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GENERALIZED BAUMSLAG–SOLITAR GROUPS:
RANK AND FINITE INDEX SUBGROUPS

by Gilbert LEVITT

Abstract. — A generalized Baumslag–Solitar (GBS) group is a finitely gener-
ated group acting on a tree with infinite cyclic edge and vertex stabilizers. We show
how to determine effectively the rank (minimal cardinality of a generating set) of
a GBS group; as a consequence, one can compute the rank of the mapping torus of
a finite order outer automorphism of a free group Fn. We also show that the rank
of a finite index subgroup of a GBS group G cannot be smaller than the rank of G.
We determine which GBS groups are large (some finite index subgroup maps onto
F2), and we solve the commensurability problem (deciding whether two groups
have isomorphic finite index subgroups) in a particular family of GBS groups.
Résumé. — Un groupe de Baumslag–Solitar généralisé (groupe GBS) est un

groupe de type fini agissant sur un arbre avec stabilisateurs de sommets et d’arêtes
infinis cycliques. Nous déterminons explicitement le rang (nombre minimal de gé-
nérateurs) d’un groupe GBS, et en déduisons le rang de la suspension d’un au-
tomorphisme d’ordre fini d’un groupe libre Fn. Nous montrons aussi que le rang
ne peut pas diminuer quand on passe à un sous-groupe d’indice fini d’un groupe
GBS. Nous déterminons quels groupes GBS sont larges (un sous-groupe d’indice
fini se surjecte sur F2), et nous résolvons le problème de commensurabilité (décider
si deux groupes ont des sous-groupes d’indice fini isomorphes) dans une certaine
famille de groupes GBS.

1. Introduction and statement of results

This paper studies generalized Baumslag–Solitar (GBS) groups. These
are finitely generated groups G acting on a tree T with infinite cyclic edge
and vertex stabilizers (equivalently, fundamental groups of finite graphs of
groups Γ with all vertex and edge groups Z). Basic examples are provided
by the Baumslag–Solitar groups BS(m,n) = 〈a, t | tamt−1 = an〉, known
for sometimes being non-Hopfian [3, 10], and one-relator groups with non-
trivial center [30].

Keywords: Group, Baumslag–Solitar, rank, finite index.
Math. classification: 20E06, 20E08, 20F05, 20F65.



726 Gilbert LEVITT

GBS groups have been studied in particular in relation with JSJ decom-
positions [18], quasi-isometries [33], automorphisms [6, 25], cohomological
dimension [23], the Haagerup property [11], Bredon cohomology [13], one-
relator groups [9, 27, 30]. Solving the conjugacy problem in GBS groups is
possible but non-trivial [4], while the isomorphism problem for GBS groups
is open in general (see [7, 19, 25] for partial results).

Our first result is a computation of the rank (minimal cardinality of
a generating set). The rank is a basic invariant of groups, still there are
very few families of groups for which the rank is known (and the rank of
a (Gromov)–hyperbolic group is not even computable [2]). It is therefore
somewhat surprising that there is a complete and explicit way of computing
the rank rk(G) of a GBS group G.
A GBS group has standard generating sets, with one generator av per

vertex of the graph of groups Γ, and one stable letter tε for each edge out-
side of a given maximal subtree. It turns out that the rank is achieved by
a subset of any standard generating set, and that there is a simple combi-
natorial criterion to decide which subsets of a standard set are themselves
generating sets.
The basic notion involved in this criterion is that of a plateau, which we

shall explain after considering two simple examples (see also Definition 3.1).

u u u
va vb vc

3 2 n 53

e1 e2

Figure 1.1. G1 has rank 2 if n is odd, 3 if n is even. {va} is a 3–plateau,
{vb} is a 2–plateau for n even, {vc} is a 5–plateau, e1 is a p–plateau
if p > 3 divides n, e2 is a 2–plateau if n is odd, and Γ is a p–plateau
for p > 5 not dividing n. If n is odd, every plateau meets {va, vc}, so
G1 = 〈a, c〉.

Figure 1.1 represents the labelled graph Γ associated to G1 = 〈a, b, c |
a3 = b2, bn = c5〉 (the graph is labelled by 3, 2, n, 5, which are indices of
edge groups in vertex groups). If n is even, G1 has rank 3 because adding
the relation b2 = 1 maps G1 onto Z/3Z∗Z/2Z∗Z/5Z, which has rank 3 by
Grushko’s theorem. On the other hand, if n is odd, G1 = 〈a, c〉 has rank 2.

The group G2 = 〈a, b, c, d | a3 = b2, b3 = c7, c10 = d5〉 = 〈a, b, d〉 =
〈a, c, d〉 of Figure 1.2 has rank 3: adding the relations b2 = c2 = 1 maps G2

ANNALES DE L’INSTITUT FOURIER
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u uu u
va vb vc vd

3 2 3 73 10 5

e1 e2 e3

Figure 1.2. {va} is a 3–plateau, {vd} is a 5–plateau, e2 is a 2–plateau,
e1 ∪ e2 and {vd} are 5–plateaux, e3 is a 7–plateau, and Γ is a p–
plateau for p > 7. Every plateau meets {va, vb, vd} and {va, vc, vd}, so
G2 = 〈a, b, d〉 = 〈a, c, d〉.

onto Z/3Z ∗ 〈b, c | b3 = c7, b2 = c2 = 1〉 ∗ Z/5Z, which has rank 3 because
the middle group is Z/2Z.
This Z/2Z is associated to the edge e2, which we call a 2–plateau: 2

is a prime, e2 is a connected non-empty subgraph P , the labels carried by
edges in P (3 and 7) are not divisible by 2, but to exit the plateau one must
pass by a label (2 or 10) which is divisible by 2 (see Figures 1.1 and 1.2
for examples, and Definition 3.1 for a precise definition). A plateau P is
proper if P 6= Γ.
We will show that one obtains a generating set of minimal cardinality

rk(G) by removing certain generators av from any standard generating set
{(av), (tε)}. The set remains a generating set provided one keeps at least
one v in each plateau (see Figures 1.1 and 1.2). Thus:

Theorem 1.1 (Theorem 3.2). — Let G be a GBS group represented
by a labelled graph Γ. The rank of G is β(Γ) + µ(Γ), where β(Γ) is the
first Betti number and µ(Γ) is the minimal cardinality of a set of vertices
meeting every plateau.

On Figure 1.3, G = 〈a, b, c, t | a3 = b5, b2 = c3, tc5t−1 = a2〉 = 〈a, b, t〉 =
〈a, c, t〉 = 〈b, c, t〉. There are four plateaux: Γ and each of the edges, so
µ(Γ) = 2 and rk(G) = 1+2 = 3 by the theorem. In this example Grushko’s
theorem is not sufficient to prove rk(G) > 3, and we have to use Dun-
woody’s folding sequences [15].

Corollary 1.2 (Corollary 4.4). — One may compute the rank of the
mapping torus of a finite order outer automorphism of a finitely generated
free group Fn.

Indeed, these mapping tori are exactly the GBS groups with a non-trivial
center (see Proposition 4.1).

Using Theorem 1.1, we can show:

TOME 65 (2015), FASCICULE 2
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Figure 3: e1 is a 2-plateau, e2 is a 5-plateau, e3 is a 3-plateau, Γ is a p plateau
for p > 5, and G = 〈a, b, t〉 = 〈a, c, t〉 = 〈b, c, t〉.

A group G as in the theorem is represented by a labelled graph Γ, with a map π : Γ→ Γ
sending edge to edge and vertex to vertex. It is easy to show β(Γ) ≥ β(Γ). If some
component of π−1(P ) is a plateau whenever P ⊂ Γ is a plateau, the result is clear.
Unfortunately this is not true in general, so that μ(Γ) may be smaller than μ(Γ), and we
have to show that this is compensated for by an increase in β. This is not too hard to
do when Γ contains no proper 2-plateau, but 2-plateaux bring technical complications.
See for instance Figure 4 for a subgroup of index 2 of G = 〈a, b, t | a2 = b2, tb3t−1 = b5〉.
The graph Γ representing G contains two proper 2-plateaux (the terminal vertex and the
ellipse), but Γ contains no proper plateau.

Γ
5

3

22

π

Γ
5

3

1

1

1

1

Figure 4

If Γ representsG, and π : Γ′ → Γ is a finite covering, one may lift the labels from Γ to Γ′,
and Γ′ represents a finite index subgroup of G. When Γ contains no proper plateau, every
finite index subgroup of G is isomorphic to one obtained by this construction (Proposition
6.5). On the other hand, when Γ contains a proper p-plateau P , there are other finite
index subgroups, obtained by taking a covering of degree p branched over P (on Figure 4,
the branching is over the union of two 2-plateaux). As an application, we identify which
GBS groups are large (i.e. they have a finite index subgroup mapping onto a free group
F2):

3

Figure 1.3. e1 is a 2–plateau, e2 is a 5–plateau, e3 is a 3–plateau, Γ
is a p–plateau for p > 5, and G = 〈a, b, t〉 = 〈a, c, t〉 = 〈b, c, t〉.

Theorem 1.3 (Theorem 5.1). — If G is a finite index subgroup of a
GBS group G, then rk(G) > rk(G).

This property holds in free groups and surface groups, but not in arbi-
trary hyperbolic groups. As pointed out by I. Kapovich, the Rips construc-
tion [31] (applied to finite groups) yields hyperbolic groups of arbitrarily
large rank containing a 2–generated subgroup of finite index.

A group G as in the theorem is represented by a labelled graph Γ, with
a map π : Γ → Γ sending edge to edge and vertex to vertex. It is easy to
show β(Γ) > β(Γ). If some component of π−1(P ) is a plateau whenever
P ⊂ Γ is a plateau, the result is clear. Unfortunately this is not true in
general, so that µ(Γ) may be smaller than µ(Γ), and we have to show
that this is compensated for by an increase in β. This is not too hard to
do when Γ contains no proper 2–plateau, but 2–plateaux bring technical
complications. See for instance Figure 1.4 for a subgroup of index 2 of
G = 〈a, b, t | a2 = b2, tb3t−1 = b5〉. The graph Γ representing G contains
two proper 2–plateaux (the terminal vertex and the ellipse), but Γ contains
no proper plateau.
If Γ represents G, and π : Γ′ → Γ is a finite covering, one may lift

the labels from Γ to Γ′, and Γ′ represents a finite index subgroup of G.
When Γ contains no proper plateau, every finite index subgroup of G is
isomorphic to one obtained by this construction (Proposition 6.5). On the

ANNALES DE L’INSTITUT FOURIER
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Figure 3: e1 is a 2-plateau, e2 is a 5-plateau, e3 is a 3-plateau, Γ is a p plateau
for p > 5, and G = 〈a, b, t〉 = 〈a, c, t〉 = 〈b, c, t〉.

A group G as in the theorem is represented by a labelled graph Γ, with a map π : Γ→ Γ
sending edge to edge and vertex to vertex. It is easy to show β(Γ) ≥ β(Γ). If some
component of π−1(P ) is a plateau whenever P ⊂ Γ is a plateau, the result is clear.
Unfortunately this is not true in general, so that μ(Γ) may be smaller than μ(Γ), and we
have to show that this is compensated for by an increase in β. This is not too hard to
do when Γ contains no proper 2-plateau, but 2-plateaux bring technical complications.
See for instance Figure 4 for a subgroup of index 2 of G = 〈a, b, t | a2 = b2, tb3t−1 = b5〉.
The graph Γ representing G contains two proper 2-plateaux (the terminal vertex and the
ellipse), but Γ contains no proper plateau.
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If Γ representsG, and π : Γ′ → Γ is a finite covering, one may lift the labels from Γ to Γ′,
and Γ′ represents a finite index subgroup of G. When Γ contains no proper plateau, every
finite index subgroup of G is isomorphic to one obtained by this construction (Proposition
6.5). On the other hand, when Γ contains a proper p-plateau P , there are other finite
index subgroups, obtained by taking a covering of degree p branched over P (on Figure 4,
the branching is over the union of two 2-plateaux). As an application, we identify which
GBS groups are large (i.e. they have a finite index subgroup mapping onto a free group
F2):

3

Figure 1.4.

other hand, when Γ contains a proper p–plateau P , there are other finite
index subgroups, obtained by taking a covering of degree p branched over
P (on Figure 1.4, the branching is over the union of two 2–plateaux). As
an application, we identify which GBS groups are large (i.e. they have a
finite index subgroup mapping onto a free group F2):

Theorem 1.4 (Theorem 6.7). — A non-cyclic GBS group G is large if
and only if it cannot be represented by a labelled graph homeomorphic to
a circle and containing no proper plateau.

When Γ is a circle, with labels denoted xi and yi alternatively, the ab-
sence of a proper plateau is equivalent to

∏
xi being coprime with

∏
yi.

Theorem 1.4 was proved independently by T. Mecham [28]; see [16] for the
case of Baumslag–Solitar groups. We show in [26] that G is large if and
only if it is not a quotient of BS(m,n) with m,n coprime.

There may be infinitely many different labelled graphs Γ representing
a given GBS group G (this is why the isomorphism problem is difficult).
Uniqueness (up to sign changes and restricting to reduced graphs) holds
when Γ is strongly slide-free [17]: no two labels near a given vertex divide
each other. Using this, we show:

TOME 65 (2015), FASCICULE 2
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Theorem 1.5 (Theorem 6.9). — The commensurability problem is solv-
able among GBS groups represented by labelled graphs which are strongly
slide-free and contain no proper plateau.

The commensurability problem consists in deciding whether two given
groups contain isomorphic finite index subgroups. Among Baumslag–Solitar
groups BS(m,n), it is solved whenm and n are coprime [33], or equal in ab-
solute value, but the general case is open. Note that all GBS groups which
are virtually Fn×Z for some n are commensurable (provided n > 1); these
groups are called unimodular (see Section 2), in particular every GBS group
with non-trivial center is unimodular.
Theorem 1.5 applies in particular to the non-large groups of Theorem 1.4.

We show that any GBS group has a finite index subgroup represented by a
labelled graph with no proper plateau (Proposition 6.8), but unfortunately
this graph is not strongly slide-free in general.

Deciding commensurability in Theorem 1.5 amounts to deciding whether
the labelled graphs have a common finite covering; Leighton’s graph cov-
ering theorem [24, 29] ensures that this is possible.

I am grateful to M. Forester for explaining how to visualize finite index
subgroups, to R. Weidmann for suggesting the use of folding sequences,
and to W. Dicks for mentioning Leighton’s theorem and the reference
[29]. This work was partly supported by ANR-07-BLAN-0141-01 and ANR-
2010-BLAN-116-03.

2. Preliminaries

We refer to [18, 19, 25] for basic facts about GBS groups.
GBS groups are represented by labelled graphs. A labelled graph is a

finite graph Γ where each oriented edge e has a label λe, a nonzero integer
(possibly negative). We denote by V the set of vertices of Γ, and by E the
set of non-oriented edges. We view a non-oriented edge as ε = (e, ẽ), where
ẽ is e with the opposite orientation. We denote by v = o(e) the origin of e,
and by Ev the set of oriented edges with origin v. The cardinality |Ev| of
Ev is the valence of v. A vertex is terminal if it has valence one. We say
that λe is the label of e near the vertex o(e), and that λe is a label carried
by e or ε. There are |Ev| labels near a vertex v.
We write m ∧ n for the greatest common divisor (gcd) of two integers,

with the convention that m ∧ n > 0 regardless of the sign of m,n. On the
other hand, lcm(m,n) := mn

m∧n may be negative.

ANNALES DE L’INSTITUT FOURIER
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A connected labelled graph defines a graph of groups. All edge and vertex
groups are Z, and the inclusion from the edge group Ge to the vertex group
Go(e) is multiplication by λe. The fundamental group G of the graph of
groups is the GBS group represented by Γ (we do not always assume that
Γ is connected, but we implicitly do so whenever we refer to the group it
represents). The group G may be presented as follows.

Choose a maximal subtree Γ0 ⊂ Γ. There is one generator av for each
vertex v ∈ V , and one generator tε (stable letter) for each ε in E0, the set
of non-oriented edges not in Γ0. Each non-oriented edge ε = (e, ẽ) of Γ
contributes a relation Rε. The relation is (ao(e))λe = (ao(ẽ))λẽ if ε is in Γ0,
and tε(ao(e))λet−1

ε = (ao(ẽ))λẽ if ε is not in Γ0 (replacing e by ẽ amounts to
replacing tε by its inverse). This will be called a standard presentation of G,
and the generating set will be called a standard generating set (associated
to Γ and Γ0).
A GBS group is elementary if it is isomorphic to Z, or Z2, or the Klein

bottle group K = 〈x, y | x2 = y2〉 = 〈a, t | tat−1 = a−1〉. These are the
only virtually abelian GBS groups, and they have very special properties.
Unless mentioned otherwise, our results apply to all GBS groups, but we
do not always provide proofs for elementary groups.
A labelled graph Γ is minimal if its Bass–Serre tree T contains no proper

G–invariant subtree; this is equivalent to no label near a terminal vertex
being equal to ±1. The graph Γ is reduced [17] if any edge e such that
λe = ±1 is a loop (e and ẽ have the same origin). Any labelled graph may
be made reduced by a sequence of elementary collapses (see [17]); these
collapses do not change G.

The group G represented by Γ does not change if one changes the sign of
all labels near a given vertex v, or if one changes the sign of the labels λe,
λẽ carried by a given non-oriented edge ε. These will be called admissible
sign changes.
In general, there may be infinitely many reduced labelled graphs repre-

senting a given G. One case when uniqueness holds (up to admissible sign
changes) is when Γ is strongly slide-free ([17], see also [21]): if e and e′ are
edges with the same origin, λe does not divide λe′ .
We denote by β(Γ) the first Betti number of Γ. If G is non-elementary, all

labelled graphs representing G have the same β, and we sometimes denote
it by β(G).

Let G be represented by Γ. An element g ∈ G is elliptic if it fixes a
point in the Bass–Serre tree T associated to Γ, or equivalently if some
conjugate of g belongs to a vertex group of Γ. All elliptic elements are

TOME 65 (2015), FASCICULE 2
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pairwise commensurable (they have a common power). An element which is
not elliptic is hyperbolic. If G is non-elementary, ellipticity or hyperbolicity
does not depend on the choice of Γ representing G.

The quotient of G by the subgroup generated by all elliptic elements may
be identified with the topological fundamental group πtop1 (Γ) of the graph
Γ, a free group of rank β(Γ). In particular, any generating set of G contains
at least β(Γ) hyperbolic elements.

If G is non-elementary, there is a modular homomorphism ∆G : G→ Q∗
associated to G. It may be characterized as follows: given any non-trivial
elliptic element a, there is a non-trivial relation gamg−1 = an, and ∆G(g) =
m
n (the numbers m,n may depend on the choice of a, but m/n does not).
Elliptic elements have modulus 1, so ∆G factors through πtop1 (Γ) for any

Γ representing G. One may define ∆G directly in terms of loops in Γ: if γ ∈
πtop1 (Γ) is represented by an edge-loop (e1, . . . , em), then ∆G(γ) =

∏ λei

λẽi
.

Note that ∆G is trivial if Γ is a tree.
∆G is trivial if and only if the center of G is non-trivial. In this case

the center is cyclic and only contains elliptic elements (see [25]). Moreover,
there is an epimorphism G→ Z whose kernel contains no non-trivial elliptic
element (see Proposition 3.3 of [25]).
A non-elementary G is unimodular if the image of ∆G is contained in

{1,−1}. This is equivalent to G having a normal infinite cyclic subgroup,
and also to G being virtually Fn × Z for some n > 2.
Given any Γ, one may perform admissible sign changes so that at most

β(Γ) labels are negative (edges in some maximal subtree only carry positive
labels, edges not in the subtree carry at most one negative label). If ∆G

only takes positive values, one may make all labels positive.

3. Computing the rank

Let G be a GBS group. In this section we fix a (connected) labelled graph
Γ representing G. We assume that it is finite, but not necessarily minimal
or reduced.

Definition 3.1 (plateau, plateaunic number). — Let p be a prime num-
ber. A non-empty connected subgraph P ⊂ Γ is a p–plateau if the following
condition holds for every oriented edge e with v = o(e) belonging to P : the
label λe of e near v is divisible by p if and only if e is not contained in P .
We say that P is a plateau if it is a p–plateau for some p. It is proper if
P 6= Γ.

ANNALES DE L’INSTITUT FOURIER
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The plateaunic number µ(Γ) is the minimal cardinality of a set of vertices
meeting every plateau.

Let P be a p–plateau. Given e = vw, there are four possibilities. If e ⊂ P ,
none of the labels λe, λẽ is divisible by p. If v, w ∈ P but e is not contained
in P , both labels λe, λẽ are divisible by p. If v ∈ P and w /∈ P (or vice
versa), the label of e near v is divisible by p. If v, w /∈ P , there is no
restriction.
If v is a vertex, {v} is a p–plateau if and only if p divides every label

near v. A terminal vertex with label 6= ±1 is a plateau. Two p–plateaux
are disjoint or equal. The whole graph Γ is a p–plateau for all but finitely
many p, so µ(Γ) > 1.

Theorem 3.2. — LetG be a GBS group represented by a labelled graph
Γ.

• Every standard generating set contains a generating set of cardi-
nality rk(G).

• The rank of G equals β(Γ) + µ(Γ), where β(Γ) is the first Betti
number of Γ and µ(Γ) is its plateaunic number (see Definition 3.1).

In particular, the rank of G is computable from any labelled graph repre-
senting G. It follows from Proposition 3.9 below that one obtains a generat-
ing set of cardinality rk(G) by finding a set of vertices V1 ⊂ V of cardinality
µ(Γ) meeting every plateau, and deleting generators av for v /∈ V1 from any
standard generating set {(av)v∈V , (tε)ε∈E0}.

Remark 3.3. — β(Γ) + µ(Γ) is an invariant: it only depends on G. For
G non-elementary it is well-known that β(Γ) is an invariant, and it is not
hard to deduce directly from [17] or [8] that µ(Γ) is also an invariant.

The remainder of this section is devoted to the proof of Theorem 3.2, so
we fix G and Γ.

Given a prime number p and a p–plateau P ⊂ Γ, fix a maximal subtree
P0 ⊂ P , and a maximal subtree Γ0 ⊂ Γ with Γ0 ∩ P = P0. Consider the
associated standard presentation, with generators av and tε. We define a
quotient G′ of G by adding the relations av = 1 for v /∈ P , and (av)p = 1
for v ∈ P .

Lemma 3.4. — The rank of G′ is β(Γ) + 1.

Proof. — Consider an edge ε = (e, ẽ) not contained in P . The elements
(ao(e))λe and (ao(ẽ))λẽ are killed in G′ since λe is divisible by p if o(e) ∈ P ,
so we may remove the relation Rε from the presentation of G′.

TOME 65 (2015), FASCICULE 2
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For simplicity, we first consider the case when Γ is a tree. Then G′ is
generated by the elements av for v ∈ P , and (av)p = 1 in G′. The other
relations come from edges of P , they are of the form (ao(e))λe = (ao(ẽ))λẽ .
The key point here (as in the group G2 of Figure 1.2) is that no exponent λe
(or λẽ) is divisible by p, so multiplication by λe defines an automorphism
of Z/pZ. Thus G′ is the fundamental group of a graph of groups with
underlying graph P , vertex and edge groups Z/pZ, and inclusions given by
multiplication by the λe’s. It follows that G′ is isomorphic to Z/pZ, so has
rank 1 = β(Γ) + 1.

The general case is similar. Since Γ0 ∩ P = P0, there are β(Γ) − β(P )
edges not contained in either P or Γ0. The associated stable letters are not
involved in any relation, so G′ is the free product of a free group of rank
β(Γ)− β(P ) with G′′ = 〈(av)v∈P , (tε)ε⊂P\P0

〉. As in the previous case, G′′

is the fundamental group of a graph of Z/pZ’s based on P . It maps onto the
topological fundamental group of P with kernel Z/pZ, so has rank β(P )+1.
By Grushko’s theorem, G′ has rank β(Γ)−β(P )+β(P )+1 = β(Γ)+1. �

Definition 3.5 (Minimally hyperbolic). — A generating set S of G is
minimally hyperbolic if it contains exactly β(Γ) hyperbolic elements.

Recall that any generating set contains at least β(Γ) hyperbolic elements.
Standard generating sets are minimally hyperbolic.

Corollary 3.6. — Let S be a minimally hyperbolic generating set. For
each elliptic element s ∈ S, fix a vertex vs of Γ such that s has a conjugate
contained in the vertex group Gvs . Then every plateau contains some vs.
In particular, S has at least β(Γ) + µ(Γ) elements.

Proof. — Let P be a p–plateau, and let G′ be as above. If P contains no
vs, every avs

is killed in G′, so every elliptic element of S is killed in G′.
Since S is minimally hyperbolic, G′ may be generated by β(Γ) elements.
This contradicts Lemma 3.4. �

The following fact is used in [26].

Corollary 3.7. — Let S be a minimally hyperbolic generating set.
Given a p–plateau P , there exist s ∈ S and v ∈ P such that s is conjugate
to a power (av)q with q not divisible by p.

Proof. — As in the previous proof, some elliptic s ∈ S must survive in
G′. Being elliptic, s is conjugate to some power (av)q with v ∈ V . Survival
implies that v is in P and q is not divisible by p. �

Remark 3.8. — If S is not minimally hyperbolic, let h(S) be the number
of hyperbolic elements in S. If P1, . . . , Pi, . . . Pk are disjoint pi–plateaux
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with k > h(S)− β(Γ), there exist s ∈ S, and i, such that s is conjugate to
(av)q with v ∈ Pi and q not divisible by pi. To prove this, one defines G′
by adding relations av = 1 for v /∈ ∪iPi and (av)pi = 1 for v ∈ Pi. It has
rank β(Γ) + k, so some elliptic s ∈ S survives in G′.

Proposition 3.9. — Let S = {(av)v∈V , (tε)ε∈E0} be a standard gener-
ating set. For V1 ⊂ V , define S1 ⊂ S by keeping only the tε’s and the av’s
for v ∈ V1. Then S1 generates G if and only if V1 meets every plateau.

Proof. — If S1 generates, V1 meets every plateau by Corollary 3.6. We
now suppose that G1 = 〈S1〉 is not G, and we construct a plateau P disjoint
from V1. We may assume V1 6= ∅ and V1 6= Γ.

For v ∈ V , define the integer nv > 1 by G1 ∩ 〈av〉 = 〈anv
v 〉; it exists

because V1 6= ∅ and the av’s are all commensurable. Note that nv = 1 if
v ∈ V1. Since G1 6= G, we have nv > 1 for some v /∈ V1, so we may fix a
prime p dividing some nv. For each v /∈ V1, let pδv be the maximal power
dividing nv, and let δ > 1 be the maximal value of δv (for v /∈ V1).

We now define a subgraph Γ1 ⊂ Γ as follows. Its vertices are the vertices
v /∈ V1 such that δv = δ. An edge ε = (e, ẽ) is in Γ1 if and only if its vertices
are in Γ1 and none of λe, λẽ is divisible by p. We complete the proof by
showing that every component of Γ1 is a p–plateau.

This is equivalent to the following fact: if e is an edge with δo(e) = δ such
that the label λe of e near o(e) is not divisible by p, then δo(ẽ) = δ and the
label λẽ near o(ẽ) is not divisible by p. Let us write v = o(e) and w = o(ẽ).
Let ae = (av)λe . Since p does not divide λe, and δv = δ, the smallest

n such that (ae)n ∈ G1 is divisible by pδ. The standard presentation of
G contains a relation Rε expressing ae as (aw)λẽ (possibly conjugated by

a stable letter tε). Let θ = lcm(nw, λẽ)
λẽ

= nw
nw ∧ λẽ

. Since G1 contains

(aw)nw and all stable letters, it contains (aw)λẽθ and (ae)θ. It follows that
pδ divides θ, hence nw, so δw = δ. Since nw is not divisible by pδ+1, we
deduce that p does not divide λẽ. �

Corollary 3.6 and Proposition 3.9 imply:

Corollary 3.10.
• Every standard generating set contains a generating set of cardi-
nality β(Γ) + µ(Γ). In particular, β(Γ) + µ(Γ) > rk(G).

• The minimal cardinality of a minimally hyperbolic generating set
is β(Γ) + µ(Γ).

This is clear, recalling that standard generating sets are minimally hyper-
bolic. The following proposition now completes the proof of Theorem 3.2.
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Proposition 3.11. — There exists a minimally hyperbolic generating
set of cardinality rk(G).

Proof. — The proof is by induction on r = rk(G), with the result clear
for r = 1. We fix a generating set X of cardinality r, which we view as an
epimorphism π from the free group F (X) to G. Let T0 be the Cayley tree
of F (X), with the natural action of F (X). Let T be the Bass–Serre tree of
Γ, with the natural action of G. Trimming Γ if necessary, we may assume
that G acts minimally on T .
By Theorem 2.1 of [15], there exists a sequence T0

f0→ T1
f1→ · · · → Ti →

. . .
fn−1→ Tn = T of simplicial trees Ti with an action of a group Gi such

that:

(1) G0 = F (X), Gn = G, and there are epimorphisms πi : Gi → Gi+1,
with πn−1 ◦ · · · ◦ π0 = π;

(2) the restriction of πn−1 ◦ · · · ◦ πi to each vertex stabilizer of Ti is
injective;

(3) the map fi : Ti → Ti+1 is equivariant with respect to πi; it is either
a subdivision or a basic fold followed by a vertex morphism (see
[15] for definitions).

The action of Gi on Ti is not necessarily minimal. By condition 2 (and
equivariance), all vertex and edge stabilizers are cyclic (possibly trivial). In
particular, Gi is a free product of GBS groups. Note that all groups Gi have
rank r. If a group acts on a tree T , we say that a generating set is minimally
T–hyperbolic if no other generating set contains fewer hyperbolic elements.
Consider the smallest k such that Gk+1 is a GBS group.
• We first show that Gk+1 has a minimally Tk+1–hyperbolic generating

set of cardinality r.
The previous group Gk is a nontrivial free product of (possibly cyclic)

GBS groups of rank < r. Indeed, define a graph of groups Γ̂k by collapsing
to a point each edge of Γk = Tk/Gk with stabilizer Z. We can write Gk as
the free product of GBS vertex groupsHv of Γ̂k, together with β(Γ̂k) infinite
cyclic groups generated by stable letters. The free product is nontrivial
because Gk is not a GBS group.
By induction on r, each Hv has a minimally Tk–hyperbolic generating set

Sv of cardinality rk(Hv). Consider a generating set Sk of Gk obtained by
adjoining β(Γ̂k) stable letters to the union of the Sv’s. By Grushko’s the-
orem, it has r elements. Since each Sv is minimally Tk–hyperbolic, exactly
β(Γk) elements of Sk are hyperbolic in Tk.
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If passing from Tk to Tk+1 involves no basic fold of type III (see Figure
1 in [Du]), one has β(Γk+1) = β(Γk). Since πk(g) is elliptic in Tk+1 if g
is elliptic in Tk, the image of Sk in Gk+1 is the desired minimally Tk+1–
hyperbolic generating set. If there is a fold of type III, so that β(Γk+1) =
β(Γk)− 1, the stable letter associated to the folded loop (the element g in
Figure 1 of [15]) becomes elliptic in Tk+1. Once again πk(Sk) is a minimally
Tk+1–hyperbolic generating set of Gk+1.
• We now show by induction on i > k + 1 that Gi has a minimally Ti–

hyperbolic generating set of cardinality r. This proves the proposition since
Gn = G.
The result is true for i = k + 1. Assume it is true for some i. Let Si be

a minimally Ti–hyperbolic generating set of Gi of cardinality r, obtained
by removing elliptic elements from any standard generating set (such an
Si exists by the induction hypothesis and Corollary 3.10). As above, the
image of Si in Gi+1 is the desired generating set: if there is a basic fold of
type III, we have β(Γi+1) = β(Γi)− 1, but the definition of Si guarantees
that some stable letter in Si becomes elliptic in Ti+1. �

4. Finite order automorphisms of free groups

We denote by Fn the free group of rank n. Given Φ ∈ Out(Fn), we denote
by MΦ the mapping torus MΦ = Fn oΦ Z = 〈Fn, t | tgt−1 = α(g)〉, where
α ∈ Aut(Fn) is any representative of Φ.

Proposition 4.1. — Given a group G, the following are equivalent:
• G is a GBS group with non-trivial center;
• there exist n and Φ ∈ Out(Fn) of finite order such that G = MΦ.

Proof. — We may assume that G is not Z, Z2, or the Klein bottle group.
Let G be a GBS group with non-trivial center Z. Then (see Section 2) G

is virtually Fr ×Z for some r > 2, and there is an epimorphism τ : G→ Z
which is non-trivial on Z. The restriction of τ to Fr×Z is non-trivial on the
factor Z, so its kernel is free of finite rank (projecting onto Fr identifies the
kernel with a finite index subgroup of Fr). It follows that ker τ is finitely
generated and virtually free, hence equal to some Fn since G is torsion-free.
This shows that G = MΦ for some Φ ∈ Out(Fn). View the center Z as a
subgroup of MΦ and write a generator as tkg with k ∈ Z and g ∈ Fn. One
has k 6= 0, and Φk is the identity because Z is central.
Conversely, suppose that Φ ∈ Out(Fn) has finite order. We first show

that MΦ is a GBS group. The following simple argument is due to V.
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Guirardel. By [12, 22, 34], Φ is induced by an automorphism of a finite
graph Λ with fundamental group isomorphic to Fn. The group MΦ is the
fundamental group of a 2–complex made of circles (associated to vertices
of Λ) and annuli (associated to edges), so is a GBS group. We now show
that the center of MΦ is non-trivial.
Let α ∈ Aut(Fn) be a representative of Φ. There exists k > 1 such that

αk is conjugation by some g ∈ Fn. If g is trivial, tk is central. If not, we
consider the subgroup ofMΦ generated by Fn and tk. It has finite index and
non-trivial center (generated by tkg−1). It follows that the modular map
∆MΦ (see Section 2) has finite image, so MΦ has a normal infinite cyclic
subgroup Z (containing tkg−1). This subgroup is not contained in Fn, so
is in fact central: otherwise any non-trivial z ∈ Z would be conjugate to
z−1, a contradiction since z maps non-trivially under the natural projection
from MΦ to Z = 〈t〉. �

Example 4.2. — Out(F2) contains an element Φ of order 6. It is repre-
sented by an automorphism f of the theta graph (it has 2 vertices joined
by 3 edges, and f is a symmetry of order 6). One considers midpoints of
edges as vertices, so that there is one orbit of edges (with period 6) and
two orbits of vertices (one with period 3, one with period 2). It follows that
MΦ = 〈a, b | a3 = b2〉.

Remark. — It may be shown that MΦ is not a GBS group if Φ ∈
Out(Fn) has infinite order:MΦ is residually finite (as a semi-direct product
of finitely generated residually finite groups), so cannot be a GBS group
unless it is virtually Fr × Z (see [26] for a proof); but then Φ has finite
order (argue as in the proof of the proposition).

Corollary 4.3. — Let α ∈ Aut(Fn) and k > 2. If αk is conjugation
by some g ∈ Fn, then α(g) = g.

Proof. — We have seen in the proof of Proposition 4.1 that tkg−1 is
central in MΦ. In particular it commutes with t, so t commutes with g.
This means α(g) = g. �

Remark. — This result is not specific to G = Fn. It holds whenever the
outer automorphism defined by αmay be represented by a homeomorphism
of finite order of a space X with π1(X) = G.

Corollary 4.4. — One may compute the rank of the mapping torus of
a finite order automorphism of a free group Fn: there is an algorithm which,
given Φ ∈ Out(Fn) of finite order, computes the rank of MΦ = Fn oΦ Z.
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Proof. — Given Φ of finite order, we know that MΦ is a GBS group. We
may find a standard GBS presentation of MΦ by applying Tietze transfor-
mations to the presentation as a semidirect product, or by arguing as in
Example 4.2. We then apply Theorem 3.2. �

Remark. — Given Φ ∈ Out(Fn) and Ψ ∈ Out(Fq), both of finite order,
one may decide whether MΦ and MΨ are isomorphic [19].

5. The rank of finite index subgroups

This section is devoted to the proof of the following result:

Theorem 5.1. — If G is a GBS group, and G ⊂ G has finite index,
then rk(G) > rk(G).

5.1. A reduction

The first step in the proof is to reduce the theorem to a result about
graphs (Proposition 5.4).

We say that a map between graphs is a morphism if it sends vertex to
vertex and edge to edge.
We represent G by a labelled graph Γ. In this section we will assume

that Γ is reduced (if λe = ±1, then e is a loop). The group G acts on
the Bass–Serre tree T of Γ and this yields a graph of groups Γ = T/G,
with a morphism π : Γ → Γ. We describe Γ and π using topology. More
conceptually, π (and the admissible maps of Section 6) are coverings of
graphs of groups in the sense of Bass [1]; our point of view is closer to that
of Scott–Wall [32].
It is standard to associate a foliated 2–complex Θ to Γ. One associates

a circle Cv to each vertex v, an annulus Aε = [0, 1]× S1 foliated by circles
{∗}×S1 to each non-oriented edge ε, and boundaries of annuli are glued to
circles by maps whose degree (positive or negative) is given by the labels
of Γ. One recovers Γ from Θ by collapsing each circle to a point. The
fundamental group of Θ is G, and G defines a finite covering ρ : Θ → Θ
whose degree is the index of G. The complex Θ is also made of circles and
annuli, Γ is the corresponding graph, and π is induced by ρ.

Definition 5.2 (multiplicity mx, me). — A point x of Γ corresponds
to a circle of Θ, and the restriction of ρ to this circle is a covering map
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whose degree we call the multiplicity mx of x: we thus associate a positive
integer mx to each point x of Γ. All points belonging to the interior of a
given edge have the same multiplicity, so we also define the multiplicity me

of an edge e of Γ. Given a point u in Γ, the sum
∑
x∈π−1(u)mx is constant,

equal to the index of G; we call it the total multiplicity of π.

Algebraically, multiplicities are indices [Gp : Gp ∩G], with Gp the stabi-
lizer of a point p ∈ T .

Lemma 5.3. — The morphism π : Γ → Γ satisfies the following condi-
tion (∗):

Given an edge e of Γ, with origin v and label λe near v, and x ∈ π−1(v),
define kx,e as the gcd mx ∧ λe. Then (see Figure 5.1) there are kx,e edges
of Γ with origin x mapping to e; they each have multiplicity mx/kx,e, and
their label near x is λe/kx,e.

to the interior of a given edge have the same multiplicity, so we also define the multiplicity
me of an edge e of Γ. Given a point u in Γ, the sum

∑
x∈π−1(u)mx is constant, equal to

the index of G; we call it the total multiplicity of π.

Algebraically, multiplicities are indices [Gp : Gp ∩G], with Gp the stabilizer of a point
p ∈ T .

Lemma 5.3. The morphism π : Γ→ Γ satisfies the following condition (∗):
Given an edge e of Γ, with origin v and label λe near v, and x ∈ π−1(v), define kx,e

as the gcd mx ∧ λe. Then (see Figure 5) there are kx,e edges of Γ with origin x mapping
to e; they each have multiplicity mx/kx,e, and their label near x is λe/kx,e.

v e

λe

λe/kx,e

x
kx,e = mx ∧ λe

︸
︷︷

︸

mx

mx/kx,e

Figure 5: condition (∗)

Proof. A neighborhood of Cv in the annulus Aε corresponding to e has fundamental group
Z, and one simply studies its preimage by ρ. The group Gx carried by x in Γ has index mx

in Gv, and Ge has index λe in Gv. Their intersection has index lcm(mx, λe) = mxλe/kx,e
in Gv, index mx/kx,e in Ge, and index λe/kx,e in Gx.

Remark. One may also prove this lemma algebraically, by considering intersections of G
with vertex and edge stabilizers of T .

Proposition 5.4. Let Γ and Γ be connected labelled graphs. Assume that Γ is reduced (if
λe = ±1, then Γ is a loop), and a positive multiplicity is assigned to each vertex and edge
of Γ. If there exists a morphism π : Γ→ Γ satisfying (∗), then β(Γ)+μ(Γ) ≥ β(Γ)+μ(Γ).

Recall that β is the first Betti number, and μ is the plateaunic number (Definition 3.1).
It follows from Theorem 3.2 that this proposition implies Theorem 5.1. The remainder of
this section is devoted to its proof.

5.2 The main idea

Let π be as in the proposition. It is open: the image of a neighborhood of a vertex x is
a neighborhood of π(x). If Γ′ ⊂ Γ is a connected subgraph, every component of π−1(Γ′)
maps onto Γ′, and the restriction satisfies (∗). Note that no label near a terminal vertex
of Γ is ±1 (Γ is minimal, but not necessarily reduced).

In the situation of Lemma 5.3, let e be an edge of Γ with origin x mapping onto e. We
call e a lift of e (at x).

Let p be a prime.

11

Figure 5.1. condition (∗)

Proof. — A neighborhood of Cv in the annulus Aε corresponding to e
has fundamental group Z, and one simply studies its preimage by ρ. The
group Gx carried by x in Γ has index mx in Gv, and Ge has index λe in
Gv. Their intersection has index lcm(mx, λe) = mxλe/kx,e in Gv, index
mx/kx,e in Ge, and index λe/kx,e in Gx. �

ANNALES DE L’INSTITUT FOURIER



GENERALIZED BAUMSLAG-SOLITAR GROUPS 741

Remark. — One may also prove this lemma algebraically, by considering
intersections of G with vertex and edge stabilizers of T .

Proposition 5.4. — Let Γ and Γ be connected labelled graphs. Assume
that Γ is reduced (if λe = ±1, then Γ is a loop), and a positive multiplicity is
assigned to each vertex and edge of Γ. If there exists a morphism π : Γ→ Γ
satisfying (∗), then β(Γ) + µ(Γ) > β(Γ) + µ(Γ).

Recall that β is the first Betti number, and µ is the plateaunic number
(Definition 3.1). It follows from Theorem 3.2 that this proposition implies
Theorem 5.1. The remainder of this section is devoted to its proof.

5.2. The main idea

Let π be as in the proposition. It is open: the image of a neighborhood
of a vertex x is a neighborhood of π(x). If Γ′ ⊂ Γ is a connected subgraph,
every component of π−1(Γ′) maps onto Γ′, and the restriction satisfies (∗).
Note that no label near a terminal vertex of Γ is ±1 (Γ is minimal, but not
necessarily reduced).
In the situation of Lemma 5.3, let e be an edge of Γ with origin xmapping

onto e. We call e a lift of e (at x).
Let p be a prime.
If λe is not divisible by p (in particular if e is contained in a p–plateau),

the label λe of e near x is not divisible by p. Moreover kx,e is not divisible
by p, so mx and me are both divisible by p or both non divisible by p.

If λe is divisible by p, note that kx,e is divisible by p if and only if mx is.
If mx is not divisible by p, then λe is divisible by p.

It is easy to check that β(Γ) > β(Γ) (see Lemma 5.6). Suppose that,
for each plateau P ⊂ Γ, some component of π−1(P ) is a plateau. Then
µ(Γ) > µ(Γ) and the result is clear. We therefore consider a p–plateau P ,
and we study π−1(P ). We may assume P 6= Γ.
If there exists a vertex x ∈ π−1(P ) with mx not divisible by p, it fol-

lows from previous observations that the same holds for all points in the
component P of π−1(P ) containing x, and P is a p–plateau.

We therefore assume that mx is divisible by p for every vertex x ∈
π−1(P ). Since P 6= Γ, there is an edge e with origin v ∈ P which is not
contained in P . If x ∈ π−1(v), the number of lifts of e at x is divisible by
p since both mx and λe are. In particular, denoting by dv the valence of a
vertex, we have dx > dv + p− 1.
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We conclude that, if P is a p–plateau such that no component of π−1(P )
is a p–plateau, there exist v ∈ P and x ∈ π−1(v) such that the valence of
x satisfies dx > dv + p− 1.

The main idea of the proof now is the following: the existence of such
P ’s may cause µ(Γ) to be smaller than µ(Γ), but the increase in valence
will force β(Γ) to be larger than β(Γ), so that β(Γ) + µ(Γ) > β(Γ) + µ(Γ)
does hold (recall the formula β(Γ) = 1 + 1

2
∑
v(dv − 2) for the first Betti

number of a connected graph Γ).
If p > 2 for all P ’s as above, we have dx > dv + 2 and the proof is not

too hard, as we shall now explain. On the other hand, if p = 2, we only
have dx > dv + 1 and this makes the proof much more complicated.

5.3. The simple case

Notation.

• β: first Betti number (we write β, β′ for the first Betti number of
Γ, Γ′, etc.)

• µ: plateaunic number
• t: number of terminal vertices
• dv: valence of a vertex
• V : vertex set
• Ev: oriented edges with origin v
• Γv: preimage π−1(v)
• mx,me: multiplicity of a vertex, an edge

The following lemma is left to the reader.

Lemma 5.5. — Let Γ be a finite connected graph, with vertex set V .
Then:

β = 1 +
∑
v∈V

(dv2 − 1)

β + t = 1 +
∑
v∈V
|dv2 − 1|

β + t

2 = 1 +
∑
v∈V

max(dv2 − 1, 0).

�
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Lemma 5.6. — Let π : Γ → Γ be an open morphism between finite
connected graphs. Then:

β 6 β

β + t

2 6 β + t

2
(β, t refer to Γ, and β, t refer to Γ).

Proof. — Consider any loop γ in Γ. Since π is open, there exists a loop
in Γ projecting onto a power of γ. This proves the first inequality.
For the other inequality, write

max(dv2 − 1, 0) 6
∑
x∈Γv

max(dx2 − 1, 0)

for v ∈ V and use the third equality of the previous lemma. �

Let π be as in Proposition 5.4.

Definition 5.7 (∆v). — For v ∈ V , define

∆v =
∑
x∈Γv

|dx2 − 1| − |dv2 − 1|.

This is non-negative, unless v is a terminal vertex whose preimages all
have valence 2 (in this case ∆v = − 1

2 ). Note that such a v is a 2–plateau,
since the label near v must be even. Thus ∆v is always non-negative if Γ
contains no proper 2–plateau.
Also note that the second equality of Lemma 5.5 yields∑

v∈V
∆v = (β + t)− (β + t).

Remark. — Since ∆v may be negative, it is not always true that β+t 6
β+t (for instance, Γ may be a circle subdivided into two intervals, mapping
onto an interval). See Lemma 5.20 for a complete discussion.

Definition 5.8 (boundary, frontier point, interior plateau). —
The boundary ∂P of a p–plateau is the set of oriented edges e with origin
v in P and terminal point not in P ; the vertex v is a frontier point of P .
Note that the label λe of the edge e is divisible by p.

A plateau P is interior if P is not the whole graph and P contains no
terminal vertex.

Every terminal vertex of Γ (or Γ) is a plateau, so µ is the sum of t and
the minimal cardinality of a set meeting every interior plateau (unless t = 0
and Γ is the only plateau).
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Definition 5.9 (totally unfolded). — A plateau P ⊂ Γ is p–totally
unfolded if P is a p–plateau and, given any edge e ∈ ∂P with origin v ∈ P ,
and x ∈ Γv, the number of lifts of e at x is divisible by p. A plateau is
totally unfolded if it is p–totally unfolded for some p.

It may happen that P is both a p–plateau and a p′–plateau, totally
unfolded as a p–plateau but not as a p′–plateau. We consider such a P as
totally unfolded.
The arguments in the previous subsection show:

Lemma 5.10. — If no component of π−1(P ) is a plateau, then P is
totally unfolded. �

Definition 5.11 (minimal plateau, c). — A minimal plateau is a pla-
teau P ⊂ Γ which is interior, totally unfolded, and minimal for these prop-
erties. If a minimal plateau is p–totally unfolded, we say that it is a minimal
p–plateau.
Let c be the minimal cardinality of a set of vertices meeting every minimal

plateau.

Lemma 5.12. — If Γ contains no proper 2–plateau, one has β + t+ c 6
β + t.

Proof. — We have seen that
∑
v∈V ∆v = (β+t)−(β+t), so it suffices to

show
∑
v∈V ∆v > c. Since ∆v is non-negative at terminal vertices (because

there is no 2–plateau), we may restrict the sum to non-terminal vertices.
For each minimal plateau Pi, we fix an edge ei ∈ ∂Pi with origin vi ∈ Pi,

and an odd prime pi such that Pi is pi–totally unfolded.
Given a non-terminal vertex v, consider the minimal plateaux Pi such

that vi = v. Let nv be their number (possibly 0). Note that the associated
pi’s are distinct. We shall show ∆v > nv. Assuming this,

∑
v∈V ∆v is

bounded below by the number of minimal plateaux, hence by c as required.
Fix x ∈ Γv. Since v is not terminal, the terms dx2 − 1 and dv

2 − 1 are
non-negative and

2∆v = dx − dv +
∑

y∈Γv\{x}

(dy − 2) > dx − dv.

Given an edge e with origin v, consider the plateaux Pj such that ej = e.
Let ne be their number (possibly 0). The number dx,e of lifts of e at x is
divisible by the product of the corresponding pj ’s, so is bounded below by
2ne + 1 (because the product of n odd prime numbers is at least 2n + 1).
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Summing over all edges e with origin v we get

dx =
∑
e∈Ev

dx,e > 2
∑
e∈Ev

ne + dv = 2nv + dv,

so 2∆v > dx − dv > 2nv as required. �

Corollary 5.13. — Proposition 5.4 is true if Γ contains no proper
2–plateau.

Proof. — One has µ = t + |A|, where A ⊂ Γ is a subset of minimal
cardinality such that every plateau of Γ meets A or contains a terminal
vertex. If C ⊂ V is a set of minimal cardinality c meeting every minimal
plateau of Γ, the union of C ∪ π(A) with the terminal vertices meets every
plateau of Γ (totally unfolded or not) by Lemma 5.10, so µ 6 c + |A| + t.
Using β + t+ c 6 β + t, we get

β + µ 6 β + c+ |A|+ t 6 β + t+ |A| = β + µ.

�

Proposition 5.4 thus follows fairly directly from the inequality of Lemma 5.12.
Unfortunately, that inequality does not always hold, and in the general case
we will have to deduce the proposition from the weaker lemma 5.24.

5.4. The general case

Unless mentioned otherwise, π is as in Proposition 5.4.
The assumption that there is no proper 2–plateau was used in the pre-

vious subsection to ensure ∆v > 0 and
∏ne

j=1 pj > 2ne + 1. This motivates
the following definitions.

Definition 5.14 (bad vertex, good vertex, Vg). — A vertex v of Γ is
bad if ∆v < 0, i.e. if v is terminal and all its preimages in Γ have valence
2. The label near a bad vertex is even.
Let Vg be the set of good (i.e. not bad) vertices of Γ.

Definition 5.15 (bad plateau). — A minimal plateau P ⊂ Γ is bad
if it is 2–totally unfolded, its boundary consists of a single edge e, and e

has exactly 2 lifts in Γ (so the origin of e has a single preimage since P is
totally unfolded).

Definition 5.16 (tg, cg). — Let tg be the number of good terminal
vertices, and cg the number of good minimal plateaux.

Lemma 5.17. — One has β + tg + cg 6 β + t.
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Proof. — We argue as in the proof of Lemma 5.12. Since ∆v = − 1
2 if v

is bad, we have
∑
v∈V \Vg

∆v = − 1
2 (t− tg) and∑

v∈Vg

∆v =
∑
v∈V

∆v+ 1
2(t−tg) = (β+t)−(β+t)+ 1

2(t−tg) 6 (β+t)−(β+tg),

and we reduce to showing
∑
v∈Vg

∆v > cg. We define pi, ei, vi, nv, ne as
above (with pi = 2 now allowed), except that we restrict to good plateaux,
and we try to prove ∆v > nv for v ∈ Vg (we will not succeed in all cases).
In the proof of Lemma 5.12, we deduced ∆v > nv from the inequalities

2∆v > dx − dv

dx =
∑
e∈Ev

dx,e >
∑
e∈Ev

(
ne∏
j=1

pj)

ne∏
j=1

pj > 2ne + 1.

The first two inequalities are still true, but the third inequality may be
wrong. This happens precisely when ne = 1 and p1 = 2 (recall that the
pj ’s are distinct), so we have ∆v > nv unless v is the chosen frontier point
vi of a 2–totally unfolded plateau Pi. In this case we have only proved
2∆v > 2nv − 1 (this does not imply ∆v > nv because ∆v is not necessarily
an integer). To conclude, we shall use goodness of Pi to find an edge in ∂Pi
with a lift not taken into account in the previous estimates.
If e has more than 2 lifts in Γ, or if there are 2 edges with origin v in ∂Pi,

we still have ∆v > nv because one of the first two inequalities displayed
above is strict. Otherwise, since Pi is good, it has another frontier point
wi. Every edge with origin wi in ∂Pi has at least 2 lifts, and we have
∆v + ∆wi > nv + nwi even if ∆v < nv. The wi’s are distinct because 2–
plateaux are equal or disjoint, so we get

∑
v∈Vg

∆v >
∑
v∈Vg

nv = cg. �

In the following definitions, and in Lemma 5.20, the graphs do not have
to be labelled, and π is just an open morphism between finite connected
graphs.

Definition 5.18 (accordion). — π : Γ → Γ is an accordion if Γ is
homeomorphic to a circle and Γ to an interval (see Figure 5.2). Thus the
terminal vertices of Γ are bad, and Γ is the union of 2n intervals (possibly
subdivided), each mapped homeomorphically to Γ. We call n the size of
the accordion.
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Lemma 5.17. One has β + tg + cg ≤ β + t.

Proof. We argue as in the proof of Lemma 5.12. Since Δv = −1
2 if v is bad, we have∑

v∈V \Vg
Δv = −1

2(t− tg) and

∑

v∈Vg

Δv =
∑

v∈V
Δv +

1

2
(t− tg) = (β + t)− (β + t) +

1

2
(t− tg) ≤ (β + t)− (β + tg),

and we reduce to showing
∑

v∈Vg
Δv ≥ cg. We define pi, ei, vi, nv, ne as above (with pi = 2

now allowed), except that we restrict to good plateaux, and we try to prove Δv ≥ nv for
v ∈ Vg (we will not succeed in all cases).

In the proof of Lemma 5.12, we deduced Δv ≥ nv from the inequalities

2Δv ≥ dx − dv

dx =
∑

e∈Ev

dx,e ≥
∑

e∈Ev

(

ne∏

j=1

pj)

ne∏

j=1

pj ≥ 2ne + 1.

The first two inequalities are still true, but the third inequality may be wrong. This
happens precisely when ne = 1 and p1 = 2 (recall that the pj’s are distinct), so we have
Δv ≥ nv unless v is the chosen frontier point vi of a 2-totally unfolded plateau Pi. In this
case we have only proved 2Δv ≥ 2nv − 1 (this does not imply Δv ≥ nv because Δv is not
necessarily an integer). To conclude, we shall use goodness of Pi to find an edge in ∂Pi

with a lift not taken into account in the previous estimates.
If e has more than 2 lifts in Γ, or if there are 2 edges with origin v in ∂Pi, we still have

Δv ≥ nv because one of the first two inequalities displayed above is strict. Otherwise,
since Pi is good, it has another frontier point wi. Every edge with origin wi in ∂Pi has
at least 2 lifts, and we have Δv +Δwi ≥ nv + nwi even if Δv < nv. The wi’s are distinct
because 2-plateaux are equal or disjoint, so we get

∑
v∈Vg

Δv ≥
∑

v∈Vg
nv = cg.

n the following definitions, and in Lemma 5.20, the graphs do not have to be labelled,
and π is just an open morphism between finite connected graphs.

Definition 5.18 (accordion). π : Γ→ Γ is an accordion if Γ is homeomorphic to a circle
and Γ to an interval (see Figure 6). Thus the terminal vertices of Γ are bad, and Γ is the
union of 2n intervals (possibly subdivided), each mapped homeomorphically to Γ. We call
n the size of the accordion.

π

Figure 6: an accordion of size 2

15

Figure 5.2. an accordion of size 2

Definition 5.19 (branched covering). — π : Γ → Γ is a branched 2–
covering of a tree (or simply a branched covering) if Γ is a tree, and for
u ∈ Γ the preimage Γu consists of a single point if u is a terminal vertex of
Γ, of 2 points otherwise (see Figure 5.3). In particular, all terminal vertices
of Γ are bad.

An accordion of size 1 is a branched covering.
The following topological lemma may be seen as a warm-up for the proof

of Lemma 5.24.

Lemma 5.20. — Let π : Γ → Γ be an open morphism between finite
connected graphs. One has β + t = β + t + 1 if π is an accordion or a
branched 2–covering of a tree, β + t 6 β + t otherwise.

Proof. — If π is an accordion, one has β + t = 0 + 2 = 2 and β + t =
1 + 0 = 1. If it is a branched 2–covering of a tree, then β = t = 0 and
β = t− 1. We now consider the general case.
As a preliminary observation, note that a connected graph satisfies β+t >

2 unless it is homeomorphic to a point or a circle. If Γ is a circle, Γ is a
circle or an interval. Also note that the lemma is true if Γ has only one
edge. We will argue by induction on the number of edges of Γ.

Let v be a bad vertex of Γ (the result follows from Lemma 5.17 if there
is none). We define a vertex w as follows (see Figure 5.4).
Let v1 be the vertex adjacent to the terminal vertex v. We let w = v1

if the valence of v1 is different from 2, or if the valence is 2 and every
x ∈ Γv1 is the origin of at least 2 edges not mapping onto v1v. Otherwise,
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Definition 5.19 (branched covering). π : Γ → Γ is a branched 2-covering of a tree (or
simply a branched covering) if Γ is a tree, and for u ∈ Γ the preimage Γu consists of
a single point if u is a terminal vertex of Γ, of 2 points otherwise (see Figure 7). In
particular, all terminal vertices of Γ are bad.

π

Figure 7: a branched 2-covering of a tree

An accordion of size 1 is a branched covering.
The following topological lemma may be seen as a warm-up for the proof of Lemma

5.24.

Lemma 5.20. Let π : Γ→ Γ be an open morphism between finite connected graphs. One
has β+ t = β + t+1 if π is an accordion or a branched 2-covering of a tree, β + t ≤ β + t
otherwise.

Proof. If π is an accordion, one has β + t = 0 + 2 = 2 and β + t = 1 + 0 = 1. If it is a
branched 2-covering of a tree, then β = t = 0 and β = t− 1. We now consider the general
case.

As a preliminary observation, note that a connected graph satisfies β + t ≥ 2 unless it
is homeomorphic to a point or a circle. If Γ is a circle, Γ is a circle or an interval. Also
note that the lemma is true if Γ has only one edge. We will argue by induction on the
number of edges of Γ.

Let v be a bad vertex of Γ (the result follows from Lemma 5.17 if there is none). We
define a vertex w as follows (see Figure 8).

Let v1 be the vertex adjacent to the terminal vertex v. We let w = v1 if the valence
of v1 is different from 2, or if the valence is 2 and every x ∈ Γv1 is the origin of at least 2
edges not mapping onto v1v. Otherwise, we consider the vertex v2 �= v adjacent to v1 and
we iterate. We obtain a vertex w = vq such that w has valence �= 2, or w has valence 2
and every x ∈ Γw is the origin of at least 2 edges not mapping onto wvq−1.

If w is terminal, then Γ is a segment, β + t = 2, and β + t ≥ 2 since π is not an
accordion, so the lemma is proved.

Otherwise, we consider the graph Γ′ obtained from Γ by removing the segment vw (but

not the vertex w). No vertex of Γw is terminal in Γ
′
= π−1(Γ′). With obvious notations,

one has β′ = β and t′ ≥ t − 1, with equality if and only if w has valence ≥ 3 in Γ. We
distinguish two cases.

16

Figure 5.3. a branched 2–covering of a tree

v v1 w

π

x0

Figure 8: the vertex w (w cannot be v1 because of x0)

• First case: Γ
′
is connected. We then consider β

′
and t

′
. The second equality of

Lemma 5.5 implies β
′
+ t

′
< β + t, because any x ∈ Γw has valence ≥ 2 in Γ

′
, so |dx2 − 1|

is larger when computed in Γ than when computed in Γ
′
.

The restriction π′ : Γ
′ → Γ′ of π is open, so we may use induction and write

β + t ≤ β′ + t′ + 1 ≤ β
′
+ t

′
+ 2 ≤ β + t+ 1.

The lemma is proved if one of the inequalities is strict. If not, w has valence ≥ 3 in Γ,
the map π′ is an accordion or a branched covering, and β

′
+ t

′
= β + t− 1.

This equality drastically limits the possibilities for the preimage of the segment vw
(see Figure 9): either w has two preimages x, x′, and π−1(vw) is an arc joining them, or
w has a single preimage x, and π−1(vw) is a circle containing x or a lollipop (an arc xy
with a circle attached to y).

π

v w

x

x′

x x
y

Figure 9: possible preimages of vw

We complete the proof by showing that π must be a branched covering. Since π′ is an
accordion or a branched covering, w has at least 2 preimages because it is not terminal
in Γ′. It follows that w has two preimages, and π−1(vw) is an arc joining them, so π is a
branched covering of the tree Γ = Γ′ ∪ vw.
• Second case: Γ′ has several components Γ′i. By induction, β

′
i+ t

′
i ≥ β′+ t′− 1. Also,

β + t ≥∑
i(β

′
i + t

′
i) since no vertex in Γw is terminal in Γ

′
. We then write

β + t ≥
∑

i

(β
′
i + t

′
i) ≥ 2(β′ + t′ − 1) ≥ 2(β + t− 2) = β + t+ (β + t− 4).

We are done if β+t ≥ 4. Since Γ is not a circle, one cannot have β+t = 1. If β+t = 2,
one has β + t ≥ 2 since Γ is not a circle. There remains the possibility that β + t = 3 and

17

Figure 5.4. the vertex w (w cannot be v1 because of x0)

we consider the vertex v2 6= v adjacent to v1 and we iterate. We obtain a
vertex w = vq such that w has valence 6= 2, or w has valence 2 and every
x ∈ Γw is the origin of at least 2 edges not mapping onto wvq−1.
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If w is terminal, then Γ is a segment, β + t = 2, and β + t > 2 since π is
not an accordion, so the lemma is proved.
Otherwise, we consider the graph Γ′ obtained from Γ by removing the

segment vw (but not the vertex w). No vertex of Γw is terminal in Γ′ =
π−1(Γ′). With obvious notations, one has β′ = β and t′ > t − 1, with
equality if and only if w has valence > 3 in Γ. We distinguish two cases.
• First case: Γ′ is connected. We then consider β′ and t

′. The second
equality of Lemma 5.5 implies β′ + t

′
< β + t, because any x ∈ Γw has

valence > 2 in Γ′, so |dx

2 − 1| is larger when computed in Γ than when
computed in Γ′.
The restriction π′ : Γ′ → Γ′ of π is open, so we may use induction and

write

β + t 6 β′ + t′ + 1 6 β′ + t
′ + 2 6 β + t+ 1.

The lemma is proved if one of the inequalities is strict. If not, w has
valence > 3 in Γ, the map π′ is an accordion or a branched covering, and
β
′ + t

′ = β + t− 1.
This equality drastically limits the possibilities for the preimage of the

segment vw (see Figure 5.5): either w has two preimages x, x′, and π−1(vw)
is an arc joining them, or w has a single preimage x, and π−1(vw) is a circle
containing x or a lollipop (an arc xy with a circle attached to y).

v v1 w

π

x0

Figure 8: the vertex w (w cannot be v1 because of x0)

• First case: Γ
′
is connected. We then consider β

′
and t

′
. The second equality of

Lemma 5.5 implies β
′
+ t

′
< β + t, because any x ∈ Γw has valence ≥ 2 in Γ

′
, so |dx2 − 1|

is larger when computed in Γ than when computed in Γ
′
.

The restriction π′ : Γ
′ → Γ′ of π is open, so we may use induction and write

β + t ≤ β′ + t′ + 1 ≤ β
′
+ t

′
+ 2 ≤ β + t+ 1.

The lemma is proved if one of the inequalities is strict. If not, w has valence ≥ 3 in Γ,
the map π′ is an accordion or a branched covering, and β

′
+ t

′
= β + t− 1.

This equality drastically limits the possibilities for the preimage of the segment vw
(see Figure 9): either w has two preimages x, x′, and π−1(vw) is an arc joining them, or
w has a single preimage x, and π−1(vw) is a circle containing x or a lollipop (an arc xy
with a circle attached to y).

π

v w

x

x′

x x
y

Figure 9: possible preimages of vw

We complete the proof by showing that π must be a branched covering. Since π′ is an
accordion or a branched covering, w has at least 2 preimages because it is not terminal
in Γ′. It follows that w has two preimages, and π−1(vw) is an arc joining them, so π is a
branched covering of the tree Γ = Γ′ ∪ vw.
• Second case: Γ′ has several components Γ′i. By induction, β

′
i+ t

′
i ≥ β′+ t′− 1. Also,

β + t ≥∑
i(β

′
i + t

′
i) since no vertex in Γw is terminal in Γ

′
. We then write

β + t ≥
∑

i

(β
′
i + t

′
i) ≥ 2(β′ + t′ − 1) ≥ 2(β + t− 2) = β + t+ (β + t− 4).

We are done if β+t ≥ 4. Since Γ is not a circle, one cannot have β+t = 1. If β+t = 2,
one has β + t ≥ 2 since Γ is not a circle. There remains the possibility that β + t = 3 and

17

Figure 5.5. possible preimages of vw

We complete the proof by showing that π must be a branched covering.
Since π′ is an accordion or a branched covering, w has at least 2 preimages
because it is not terminal in Γ′. It follows that w has two preimages, and
π−1(vw) is an arc joining them, so π is a branched covering of the tree
Γ = Γ′ ∪ vw.
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• Second case: Γ′ has several components Γ′i. By induction, β′i + t
′
i >

β′ + t′ − 1. Also, β + t >
∑
i(β
′
i + t

′
i) since no vertex in Γw is terminal in

Γ′. We then write

β + t >
∑
i

(β′i + t
′
i) > 2(β′ + t′ − 1) > 2(β + t− 2) = β + t+ (β + t− 4).

We are done if β + t > 4. Since Γ is not a circle, one cannot have
β + t = 1. If β + t = 2, one has β + t > 2 since Γ is not a circle. There
remains the possibility that β+t = 3 and β+t = 2. If this happens, one has∑
i(β
′
i + t

′
i) = 2, so Γ′ consists of two disjoint circles and Γ is their union

with an arc. It follows that Γ is homeomorphic to an arc or a lollipop, so
β + t = 2. �

Lemma 5.21. — Let π : Γ → Γ be as in Proposition 5.4. If P is a 2–
plateau, the parity of the cardinality of π−1(u) is the same for all u ∈ P .
If P is a 2–totally unfolded plateau, and P 6= Γ, all points in π−1(P ) have
even multiplicity; in particular, the total multiplicity of π is even.

Proof. — This follows easily from condition (∗). With the notations of
Lemma 5.3, if e ⊂ P , then λe is odd, so kx,e is odd. This proves the first
assertion.
If P is 2–totally unfolded, points of Γ mapping to a frontier point of P

have even multiplicity (because mx is even if kx,e is), and this propagates
to all points of π−1(P ) since all numbers kx,e associated to edges in P are
odd. �

Definition 5.22 (generalized branched covering). — We say that π is a
generalized branched 2–covering of a tree if there exist minimal 2–plateaux
Pi such that:

(1) the graph obtained from Γ by collapsing each Pi to a point is a tree;
(2) if u ∈ Γ is not a terminal vertex and does not belong to ∪iPi, its

preimage Γu consists of 2 points;
(3) if v is a terminal vertex of Γ, or a frontier point of some Pi, its

preimage is a single point (in particular, terminal vertices are bad).
The Pi’s are the branching plateaux of π. The union of the Pi’s and the
terminal vertices is the branching locus.

See a simple example on Figure 1.4. The ellipse is the unique branching
plateau.

When there is no Pi, we recover the definition of a branched covering
(Definition 5.19).
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Recall (Definition 5.11) that a minimal 2–plateau is interior, 2–totally
unfolded, and minimal among all interior totally unfolded plateaux (not
necessarily 2–plateaux). Any two 2–plateaux are equal or disjoint, so the
branching plateaux are disjoint. It follows from Lemma 5.21 that all points
in a branching plateau have an odd number of preimages, so the branching
locus is the set of points with an odd number of preimages.

Definition 5.23 (exceptional). — π is exceptional if it is an accordion
or a generalized branched 2–covering of a tree.

Lemma 5.24. — If π : Γ→ Γ is as in Proposition 5.4, then:

β + t+ c 6 β + t if π is not exceptional

β + t+ c 6 β + t+ 1 if π is exceptional.

Recall that c is the minimal cardinality of a set of vertices meeting every
minimal plateau.
Proof. — We elaborate on the proof of Lemma 5.20. If Γ′ is a connected

subgraph, the restriction π′ of π to the preimage Γ′ satisfies (∗), and Γ′ is
reduced, so we can argue inductively, defining minimal plateaux of Γ′, and
a number c′, as in Subsection 5.3 (Definition 5.11).
The lemma follows from Lemma 5.20 if c = 0, in particular if Γ has only

one edge or if π is an accordion. It follows from Lemma 5.17 if there is no
bad vertex or bad plateau.
• First suppose that there is a bad vertex v. We define w, Γ′, Γ′ as in

the proof of Lemma 5.20.
It follows from the definition of w that any interior totally unfolded

plateau which meets the segment vw must contain w. In particular c = 0
if w is terminal, so the result is true in this case. We therefore assume that
w is not terminal (in particular, Γ is not a circle).

The intersection of a minimal plateau of Γ with Γ′ is totally unfolded,
but it is not necessarily interior: it may be equal to Γ′, and w may be a
terminal vertex of Γ′ (if it has valence 2 in Γ).
If A ⊂ Γ′ meets every minimal plateau of Γ′, then A ∪ {w} meets every

minimal plateau of Γ, so c 6 c′+1. Equality is possible only if Γ′ is contained
in a minimal plateau of Γ, or w has valence 2 in Γ.
1) First assume that no minimal plateau of Γ contains Γ′. Then

β + t+ c 6 β′ + t′ + c′ + 1

since t 6 t′ + 1 with equality only if w has valence > 2 in Γ (see the proof
of Lemma 5.20), and c 6 c′+1 with equality only if w has valence 2 (and of
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course β = β′). We now argue as in the proof of Lemma 5.20, distinguishing
two subcases.

1a) If Γ′ is connected, we have

β + t+ c 6 β′ + t′ + c′ + 1 6 β′ + t
′ + 1 6 β + t

if π′ is not exceptional (as above, the last inequality follows from Lemma 5.5).
If π′ is exceptional, we only get β+t+c 6 β+t+1. We assume that equality
holds, and we show that π is exceptional or c = 0.
We have β′ + t

′ = β + t − 1, so Γ \ Γ′ is very restricted (as pointed out
in the proof of Lemma 5.20, π−1(vw) is an arc, a circle, or a lollipop). In
particular, w has at most 2 preimages; if π′ is an accordion, it has size (in
the sense of Definition 5.18) at most 2.
If w has 2 preimages, then π is exceptional with the same Pi’s as π′ if π′

is a generalized branched covering, while c = 0 if π′ is an accordion of size 2.
If w has 1 preimage, let w1w be the maximal subsegment of vw consisting
of points with a single preimage (w1 = π(y) if y is as on Figure 5.5). Points
between v and w1 have 2 preimages (w1 6= v since v is a bad vertex).
Define the branching locus of π as the union of that of π′ with w1w

and {v}. The component containing w is a 2–totally unfolded plateau of Γ
because, if e is an oriented edge with origin in w1w, its label λe has the
same parity as the number of lifts of e (the total multiplicity of π is even
by Lemma 5.21). It is minimal because the branching plateaux of π′ are.
The conditions of Definition 5.22 are satisfied, so π is exceptional.

1b) If Γ′ has several components Γ′i, then

β + t >
∑
i

(β′i + t
′
i)

> 2(β′ + t′ + c′ − 1)
> 2(β + t+ c− 2)
= β + t+ c+ (β + t+ c− 4).

As in the proof of Lemma 5.20, we just have to rule out the possibility that
β + t+ c = 3 and β + t = 2. If this happens, Γ′ is the union of two disjoint
circles and an arc, mapping onto an arc or a lollipop, and c = 0.

2) If some minimal plateau P of Γ contains Γ′, we have t = 1 (the only
terminal vertex of Γ is v), c = 1 (every minimal plateau contains w), and
t = t

′ = 0.
2a) If Γ′ is connected, we have

β + c+ t = β′ + 2 6 β′ + 2 6 β + 1.
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We assume that both inequalities are equalities, and we show that π is
exceptional.
The equality β′+ 2 = β+ 1 implies that one gets Γ from Γ′ by attaching

an arc, a circle, or a lollipop. It cannot be an arc because of the totally
unfolded interior plateau P containing Γ′. It follows that w has a single
preimage.
If π′ is exceptional, one shows that π is exceptional as in case 1a. If

not, we have β′ + t′ 6 β
′ + t

′ = β
′ by Lemma 5.20, so t′ = 0 since we

assume β′ = β
′. Thus Γ′ and Γ′ are graphs with no terminal vertices, and

β′ = β
′ implies that π′ is an isomorphism by Lemma 5.5. It follows that π

is exceptional, with branching locus Γ′ ∪ w1w ∪ {v}.
2b) If Γ′ is not connected, we have

β + c+ t− 1 = β′ + 1 6 2β′ 6 β′1 + t
′
1 + β

′
2 + t

′
2 6 β + t.

The first inequality holds because β′ > 1: since Γ′ is contained in a
minimal plateau of Γ, no vertex other than w may be terminal in Γ′. The
second inequality comes from Lemma 5.6. The third inequality was used
in the proof of Lemma 5.20; as in the previous subcase, the existence of P
implies that Γ \ Γ′ cannot be an open segment, so the inequality is strict.
We deduce β + c+ t 6 β + t.
• We now assume that there is a bad plateau P . Let v be its unique

frontier point. Let Γ′ be the graph obtained from Γ by removing P \ {v}.
The preimages Γ′ of Γ′ and P of P are connected because Γv is a single
point.
Denoting by β(P ) and β(P ) the first Betti numbers of P and its preimage

P , we have β(P ) > β(P ) by Lemma 5.6 and

t′ = t+ 1
t
′ = t

β′ = β − β(P )
β
′ = β − β(P ).

By minimality of P , any minimal plateau of Γ either contains v, or is
contained in Γ′ \ {v} and is a minimal plateau of Γ′. This shows c 6 c′+ 1.
By induction we get

β+t+c 6 β′+β(P )+t′−1+c′+1 6 β′+β(P )+t′+c′ 6 β′+t′+β(P ) = β+t

if π′ is not exceptional. If π′ is exceptional, so is π (with P added to the
branching locus), and we get β + t+ c 6 β + t+ 1 as required. �
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We can now conclude.

Proof of Proposition 5.4. — If π is not exceptional, we write

β + µ 6 β + c+ |A|+ t 6 β + t+ |A| = β + µ

as in the proof of Corollary 5.13, with A ⊂ Γ a subset of minimal cardinality
such that every plateau of Γ meets A or contains a terminal vertex.

If π is exceptional, we only have β + c + t 6 β + t + 1. In this case we
get the required inequality β + µ 6 β + µ by showing µ < c+ |A|+ t. We
fix x ∈ A, noting that A is nonempty because Γ has no terminal vertices.

If π is an accordion, we claim that π(A\{x}) meets every interior plateau
P ⊂ Γ. This implies µ < |A| + t, hence the result since c = 0. To prove
the claim, consider the preimage of P . It consists of 2n disjoint arcs, each
a plateau of Γ (with n > 1 as in Definition 5.18). Each of these plateaux
meets A, so one of them contains a point of A \ {x}.
In the case of a generalized branched covering, c is bounded below by k,

defined as the number of branching plateaux Pi. We prove µ < c+ |A|+ t

by constructing a set C ⊂ Γ of cardinality at most k + |A|+ t− 1 meeting
every plateau. There are two cases.
First suppose that π(x) belongs to a branching plateau Pi0 . For i 6= i0,

let vi be the point of Pi closest to Pi0 ; it is well-defined because one gets a
tree by collapsing each Pi to a point. Let C consist of the vi’s, the terminal
vertices, and π(A). We show that C meets every interior plateau P ⊂ Γ.
If P is not totally unfolded, it meets π(A) by Lemma 5.10, so assume

that it is. If it is contained in some Pi, it equals Pi by minimality of Pi, so
contains π(x) or vi. Otherwise, because of condition (2) in Definition 5.22,
P contains the closure of a component of Γ \ ∪iPi. Since one gets a tree
by collapsing each Pi to a point, this closure contains a vi or a terminal
vertex.
Now suppose that π(x) belongs to no Pi. For each i we let vi be the point

of Pi closest to π(x), and we let C consist of the vi’s, the terminal vertices,
and π(A \ {x}).

Arguing as in the previous case, we see that C meets every totally un-
folded interior plateau. We just have to check that it meets interior plateaux
P contained in the component of Γ \ ∪iPi containing π(x). As in the case
of an accordion, π−1(P ) has two components, each a plateau of Γ. At least
one of them does not contain x, so P meets π(A \ {x}). �
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6. Plateaux and finite index subgroups

Let Γ be a labelled graph representing a GBS group G. We have seen in
Subsection 5.1 that any finite index subgroup G yields a map π : Γ → Γ
between labelled graphs. We formalize the properties of π.

Definition 6.1 (Admissible map). — Let Γ and Γ be labelled graphs
(not necessarily connected). An admissible map from Γ to Γ is a pair (π,m)
where π : Γ → Γ is a morphism, and m assigns a positive multiplicity to
each vertex and edge of Γ so that condition (∗) of Lemma 5.3 is satisfied.
We usually denote an admissible map simply by π, keeping m implicit.

If Γ is connected, the total multiplicity of π is
∑
x∈π−1(u)mx; it does not

depend on u ∈ Γ.

Recall condition (∗): if π(x) = o(e), then e has kx,e = mx ∧ λe lifts with
origin x, each with multiplicity mx/kx,e and label λe/kx,e.

Remark 6.2. — Suppose Γ is connected. Given an admissible π : Γ→ Γ,
there are infinitely many m’s such that (π,m) is admissible. One may show
that all of them are multiples of a single m0 for which no prime divides all
edge multiplicities.

If π : Γ→ Γ and π′ : Γ→ Γ′ are admissible, so is π′ ◦π, with multiplicity
function m(m′ ◦ π); this is easy to check, using the formula λ ∧ µµ′ =
(λ ∧ µ′)( λ

λ∧µ′ ∧ µ).

Lemma 6.3. — Let Γ be a labelled graph representing a GBS group G.
(1) If G is a subgroup of finite index, there is a labelled graph Γ repre-

senting G and an admissible map π : Γ→ Γ whose total multiplicity
is the index of G.

(2) Conversely, any admissible map π : Γ→ Γ with Γ connected may be
obtained from a finite index subgroup G as in (1). In particular, the
group represented by Γ embeds into G as a finite index subgroup.

Proof. — The first assertion was proved in Subsection 5.1. The second
assertion may be deduced from [1], but we provide a direct proof. We
consider the 2–complex Θ associated to Γ as in Subsection 5.1 and we
construct a covering map ρ : Θ → Θ inducing π. The desired group G is
the fundamental group of Θ.
Let C = R/Z be the standard circle. We view Θ as the union of circles

Cv = {v} × C and annuli Aε = ε × C. The complex Θ is made of circles
Cx = {x}×C associated to vertices of Γ and annuli Aε = ε×C associated
to edges. If x is an endpoint of ε, we attach the corresponding boundary

TOME 65 (2015), FASCICULE 2



756 Gilbert LEVITT

circle of Aε to Cx by the map (x, θ) 7→ (x, λθ), where λ is the label carried
by ε near x. To define ρ, we map each circle {y}×C, for y ∈ Γ, to {π(y)}×C
by (y, θ) 7→ (π(y),myθ). Condition (∗) ensures that this is compatible with
the attaching maps of Θ and Θ. �

If π : Γ′ → Γ is a covering map between finite graphs (in the topological
sense), and Γ is labelled, then labelling Γ′ so that π is label-preserving,
and letting m be constant (coprime with all labels) on each component of
Γ′, makes π admissible. Such an admissible map may be characterized as
follows.

Lemma 6.4. — Let π : Γ → Γ be an admissible map between labelled
graphs. The following conditions are equivalent:

(1) π is a covering map (in the topological sense);
(2) all numbers kx,e = mx ∧ λe are equal to 1;
(3) π preserves labels: λπ(e) = λe;
(4) the multiplicity m is constant on every component of Γ.

If these conditions are satisfied, we say that π is a topological covering,
or that Γ is a topological covering of Γ. Note that every admissible π is a
covering of graphs of groups in the sense of [1].
Proof. — By (∗), condition (2) is equivalent to π being a covering, to

π being label-preserving, and also to every edge of Γ having the same
multiplicity as its endpoints. �

Proposition 6.5. — Given a connected labelled graph Γ, the following
conditions are equivalent:

• every admissible π : Γ→ Γ is a topological covering;
• Γ contains no proper plateau.

Proof.
• We first suppose that π is not a covering, and we construct a proper

plateau as in the proof of Proposition 3.9. Using Lemma 6.4, fix a prime p
dividing some kx0,e0 . It divides mx0 , so let pδ with δ > 1 be the maximal
power of p dividing the multiplicity of a vertex.
We define a subgraph Γ1 ⊂ Γ as follows. A vertex is in Γ1 if and only if

it has a preimage whose multiplicity is divisible by pδ; an edge ε is in Γ1
if its endpoints are, and none of the two labels carried by ε is divisible by
p. Note that Γ1 6= Γ because p divides λe0 . We show that every component
of Γ1 is a p–plateau.
Consider an edge e with origin v ∈ Γ1 such that p does not divide λe. We

have to check that its other endpoint w is in Γ1, and the label near w is not
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divisible by p. Let x be a preimage of v with multiplicity divisible by pδ,
and e a lift of e with origin x. Since p does not divide λe, the multiplicity
of e is divisible by pδ. So is the multiplicity of the terminal point y of e.
In particular, w ∈ Γ1. By our choice of δ, the multiplicity of y cannot be
divisible by pδ+1. This implies that the label near w is not divisible by p.
• Conversely, given a proper p–plateau P , we construct a branched cov-

ering ramified over P . It is an admissible map π : Γ → Γ which is not a
topological covering: points in P have one preimage, points not in P have p
preimages. Compare Figure 1.4, which represents a covering ramified over
the union of two 2–plateaux (the terminal vertex and the ellipse).
To construct Γ, we start with Γ× {1, . . . , p}, and we identify (x, i) with

(x, j) whenever x ∈ P . The map from Γ to Γ is the natural projection.
The multiplicity of (the image of) (x, i) is defined as 1 if x /∈ P , as p if
x ∈ P . The label of an edge e of Γ is the same as the label of its projection
e, except if the origin of e is in P but e is not contained in P ; in this
case λe is divisible by p and we define λe = λe/p. One checks that (∗) is
satisfied. �

Corollary 6.6. — Let Γ be a labelled graph representing a GBS group
G. Suppose that Γ contains no proper plateau. Then a GBS group G is iso-
morphic to a finite index subgroup of G if and only if it may be represented
by a labelled graph Γ which is a topological covering of Γ. �

Recall that a group is large if some finite index subgroup maps onto the
free group F2. A GBS group represented by a labelled graph Γ maps onto
F2 if and only if β(Γ) > 2 (see [25], p. 483).

Theorem 6.7. — Let G be a non-cyclic GBS group. The following are
equivalent:

(1) G is not large;
(2) G may be represented by a labelled graph Γ homeomorphic to a

circle and containing no proper plateau.

This was proved in [16] for G = BS(m,n) (in this case the absence
of a proper plateau is equivalent to m ∧ n = 1), and independently by T.
Mecham [28] in general. When Γ is a circle, fix an orientation and denote by
xi (resp. yi) the labels of edges whose orientation agrees (resp. disagrees)
with that of the circle; the absence of a proper plateau is equivalent to∏
xi ∧

∏
yi = 1. When G is not large, finite index subgroups G of G are

determined, up to isomorphism, by the degree of the topological covering
Γ→ Γ (see [14, 33] for the case of G = BS(m,n) with m and n coprime). It
would be interesting to generalize the results of [5, 14, 20] to these groups.
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Proof. — We may assume that G is non-elementary. Let G be repre-
sented by Γ. It is large if β(Γ) > 2. If Γ is a tree, then G is virtually
Fn × Z so is large (one may also use branched coverings to see this). As-
sume therefore β(Γ) = 1. If Γ contains a proper plateau P (in particular, if
Γ is minimal and has a terminal vertex), a branched covering ramified over
P as in the proof of Proposition 6.5 yields an admissible map Γ→ Γ with
β(Γ) > 2, so G is large. On the other hand, since every connected space
covering a circle is a circle, Corollary 6.6 implies that G is not large if Γ is
a circle with no proper plateau. �

Proposition 6.8. — Given a connected labelled graph Γ, there exists
an admissible map π : Γ → Γ such that Γ is connected and contains no
proper plateau.
Every GBS group has a finite index subgroup represented by a labelled

graph with no proper plateau.

Proof. — The second assertion follows from the first one and Lemma 6.3,
so we concentrate on the first. Given p, we shall construct an admissible π
such that Γ is connected, Γ contains no proper p–plateau, and all multiplici-
ties are powers of p. Noting that, for p′ 6= p, there is no proper p′–plateau in
Γ if there is none in Γ, the proposition follows by induction on the number
of primes p such that Γ contains a proper p–plateau.

The idea is the following. Consider the union of all proper p–plateaux
in Γ, and construct a branched covering ramified over it as in the proof of
Proposition 6.5. Then iterate. Since the graph grows, it is not obvious that
this process terminates, so we prefer to work purely within Γ.
We construct graphs Γi which are identical to Γ, but with different labels.

Let P1 be the (disjoint) union of the proper p–plateaux of Γ1 = Γ. If P1 6= ∅,
define a new labelled graph Γ2 by dividing by p the label of each oriented
edge e in ∂P1 (see Definition 5.8). Define P2 as the union of the proper
p–plateaux of Γ2, and iterate until obtaining Γr+1 containing no proper
p–plateau (the process terminates because labels decrease).
Given a vertex v of Γ, define P (v) as the number of i ∈ {1, . . . , r} such

that v ∈ Pi. Define P (e) similarly for an edge e by counting the number
of times that e ⊂ Pi. Note that P (ẽ) = P (e) if ẽ is the opposite edge. If e
has origin v, then P (v) − P (e) is the number of times that the label of e
gets divided by p when passing from Γ to Γr+1. In particular, pP (v)−P (e)

divides the label λe of e in Γ.
We now describe π by describing preimages. Its total multiplicity is pr.

The preimage of a vertex v consists of pr−P (v) points, each of multiplicity
pP (v). The preimage of an edge e consists of pr−P (e) edges of multiplicity
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pP (e), each with label λe/pP (v)−P (e). If e has origin v, exactly pP (v)−P (e)

lifts of e are attached to each preimage of v (there is a choice in the way
lifts of e are attached to preimages of v).
This defines a graph Γ and a map π. We check that (∗) is satisfied, and

Γ has no proper p–plateau.
Condition (∗) is equivalent to the equality pP (v)−P (e) = λe ∧ pP (v), for e

an edge with origin v. There are two cases. If P (e) = 0, then λe is divisible
by pP (v), so λe ∧ pP (v) = pP (v). If P (e) > 0, there exists i ∈ {1, . . . , r} such
that p does not divide the label of e in Γi, so λe is divisible by pP (v)−P (e)

but not by pP (v)−P (e)+1. Thus λe ∧ pP (v) = pP (v)−P (e).
The label of an edge of Γ depends only on its image in Γ, and it is the

label of that image in the graph Γr+1. Since Γr+1 has no proper p–plateau,
it follows that the only possible proper p–plateaux of Γ are its connected
components. Restricting to a component of Γ yields the desired map π (one
may show that Γ is connected, but this is not needed). �

Theorem 6.9. — Given two GBS groupsG1, G2 represented by labelled
graphs Γ1,Γ2 which are strongly slide-free and contain no proper plateau,
one may decide whether G1 and G2 have isomorphic finite index subgroups
or not.

Γ is strongly slide-free [17] if, whenever two edges e, f have the same
origin, then λe does not divide λf . There is at most one minimal strongly
slide-free labelled graph representing G [17].

The group G = BS(m,n) satisfies the hypotheses of the theorem if and
only ifm and n are coprime (unless G is solvable). The theorem also applies
to GBS groups represented by a circle with no proper plateau.
Proof. — Consider G1, G2 as in the theorem. After replacing them by a

subgroup of index 2 if needed, the modulus maps ∆Gi
only take positive

values, so we may assume that all labels are positive (see Section 2). We
also assume that Γ1,Γ2 are minimal. Note that they have no terminal
vertex (such a vertex would be a plateau). By a covering, we always mean
a label-preserving topological covering between labelled graphs.
Suppose that H is isomorphic to a finite index subgroup of both G1 and

G2. By Corollary 6.6, it is represented by labelled graphs Γi which are
coverings of Γi. These graphs are minimal and strongly slide-free, so by
Theorem 1.2 of [17] (see also [21]) they are the same. This means that the
labelled graphs Γ1 and Γ2 have a common finite covering if G1 and G2 are
commensurable. The converse is also true by Assertion 2 of Lemma 6.3,
so we are reduced to deciding whether Γ1 and Γ2 have a common finite
covering (as labelled graphs).

TOME 65 (2015), FASCICULE 2



760 Gilbert LEVITT

We claim that, given Γ1 and Γ2, we can find a number M such that, if
Γ1 and Γ2 have a common finite covering, then they have one with at most
M edges. Assuming the claim, we can decide existence of a common finite
covering by inspection.
We deduce the claim from the fact that the proof of Leighton’s graph

covering theorem [24] is constructive. We follow the account given in [29],
proof of Theorem 1.1.

Assume that Γ1 and Γ2 have a common finite covering, and denote by
Γ̃ their universal covering. We first subdivide edges e of Γ1 and Γ2 having
the same label at both ends, placing labels 1 near the created midpoint.
This ensures that Aut(Γ̃) acts on Γ̃ without inversions.

As in [29], we let C = Γ̃/Aut(Γ̃) be the graph of colors. It is a quotient
of Γi, so belongs to an explicit finite list. For each graph in this list, we
define numbers ni,mk, rk using Γ1 as in [29], and we compute numbers ai
and bk. As shown in [29], Γ1 and Γ2 have a common covering whose number
of edges may be explicity bounded in terms of C,Γ1,Γ2, bk. Since there are
only finitely many possibilities for C, the existence of M follows. �
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