppf,QQpιnq ˝QQpPnq ˝ fq “ 0

according to the Dominated Convergence Theorem. Therefore,

E p
p pf ;V q ď lim inf

n
E p
p pQQpιnq ˝QQpPnq ˝ f ;V q

“ lim inf
n

E p
p pQQpPnq ˝ f ;V q

“ lim inf
n

ż

V

DpQQpPnq ˝ fq
p

dλ ,

according respectively to Propositions 4.4.2, 4.4.6 and 4.4.7. The other
way round, we choose a sequence tfju of Lipschitz mappings U Ñ QQp`2q

such that dppfj , fq Ñ 0 and E p
p pf ;V q “ limj

ş

V

Dfj
p

dλ, according to
Proposition 4.4.1. For each fixed n we have
ż

V

DpQQpPnq ˝ fq
p

dλ ď lim inf
j

ż

V

DpQQpPnq ˝ fjq
p

dλ

(according to the proof of (A) and Proposition 4.4.2 and 4.4.7)

ď lim inf
j

ż

V

Dfj
p

dλ

(according to Proposition 4.4.3)

“ E p
p pf ;V q .

Therefore lim supn
ş

V

DpQQpPnq ˝ fq
p

dλ ď E p
p pf ;V q.

(C) That the sequence t
DpQQpPnq ˝ fq

p
un be nondecreasing follows

as in the proof of Proposition 4.4.3; its boundedness in L1pUq is a conse-
quence of (B). �

We now turn to defining the function
δf

 P LppUq associated with
f P W 1

p pU ; QQp`2qq. It follows from Theorem 4.4.8(C) and the Monotone
Convergence Theorem that

ż

V

lim
n

DpQQpPnq ˝ fq
p

dλ “ lim
n

ż

V

DpQQpPnq ˝ fq
p

dλ ,

V Ď U open. We define, for λ almost every x P U ,

(4.2)
δf

 pxq “ lim
n

DpQQpPnq ˝ fqpxq
 .

It follows therefore from Theorem 4.4.8(B) that

(4.3) E p
p pf ;V q “

ż

V

δf
p dλ .
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4.5. Extension

The following is the obvious analog of [14, Theorem 1.63].

Theorem 4.5.1. — Let U “ Up0, 1q be the unit ball in Rm. There exists
a mapping

E : W 1
p pU ; QQp`2qq ÑW 1

p pRm; QQp`2qq

with the following properties.
(A) For every f P W 1

p pU ; QQp`2qq one has Epfqpxq “ fpxq for every
x P U ;

(B) For every f1, f2 PW
1
p pU ; QQp`2q one has

dppEpf1q, Epf2qq ď 2
1
p dppf1, f2q ;

(C) For every f PW 1
p pU ; QQp`2qq one has

E p
p pEpfq;Rmq ď

´

1`Q
p
2 2p

¯

`

E p
p pf ;Uq `

f
p
p

˘

;

(D) For every x P RmzUp0, 2q one has Epfqpxq “ Qrr0ss;
(E) If 0 P C Ď `2 is convex and fpxq P QQpCq for every x P U , then

Epfqpxq P QQpCq for every x P Rm.

Proof. — We start the proof by associating with each Lipschitz map
f : U Ñ QQp`2q a Lipschitz map E0pfq : Rm Ñ QQp`2q verifying (A), (B),
(D) and (E) above (for Lipschitz maps f , f1, f2) and (C) replaced with
(C’) For every Lipschitz f : U Ñ QQp`2q one has

ż

Rm

DE0pfqpxq
p

dLmpxq ď Cpm, pq

ˆ
ż

U

Dfpxq
p

dLmpxq `
f

p
p

˙

Given f we write fpxq “ ‘Qi“1rrfipxqss, x P U , and we define

gpxq “

#

‘
Q
i“1rrp2}x} ´ 1qfipxqss if }x} ě 1

2
Qrr0ss if }x} ă 1

2 .

The conscientious reader will check that g is Lipschitz on U . In fact, it
follows from Proposition 2.5.9 and the paragraph preceding it (in particular
equation (2.11)) thatDgpxq

 ď
a

Q

ˆDfpxq
` 2

fpxq
˙

for almost every x P Up0, 1qzBp0, 1{2q. Therefore,

(4.4)
ż

U

Dg
p dLm ď Q

p
2 2p

ˆ
ż

U

Df
p dLm `

ż

U

f
p dLm

˙

.
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We now define a Lipschitz mapping ϕ :Up0,3{2qzUp0,1qÑBp0,1qzBp0,1{2q
by the formula

ϕpxq “

ˆ

2
}x}

´ 1
˙

x ,

and E0pfq by

E0pfqpxq “

$

’

’

&

’

’

%

Qrr0ss if x ě 3
2

gpϕpxqq if 1 ď }x} ă 3
2

fpxq if }x} ď 1 .

We notice that conclusions (A), (D) and (E) are verified by E0pfq. Regard-
ing conclusions (B) and (C’) we first observe that the differential of x{}x}
at a point x ‰ 0 is the orthogonal projection onto the plane orthogonal to
x. Therefore Jϕ “ 1 and we apply the change of variable formula:

dppE0pf1q,E0pf2qq
p ď

ż

U

G pf1, f2q
pdLm `

ż

Bp0,3{2qzBp0,1q
G pg1 ˝ ϕ, g2 ˝ ϕq

pdLm

ď

ż

U

G pf1, f2q
pdLm `

ż

Bp0,3{2qzBp0,1q
G pg1 ˝ ϕ, g2 ˝ ϕq

pJϕdLm

ď 2
ż

U

G pf1, f2q
pdLm

(because G pg1, g2q ď G pf1, f2q), and similarly,
ż

Rm

DE0pfq
p

dLm ď

ż

U

Df
p dLm `

ż

Bp0,3{2qzBp0,1q

Dpg ˝ ϕq
p

dLm

ď

ż

U

Df
p dLm `

ż

Bp0,3{2qzBp0,1q
p
Dg

p
˝ ϕq dLm

(because Lipϕ ď 1)

ď

ż

U

Df
p dLm `

ż

Bp0,3{2qzBp0,1q
p
Dg

p
˝ ϕq JϕdLm

ď

´

1`Q
p
2 2p

¯

ˆ
ż

U

Df
p dLm `

ż

U

f
p dLm

˙

according to (4.4).
We now define Epfq, f P W 1

p pU ; QQp`2qq, as follows. We choose a se-
quence tfju of Lipschitz mappings U Ñ QQp`2q associated with f as in
Proposition 4.4.1 and we observe that tE0pfjqu is Cauchy in LppRmq : for
Epfq we choose a limit of this sequence (that verifies conclusion (A)). That
conclusions (B), (C), (D) and (E) are valid is now a matter of routine
verification. �
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4.6. Poincaré inequality and approximate differentiability
almost everywhere

We start with a modification of Theorem 4.4.8.

Theorem 4.6.1. — Let f P W 1
p pU ; QQp`2qq. There then exist a se-

quence tfnu of Lipschitz mappings U Ñ QQp`2q and a sequence tAnu of
Borel subsets of U such that

(A) limn dppfn, fq “ 0;
(B) For every open set V Ď U ,

E p
p pf ;V q “ lim

n

ż

V

Dfn
p dλ .

(C) limn LmpUzAnq “ 0 and, for each n,
Dfnpxq

 ď
δf

 pxq for
Lm almost every x P An;

(D) limn

Dfnpxq
 “

δf
 pxq for Lm almost every x P U .

Proof. — With each n P Nzt0u we associate gn “ QQpPnq ˝ f P

W 1
p pU ; QQp`

n
2 qq as well as

un “ G2pgn, Qrr0ssqp `Mp~DΥpgnq~qp P L1pUq .

Letting An “ U X tx : unpxq ď tpnu we can choose tn ą 0 large enough for

(4.5) max
#

LmpUzAnq, c4.3.4pn,m,Qq
p

ż

UzAn

undλ

+

ă
1
n
,

where we have put c4.3.4pn,m,Qq “ 4m`1αpn,Qq´1c2.4.3pm,Qq. We then
let hn : U Ñ QQp`

n
2 q be a Lipschitz mapping associated with gn and tn as

in Proposition 4.3.4, and we define fn “ QQpιnq ˝ hn : U Ñ QQp`2q which
is Lipschitz as well. We observe that

dppfn, fq ď dppQQpιnq ˝ hn,QQpιnq ˝QQpPnq ˝ fq

` dppQQpιnq ˝QQpPnq ˝ f, fq

ď dpphn, gnq ` dppQQpιnq ˝QQpPnq ˝ f, fq .

Notice that

lim
n
dppQQpιnq ˝QQpPnq ˝ f, fq “ 0
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according to the Dominated Convergence Theorem, whereas

dpphn, gnq “

ˆ
ż

U

G2phn, gnq
pdλ

˙
1
p

“

˜

ż

UzAn

G2phn, gnq
pdλ

¸
1
p

ď

˜

ż

UzAn

G2phn, Qrr0ssqpdλ
¸

1
p

`

˜

ż

UzAn

G2pgn, Qrr0ssqpdλ
¸

1
p

ď

˜

ż

UzAn

c2.4.3pm,Qq
ptpndλ

¸
1
p

`

˜

ż

UzAn

G2pgn, Qrr0ssqpdλ
¸

1
p

ď p1` c2.4.3pm,Qqq

˜

ż

UzAn

undλ

¸
1
p

Ñ 0 as nÑ8 ,

from what conclusion (A) follows. Consequently,

E p
p pf ;V q ď lim inf

n

ż

V

Dfn
p dλ .

Furthermore, for each n we have
ż

V

Dfn
p dλ “

ż

V

Dhn
p dλ

(according to Proposition 4.4.6)

ď

ż

VXAn

Dgn
p dλ`

ż

V zAn

Q
p
2 c4.3.4pn,m,Qq

ptpndλ

(according to Proposition 4.3.4)

ď

ż

V

DpQQpPnq ˝ fq
p

dλ`Q
p
2 c4.3.4pn,m,Qq

p

ż

UzAn

undλ

It now follows from (4.5) and Theorem 4.4.8(B) that

lim sup
n

ż

V

Dfn
p dλ

ď lim
n

ż

V

DpQQpPnq ˝ fq
p

dλ` lim sup
n

Q
p
2 c4.3.4pn,m,Qq

p

ż

UzAn

undλ

“ E p
p pf ;V q .

This proves conclusion (B).
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The first part of conclusion (C) is a consequence of (4.5) and the second
part follows from the fact that hn “ gn on An, therefore Dhnpxq “ Dgnpxq

at Lm almost every x P An, and for those x it follows from Proposition
4.4.4, the definition of

δf
 and Theorem 4.4.8(C) that

Dfnpxq
 “

DpQQpιnq ˝ hnqpxq
 ď

Dhnpxq


“
Dgnpxq

 “
DpQQpPnq ˝ fqpxq

 ď
δf

 pxq .

Conclusion (D) is an easy consequence of (B) and (C). �

We are now ready to prove the analog of the Poincaré inequality.

Theorem 4.6.2. — There exists a constant c4.6.2pmq ě 1 with the fol-
lowing property. Let f P W 1

p pU ; QQp`2qq, 1 ď q ď p, and let V Ď U be
a bounded open convex subset of U . It follows that for Lm almost every
x P V ,

ż

V

G2pfpxq, fpyqq
qdLmpyq ď pdiamV qq`m´1

ż

V

δf
q
pzq

}z ´ x}m´1 dL
mpzq .

Furthermore there exists v P QQp`2q such that

ż

V

G2pfpxq, vq
qdLmpxq

ď c4.6.2pmqpdiamV qq
ˆ

pdiamV qm

LmpV q

˙1´ 1
m
ż

V

δf
q dLm .

Proof. — We start with the case when f is Lipschitz. Given x P V it
follows from Theorem 2.5.8(D) that

G2pfpxq, fpyqq ď

ż

Sx,y

Dfpzq
 dH 1pzq

“ }x´ y}

ż 1

0

Dfpx` tpy ´ xqq
 dL 1ptq
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for Lm almost every y P V , where Sx,y denotes the line segment joining x
and y. Now, given s ą 0, we observe that

ż

VXBdryBpx,sq
G2pfpxq, fpyqq

qdH m´1pyq

ď sq
ż

VXBdryBpx,sq
dH m´1pyq

ż 1

0

Dfpx` tpy ´ xqq
q

dL 1ptq

“ sq
ż 1

0
dL 1ptq

ż

VXBdryBpx,sq

Dfpx` tpy ´ xqq
q

dH m´1pyq

“ sq
ż 1

0
t1´mdL 1ptq

ż

VXBdryBpx,tsq

Dfpzq
q

dH m´1pzq

ď sq`m´1
ż 1

0
dL 1ptq

ż

VXBdryBpx,tsq

Dfpzq
q

}z ´ x}m´1 dH
m´1pzq

“ sq`m´2
ż

VXBpx,sq

Dfpzq
q

}z ´ x}m´1 dL
mpzq .

Hence,

ż

V

G2pfpxq, fpyqq
qdLmpyq

“

ż diamV

0
dL 1psq

ż

VXBdryBpx,sq
G2pfpxq, fpyqq

qdH m´1pyq

ď

ż diamV

0
sq`m´2dL 1psq

ż

VXBpx,sq

Dfpzq
q

}z ´ x}m´1 dL
mpzq

ď pdiamV qq`m´1
ż

V

Dfpzq
q

}z ´ x}m´1 dL
mpzq .

(4.6)

We now merely assume that f PW 1
p pU ; QQp`2qq and we choose a sequence

of Lipschitz mappings tfnu as in Theorem 4.6.1. Thus (4.6) applies to each
fn. Let x P V be such that limn G2pfpxq, fnpxqq “ 0. In order to establish
our first conclusion we can readily assume that

V Ñ R : z ÞÑ
δf

q
pxq

}z ´ x}m´1
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is summable. In that case, it follows from Theorem 4.6.1(A) and (D), from
(4.6) and from the Dominated Convergence Theorem that
ż

V

G2pfpxq, fpyqq
qdLmpyq “ lim

n

ż

V

G2pfnpxq, fnpyqq
qdLmpyq

ď pdiamV qq`m´1 lim
n

ż

V

Dfnpzq
q

}z ´ x}m´1 dL
mpzq

“ pdiamV qq`m´1
ż

V

δf
q
pzq

}z ´ x}m´1 dL
mpzq .

We now turn to proving the second conclusion. Integrating the inequality
above with respect to x, and applying standard potential estimates (see e.g.
[14, Lemma 1.31] applied with p “ 1) we obtain

ż

V

dLmpxq

ż

V

G2pfpxq, fpyqq
qdLmpyq

ď pdiamV qq`m´1
ż

V

dLmpxq

ż

V

δf
q
pzq

}z ´ x}m´1 dL
mpzq

ď CpmqpdiamV qq`m´1LmpV q
1
m

ż

V

δf
q dLm .

Thus there exists x P V such that
ż

V

G2pfpxq, fpyqq
qdLmpyq ď

Cpmq
pdiamV qq`m´1LmpV q

1
m

LmpV q

ż

V

δf
q dLm .

Letting v “ fpxq completes the proof. �

Proposition 4.6.3. — Let U “ Up0, 1q be the unit ball in Rm, let
f PW 1

p pU ; QQp`2qq and t ě 0. Define

At “ U X
 

x : G2pfpxq, Qrr0ssqp `
`

M
δEpfq

˘p
pxq ď tp

(

,

where M denotes the maximal function operator and E denotes the exten-
sion operator defined in Theorem 4.5.1. There then exists a Lipschitzian
map h : U Ñ QQp`2q such that

(1) hpxq “ fpxq for Lm almost every x P At;
(2) Liph ď 6mαpmqc2.4.3pm,Qqt;
(3) G2phpxq, Qrr0ssq ď c2.4.3pm,Qqt for every x P U ;
(4) For Lm almost every x P At, f is approximately differentiable at

x and
Dfpxq

 “
Dhpxq

.
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Proof. — The proof is similar to that of Proposition 4.3.4. We abbreviate
f̂ “ Epfq. We choose a countable dense set D Ď Rm and we consider the
collection V of subsets V of Rm of the type V “ Upx, rq X Upx1, rq where
x, x1 P D and r P Q`. Thus V is countable and for each V P V there exists
NV Ď V such that LmpV zNV q “ 0 and for every x P V zNV one has

(4.7)
ż

V

G pf̂pxq, f̂pyqqdLmpyq ď pdiamV qm
ż

V

δf̂
 pzq

}z ´ x}m´1 dL
mpzq ,

according to Theorem 4.6.2 applied with q “ 1. Let N “ YV PV NV . Given
x, x1 P RmzN we choose r P Q` such that

0 ă r ´ }x´ x1} ă
}x´ x1}

5
and we choose x̃, x̃1 P D such that

max
 

}x´ x̃}, }x1 ´ x̃1}
(

ă
r

5 .

Defining V “ Upx̃, 2rq X Upx̃1, 2rq P V we easily infer that x, x1 P V .
Therefore (4.7) applies to both pairs x, V and x1, V . We define

G “ V X

#

y : G pf̂pxq, f̂pyqq ă
3pdiamV qmq

LmpV q

ż

V

δf̂
 pzq

}z ´ x}m´1 dL
mpzq

+

,

as well as

G1 “ V X

#

y : G pf̂px1q, f̂pyqq ă
3pdiamV qmq

LmpV q

ż

V

δf̂
 pzq

}z ´ x1}m´1 dL
mpzq

+

.

One readily infer from (4.7) that

max
 

LmpV zGq,LmpV zG1q
(

ă
LmpV q

3 ,

and hence GXG1 ‰ H. We choose y P GXG1 and we set v “ f̂pyq. Thus

G pf̂pxq, vq ď
3p2rqm

αpmqrm

ż

V

δf̂
 pzq

}z ´ x}m´1 dL
mpzq

and

G pf̂px1q, vq ď
3p2rqm

αpmqrm

ż

V

δf̂
 pzq

}z ´ x1}m´1 dL
mpzq .

It follows from the potential estimate [14, Lemma 1.32(i)] that
ż

V

δf̂
 pzq

}z ´ x}m´1 dL
mpzq ď

ż

Upx,2rq

δf̂
 pzq

}z ´ x}m´1 dL
mpzq

ď mαpmqp2rqM
´δf̂

¯

pxq ď 3mαpmq}x´ x1}M
´δf̂

¯

pxq ,
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and similarly

ż

V

δf̂
 pzq

}z ´ x1}m´1 dL
mpzq ď 3mαpmq}x´ x1}M

´δf̂
¯

px1q .

If furthermore x, x1 P At then maxtMp
f̂

qpxq,Mpf̂
qpx1qu ď t and it

ensues from the above inequalities that

G pf̂pxq, f̂px1qq ď 6mαpmq}x´ x1}t .

One now concludes like in Proposition 4.3.4. �

The following is the analog of Proposition 4.4.7 for an infinite dimensional
target.

Corollary 4.6.4. — Let U “ Up0, 1q be the unit ball in Rm and let
f P W 1

p pU ; QQp`2qq. It follows that f is approximately differentiable Lm

almost everywhere and that

E p
p pf ;V q “

ż

V

Dfpxq
p

dLmpxq

for every open set V Ď U .

Proof. — Letting ttju be an increasing unbounded sequence in R` we ob-
serve that LmpUzAtj q Ñ 0 as j Ñ8 (where Atj is defined as in the state-
ment of Proposition 4.6.3) because both G pf̂p¨q, Qrr0ssqq and M

´δf̂
¯

belong to LppRmq. Letting hj be a Lipschitz mapping U Ñ QQp`2q which
coincides with f almost everywhere on Atj , we easily infer that f is approx-
imately differentiable at each Lebesgue point x P Atj of Atj at which hj
is approximately differentiable. Since this is the case of Lm almost every
a P Atj according to Theorem 2.5.8, our first conclusion follows.
In order to prove our second conclusion, consider a point x P U of ap-

proximate differentiability of f . Reasoning as in the proof of Proposition
4.4.3 we write Afpxq “ ‘

Q
i“1rrAiss and we infer that for each integer n,

ApQQpPnq ˝ fqpaq “ ‘
Q
i“1rrPn ˝ Aiss. Since the linear part of Pn ˝ Ai is

Pn ˝ Li, where Li is the linear part of Ai, we see that

DpQQpPnq ˝ fqpxq
2

“

Q
ÿ

i“1
~Pn ˝ Li~

2 “

Q
ÿ

i“1

m
ÿ

j“1
}PnpLipejqq}

2 .
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Thus

lim
n

DpQQpPnq ˝ fqpxq
2

“ lim
n

Q
ÿ

i“1

m
ÿ

j“1
}PnpLipejqq}

2

“

Q
ÿ

i“1

m
ÿ

j“1
}Lipejqq}

2

“
Dfpxq

2
.

Therefore
Dfpxq

 “
δf

 pxq, according to (4.2), and the conclusion
follows from (4.3). �

4.7. Trace

Proposition 4.7.1. — Let U “ Up0, 1q be the unit ball in Rm. For
every ε ą 0 there exists θ ą 0 such that

ż

BdryU
|u|pdH m´1 ď θ

ż

U

|u|pdLm ` ε

ż

U

}∇u}pdLm

whenever u : ClosU Ñ R is Lipschitz.

Proof. — Given ε̂ ą 0 we choose a smooth function ϕ : r0, 1s Ñ r0, 1s
such that ϕp0q “ ϕp1q “ 1 and

ε̂ “

ˆ
ż 1

0
ϕq

˙

p
q

where q is the exponent conjugate to p, and we put

θ̂ “

ˆ
ż 1

0
|ϕ1|q

˙

p
q

.

For every x P BdryU and y P U we observe that
|upxq ´ upyq|

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

d

dt

ˆ

ϕptqupy ` tpx´ yqq

˙

dL 1ptq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż 1

0

ˆ

ϕ1ptqupy ` tpx´ yqq ` ϕptqx∇upy ` tpx´ yqq, x´ yy
˙

dL 1ptq

ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż 1

0
|ϕ1|q

˙

1
q
ˆ
ż 1

0
|upy ` tpx´ yqq|pdL 1ptq

˙

1
p

`

ˆ
ż 1

0
ϕq

˙

1
q
ˆ
ż 1

0
}∇upy ` tpx´ yqq}p}x´ y}pdL 1ptq

˙

1
p

,
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Therefore,

(4.8) |upxq ´ upyq|p ď 2p´1θ̂

ż 1

0
|upy ` tpx´ yqq|pdL 1ptq

` 2p´1}x´ y}pε̂

ż 1

0
}∇upy ` tpx´ yqq}pdL 1ptq .

In order to integrate with respect to x P BdryU , we first note that the
jacobian of the map r0, 1s ˆ BdryU Ñ U : pt, xq ÞÑ y ` tpx ´ yq at pt, xq
equals }x ´ y}tm´1. Since }x ´ y} ď 2, the area formula therefore implies
that

22´m
ż

BdryU
dH m´1pxq

ż 1

0
|upy ` tpx´ yqq|pdL 1ptq

ď

ż 1

0
dL 1ptq

ż

BdryU

|upy ` tpx´ yqq|p

}x´ y}m´2 dH m´1pxq

“

ż 1

0
dL 1ptq

ż

BdryU

|upy ` tpx´ yqq|p

}y ´ py ` tpx´ yqq}m´1 }x´ y}t
m´1dH m´1pxq

“

ż

U

|upzq|p

}y ´ z}m´1 dL
mpzq .

Since the similar inequality holds for the gradient term, we infer from (4.8)
that

ż

BdryU
|upxq ´ upyq|pdH m´1pxq ď 2p`m´3θ̂

ż

U

|upzq|p

}y ´ z}m´1 dL
mpzq

` 22p`m´3ε̂

ż

U

}∇upzq}p

}y ´ z}m´1 dL
mpzq .

Thus,

ż

BdryU
|upxq|pdH m´1pxq ď 2p´1mαpmq|upyq|p

`22p`m´4θ̂

ż

U

|upzq|p

}y ´ z}m´1 dL
mpzq`23p`m´4ε̂

ż

U

}∇upzq}p

}y ´ z}m´1 dL
mpzq ,
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according to the triangle inequality. We now integrate with respect to y P U
and, referring to the potential estimate [14, Lemma 1.31], we obtain
ż

BdryU
|u|pdH m´1 ď 2p´1m

ż

U

|upyq|pdLmpyq

` 22p`m´4αpmq´1θ̂

ż

U

dLmpyq

ż

U

|upzq|p

}y ´ z}m´1 dL
mpzq

` 23p`m´4αpmq´1ε̂

ż

U

dLmpyq

ż

U

}∇upzq}p

}y ´ z}m´1 dL
mpzq

ď mp2p´1 ` 22p`m´4θ̂q

ż

U

|u|pdLm

`m23p`m´4ε̂

ż

U

}∇u}pdLm .

�

Remark 4.7.2. — It follows in particular from Proposition 4.7.1 that
ż

BdryU
|u|pdH m´1 ď C

ˆ
ż

U

|u|pdLm `

ż

U

}∇u}pdLm

˙

for some C ą 0. Thus there exists a unique continuous trace operator

T : W1
ppUq Ñ LppBdryU ; H m´1q

defined by T puq “ u whenever u is Lipschitz. Of course, being continuous,
T is also weakly continuous. The inequality in Proposition 4.7.1 shows that
T is completely continuous, i.e. if tuku converges weakly in W1

ppUq then
tT pukqu converges strongly in LppBdryU ; H m´1q. Using Proposition 4.7.1
(more precisely, an RN valued version) in conjunction with the embedding
Theorem 3.3.4 we obtain that for every ε ą 0 there exists θn ą 0 such that

ż

BdryU
G pf1, f2q

pdH m´1 ď θn

ż

U

G pf1, f2q
pdLm

` ε

ˆ
ż

U

Df1
p dLm `

Df2
p dLm

˙

whenever f1, f2 : U Ñ QQp`
n
2 q are Lipschitz. The dependence of θ upon n

is caused by a constant αpn,Qq´1 (the biLipschitz constant of the Almgren
embedding). This leads to a proper definition of a trace “operator” for
maps f P W1

ppU ; QQp`
n
2 qq but not for maps f P W1

ppU ; QQp`2qq. We use
a different approach in our next result, avoiding altogether the embedding
of Theorem 3.3.4.
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Theorem 4.7.3. — There exists a map

T : W 1
p pU ; QQp`2qq Ñ LppBdryU ; QQp`2qq

verifying the following properties.
(A) If f : ClosU Ñ QQp`2q is Lipschitz then T pfqpxq “ fpxq for every

x P BdryU ;
(B) For every ε ą 0 there exists θ ą 0 such that
ż

BdryU
G pT pf1q,T pf2qq

pdH m´1 ď θ

ż

U

G pf1, f2q
pdLm

` ε

ˆ
ż

U

Df1
p dLm `

Df2
p dLm

˙

whenever f1, f2 PW
1
p pU ; QQp`2q;

(C) There exists C ą 0 such that for every f PW 1
p pU ; QQp`2qq,

ż

BdryU

T pfq
p

dH m´1 ď C

ˆ
ż

U

f
p dLm `

ż

U

Df
p dLm

˙

.

Proof. — Owing to definition of W 1
p pU ; QQp`2qq (the weak density of

Lipschitz maps), and to Propositions 4.1.1, 4.4.1 and 4.6.4, it suffices to
show that the map T defined for Lipschitz f by (A), verifies conclusions
(B) and (C) for Lipschitz f1, f2, f .

Given f1, f2 : ClosU Ñ QQp`2q we define u : ClosU Ñ R by the formula
upxq “ G pf1pxq, f2pxqq, x P U . Given x P U and h P Rm such that x`h P U
we infer from the triangle inequality that

|upx` hq ´ upxq| ď |G pf1px` hq, f2px` hqq ´ G pf1pxq, f2px` hqq|

` |G pf1pxq, f2px` hqq ´ G pf1pxq, f2pxqq|

ď G pf1px` hq, f1pxqq ` G pf2px` hq, f2pxqq .

This shows at once that u is Lipschitz. Furthermore Proposition 2.5.9 im-
plies that

}∇upxq} ď
Df1pxq

`
Df2pxq


at each x P U where u, f1 and f2 are differentiable. Conclusion (B) now
follows from Proposition 4.7.1, and conclusion (C) is a consequence of (B)
with f1 “ f , f2 “ Qrr0ss and ε “ 1. �

4.8. Analog of the Rellich compactness Theorem

Lemma 4.8.1. — Let f PW 1
p pRm; QQp`2qq and h P Rm. It follows that

ż

Rm

G pfpx` hq, fpxqqpdLmpxq ď }h}p
ż

Rm

Df
p dLm .
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Proof. — According to Propositions 4.1.1 and 4.4.1, it suffices to prove
it when f is Lipschitz as well. In that case it follows from Theorem 2.5.8(D)
and Jensen’s inequality that

G pfpx` hq, fpxqqp ď

ˆ

}h}

ż 1

0

Dfpx` thq
 dL 1ptq

˙p

ď }h}p
ż 1

0

Dfpx` thq
p

dL 1ptq .

The conclusion follows upon integrating with respect to x P Rm. �

Theorem 4.8.2. — Let U “ Up0, 1q be the unit ball in Rm and let tfju
be a sequence in W 1

p pU ; QQp`2qq such that
(1) There exists a compact set C Ď `2 such that fjpxq P QQpCq for

every x P U and every j “ 1, 2, . . .;
(2) supj

ş

U

Dfj
p

dLm ă 8.
It follows that there exists a subsequence tfkpjqu and f P W 1

p pU ; QQp`2qq

such that limj dppf, fkpjqq “ 0.

Proof. — We show that the compactness Theorem 4.2.1 applies to the
sequence tEpfjqu in LppRm; QQpCqq. Our hypothesis (1) and Theorem
4.5.1(D) guarantee that the extension Epfjq take their value in QQpCq.
We now check that the hypotheses of Theorem 4.2.1 are verified:

(i) follows from the fact that C is bounded, thus
ż

Rm

Epfjq
p

dLm ď 2mαpmqQ
p
2 pdiamCqp

for every j “ 1, 2, . . .;
(ii) follows from Lemma 4.8.1 and Theorem 4.5.1(C):

sup
j

ż

Rm

G pEpfjqpx` hq, Epfjqpxqq
pdLmpxq

ď }h}p
ż

Rm

DEpfjq
p

dLm

ď }h}pCpm, p,Qq sup
j

ˆ
ż

U

fj
p

dLm `

ż

U

Dfj
p

dLm

˙

(iii) follows from the fact that Epfjq “ EpfjqK for each j “ 1, 2, . . .,
where K “ Bp0, 2q, according to Theorem 4.5.1(D).

Thus there exists f̂ P LppRm; QQp`2qq such that limj dppEpfkpjqq, f̂q “ 0.
It remains to notice that the restriction f̂æU belongs to W 1

p pU ; QQp`2qq.
This is because for each j “ 1, 2, . . . we can choose a Lipschitz map gj :
Rm Ñ QQp`2q such that dppEpfkpjq, gjq ă j´1 and

ş

Rm

Dgj
p

dLm ď
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j´1 `
ş

Rm

Epfkpjqq
p

dLm. Therefore limj dppf̂æU, gjæUq “ 0 and
supj

ş

U

DpgjæUq
p

dLm ă 8. �

Remark 4.8.3. — It would be interesting to know whether or not all the
results proved so far in this paper hold when the range `2 is replaced by an
infinite dimensional Banach space Y which is separable, a dual space, and
admits a monotone Schauder basis.

4.9. Existence Theorem

Lemma 4.9.1. — Assume that
(A) X is a compact metric space;
(B) Y is a metric space;
(C) g : X Ñ QQpY q is continuous.

It follows there exists a compact set C Ď Y such that gpxq P QQpCq for
every x P Y .

Proof. — We let C “ Y Xty : y P supp gpxq for some x P Xu. One easily
checks that C is closed, thus it suffices to show it is totally bounded. Since
im g itself is compact, given ε ą 0 there are x1, . . . , xκ P X such that for
each x P X there exists k “ 1, . . . , κ with G pfpxq, fpxkqq ă ε. We write
fpxkq “ ‘

Q
i“1rry

k
i ss. It it now obvious that C Ď Yκk“1 Y

Q
i“1 BY py

k
i , εq. �

Theorem 4.9.2. — Let U “ Up0, 1q be the unit ball in Rm and let g :
BdryU Ñ QQp`2q be Lipschitz. It follows that the minimization problem

#

minimize
ş

U

Df
p dLm

among f PW 1
p pU ; QQp`2qq such that T pfq “ g

admits a solution.

Proof. — The class of competitors is not empty according to the exten-
sion Theorem 2.4.3. We let C0 Ď `2 be a compact set associated with g in
Lemma 4.9.1 and we let C be the convex hull of C0 Y t0u (so that C is
compact as well). We denote by P : `2 Ñ C the nearest point projection.
Given a minimizing sequence tfju we consider the sequence tQQpP q ˝ fju

which, we claim, is minimizing as well. That these be Sobolev maps, and
form a minimizing sequence, follows from the inequalities

ż

U

G pQQpP q ˝ f,QQpP q ˝ f
1qpdLm ď

ż

U

G pf, f 1qpdLm
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(recall the paragraph preceding Proposition 4.4.3) and
ż

U

DpQQpP q ˝ fq
p

dLm ď

ż

U

Df
p dLm

(because LipP ď 1) valid for every Lipschitz f, f 1 : U Ñ QQp`2q, and
hence for every f, f 1 P W 1

p pU ; QQp`2qq as well. It also follows from these
inequalities and Theorem 4.5.1(B) and (C) that

T pQQpP q ˝ fq “ T pfq

whenever f PW 1
p pU ; QQp`2qq. Thus T pQQpP q˝fjq “ g, j “ 1, 2, . . .. Since

all these QQpP q ˝ fj take their values in QQpCq, it follows from Theorem
4.8.2 that there are integers kp1q ă kp2q ă . . . and f P W 1

p pU ; QQp`2qq

such that limj dppf, fkpjqq “ 0. Theorem 4.7.3(B) implies that T pfq “ g.
Proposition 4.4.1 and Corollary 4.6.4 guarantee the required lower semi-
continuity. �
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