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ON QUANTITATIVE OPERATOR K-THEORY

by Hervé OYONO-OYONO & Guoliang YU (*)

Abstract. — In this paper, we develop a quantitative K-theory for filtered
C∗-algebras. Particularly interesting examples of filtered C∗-algebras include group
C∗-algebras, crossed product C∗-algebras and Roe algebras. We prove a quantita-
tive version of the six term exact sequence and a quantitative Bott periodicity. We
apply the quantitative K-theory to formulate a quantitative version of the Baum-
Connes conjecture and prove that the quantitative Baum-Connes conjecture holds
for a large class of groups.
Résumé. — Dans cet article, nous développons une K-théorie quantitative

pour les C∗-algèbres filtrées. Parmi les exemples les plus intéressants de telles C∗-
algèbres figurent les algèbres de Roe, les C∗-algèbres de groupes et les C∗-algèbres
de produits croisés. Nous établissons une version quantitative de la suite exacte
à six termes en K-théorie ainsi que de la périodicité de Bott. Nous formulons en
utilisant la K-théorie quantitative une version quantitative de la conjecture de
Baum-Connes. Nous montrons que cette conjecture de Baum-Connes quantitative
est vérifiée pour une large classe de groupes.

Introduction

The receptacles of higher indices of elliptic differential operators are
K-theory of C∗-algebras which encode the (large scale) geometry of the
underlying spaces. The following examples are important for purpose of
applications to geometry and topology.

• K-theory of group C∗-algebras is a receptacle for higher index the-
ory of equivariant elliptic differential operators on covering spaces
[1, 2, 5, 11];

Keywords: Baum-Connes Conjecture, Coarse Geometry, Group and Crossed product
C∗-algebras, Novikov Conjecture, Operator Algebra K-theory, Roe Algebras.
Math. classification: 19K35,46L80,58J22.
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ported by a grant from the U.S. National Science Foundation.



606 Hervé OYONO-OYONO & Guoliang YU

• K-theory of crossed product C∗-algebras and more generally grou-
poid C∗-algebras for foliations serve as receptacles for longitudi-
nally elliptic operators [3, 4];

• the higher indices of elliptic operators on noncompact complete
Riemannian manifolds live in K-theory of Roe algebras [15].

The local nature of differential operators implies that these higher indices
can be defined in term of idempotents and invertible elements with finite
propagation. Using homotopy invariance of the K-theory for C∗-algebras,
these higher indices give rise to topological invariants.

In the context of Roe algebras, a quantitative operator K-theory was
introduced to compute the higher indices of elliptic operators for noncom-
pact spaces with finite asymptotic dimension [19]. The aim of this paper
is to develop a quantitative K-theory for general C∗-algebras equipped
with a filtration. The filtration structure allows us to define the concept of
propagation. Examples of C∗-algebras with filtrations include group C∗-
algebras, crossed product C∗-algebras and Roe algebras. The quantitative
K-theory for C∗-algebras with filtrations is then defined in terms of homo-
topy classes of quasi-projections and quasi-unitaries with propagation and
norm controls. We introduce controlled morphisms to study quantitative
operator K-theory. In particular, we derive a quantitative version of the
six term exact sequence. In the case of crossed product algebras, we also
define a quantitative version of the Kasparov transformation compatible
with Kasparov product. We end this paper by using the quantitative K-
theory to formulate a quantitative version of the Baum-Connes conjecture
and prove it for a large class of groups.
This paper is organized as follows: In section 1, we collect a few notations

and definitions including the concept of filtered C∗-algebras. We use the
concepts of almost unitary and almost projection to define a quantitative
K-theory for filtered C∗-algebras and we study its elementary properties. In
section 2, we introduce the notion of controlled morphism in quantitative
K-theory. Section 3 is devoted to extensions of filtered C∗-algebras and
to a controlled exact sequence for quantitative K-theory. In section 4, we
prove a controlled version of the Bott periodicity and as a consequence,
we obtain a controlled version of the six-term exact sequence in K-theory.
In section 5, we apply KK-theory to study the quantitative K-theory of
crossed product C∗-algebras and discuss its application to K-amenability.
Finally in section 8, we formulate a quantitative Baum-Connes conjecture
and prove the quantitative Baum-Connes conjecture for a large class of
groups.
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1. Quantitative K-theory

In this section, we introduce a notion of quantitative K-theory for C∗-
algebras with a filtration. Let us fix first some notations about C∗-algebras
we shall use throughout this paper.

• If B is a C∗-algebra and if b1, . . . , bk are respectively elements of
Mn1(B), . . . ,Mnk(B), we denote by diag(b1, . . . , bk) the block di-

agonal matrix

b1 . . .
bk

 of Mn1+···+nk(B).

• If X is a locally compact space and B is a C∗-algebra, we denote
by C0(X,B) the C∗-algebra of B-valued continuous functions on
X vanishing at infinity. The special cases of X = (0, 1], X = [0, 1),
X = (0, 1) and X = [0, 1], will be respectively denoted by CB,
B[0, 1), SB and B[0, 1].

• For a separable Hilbert spaceH, we denote by K(H) the C∗-algebra
of compact operators on H.

• If A and B are C∗-algebras, we will denote by A⊗B their spatial
tensor product.

1.1. Filtered C∗-algebras

Definition 1.1. — A filtered C∗-algebra A is a C∗-algebra equipped
with a family (Ar)r>0 of closed linear subspaces indexed by positive num-
bers such that:

• Ar ⊂ Ar′ if r 6 r′;
• Ar is stable by involution;
• Ar ·Ar′ ⊂ Ar+r′ ;
• the subalgebra

⋃
r>0

Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar for
every positive number r. The elements of Ar are said to have propagation r.

• Let A and A′ be respectively C∗-algebras filtered by (Ar)r>0 and
(A′r)r>0. A homomorphism of C∗ -algebras φ : A−→A′ is a fil-
tered homomorphism (or a homomorphism of filtered C∗-algebras)
if φ(Ar) ⊂ A′r for any positive number r.

• If A is a filtered C∗-algebra and X is a locally compact space, then
C0(X,A) is a C∗-algebra filtered by (C0(X,Ar))r>0. In particular
the algebras CA, A[0, 1], A[0, 1) and SA are filtered C∗-algebras.

TOME 65 (2015), FASCICULE 2



608 Hervé OYONO-OYONO & Guoliang YU

• If A is a non unital filtered C∗-algebra, then its unitarization Ã is
filtered by (Ar +C)r>0. We define for A non-unital the homomor-
phism

ρA : Ã→ C; a+ z 7→ z

for a ∈ A and z ∈ C.
Prominent examples of filtered C∗-algebra are provided by Roe algebras

associated to proper metric spaces, i.e. metric spaces such that closed balls
of given radius are compact. Recall that for such a metric space (X, d), a
X-module is a Hilbert space HX together with a ∗-representation ρX of
C0(X) in HX (we shall write f instead of ρX(f)). If the representation is
non-degenerate, the X-module is said to be non-degenerate. A X-module is
called standard if no non-zero function of C0(X) acts as a compact operator
on HX .
The following concepts were introduced by Roe in his work on index

theory of elliptic operators on noncompact spaces [15].

Definition 1.2. — Let HX be a standard non-degenerate X-module
and let T be a bounded operator on HX .

(i) The support of T is the complement of the open subset of X ×X
{(x, y) ∈ X ×X s.t. there exist f and g in C0(X) satisfying

f(x) 6= 0, g(y) 6= 0 and f · T · g = 0}.

(ii) The operator T is said to have finite propagation (in this case
propagation less than r) if there exists a real r such that for any x
and y in X with d(x, y) > r, then (x, y) is not in the support of T .

(iii) The operator T is said to be locally compact if f · T and T · f are
compact for any f in C0(X). We then define C[X] as the set of
locally compact and finite propagation bounded operators of HX ,
and for every r > 0, we define C[X]r as the set of elements of C[X]
with propagation less than r.

We clearly have C[X]r · C[X]r′ ⊂ C[X]r+r′ . We can check that up to
(non-canonical) isomorphism, C[X] does not depend on the choice of HX .

Definition 1.3. — The Roe algebra C∗(X) is the norm closure of C[X]
in the algebra L(HX) of bounded operators on HX . The Roe algebra in
then filtered by (C[X]r)r>0.

Although C∗(X) is not canonically defined, it was proved in [9] that up
to canonical isomorphisms, its K-theory does not depend on the choice
of a non-degenerate standard X-module. Furthermore, K∗(C∗(X)) is the
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natural receptacle for higher indices of elliptic operators with support on
X [15].

If X has bounded geometry, then the Roe algebra admits a maximal ver-
sion [7] filtered by (C[X]r)r>0. Other important examples are reduced and
maximal crossed product of a C∗-algebra by an action of a discrete group
by automorphisms. These examples will be studied in detail in Section 5.

1.2. Almost projections/unitaries

Let A be a unital filtered C∗-algebra. For any positive numbers r and ε,
we call

• an element u in A an ε-r-unitary if u belongs to Ar, ‖u∗ ·u−1‖ < ε

and ‖u · u∗ − 1‖ < ε. The set of ε-r-unitaries on A will be denoted
by Uε,r(A).

• an element p in A an ε-r-projection if p belongs to Ar, p = p∗ and
‖p2 − p‖ < ε. The set of ε-r-projections on A will be denoted by
Pε,r(A).

For n integer, we set Uε,r
n (A) = Uε,r(Mn(A)) and Pε,rn (A) = Pε,r(Mn(A)).

For any unital filtered C∗-algebra A, any positive numbers ε and r and
any positive integer n, we consider inclusions

Pε,rn (A) ↪→ Pε,rn+1(A); p 7→
(
p 0
0 0

)
and

Uε,r
n (A) ↪→ Uε,r

n+1(A); u 7→
(
u 0
0 1

)
.

This allows us to define

Uε,r
∞ (A) =

⋃
n∈N

Uε,r
n (A)

and
Pε,r∞ (A) =

⋃
n∈N

Pε,rn (A).

Remark 1.4. — Let r and ε be positive numbers with ε < 1/4;
(i) If p is an ε-r-projection in A, then the spectrum of p is included in(

1−
√

1+4ε
2 , 1−

√
1−4ε
2

)
∪
(

1+
√

1−4ε
2 , 1+

√
1+4ε
2

)
and thus ‖p‖ < 1 + ε.

TOME 65 (2015), FASCICULE 2



610 Hervé OYONO-OYONO & Guoliang YU

(ii) If u is an ε-r-unitary in A, then

1− ε < ‖u‖ < 1 + ε/2,

1− ε/2 < ‖u−1‖ < 1 + ε,

‖u∗ − u−1‖ < (1 + ε)ε.
(iii) Let κ0,ε : R→ R be a continuous function such that

• κ0,ε(t) = 0 if t 6 1−
√

1−4ε
2 ;

• κ0,ε(t) = 1 if t > 1+
√

1−4ε
2 .

If p is an ε-r-projection in A, then κ0,ε(p) is a projection such that
‖p−κ0,ε(p)‖ < 2ε which moreover does not depends on the choice
of κ0,ε. From now on, we shall denote this projection by κ0(p).

(iv) If u is an ε-r-unitary in A, set κ1(u) = u(u∗u)−1/2. Then κ1(u) is
a unitary such that ‖u− κ1(u)‖ < ε.

(v) If p is an ε-r-projection in A and q is a projection in A such that
‖p− q‖ < 1− 2ε, then κ0(p) and q are homotopic projections [18,
Chapter 5].

(vi) If u and v are ε-r-unitaries in A, then uv is an ε(2 + ε)-2r-unitary
in A.

Definition 1.5. — Let A be a C∗-algebra filtered by (Ar)r>0.
• Let p0 and p1 be ε-r-projections. We say that p0 and p1 are ho-
motopic ε-r-projections if there exists an ε-r-projection q in A[0, 1]
such that q(0) = p0 and q(1) = p1. In this case, q is called a ho-
motopy of ε-r-projections in A and will be denoted by (qt)t∈[0,1].
• If A is unital, let u0 and u1 be ε-r-unitaries. We say that u0 and
u1 are homotopic ε-r-unitaries if there exists an ε-r-unitary v in
A[0, 1] such that v(0) = u0 and v(1) = u1. In this case, v is called
a homotopy of ε-r-unitaries in A and will be denoted by (vt)t∈[0,1].

Example 1.6. — Let p be an ε-r-projection in a unital filtered C∗-
algebra A. Set ct = cosπt/2 and st = sin πt/2 for t ∈ [0, 1] and let us

considerer the homotopy of projections (ht)t∈[0,1] with ht =
(
c2t ctst
ctst s2

t

)
in M2(C) between diag(1, 0) and diag(0, 1). Set (qt)t∈[0,1] = (diag(p, 0) +
(1 − p) ⊗ ht)t∈[0,1]. Since q2

t − qt = s2
t (p2 − p) ⊗ I2, we see that (qt)t∈[0,1]

is a homotopy of ε-r-projections between diag(1, 0) and diag(p, 1 − p) in
M2(A).

Next result will be used quite extensively throughout the paper and is
fairly easy to prove.

ANNALES DE L’INSTITUT FOURIER
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Lemma 1.7. — Let A be a C∗-algebra filtered by (Ar)r>0.
(i) If p is an ε-r-projection in A and q is a self-adjoint element of

Ar such that ‖p − q‖ < ε−‖p2−p‖
4 , then q is an ε-r-projection. In

particular, if p is an ε-r-projection in A and if q is a self-adjoint
element in Ar such that ‖p− q‖ < ε, then q is a 5ε-r-projection in
A and p and q are connected by a homotopy of 5ε-r-projections.

(ii) If A is unital and if u is an ε-r-unitary and v is an element of
Ar such that ‖u − v‖ < ε−‖u∗u−1‖

3 , then v is an ε-r-unitary. In
particular, if u is an ε-r-unitary and v is an element of Ar such
that ‖u − v‖ < ε, then v is an 4ε-r-unitary in A and u and v are
connected by a homotopy of 4ε-r-unitaries.

(iii) If p is a projection in A and q is a self-adjoint element of Ar such
that ‖p− q‖ < ε

4 , then q is an ε-r-projection.
(iv) If A is unital and if u is a unitary in A and v is an element of Ar

such that ‖u− v‖ < ε
3 , then v is an ε-r-unitary.

Corollary 1.8. — Let u be an ε-r-unitary in a unital filtered C∗-
algebra A, then diag(u, u∗) and I2 are homotopic as 3ε-2r-unitaries in
M2(A).

Proof. — According to point (vi) of Remark 1.4 and with notations of
Example 1.6, we see that

(
diag(1, u)

(
ct −st
st ct

)
· diag(1, u∗) · ( ct st

−st ct )
)
t∈[0,1] is

a homotopy of 3ε-2r-unitaries between diag(u, u∗) and diag(uu∗, 1). Since
‖uu∗ − 1‖ < ε, we deduce from Lemma 1.7 that uu∗ and 1 are homotopic
3ε-2r-unitaries. �

Lemma 1.9. — There exists a number λ > 4 such that for any positive
number ε with ε < 1/λ, any positive real r, any ε-r-projection p and ε-r-
unitary W in a filtered unital C∗-algebra A, the following assertions hold:

(i) WpW ∗ is a λε-3r-projection of A;
(ii) diag(WpW ∗, 1) and diag(p, 1) are homotopic λε-3r-projections.

Proof. — The first point is straightforward to check from Remark 1.4.
For the second point, with notations of Example 1.6, use the homotopy of
ε-r-unitaries(

Wc2t+s
2
t (W−1)stct

(W−1)stct Ws2t+c
2
t

)
t∈[0,1]

=
((

ct −st
st ct

)
· diag(W, 1) · ( ct st

−st ct )
)
t∈[0,1]

to connect by conjugation diag(WpW ∗, 1) to diag(p,WW ∗) and then con-
nect to diag(p, 1) by a ray. �

Recall that if two projections in a unital C∗-algebra are close enough
in norm, then there are conjugated by a canonical unitary. To state a

TOME 65 (2015), FASCICULE 2



612 Hervé OYONO-OYONO & Guoliang YU

similar result in term of ε-r-projections and ε-r-unitaries, we will need the
definition of a control pair.

Definition 1.10. — A control pair is a pair (λ, h), where
• λ > 1;
• h : (0, 1

4λ ) → (1,+∞); ε 7→ hε is a map such that there exists a
non-increasing map g : (0, 1

4λ )→ (0,+∞), with h 6 g.

Lemma 1.11. — There exists a control pair (λ, h) such that the follow-
ing holds:
for every positive number r, any ε in (0, 1

4λ ) and any ε-r-projections p
and q of a filtered unital C∗-algebra A satisfying ‖p − q‖ < 1/16, there
exists an λε-hεr-unitary W in A such that ‖WpW ∗ − q‖ 6 λε.

Proof. — We follow the proof of [18, Proposition 5.2.6]. If we set

z = (2κ0(p)− 1)(2κ0(q)− 1) + 1,

• then

‖z − 2‖ 6 2‖κ0(p)− κ0(q)‖
6 8ε+ 2‖p− q‖

and hence z is invertible for ε < 1/16.
• Moreover, if we set U = z|z−1| and since zκ0(q) = κ0(p)z, then we
have κ0(q) = Uκ0(p)U∗.

Let us define z′ = (2p − 1)(2q − 1) + 1. Then we have ‖z − z′‖ 6 9ε
and ‖z′‖ 6 3. If ε is small enough, then ‖z′∗z′ − 4‖ 6 2 and hence the
spectrum of z′∗z′ is in [2, 6]. Let us consider the expansion in power serie∑
k∈N akt

k of t 7→ (1 + t)−1/2 on (0, 1) and let nε be the smallest integer
such that

∑
nε6k

|ak|/2k 6 ε. Let us set then W = z′/2
∑nε
k=0 ak( z

′∗z′−4
4 )k.

Then for a suitable λ (not depending on A, p, q or ε), we get that W is a
λε-(4nε + 2)r-unitary which satisfies the required condition. �

Remark 1.12. — The order of h when ε goes to zero in Lemma 1.11 is
Cε−3/2 for some constant C.

1.3. Definition of quantitative K-theory

For a unital filtered C∗-algebra A, we define the following equivalence
relations on Pε,r∞ (A)× N and on Uε,r

∞ (A):
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• if p and q are elements of Pε,r∞ (A), l and l′ are positive inte-
gers, (p, l) ∼ (q, l′) if there exists a positive integer k and an ele-
ment h of Pε,r∞ (A[0, 1]) such that h(0) = diag(p, Ik+l′) and h(1) =
diag(q, Ik+l).

• if u and v are elements of Uε,r
∞ (A), u ∼ v if there exists an element

h of U3ε,2r
∞ (A[0, 1]) such that h(0) = u and h(1) = v.

If p is an element of Pε,r∞ (A) and l is an integer, we denote by [p, l]ε,r the
equivalence class of (p, l) modulo ∼ and if u is an element of Uε,r

∞ (A) we
denote by [u]ε,r its equivalence class modulo ∼.

Definition 1.13. — Let r and ε be positive numbers with ε < 1/4. We
define:

(i) Kε,r
0 (A) = Pε,r∞ (A)× N/ ∼ for A unital and

Kε,r
0 (A) = {[p, l]ε,r ∈ Pε,r(Ã)× N/ ∼ such that dim κ0(ρA(p)) = l}

for A non unital.
(ii) Kε,r

1 (A) = Uε,r
∞ (Ã)/ ∼ (with A = Ã if A is already unital).

Remark 1.14. — We shall see in Lemma 1.23 that as it is the case for
K-theory, Kε,r

∗ (•) can indeed be defined in a uniform way for unital and
non-unital filtered C∗-algebras.

It is straightforward to check that for any unital filtered C∗-algebra A,
if p is an ε-r-projection in A and u is an ε-r-unitary in A, then diag(p, 0)
and diag(0, p) are homotopic ε-r-projections in M2(A) and diag(u, 1) and
diag(1, u) are homotopic ε-r-unitaries in M2(A). Thus we obtain the fol-
lowing:

Lemma 1.15. — Let A be a filtered C∗-algebra. Then Kε,r
0 (A) and

Kε,r
1 (A) are equipped with a structure of abelian semi-group such that

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r

and
[u]ε,r + [u′]ε,r = [diag(u, v)]ε,r,

for any [p, l]ε,r and [p′, l′]ε,r inKε,r
0 (A) and any [u]ε,r and [u′]ε,r inKε,r

1 (A).

According to Example 1.6, for every unital filtered C∗-algebra A, any
ε-r-projection p in Mn(A) and any integer l with n > l, we see that [In −
p, n − l]ε,r is an inverse for [p, l]ε,r. In the same way, using Corollary 1.8,
we get that for any ε-r-unitary u in Mn(A), then [diag(u, u∗)]ε,r = [1]ε,r.
Hence we get:

TOME 65 (2015), FASCICULE 2



614 Hervé OYONO-OYONO & Guoliang YU

Lemma 1.16. — If A is a filtered C∗-algebra, thenKε,r
∗ (A) = Kε,r

0 (A)⊕
Kε,r

1 (A) is a Z2-graded abelian group.

We have for any filtered C∗-algebra A and any positive numbers r, r′, ε
and ε′ with ε 6 ε′ < 1/4 and r 6 r′ natural group homomorphisms

• ιε,r0 : Kε,r
0 (A)−→K0(A); [p, l]ε,r 7→ [κ0(p)]− [Il];

• ιε,r1 : Kε,r
1 (A)−→K1(A); [u]ε,r 7→ [u];

• ιε,r∗ = ιε,r0 ⊕ ι
ε,r
1 ;

• ιε,ε
′,r,r′

0 : Kε,r
0 (A)−→Kε′,r′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r′ ;
• ιε,ε

′,r,r′

1 : Kε,r
1 (A)−→Kε′,r′

1 (A); [u]ε,r 7→ [u]ε′,r′ .
• ιε,ε

′,r,r′

∗ = ιε,ε
′,r,r′

1 ⊕ ιε,ε
′,r,r′

1

If some of the indices r, r′ or ε, ε′ are equal, we shall not repeat it in ιε,ε
′,r,r′

∗ .

Remark 1.17. — Let p0 and p1 be two ε-r-projections in a filtered C∗-
algebra such that κ0(p0) and κ0(p1) are homotopic projections. Then for
any ε in (0, 1/4), this homotopy can be approximated for some r′ by a ε-r′-
projection. Hence, using point (iii) of Remark 1.4, there exists a homotopy
(qt)t∈[0,1] of ε-r′ projections in A such that ‖p0− q0‖ < 3ε and ‖p1− q1‖ <
3ε. We can indeed assume that r′ > r and thus by Lemma 1.7, we get that
p0 and p1 are homotopic as 15ε-r′-projections. Proceeding in the same way
for the odd case we eventually obtain:
there exists λ > 1 such that for any filtered C∗-algebra A, any ε ∈ (0, 1

4λ )
and any positive number r, the following holds:

Let x and x′ be elements inKε,r
∗ (A) such that ιε,r∗ (x) = ιε,r∗ (x′) inK∗(A),

then there exists a positive number r′ with r′ > r such that ιε,λε,r,r
′

∗ (x) =
ιε,λε,r,r

′

∗ (x′) in Kλε,r′

∗ (A).

Lemma 1.18. — Let p be a matrix in Mn(C) such that p = p∗ and
‖p2−p‖ < ε for some ε in (0, 1/4). Then there is a continuous path (pt)t∈[0,1]
in Mn(C) such that

• p0 = p;
• p1 = Ik with k = dim κ0(p);
• p∗t = pt and ‖p2

t − pt‖ < ε for every t in [0, 1].

Proof. — The selfadjoint matrix p satisfies ‖p2 − p‖ < ε if and only if
the eigenvalues of p satisfy the inequality

−ε < λ2 − λ < ε,

i.e.

λ ∈
(

1−
√

1 + 4ε
2 ,

1−
√

1− 4ε
2

)⋃(√
1− 4ε+ 1

2 ,

√
1 + 4ε+ 1

2

)
.
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Let λ1, . . . , λk be the eigenvalues of p lying in
(

1−
√

1+4ε
2 , 1−

√
1−4ε
2

)
and let

λk+1, . . . , λn be the eigenvalues of p lying in
(√

1−4ε+1
2 ,

√
1+4ε+1

2

)
. We set

for t ∈ [0, 1]
• λi,t = tλi for i = 1, . . . , k;
• λi,t = tλi + 1− t for i = k + 1, . . . , n.

Since λ 7→ λ2 − λ is decreasing on
(

1−
√

1+4ε
2 , 1−

√
1−4ε
2

)
and increasing on(√

1−4ε+1
2 ,

√
1+4ε+1

2

)
then,

−ε < λ2
i,t − λi,t < ε

for all t in [0, 1] and i = 1, . . . , n. If we set pt = u · diag(λ1,t, . . . , λn,t) · u∗
where u is a unitary matrix ofMn(C) such that p = u ·diag(λ1, . . . , λn) ·u∗,
then

• p0 = p;
• p1 = κ0(p);
• p∗t = pt and ‖p2

t − pt‖ < ε for every t in [0, 1].
Since there is a homotopy of projections in Mn(C) between κ0(p) and Ik
with k = dim κ0(p), we get the result. �

Let us equip C with the trivial filtration (i.e Cr = C for every positive
number r). As a consequence of the previous lemma, we obtain:

Corollary 1.19. — For any positive numbers with ε < 1/4, then

Kε,r
0 (C)→ Z; [p, l]ε,r 7→ dim κ0(p)− l

is an isomorphism.

Lemma 1.20. — Let u be a matrix in Mn(C) such that ‖u∗u− In‖ < ε

and ‖uu∗ − In‖ < ε for ε in (0, 1/4). Then there is a continuous path
(ut)t∈[0,1] in Mn(C) such that

• u0 = u;
• u1 = In;
• ‖u∗tut − In‖ < ε and ‖utu∗t − In‖ < ε for every t in [0, 1].

Proof. — Since u is invertible, u∗u and uu∗ have the same eigenvalues
λ1, . . . , λn, and thus ‖u∗u − In‖ < ε and ‖uu∗ − In‖ < ε if and only if
λi ∈ (1− ε, 1 + ε) for i = 1, . . . , n. Let us set

• ht = w · diag(λ−t/21 , . . . , λ
−t/2
n ) ·w∗ where w is a unitary matrix of

Mn(C) such that u∗u = w · diag(λ1, . . . , λn) · w∗;
• vt = u·ht for all t ∈ [0, 1]. Then v∗t vt = w ·diag(λ1−t

1 , . . . , λ1−t
n )·w∗.
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Since |λ1−t
i − 1| < ε for all all t ∈ [0, 1], we get that ‖v∗t vt − In‖ < ε and

‖vtv∗t − In‖ < ε for every t in [0, 1]. The matrix v1 is unitary and the result
then follows from path-connectness of Un(C). �

As a consequence we obtain:

Corollary 1.21. — For any positive numbers r and ε with ε < 1/4,
then we have Kε,r

1 (C) = {0}.

1.4. Elementary properties of quantitative K-theory

LetA1 andA2 be two unital C∗-algebras respectively filtered by (A1,r)r>0
and (A2,r)r>0 and consider A1 ⊕A2 filtered by (A1,r ⊕A2,r)r>0. Since we
have identifications Pε,r∞ (A1 ⊕ A2) ∼= Pε,r∞ (A1) × Pε,r∞ (A2) and Uε,r

∞ (A1 ⊕
A2) ∼= Uε,r

∞ (A1) × Uε,r
∞ (A2) induced by the inclusions A1 ↪→ A1 ⊕ A2 and

A2 ↪→ A1⊕A2, we see that we have isomorphisms Kε,r
0 (A1)⊕Kε,r

0 (A2) ∼−→
Kε,r

0 (A1 ⊕A2) and Kε,r
1 (A1)⊕Kε,r

1 (A2) ∼−→ Kε,r
1 (A1 ⊕A2).

Lemma 1.22. — Let A be a filtered non unital C∗-algebra and let ε and
r be positive numbers with ε < 1/4. We have a natural splitting

Kε,r
0 (Ã)

∼=−→ Kε,r
0 (A)⊕ Z.

Proof. — Viewing A as a subalgebra of Ã, the group homomorphisms

Kε,r
0 (Ã) −→ Kε,r

0 (A)⊕ Z
[p, l]ε,r 7→ ([p, dim κ0(ρA(p))]ε,r,dim κ0(ρA(p))− l)

and

Kε,r
0 (A)⊕ Z −→ Kε,r

0 (Ã)

([p, l]ε,r, k − k′) 7→
[(
p 0
0 Ik

)
, l + k′

]
ε,r

are inverse one of the other. �

Let us set A+ = A⊕ C equipped with the multiplication

(a, x) · (b, y) = (ab+ xb+ ya, xy)

for a and b in A and x and y in C. Notice that
• A+ is isomorphic to A⊕C with the algebra structure provided by

the direct sum if A is unital;
• A+ = Ã if A is not unital.
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Let us define also ρA in the unital case by ρA : A+ → C; (a, x) 7→ x. We
know that in usual K-theory, we can equivalently define for A unital the
Z2-graded group K∗(A) as A+ by

K0(A) = ker ρA,∗ : K0(A+)→ K0(C) ∼= Z

and
K1(A) = K1(A+).

Let us check that this is also the case for our Z2-graded groups K∗ε,r(A). If
the C∗-algebra A is filtered by (Ar)r>0, then A+ is filtered by (Ar+C)r>0.
Let us define for a unital filtered algebra A

K ′0
ε,r(A) = {[p, l]ε,r ∈ Pε,r(A+)× N/ ∼ such that dim κ0(ρA(p)) = l}

and
K ′1

ε,r(A) = Uε,r(A+)/ ∼ .
Proceeding as we did in the proof of Lemma 1.22, we obtain a natural
splitting

Kε,r
0 (A+)

∼=−→ K ′0
ε,r(A)⊕ Z.

But then, using the identification A+ ∼= A⊕C and in view of Lemmas 1.18
and 1.20, we get

Lemma 1.23. — The Z2-graded groups Kε,r
∗ (A) and K ′∗

ε,r(A) are nat-
urally isomorphic.

This allows us to state functoriallity properties for quantitativeK-theory.
If φ : A→ B is a homomorphism of unital filtered C∗-algebras, then since
φ preserve ε-r-projections and ε-r-unitaries, it obviously induces for any
positive number r and any ε ∈ (0, 1/4) a group homomorphism

φε,r∗ : Kε,r
∗ (A) −→ Kε,r

∗ (B).

In the non unital case, we can extend any homomorphism φ : A→ B to a
homomorphism φ+ : A+ → B+ of unital filtered C∗-algebras and then we
use Lemmas 1.22 and 1.23 to define φε,r∗ : Kε,r

∗ (A) −→ Kε,r
∗ (B). Hence, for

any positive number r and any ε ∈ (0, 1/4), we get that Kε,r
∗ (•) is a co-

variant additive functor from the category of filtered C∗-algebras (together
with filtered homomorphisms) to the category of Z2-abelian groups.
Definition 1.24.

(i) Let A and B be filtered C∗-algebras. Then two homomorphisms
of filtered C∗-algebras ψ0 : A→ B and ψ1 : A→ B are homotopic
if there exists a path of homomorphisms of filtered C∗-algebras
ψt : A→ B for 0 6 t 6 1 between ψ0 and ψ1 and such that t 7→ ψt
is continuous for the pointwise norm convergence.
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(ii) A filtered C∗-algebra A is said to be contractible if the identity
map and the zero map of A are homotopic.

Example 1.25. — If A is a filtered C∗-algebra A, then the cone of A

CA = {f ∈ C([0, 1], A) such that f(0) = 0}

is a contractible filtered C∗-algebra.

We have then the following obvious result:

Lemma 1.26. — If φ : A → B and φ′ : A → B are two homotopic
homomorphisms of filtered C∗-algebras, then φε,r∗ = φ′

ε,r
∗ for every positive

numbers ε and r with ε < 1/4. In particular, if A is a contractible filtered
C∗-algebra, then Kε,r

∗ (A) = {0} for every positive numbers ε and r with
ε < 1/4.

Let A be a C∗-algebra filtered by (Ar)r>0 and let (Bk)k∈N be an increas-
ing sequence of C∗-subalgebras of A such that

⋃
k∈N

Bk is dense in A. Assume

that
⋃
r>0Bk∩Ar is dense in Bk for every integer k. Then for every integer

k, the C∗-algebra Bk is filtered by (Bk ∩Ar)r>0. If A is unital, then Bk is
unital for some k, and thus we will assume without loss of generality that
Bk is unital for every integer k.

Proposition 1.27. — Let A be a unital C∗-algebra filtered by (Ar)r>0
and let (Bk)k∈N be an increasing sequence of C∗-subalgebras of A such that

•
⋃
r>0

(Bk ∩Ar) is dense in Bk for every integer k,

•
⋃
k∈N

(Bk ∩Ar) is dense in Ar for every positive number r.

Then the Z2-graded groups Kε,r
∗ (A) and lim

k
Kε,r
∗ (Bk) are isomorphic.

Proof. — In particular, we see that
⋃
k∈N

Bk is dense in A. Let us denote

by
Υ∗,ε,r : lim

k
Kε,r
∗ (Bk)→ Kε,r

∗ (A)

the homomorphism of groups induced by the family of inclusions Bk ↪→ A

where k runs through integers. We give the proof in the even case, the
odd case being analogous. Let p be an element of Pε,rn (A) and let δ =
‖p2 − p‖ > 0 and choose α < ε−δ

12 . Since
⋃
k∈N

(Bk ∩Ar) is dense in Ar,

there is an integer k and a selfadjoint element q of Mn(Bk ∩Ar) such that
‖p − q‖ < α. According to Lemma 1.18, q is a ε-r projection. Let q′ be
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another selfadjoint element of Mn(Bk ∩ Ar) such that ‖p− q′‖ < α. Then
‖q − q′‖ < 2α and if we set qt = (1− t)q + tq′ for t ∈ [0, 1], then

‖q2
t − qt‖ 6 ‖q2

t − qtq‖+ ‖qtq − q2‖+ ‖q2 − q‖+ ‖q − qt‖
6 ‖qt − q‖(‖qt‖+ ‖q‖+ 1) + 4α+ δ

6 12α+ δ

< ε,

and thus q and q′ are homotopic in Pε,rn (Bk). Therefore, for p ∈ Pε,rn (A) and
q in someMn(Bk∩Ar) satisfying ‖q−p‖ < ‖p2−p‖

12 , we define Υ′0,ε,r([p, l]ε,r)
to be the image of [q, l]ε,r in lim

k
Kε,r
∗ (Bk). Then Υ′0,ε,r is a group homo-

morphism and is an inverse for Υ0,ε,r. We proceed similarly in the odd
case. �

1.5. Morita equivalence

For any unital filtered algebra A, we get an identification between
Pε,rn (Mk(A)) and Pε,rnk (A) and therefore between Pε,r∞ (Mk(A)) and Pε,r∞ (A).
This identification gives rise to a natural group isomorphism between
Kε,r

0 (A) and Kε,r
0 (Mk(A)), and this isomorphism is induced by the in-

clusion of C∗-algebras

ιA : A ↪→Mk(A); a 7→ diag(a, 0).

Namely, if we set e1,1 = diag(1, 0, . . . , 0) ∈ Mk(C), definition of the func-
toriality yields

ιε,rA,∗[p, l]ε,r = [p⊗ e1,1 + Il ⊗ (Ik − e1,1), l]ε,r ∈ Kε,r
0 (Mk(A))

for any p in Pε,rn (A) and any integer l with l 6 n. We can verify that

(ιε,rA,∗)
−1[q, l]ε,r = [q, kl]ε,r

for any q in Pε,rn (Mk(A)) and any integer l with l 6 n, where on the right
hand side of the equality, the matrix q ofMn(Mk(A)) is viewed as a matrix
of Mnk(A).
In a similar way, we obtain in the odd case an identification between

Uε,r
∞ (Mk(A)) and Uε,r

∞ (A) providing a natural group isomorphism between
Kε,r

1 (A) and Kε,r
1 (Mk(A)). This isomorphism is also induced by the inclu-

sion ιA and we have

ιA,∗[x]ε,r = [x⊗ e1,1 + In ⊗ (Ik − e1,1)]ε,r ∈ Kε,r
1 (Mk(A))

for any x in Uε,r
n (A).
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Let us deal now with the non-unital case. For usual K-theory, Morita
equivalence for non-unital C∗-algebra can be deduced from the unital case
by using the six-term exact sequence associated to the split extension 0→
A → Ã → C → 0. But for quantitative K-theory this splitting only gives
rise (in term of Section 2.1) to a controlled isomorphism (see Corollary 4.9).
In order to really have a genuine isomorphism, we have to go through
the tedious following computation. If B is a non-unital C∗-algebra, let us
identify Mk(B̃) with Mk(B)⊕Mk(C) equipped with the product

(b, λ) · (b′, λ′) = (bb′ + λb′ + bλ′, λλ′)

for b and b′ in Mk(B) and λ and λ′ in Mk(C). Under this identification, if
A is not unital, let us check that the group homomorphism

Φ1 : Kε,r
1 (Ã)→ Kε,r

1 (M̃k(A)); [(x, λ)]ε,r 7→ [(x⊗ e1,1, λ]ε,r

induced by the inclusion ιA is invertible with inverse given by the compo-
sition

Ψ1 : Kε,r
1 (M̃k(A))→ Kε,r

1 (Mk(Ã))
∼=→ Kε,r

1 (Ã),

where the first homomorphism of the composition is induced by the inclu-
sion

M̃k(A)→Mk(Ã); (a, z) 7→ (a, zIk).

Let (x, λ) be an element of Uε,r
n (Ã), with x ∈Mn(A) and λ ∈Mn(C). Then

Ψ1 ◦ Φ1[(x, λ)]ε,r = [(x⊗ e1,1, λ⊗ Ik)]ε,r,

where we use the identification Mnk(C) ∼= Mn(C)⊗Mk(C) to see x⊗ e1,1
and λ⊗ Ik respectively as matrices in Mnk(A) and Mnk(C). According to
Lemma 1.20, as a ε-r-unitary of Mn(C), λ is homotopic to In. Hence

[(x⊗ e1,1, λ⊗ Ik)]ε,r = [(x⊗ e1,1, λ⊗ e1,1 + In⊗Ik−1)]

and from this we get that Ψ1 ◦Φ1 is induced in K-theory by the inclusion
map Ã ↪→ Mk(Ã); a 7→ diag(a, 0) which is the identity homomorphism
(according to the unital case).
Conversely, let (y, λ) be an element in Uε,r

n (M̃k(A)) with

y ∈Mn(Mk(A)) ∼= Mn(A)⊗Mk(C)

and λ ∈Mn(C). Then

Φ1 ◦Ψ1[(y, λ)]ε,r = [(y ⊗ e1,1, λ⊗ Ik)]ε,r,

where
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• y⊗e1,1 belongs toMn(Mk(A))⊗Mk(C) ∼= Mn(A)⊗Mk(C)⊗Mk(C)
(the first two factors provide the copy of Mn(Mk(A)) where y lies
in and e1,1 lies in the last factor).

• λ⊗ Ik belongs to the algebra Mn(Mk(C)) ∼= Mn(C)⊗Mk(C) that
multiplies Mn(A)⊗Mk(C)⊗Mk(C) on the first two factors.

Let

σ : Mn(A)⊗Mk(C)⊗Mk(C)→Mn(A)⊗Mk(C)⊗Mk(C)

be the C∗-algebra homomorphism induced by the flip of Mk(C)⊗Mk(C).
This flip can be realized by conjugation of a unitary U inMk(C)⊗Mk(C) ∼=
Mk2(C). Let (Ut)t∈[0,1] be a homotopy in Uk2(C) between U and Ik2 . Let
us define

A = {(x, z ⊗ Ik); x ∈Mn(A)⊗Mk(C)⊗Mk(C), z ∈Mn(C)}

⊂Mn(M̃k(A))⊗Mk(C),

where z ⊗ Ik is viewed as z ⊗ Ik ⊗ Ik in

Mn(M̃k(A))⊗Mk(C) ∼= Mn(C)⊗ M̃k(A)⊗Mk(C).

Then for any t ∈ [0, 1],

A → A; (x, z ⊗ Ik) 7→ ((In ⊗ Ut) · x · (In ⊗ Ut)−1, z ⊗ Ik)

is an automorphism of C∗-algebra. Hence,(
(In ⊗ Ut) · (y ⊗ e1,1) · (In ⊗ U−1

t ), λ⊗ Ik
)
t∈[0,1]

is a path in Uε,r
nk (M̃k(A)) between (y⊗e1,1, λ⊗Ik) and (σ(y⊗e1,1), λ⊗Ik).

The range of σ(y⊗ e1,1) being in the range of the projection In⊗ e1,1⊗ Ik,
we have an orthogonal sum decomposition

(σ(y ⊗ e1,1), λ⊗ Ik) = (σ(y ⊗ e1,1), λ⊗ e1,1) + (0, λ⊗ (Ik − e1,1))

(recall that λ⊗ e1,1 and λ⊗ (Ik − e1,1) multiply Mn(A)⊗Mk(C)⊗Mk(C)
on the first two factors). By Lemma 1.20, λ is homotopic to In in Uε,r

n (C)
and thus (σ(y⊗e1,1), λ⊗Ik) is homotopic to (σ(y⊗e1,1), λ⊗e1,1)+(0, In⊗
(Ik − e1,1)) in Uε,r

nk (M̃k(A))) which can be viewed as

diag((y, λ), (0, Ik(k−1))

in Mk(Mn(M̃k(A)). From this we deduce that [(y, λ)]ε,r = [(y ⊗ e1,1, λ ⊗
Ik)]ε,r in Kε,r

1 (M̃k(A)).
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For the even case, by an analogous computation, we can check that the
group homomorphisms

Kε,r
0 (Ã)→ Kε,r

0 (M̃k(A)); [(p, q), l)]ε,r 7→ [(p⊗ e1,1, q), l]ε,r
and

Kε,r
0 (M̃k(A))→ Kε,r

0 (Ã); [(p, q), l)]ε,r 7→ [(p, q ⊗ Ik), kl]ε,r,

respectively induce by restriction homomorphisms Φ0 : Kε,r
0 (A) →

Kε,r
0 (Mk(A)) and Ψ0 : Kε,r

0 (Mk(A)) → Kε,r
0 (A) which are inverse of each

other, where in the right hand side of the last formula, we have viewed
p ∈ Mn(Mk(A)) as a matrix in Mnk(A) and q ⊗ Ik ∈ Mn(C) ⊗Mk(C) as
a matrix in Mnk(C). Since Φ0 is induced by ιA, we get from Lemma 1.22
that ιε,rA,∗ : Kε,r

0 (A)→ Kε,r
0 (Mk(A)) is an isomorphism.

Let A be a C∗-algebra filtered by (Ar)r>0. Then K(H) ⊗ A is filtered
by (K(H)⊗Ar)r>0 and applying Proposition 1.27 to the increasing family
(Mk(A)+)k∈N of C∗-subalgebras of ˜K(H)⊗A, Lemmas 1.22 and 1.23, and
the discussion above, we deduce the Morita equivalence for Kε,r

∗ (•).

Proposition 1.28. — If A is a filtered algebra and H is a separable
Hilbert space, then the homomorphism

A→ K(H)⊗A; a 7→

a 0
. . .


induces a (Z2-graded) group isomorphism (the Morita equivalence)

Mε,r
A : Kε,r

∗ (A)→ Kε,r
∗ (K(H)⊗A)

for any positive number r and any ε ∈ (0, 1/4).

1.6. Lipschitz homotopies

Definition 1.29. — If A is a C∗-algebra and C is a positive integer,
then a map h = [0, 1]→ A is called C-Lipschitz if for every t and s in [0, 1],
then ‖h(t)− h(s)‖ 6 C|t− s|.

Proposition 1.30. — There exists a number C such that for any unital
filtered C∗-algebra A and any positive numbers r and ε with ε<1/4 then:

(i) if p0 and p1 are homotopic in Pε,rn (A), then there exist integers
k and l and a C-Lipschitz homotopy in Pε,rn+k+l(A) between
diag(p0, Ik, 0l) and diag(p1, Ik, 0l).
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(ii) if u0 and u1 are homotopic in Uε,r
n (A) then there exist an integer

k and a C-Lipschitz homotopy in U3ε,2r
n+k (A) between diag(u0, Ik)

and diag(u1, Ik).

Proof.

(i) Notice first that if p is an ε-r-projection in A, then the homotopy

of ε-r-projections of M2(A) between
(

1 0
0 0

)
and

(
p 0
0 1− p

)
in

Example 1.6 is 2-Lipschitz.
Let (pt)t∈[0,1] be a homotopy between p0 and p1 in Pε,rn (A). Set

α = inft∈[0,1]
ε−‖p2

t−pt‖
4 and let t0 = 0 < t1 < . . . < tk = 1 be a

partition of [0, 1] such that ‖pti −pti−1‖ < α for i ∈ {1, . . . , k}. We
construct a homotopy of ε-r-projections with the required property
between diag(p0, In(k−1), 0) and diag(p1, In(k−1), 0) inMn(2k−1)(A)
as the composition of the following homotopies.
• We can connect diag(pt0 , In(k−1), 0) and diag(pt0 , In, 0, . . .
. . . , In, 0) within Pε,rn(2k−1)(A) by a 2-Lipschitz homotopy.

• As we noticed at the beginning of the proof, we can connect
diag(pt0 , In, 0, . . . , In, 0) and diag(pt0 , In − pt1 , pt1 , . . . , In −
ptk , ptk) within Pε,rn(2k−1)(A) by a 2-Lipschitz homotopy.

• The ε-r-projections diag(pt0 , In−pt1 , pt1 , . . . , In−ptk , ptk) and
diag(pt0 , In − pt0 , . . . , ptk−1 , In − ptk−1 , ptk) satisfy the norm
estimate of the assumption of Lemma 1.7(i) and hence then
can be connected within Pε,rn(2k−1)(A) by a ray which is clearly
a 1-Lipschitz homotopy.

• Using once again the homotopy of Example 1.6, we see that
diag(pt0 , In − pt0 , . . . , ptk−1 , In − ptk−1 , ptk) and diag(0, In, . . .
. . . , 0, In, ptk) are connected within Pε,rn(2k−1)(A) by a 2-Lip-
schitz homotopy.

• Eventually, diag(0, In, . . . , 0, In, ptk) and diag(ptk , In(k−1), 0)
are connected within Pε,rn(2k−1)(A) by a 2-Lipschitz homotopy.

(ii) Let (ut)t∈[0,1] be a homotopy between u0 and u1 in Uε,r
n (A). Set

α = inft∈[0,1]
ε−‖u∗tut−In‖

3 and let t0 = 0 < t1 < . . . < tk = 1 be
a partition of [0, 1] such that ‖uti − uti−1‖ < α for i ∈ {1, . . . , k}.
We construct a homotopy with the required property between
diag(u0, I2nk) and diag(u1, I2nk) within U3ε,2r

n(2k+1)(A) as the com-
position of the following homotopies.
• Since Ink and diag(u∗t1ut1 , . . . , u

∗
tk
utk) satisfy the norm esti-

mate of the assumption of Lemma 1.7(ii), then diag(ut0 , Ink)
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is a 3ε-2r-unitary that can be connected to diag(ut0 , u∗t1ut1 , . . .
. . . , u∗tkutk) in U3ε,2r

n(k+1)(A) by a 1-Lipschitz homotopy.
• Proceeding as in the first point of Corollary 1.8, we see that

diag(In, u∗t1 , . . . , u
∗
tk
, Ink) and diag(u∗t1 , . . . , u

∗
tk
, In(k+1)) can

be connected within Uε,r
n(2k+1)(A) by a 2-Lipschitz homotopy

and thus, in view of Remark 1.4,

diag(ut0 , u∗t1ut1 , . . . , u
∗
tk
utk , Ink) =

diag(In, u∗t1 , . . . , u
∗
tk
, Ink) · diag(ut0 , ut1 , . . . , utk , Ink)

and

diag(u∗t1 , . . . , u
∗
tk
, In(k+1)) · diag(ut0 , ut1 , . . . , utk , Ink) =

diag(u∗t1ut0 , . . . , u
∗
tk
utk−1 , utk , Ink)

can be connected within U3ε,2r
n(2k+1)(A) by a 4-Lipschitz homo-

topy.
• Since ‖u∗tiuti−1 − In‖ < ε, we get by using once again Lemma

1.7(ii) that diag(u∗t1ut0 , . . . , u
∗
tk
utk−1 , utk , Ink) and diag(Ink,

utk , Ink) can be connected within U3ε,2r
n(2k+1)(A) by a 1-Lipschitz

homotopy.
• Eventually, diag(Ink, utk , Ink) can be connected to diag(utk ,
I2nk) within U3ε,2r

(2k+1)n(A) by a 2-Lipschitz homotopy.
�

Corollary 1.31. — There exists a control pair (αh, kh) such that the
following holds:
For any unital filtered C∗-algebra A, any positive numbers ε and r with

ε < 1
4αh and any homotopic ε-r-projections q0 and q1 in Pε,rn (A), then there

is for some integers k and l an αhε-kh,εr-unitary W in Uαhε,kh,εr
n+k+l (A) such

that
‖ diag(q0, Ik, 0l)−W diag(q1, Ik, 0l)W ∗‖ < αhε.

Proof. — According to Proposition 1.30, we can assume that q0 and q1
are connected by a C-Lipschitz homotopy (qt)t∈[0,1], for some universal
constant C. Let t0 = 0 < t1 < · · · < tp = 1 be a partition of [0, 1]
such that 1/32C < |ti − ti−1| < 1/16C. With notation of Lemma 1.11,
pick for every integer i in {1, . . . , p} a λε-lε-unitary Wi in A such that
‖Wiqti−1W

∗
i − qti‖ < λε. If we set W = Wp · · ·W1, then W is a 3pλε-

plεr-unitary such that ‖Wq0W
∗ − q1‖ < 2pλε. Since p < 2C, we get the

result. �
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2. Controlled morphisms

As we shall see in Section 3, usual maps in K-theory such as bound-
ary maps factorize through group homomorphism of quantitative K-theory
groups with expansion of norm control and propagation controlled by a
control pair. This motivates the notion of controlled morphisms for quan-
titative K-theory in this section.
Recall that a control pair is a pair (λ, h), where
• λ > 1;
• h : (0, 1

4λ ) → (1,+∞); ε 7→ hε is a map such that there exists a
non-increasing map g : (0, 1

4λ )→ (1,+∞), with h 6 g.
The set of control pairs is equipped with a partial order: (λ, h) 6 (λ′, h′) if
λ 6 λ′ and hε 6 h′ε for all ε ∈ (0, 1

4λ′ )

2.1. Definition and main properties

For any filtered C∗-algebra A, let us define the families K0(A) =
(Kε,r

0 (A))0<ε<1/4,r>0 , K1(A) = (Kε,r
1 (A))0<ε<1/4,r>0 and K∗(A) =

(Kε,r
∗ (A))0<ε<1/4,r>0.

Definition 2.1. — Let (λ, h) be a control pair, let A and B be fil-
tered C∗-algebras, and let i, j be elements of {0, 1, ∗}. A (λ, h)-controlled
morphism

F : Ki(A)→ Kj(B)
is a family F = (F ε,r)0<ε< 1

4λ ,r>0 of group homomorphisms

F ε,r : Kε,r
i (A)→ Kλε,hεr

j (B)

such that for any positive numbers ε, ε′, r and r′ with 0 < ε 6 ε′ < 1
4λ and

hεr 6 hε′r′, we have

F ε
′,r′ ◦ ιε,ε

′,r,r′

i = ι
λε,λε′,hεr,hε′r

′

j ◦ F ε,r.

If it is not necessary to specify the control pair, we will just say that F
is a controlled morphism.
Let A and B be filtered algebras. Then it is straightforward to check

that if F : Ki(A) → Kj(B) is a (λ, h)-controlled morphism, then there is
group homomorphism F : Ki(A) → Kj(B) uniquely defined by F ◦ ιε,ri =
ιλε,hεrj ◦ F ε,r. The homomorphism F will be called the (λ, h)-controlled
homomorphism induced by F . A homomorphism F : Ki(A) → Kj(B) is
called (λ, h)-controlled if it is induced by a (λ, h)-controlled morphism. If
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we don’t need to specify the control pair (λ, h), we will just say that F is
a controlled homomorphism.

Example 2.2.
(i) Let A and B be C∗-algebras respectively filtered by (Ar)r>0 and

(Br)r>0 and let f : A → B be a homomorphism. Assume that
there exists d > 0 such that f(Ar) ⊂ Bdr for all positive r. Then
f gives rise to a bunch of group homomorphisms(

fε,r∗ : Kε,r
∗ (A)→ Kε,dr

∗ (B)
)

0<ε< 1
4 ,r>0

and hence to a (1, d)-controlled morphism f∗ : K∗(A)→ K∗(B).
(ii) The bunch of group isomorphisms

(Mε,r
A : Kε,r

∗ (A)→ Kε,r
∗ (K(H)⊗A))0<ε< 1

4 ,r>0

of Proposition 1.28 defines a (1, 1)-controlled morphism

MA : K∗(A)→ K∗(K(H)⊗A)

and
M−1

A : K∗(K(H)⊗A)→ K∗(A)
inducing the Morita equivalence in K-theory.

If (λ, h) and (λ′, h′) are two control pairs, define

h ∗ h′ : (0, 1
4λλ′ )→ (0,+∞); ε 7→ hλ′εh

′
ε.

Then (λλ′, h∗h′) is a control pair. Let A, B1 and B2 be filtered C∗-algebras,
let i, j and l be in {0, 1, ∗} and let F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A) →

Kj(B1) be a (αF , kF )-controlled morphism, let G = (Gε,r)0<ε< 1
4αG

,r>0 :
Kj(B1)→ Kl(B2) be a (αG , kG)-controlled morphism. Then G◦F : Ki(A)→
Kl(B2) is the (αGαF , kG ∗ kF )-controlled morphism defined by the family
(GαFε,kF,εr ◦ Fε,r)0<ε< 1

4αFαG
,r>0.

Remark 2.3. — The Morita equivalence for quantitative K-theory is
natural, i.e

MB ◦ f = (IdK(H))⊗f) ◦MA

for any homomorphism f : A→ B of filtered C∗-algebras.

Notation 2.4. — Let A and B be filtered C∗-algebras, let (λ, h) be a
control pair, and let F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A) → Kj(B) (resp. G =

(Gε,r)0<ε< 1
4αG

,r>0) be a (αF , kF )-controlled morphism (resp. a (αG , kG)-

controlled morphism). Then we write F (λ,h)∼ G if
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• (αF , kF ) 6 (λ, h) and (αG , kG) 6 (λ, h).
• for every ε in (0, 1

4λ ) and r > 0, then

ι
αFε,λε,kF,εr,hεr
j ◦ F ε,r = ι

αGε,λε,kG,εr,hεr
j ◦Gε,r.

If F and G are controlled morphisms such that F (λ,h)∼ G for a control
pair (λ, h), then F and G induce the same morphism in K-theory.

Remark 2.5. — Let F : Ki(A2) → Kj(B1) (resp. F ′ : Ki(A2) →
Kj(B1)) be a (αF , kF )-controlled (resp. a (αF ′ , kF ′)-controlled) morphisms
and let G : Ki′(A1)→ Ki(A2) (resp. G′ : Kj(B1)→ Kl(B2)) be a (αG , kG)-
controlled (resp. a (αG′ , kG′)-controlled) morphism. Assume that F (λ,h)∼ F ′
for a control pair (λ, h), then

• G′ ◦ F
(αG′λ,kG′∗h)
∼ G′ ◦ F ′;

• F ◦ G (αGλ,h∗kG)∼ F ′ ◦ G.

If i is an element in {0, 1, ∗} and A is a filtered C∗-algebra, we denote
by IdKi(A) the controlled morphism induced by IdA.
Let F : Ki(A1)→ Ki′(B1), F ′ : Kj(A2)→ Kl(B2), G : Ki(A1)→ Kj(A2)

and G′ : Ki′(B1) → Kl(B2) be controlled morphisms and let (λ, h) be a
control pair. Then the diagram

Ki′(B1) G′−−−−→ Kl(B2)

F
x xF ′

Ki(A1) G−−−−→ Kj(A2)

is called (λ, h)-commutative (or (λ, h)-commutes) if G′ ◦ F (λ,h)∼ F ′ ◦ G.

Definition 2.6. — Let (λ, h) be a control pair, and let F : Ki(A) →
Kj(B) be a (αF , kF )-controlled morphism with (αF , kF ) 6 (λ, h).

• F is called left (λ, h)-invertible if there exists a controlled mor-
phism

G : Kj(B)→ Ki(A)

such that G ◦ F (λ,h)∼ IdKi(A). The controlled morphism G is then

called a left (λ, h)-inverse for F . Notice that definition of (λ,h)∼
implies that (αFαG , kF ∗ kG) 6 (λ, h).
• F is called right (λ, h)-invertible if there exists a controlled mor-
phism

G : Kj(B)→ Ki(A)
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such that F ◦ G (λ,h)∼ IdKi(B). The controlled morphism G is then
called a right (λ, h)-inverse for F .

• F is called (λ, h)-invertible or a (λ, h)-isomorphism if there exists
a controlled morphism

G : Kj(B)→ Ki(A)

which is a left (λ, h)-inverse and a right (λ, h)-inverse for F . The
controlled morphism G is then called a (λ, h)-inverse for F (notice
that we have in this case necessarily (αG , kG) 6 (λ, h)).

We can check easily that indeed, if F is left (λ, h)-invertible and right
(λ, h)-invertible, then there exists a control pair (λ′, h′) with (λ, h) 6
(λ′, h′), depending only on (λ, h) such that F is (λ′, h′)-invertible.

Definition 2.7. — Let (λ, h) be a control pair and let F : Ki(A) →
Kj(B) be a (αF , kF )-controlled morphism.

• F is called (λ, h)-injective if (αF , kF ) 6 (λ, h) and for any 0 <

ε < 1
4λ , any r > 0 and any x in Kε,r

i (A), then F ε,r(x) = 0 in
K
αFε,kF,εr
j (B) implies that ιε,λε,r,hεri (x) = 0 in Kλε,hεr

i (A);
• F is called (λ, h)-surjective, if for any 0 < ε < 1

4λαF , any r > 0
and any y in Kε,r

j (B), there exists an element x in Kλε,hεr
i (A) such

that Fλε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr
j (y) in KαFλε,kF,λεhεr

j (B).

Remark 2.8.
(i) It is straightforward to check that if F is left (λ, h)-invertible, then
F is (λ, h)-injective and that if F is right (λ, h)-invertible, then
there exists a control pair (λ′, h′) with (λ, h) 6 (λ′, h′), depending
only on (λ, h) such that F is (λ′, h′)-surjective.

(ii) On the other hand, if F is (λ, h)-injective and (λ, h)-surjective,
then there exists a control pair (λ′, h′) with (λ, h) 6 (λ′, h′), de-
pending only on (λ, h) such that F is a (λ′, h′)-isomorphism.

2.2. Controlled exact sequences

Definition 2.9. — Let (λ, h) be a control pair,
• Let F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A) → Kj(B1) be a (αF , kF )-

controlled morphism, and let G = (Gε,r)0<ε< 1
4αG

,r>0 : Kj(B1) →
Kl(B2) be a (αG , kG)-controlled morphism, where i, j and l are
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in {0, 1, ∗} and A, B1 and B2 are filtered C∗-algebras. Then the
composition

Ki(A) F→ Kj(B1) G→ Kl(B2)

is said to be (λ, h)-exact at Kj(B1) if G ◦ F = 0 and if for any
0 < ε < 1

4 max{λαF ,αG} , any r > 0 and any y in Kε,r
j (B1) such

that Gε,r(y) = 0 in K
αGε,kG,εr
j (B2), there exists an element x in

Kλε,hεr
i (A) such that

Fλε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr
j (y)

in KαFλε,kF,λεhεr
j (B1).

• A sequence of controlled morphisms

· · · Kik−1(Ak−1) Fk−1→ Kik(Ak) Fk→ Kik+1(Ak+1) Fk+1→ Kik+2(Ak+2) · · ·

is called (λ, h)-exact if for every k, the composition

Kik−1(Ak−1) Fk−1→ Kik(Ak) Fk→ Kik+1(Ak+1)

is (λ, h)-exact at Kik(Ak).

3. Quantitative K-theory and extensions of filtered
C∗-algebras

The aim of this section is to establish a controlled exact sequence for
quantitative K-theory with respect to filtered extension of C∗-algebras i.e
extension such that the ideal inherits a structure of filtered C∗-algebra. We
also prove that for these extensions, the boundary maps are induced by
controlled morphisms. As in K-theory, one is a map of exponential type
and the other is an index type map, and the later in turn fits in a long
(λ, h)-controlled exact sequence for some universal control pair (λ, h).

3.1. Extensions of filtered C∗-algebras

Let A be a C∗-algebra filtered by (Ar)r>0 and let

0→ J → A
q→ A/J → 0

be an extension of C∗-algebras. For any positive number r set Jr = J ∩Ar
and assume that the bijective continuous linear map

Ar/Jr−→(Ar + J)/J
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induced by the inclusion Ar ↪→ A is indeed an isometry i.e for any positive
number r and any x in Ar, then

inf
y∈Jr
‖x+ y‖ = inf

y∈J
‖x+ y‖.

Then q(Ar) = (Ar + J)/J is closed in A/J . Moreover, for any x ∈ J and
any number ε > 0 there exists a positive number r and an element a of
Ar such that ‖x − a‖ < ε. Since ‖q(a)‖ < ε, there exists an element y in
Jr such that ‖a − y‖ < ε and thus ‖x − a‖ < 2ε. Hence J is filtered by
(Ar ∩ J)r>0 and A/J is filtered by (q(Ar))r>0.

Definition 3.1. — Let A be a C∗-algebra filtered by (Ar)r>0, let J be
an ideal of A and set Jr = J ∩Ar. The extension of C∗-algebras

0→ J → A→ A/J → 0

is called a completely filtered extension of C∗-algebras if the bijective con-
tinuous linear map

Ar/Jr−→(Ar + J)/J
induced by the inclusion Ar ↪→ A is a complete isometry i.e for any integer
n, any positive number r and any x in Mn(Ar), then

inf
y∈Mn(Jr)

‖x+ y‖ = inf
y∈Mn(J)

‖x+ y‖.

Numerous examples of such extensions arise from the analogous in the
setting of filtered C∗-algebras of semi-split extensions.

Definition 3.2. — Let A be a C∗-algebra filtered by (Ar)r>0 and let
J be an ideal of A. The extension of C∗-algebras

0→ J → A→ A/J
q→ 0

is said to be filtered and semi-split (or a semi-split extension of filtered C∗-
algebras) if there exists a completely positive (complete) norm decreasing
cross-section

s : A/J → A

such that
s(q(Ar)) ⊆ Ar

for any number r > 0. Such a cross-section is said to be semi-split and
filtered.

Lemma 3.3. — Any semi-split extension of filtered C∗-algebra is com-
pletely filtered.
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Proof. — Let 0 → J → A → A/J
q→ 0 be a filtered and semi-split

extension and let s : A/J → A be a semi-split and filtered crossed section.
Let r be a positive number, let n be an integer and let x be an element of
Mn(Ar). Since s(q(Ar)) ⊆ Ar, there exists an element z in Mn(Jr) such
that x+ z = s(q(x)). Then we have

‖x+ z‖ 6 ‖s(q(x))‖
6 ‖q(x)‖
6 inf

y∈Mn(J)
‖x+ y‖.

We get hence that ‖x + z‖ = infy∈Mn(J) ‖x + y‖ and the extension is
completely filtered . �

We have the following analogous of the lifting property for unitaries of
the neutral component.

Lemma 3.4. — There exists a control pair (αe, ke) such that for any
completely filtered extension of C∗-algebras

0 −→ J −→ A
q−→ A/J −→ 0,

with A unital, the following holds: for every positive numbers r and ε with
ε < 1

4αe and any ε-r-unitary V homotopic to In in Uε,r
n (A/J), then for

some integer j, there exists a αeε-ke,εr-unitary W homotopic to In+j in
Uαeε,ke,εr
n+j (A) and such that ‖q(W )− diag(V, Ij)‖ < αeε.

Proof. — According to Proposition 1.30, we can assume that V and In
are connected by a C-Lipschitz homotopy (Vt)t∈[0,1], for some universal
constant C. Let t0 = 0 < t1 < · · · < tp = 1 be a partition of [0, 1]
such that 1/16C < |ti − ti−1| < 1/8C. Then we get that ‖Vi−1 − Vi‖ <
1/8 and hence ‖Vi−1V

∗
i − In‖ < 1/2. Let lε be the smallest integer such

that
∑
k>lε+1 2−k/k < ε and

∑
k>lε+1 logk 2/k! < ε and let us consider

the polynomial functions Pε(x) =
∑lε
k=0 x

k/k! and Qε(x) = −
∑lε
k=1 x

k/k.
Since

|1− z − Pε ◦Qε(z)| = | exp ◦ log(1− z)− Pε ◦Qε(z)| < 3ε

for every complex number z such that |z| < 1/2, we get then

(3.1) ‖Vi−1V
∗
i − Pε ◦Qε(In − Vi−1V

∗
i )‖ < 3ε.

For i = 1, . . . , p, let Zi be a lift for In − Vi−1V
∗
i in Mn(A2lεr) such that

‖Zi‖ < 1/2. Let us set for t in [0, 1] and i in {1, . . . , p}

W t
i = Pε

(
t

(
Qε(Zi)−Qε(Z∗i )

2

))
.
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Since Qε(Zi)−Qε(Z∗i )
2 is skew-adjoint and ‖Qε(Zi)−Qε(Z

∗
i )

2 ‖ < log 2, then
exp

(
Qε(Zi)−Qε(Z∗i )

2

)
is a unitary such that∥∥∥∥Pε(t(Qε(Zi)−Qε(Z∗i )

2

))
− exp

(
t

(
Qε(Zi)−Qε(Z∗i )

2

))∥∥∥∥ < ε

for every t in [0, 1] and i. Hence, according to Lemma 1.7, we get that
(W t

i )t∈[0,1] is a homotopy of 3ε-2l2ε-unitaries between In and W 1
i =

Pε

(
Qε(Zi)−Qε(Z∗i )

2

)
. Since Vi−1V

∗
i is close to the unitary Vi−1V

∗
i (ViV ∗i−1.

Vi−1V
∗
i )−1/2, then q(W 1

i ) is uniformly close (in i) to

exp(log(Vi−1V
∗
i (ViV ∗i−1Vi−1V

∗
i )−1/2)) = Vi−1V

∗
i (ViV ∗i−1Vi−1V

∗
i )−1/2

(the logarithm is well defined since ‖Vi−1V
∗
i (ViV ∗i−1Vi−1V

∗
i )−1/2−In‖ < 1).

Therefore we get for some universal positive number α that ‖q(W 1
i ) −

Vi−1V
∗
i ‖ < αε. If we set now W = W 1

1 · · ·W 1
p and since p 6 16C, then W

satisfies the required property. �

Lemma 3.5. — There exists a control pair (α, k) such that for any com-
pletely filtered extension of C∗-algebras

0→ J → A→ A/J → 0

with A unital the following holds :

For any integer n, any ε-r-projection p in Mn(A/J) and any self-adjoint
lift x for p in Mn(Ar) such that ‖x‖ 6 2, there exists an element yp in
Mn(Jkεr) such that

‖In + yp − exp(2ıπx)‖ < αε/4.

In particular In + yp is an αε-kεr-unitary of Mn(J+).

Proof. — Let kε be the smallest integer such that
+∞∑

l=kε+1
16l/l! < ε and

set

zp =
kε∑
l=0

(2ıπx)l

l! .

Then zp belongs to Mn(Akεr) and we have

‖q(zp)− In‖ 6 ‖q(zp − exp(ıπx))‖+ ‖q(exp(ıπx))− q(exp(ıπκ0(p)))‖
6 ‖zp − exp(ıπx)‖+ ‖ exp(ıπp)− exp(ıπκ0(p))‖
< λε,
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with λ = 1 + 2e16. Hence there exists an element yp in Mn(Jkεr) such that

‖In + yp − zp‖ < λε

and we have
‖In + yp − exp(2ıπx)‖ < (2λ+ 1)ε.

The end of the statement is then a consequence of Lemma 1.7. �

Remark 3.6. — With notations of the lemma,
(i) if yp and y′p are two elements of Mn(Jkεr) that satisfy the conclu-

sion of the lemma, then according to Lemma 1.7,we see that In+yp
and In + y′p are homotopic as 2αε-kεr-unitaries of Mn(J+);

(ii) Let x and x′ two self-adjoint lifts for p inMn(Ar) such that ‖x‖ 6 2
and ‖x′‖ 6 2. Applying the first point of the remark and the lemma
to the completely filtered extension of C∗-algebras

0→ J [0, 1]→ A[0, 1]→ A/J [0, 1]→ 0

and to the constant ε-r-projection

[0, 1]→Mn(A/J); t 7→ p

with lift

[0, 1]→Mn(Ar); t 7→ (1− t)x+ tx′,

we get that x and x′ give rise to homotopic 2αε-kεr-unitaries of
Mn(J+).

3.2. Controlled boundary maps

For any extension 0→ J → A→ A/J → 0 of C∗-algebras we denote by
∂J,A : K∗(A/J)→ K∗(J) the associated (odd degree) boundary map.

Proposition 3.7. — There exists a control pair (αD, kD) such that for
any completely filtered extension of C∗-algebras

0 −→ J −→ A
q−→ A/J −→ 0,

there exists a (αD, kD)-controlled morphism of odd degree

DJ,A = (∂ε,rJ,A)0<ε 1
4αD

,r : K∗(A/J)→ K∗(J)

which induces in K-theory ∂J,A : K∗(A/J)→ K∗(J).

Proof. — Let us first prove the result when when A is unital.
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(i) Let p be an element of Pε,rn (A/J) and let x be a self-adjoint lift
for p in Mn(Ar) such that ‖x‖ 6 2. Then there exists a lift x0 for
κ0(p) in Mn(A) such that ‖x− x0‖ < 2ε. Fix a control pair (α, k)
as in Lemma 3.5, and let yp in Mn(Jr) be such that ‖In + yp −
exp(2ıx)‖ < αε/4. Then
• ∂J,A([κ0(p)]) is the class of exp(2ıπx0) in K1(J);
• In + yp is an αε-kεr-unitary of Mn(J+), and according to Re-
mark 3.6
– any two such αε-kεr-unitaries are homotopic in U2αε,kεr

n (J+);
– any two self-adjoint lifts for p in Mn(Ar) with norm at

most 2 give rise to αε-kεr-unitaries which are homotopic
in U2αε,kεr

n (J+).
• ‖In + yp − exp(2ıπx0)‖ < (α/4 + e20)ε and hence, if ε is small
enough then In+yp and exp(2ıπx0) are homotopic elements of
GLn(J+).

Applying Lemma 3.5 to A/J [0, 1], we see that the map

Pε,rn (A/J) −→ U2αε,kεr
n (J+); p 7→ In + yp

preserves homotopies and hence gives rise to a bunch of well defined
group homomorphism

∂ε,rJ,A : Kε,r
0 (A/J) −→ K2αε,kεr

1 (J); [p, l]ε,r 7→ [In + yp]2αε,kεr

which in the even case satisfies the required properties for a con-
trolled homomorphism.

(ii) In the odd case, we follow the route of [18, Chapter 8]. For any
element u of Uε,r

n (A/J), pick any element v in some Uε,r
j (A/J)

such that diag(u, v) is homotopic to In+j in U3ε,2r
n+j (A/J) (we can

choose in view of Lemma 1.8 v = u∗). According to Lemma 3.4,
and up to replace v by diag(v, Ik) for some integer k, there exists
an element w in U3αeε,2ke,3εr

n+j (A) such that ‖q(w) − diag(u, v)‖ 6
3αeε. Let us set x = w diag(In, 0)w∗. Then x is an element in
P6αeε,4ke,3εr
n+j (A) such that ‖q(x)− diag(In, 0)‖ < 9αeε. Let h be a

self-adjoint element of Mn+j(A4ke,3εr ∩ J) such that

(3.2) ‖x− diag(In, 0)− h‖ < 9αeε.

According to Lemma 1.7, we get that h + diag(In, 0) belongs to
P45αeε,4ke,3εr
n+j (J) and we define then

∂ε,rJ,A([u]ε,r) = [h+ diag(In, 0), n]3250αeε,8ke,3εr .
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Using once again Lemma 1.7, we see that two choices of self-adjoint
elements ofMn+j(A4ke,3εr∩J) that satisfy equation (3.2) gives rise
to the same class in K3250αeε,8ke,3εr

0 (J+). Moreover, it is straight-
forward to check that (compare with [18, Chapter 8]).
• two choices of elements satisfying the conclusion of Lemma 3.4
relatively to diag(u, v) give rise to homotopic elements in
P3250αeε,8ke,3εr
n+j (J) (this is a consequence of Lemma 1.7).

• Replacing u by diag(u, Im) and v by diag(v, Ik) gives also rise
to the same element of K3250αeε,8ke,3εr

0 (J).
Applying now Lemma 3.4 to the exact sequence

0→ J [0, 1]→ A[0, 1]→ A/J [0, 1]→ 0,

we get that ∂ε,rJ,A([u]ε,r)
• only depends on the class of u in Kε,r

1 (A/J);
• does not depend on the choice of v such that diag(u, v) is
connected to In+j in Uε,r

n+j(A/J).
• Using Lemma 1.7, it is plain to check that for a suitable con-
trol pair (αD, kD), then DJ,A = (∂ε,rJ,A)0<ε 1

4αD
,r is a (αD, kD)-

controlled morphism inducing the (odd degree) boundary map
∂J,A : K∗(A/J)→ K∗(J).

• If A is not unital, use with notations of Section 1.4 the completely
filtered extension

0→ J → A+ → A+/J → 0

to define ∂ε,rJ,A as the composition

Kε,r
1 (A/J)

∼=−→ Kε,r
1 (A+/J)

∂ε,r
J,A+
−→ K

αDε,kD,εr
1 (J)

and

Kε,r
0 (A/J) ↪→ Kε,r

0 (A+/J)
∂ε,r
J,A+
−→ K

αDε,kD,εr
1 (J),

where the left morphisms in the compositions are induced by the
inclusion A/J ↪→ A+/J .

�

For a completely filtered extension of C∗-algebras

0 −→ J −→ A
q−→ A/J −→ 0,

we set D0
J,A : K0(A/J) → K1(J), for the restriction of DJ,A to K0(A/J)

and D1
J,A : K1(A/J)→ K0(J), for the restriction of DJ,A to K1(A/J).
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Remark 3.8.
(i) Let A and B be two filtered C∗-algebras and let φ : A → B be

a filtered homomorphism. Let I and J be respectively ideals in A
and B and assume that
• 0 → I → A → A/I → 0 and 0 → J → B → B/J → 0 are

completely filtered extensions of C∗-algebras.
• φ(I) ⊂ J ,

then DJ,B ◦ φ̃∗ = φ∗ ◦ DI,A.
(ii) Let 0 −→ J −→ A

q−→ A/J −→ 0 be a split extension of fil-
tered C∗-algebras, i.e there exists a homomorphism of filtered C∗-
algebras s : A/J → A such that q ◦ s = IdA/J . Then we have
DJ,A = 0.

For a filtered C∗-algebra A, we have defined the suspension and the cone
respectively as SA = C0((0, 1), A) and CA = C0((0, 1], A). Then SA and
CA are filtered C∗-algebras and evaluation at the value 1 gives rise to a
semi-split filtered extension of C∗-algebras

(3.3) 0→ SA→ CA→ A→ 0

and in the even case, the corresponding boundary ∂SA,CA : K0(A) →
K1(SA) implements the suspension isomorphism and has the following easy
description when A is unital: if p is a projection, then ∂SA,CA[p] is the class
in K1(SA) of the path of unitaries

[0, 1]→ Un(A); t 7→ pe2ıπt + 1− p.

Let us show that we have an analogous description in term of almost pro-
jection. Notice that if q is an ε-r-projection in A, then

zq : [0, 1]→ A; t 7→ qe2ıπt + 1− q

is a 5ε-r-unitary in S̃A. Using this, we can define a (5, 1)-controlled mor-
phism ZA = (Zε,rA )0<ε<1/20,r>0 : K0(A)→ K1(SA) in the following way:

• for any q in Pε,rn (A) and any integer k let us set

Vq,k : [0, 1]→ U5ε,r
n (S̃A) : t 7→ diag(e−2kıπt, 1, . . . , 1) · (1− q + qe2ıπt);

• define then Zε,rA ([q, k]ε,r) = [Vq,k]5ε,r.

Proposition 3.9. — There exists a control pair (λ, h) such that for any
unital filtered C∗-algebra A, then D0

CA,SA

(λ,h)∼ ZA.

Proof. — Let [q, k]ε,r be an element of Kε,r
0 (A), with q in Pε,rn (A) and k

integer. We can assume without loss of generality that n > k. Namely, up
to replace n by 2n and using a homotopy between diag(q, 0) and diag(0, q)
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in Pε,r2n (A), we can indeed assume that q and diag(Ik, 0) commute. As
in the proof of Lemma 3.5, define lε as the smallest integer such that∑∞
l=lε+1 16l/l! < ε. Let us consider the following paths in Mn(A)

z : [0, 1]−→Mn(A); t 7→
lε∑
l=0

(2ıπ(tq + (1− t) diag(Ik, 0)))l

l!

and

z′ : [0, 1]−→Mn(A); t 7→ exp(2ıπ diag(−tIk, 0))(1− q + e2ıπtq).

Since q and Ik commutes, then

exp(2ıπ(diag(−tIk, 0) + tq)) = exp(2ıπ diag(−tIk, 0)) · exp(2ıπtq)

and hence

z(t) = exp(2ıπ diag(−tIk, 0)) exp(2ıπtq)

−
∞∑

l=lε+1

(2ıπ(tq + (1− t) diag(Ik, 0)))l

l! .

We get therefore

‖z(t)− z′(t)‖ 6 ε+ ‖qe2ıπt + (1− q)− exp 2ıπtq‖
6 ε+ 2‖κ0(q)− q‖+ ‖ exp 2ıπtκ0(q)− exp 2ıπtq‖
6 ε(5 + 4e4π).

Let us set

y : [0, 1]−→Mn(A); t 7→ z(t)−1−(1−t) diag(Ik, 0)
lε∑
l=1

(2ıπ)l

l! −t
lε∑
l=1

(2ıπq)l

l! .

For some αs > α∂ , we get then that 1 + y and z′ are homotopic elements
in Uαsε,k∂,εrn (S̃A). Using the semi-split filtered cross-section A→ CA; a 7→
[t 7→ ta] for the extension of equation (3.3), we get in view of the proof of
Proposition 3.7,

ι
α∂ε,αsε,k∂,εr
1 ◦ ∂ε,rSA,CA([q, k]ε,r) = [1 + y]αsε,k∂,εr,

and thus we deduce

ι
α∂ε,αsε,k∂,εr
1 ◦ ∂ε,rSA,CA([q, k]ε,r) = [z′]αsε,k∂,εr.

We get the result by using a homotopy of unitaries in Mn(S̃A) between

t 7→ diag(e−2kπt, 1, . . . , 1)

and t 7→ exp(2ıπ diag(−tIk, In−k)). �
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The inverse of the suspension isomorphism is provided, up to Morita
equivalence by the Toeplitz extension: let us consider the unilateral shift S
on `2(N), i.e the operator defined on the canonical basis (en)n∈N of `2(N)
by S(en) = en+1 for all integer n. Then the Toeplitz algebra T is the C∗-
subalgebra of L(`2(N)) generated by S. The algebra of compact operators
K(`2(N)) is an ideal of T and we get an extension of C∗-algebras

0→ K(`2(N))→ T ρ→ C(S1)→ 0,

called the Toeplitz extension, where S1 denote the unit circle. Let us define
T0 = ρ−1(C0(0, 1)), where C0(0, 1) is viewed as a subalgebra of C(S1). We
obtain then an extension of C∗-algebras

0→ K(`2(N))→ T0
ρ→ C0(0, 1)→ 0.

For any C∗-algebra A, we can tensorize this exact sequence to obtain an
extension

0→ K(`2(N))⊗A→ T0 ⊗A→SA→ 0
which is filtered and semi-split when A is a filtered C∗-algebra.

Proposition 3.10. — There exists a control pair (λ, h) such that

D1
K(`2(N))⊗A,T0⊗A ◦ ZA

(λ,h)∼ MA

for any unital filtered C∗-algebra A.

Proof. — Let q be an ε-r-projection in Mn(A). We can assume indeed
without loss of generality that n = 1. The Toeplitz extension is semi-split by
the section induced by the completely positive (complete) norm decreasing
map s : C(S1) −→ T ; f 7→ Mf , where if π0 stands for the projection
L2(S1) ∼= `2(Z)→ l2(N), then Mf is the composition

l2(N) ↪→ `2(Z) ∼= L2(S1) f ·→ L2(S1) π0→ l2(N),

(f · being the pointwise multiplication by f). Notice first that
(
S 1−SS∗
0 S∗

)
is a unitary lift of S1 →M2(C); z 7→ diag(z, z̄) in M2(T ) under the homo-
morphism induced by ρ : T → C(S1). Under the section induced by s, we
see that zq lifts to 1⊗ (1− q) + S ⊗ q, and hence

W =
(
S 1− SS∗
0 S∗

)
⊗ q + I2 ⊗ (1− q)

is a lift in U5ε,r
2 (T0 ⊗ A) of diag(zq, z∗q ). Since ‖q(1 − q)‖ < ε, we see that

W ∗ diag(1, 0)W is close to(
S∗ 0

1− SS∗ S

)(
1 0
0 0

)(
S 1− SS∗
0 S∗

)
⊗ q2 +

(
1 0
0 0

)
⊗ (1− q)2.

ANNALES DE L’INSTITUT FOURIER



ON A QUANTITATIVE OPERATOR K-THEORY 639

Hence, W ∗ diag(1, 0)W is an element of P10ε,2r
2 (T0 ⊗ A) which is close to

diag(1, (1− SS∗)⊗ q). Since

MA([q, 0]ε,r) = [diag(0, (1− SS∗)⊗ q)]ε,r,

we get the existence of a positive real αt such that the proposition holds. �

3.3. Long exact sequence

We follow the route of [18, Sections 6.3, 7.1 and 8.2] to state for com-
pletely filtered extensions of C∗-algebras (λ, h)-exact long exact sequences
in quantitative K-theory, for some universal control pair (λ, h).

Proposition 3.11. — There exists a control pair (λ, h) such that for
any completely filtered extension of C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the composition
K∗(J) j∗→ K∗(A) q∗→ K∗(A/J)

is (λ, h)-exact at K∗(A).

Proof. — We can assume without loss of generality that A is unital.
In the even case, let y be an element of Kε,r

0 (A) such that q∗(y) = 0 in
Kε,r

0 (A/J), let e be an ε-r-projection in Mn(A) and let k be a positive
integer such that y = [e, k]ε,r. Up to stabilization, we can assume that
k 6 n and that q(e) is homotopic to pk = diag(Ik, 0) as an ε-r-projection
in Mn(A/J). According to Corollary 1.31, there exists up to stabilization
a αhε-kh,εr-unitary W of Mn(A/J) such that

‖Wq(e)W ∗ − pk‖ < αhε.

Then diag(W,W ∗) is homotopic to I2n as a 3αhε-2kh,εr-unitary of
M2n(A/J). Let choose as in Lemma 3.4, a control pair (α, l), an integer j
and a αε-lεr-unitary V of M2n+j(A) such that

‖q(V )− diag(W,W ∗, Ik+j)‖ < αε.

If we set e′ = V diag(e, 0)V ∗, then e′ is a 4αε-2lεr-projection in M2n+j(A).
Moreover, since

‖q(e′)− diag(In, 0)‖ < (4α+ αh)ε,

there exist an element f in M2n+j(J+) such that

‖f − e′‖ < (4α+ αh)ε.
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Then, according to Lemma 1.7, f is for a suitable λ a λε-2lεr-projection
of M2n+k(J+) homotopic to e′. Then x = [f, k]λε,2lεr defines a class in
Kλε,2lεr

0 (J). As in the proof of (ii) of Lemma 1.9 we can choose λ big enough
so that diag(e′, I2n+j) and diag(e, 0, I2n+j) are homotopic λε-2kh,εr-pro-
jections of M2n(A) and hence we get the result in the even case.

For the odd case, let y be an element in Kε,r
1 (A) such that q∗(y) = 0

in Kε,r
1 (A/J) and let us choose an ε-r-unitary V in some Mn(A) such

that y = [V ]ε,r. In view of Lemma 3.4 and up to enlarge the size of the
matrix V , we can assume that ‖q(V )− q(W )‖ 6 αeε with W a αeε-ke,εr-
unitaries of Mn(A) homotopic to In. Hence W ∗V and V are homotopic
3αeε-(ke,ε + 1)r-unitary of Mn(A). Since

‖q(W ∗V )− In‖ < (2αe + 1)ε,

there exists U in Mn(A) such that
• the coefficients of U − In lie in Jke,ε+1;
• ‖U −W ∗V ‖ < (2αe + 1)ε.

In particular, we get that U is a λε-(kε+1)r-unitary for some λ > 1 depend-
ing only on αe. Hence, x = [U ]λε,(ke,ε+1)r defines a class in Kλε,(ke,ε+1)r

1 (J)
with the required property. �

Proposition 3.12. — There exists a control pair (λ, h) such that for
any completely filtered extension of C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the composition

K1(A) q∗→ K1(A/J)
D1
J,A→ K0(J)

is (λ, h)-exact at K1(A/J).

Proof. — We can assume without loss of generality that A is unital. Let
y be an element ofKε,r

1 (A/J) such that ∂ε,rJ,A(y) = 0 inKα∂ε,k∂,εr
0 (A/J) and

let U be an ε-r-unitary of Mn(A/J) such that y = [U ]ε,r. With notation
of Lemma 3.4, let j be an integer and W be a 3αeε-2ke,3εr-unitary in
M2n+j(A) such that

‖q(W )− diag(U,U∗, Ij)‖ < 3αeε.

As in the proof of Proposition 3.7, set x = W diag(In, 0)W ∗ and let h be
an element in M2n+j(J4ke,3εr) such that

‖x− h− diag(In, 0)‖ < 9αeε.

Since ∂ε,rJ,A(y) = 0, we can up to take a larger n assume that h+ diag(In, 0)
is homotopic to diag(In, 0) as a αDε-kD,εr-projection of M2n+j(J̃). Since x
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is close to h+diag(In, 0), we get from Corollary 1.31 that up to take a larger
j, there exists for a control pair (α, l), depending only on the control pairs
(αh, kh) and (αD, kD) of Corollary 1.31 and Lemma 3.5, an αε-lεr-unitary
V ′ in M2n+j(J̃) such that

‖W diag(In, 0)W ∗ − V ′ diag(In, 0)V ′∗‖ < αε.

Indeed up to unlarge the control pair (α, l) using (αe, ke), we can assume
that V = ρJ(V ′)V ′∗W is a αε-lεr-unitary in M2n+j(A) such that

‖q(V )− diag(U,U∗, Ij)‖ < αε.

Since for a suitable constant α′ depending only on α we have

‖ρJ(V ′) diag(In, 0)ρJ(V ′∗)− diag(In, 0)‖ < α′ε,

we obtain that

‖V diag(In, 0)V ∗ − diag(In, 0)‖ < α′′ε

and
‖V ∗ diag(In, 0)V − diag(In, 0)‖ < α′′ε

for some constant α′′ depending only on α′. Hence the n × n-left upper
corner X of V is an α′′ε-lεr-unitary inMn(A) such that ‖q(X)−U‖ < α′′ε

and then we get the result. �

Proposition 3.13. — There exists a control pair (λ, h) such that for
any completely filtered extension of C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the composition

K1(A/J)
D1
J,A→ K0(J) ∗→ K0(A)

is (λ, h)-exact at K0(J).

Proof. — It is enough to prove the result for A unital. Let y be an element
of Kε,r

0 (J) such that ε,r∗ (y) = 0 in Kε,r
0 (A), let e be an ε-r-projection in

Mn(J+) and let k be a positive integer such that y = [e, k]ε,r. If we set pk =
diag(Ik, 0), we can indeed assume without loss of generality that ‖q(e) −
pk‖ < 2ε (where J+ is viewed as a subalgebra of A). Up to stabilization, we
can also assume that e is homotopic to pk as an ε-r-projection in Mn(A).
According to Corollary 1.31, there exists up to stabilization a αhε-kh,εr-
unitary W of Mn(A) such that

‖e−WpkW
∗‖ < αhε.
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Up to replace n by 2n, W by diag(W,W ∗) and e by diag(e, 0), we can
assume that W is homotopic to In as a 3αhε-2kh,εr-unitary. Since

‖q(W )pkq(W ∗)− pk‖ 6 ‖q(W )pkq(W ∗)− q(e)‖+ ‖q(e)− pk‖
< (2 + αh)ε,

then
‖q(W ∗)pkq(W )− pk‖ < (2 + 4αh)ε.

Hence for an α′ > 1 depending only on αh, the left-up n×n corner V1 and
the right bottom corner V2 of q(W ) are α′ε-ke,εr-unitaries of Mn(A/J)
such that

‖q(W )q(W ∗)− diag(V1, V2) diag(V1, V2)∗‖ < (αh + α′)ε

and
‖q(W ∗)q(W )− diag(V1, V2)∗ diag(V1, V2)‖ < (αh + α′)ε.

Hence q(W ) is close to diag(V1, V2) and hence there is a λ > 1 depending
only on αe such that as a λε-kh,εr-unitary of Mn(A/J), then diag(V1, V2)
is homotopic to q(W ) and hence to In. We can indeed choose λ big enough
such that if we set x = [V1]λε,ke,εr, then

∂
λε,ke,εr
J,A (x) = [e, k]λα∂ε,k∂,αεke,εr

= ι
ε,r,λε,ke,εr
∗ (y).

�

From Propositions 3.11, 3.12 and 3.13 we can derive the analogue of the
long exact sequence in K-theory.

Theorem 3.14. — There exists a control pair (λ, h) such that for any
completely filtered extension of C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the sequence

K1(J) ∗−→ K1(A) q∗−→ K1(A/J) DJ,A−→ K0(J) ∗−→ K0(A) q∗−→ K0(A/J)

is (λ, h)-exact.

Remark 3.15. — With notation of Definition 3.1, the statement of the
long exact sequence of Theorem 3.14 can be extended to the following sit-
uation: there exists a positive number C such that for any positive number
r, any integer n and any x in Mn(Ar), then

inf
y∈Mn(Jr)

‖x+ y‖ 6 C inf
y∈Mn(J)

‖x+ y‖
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i.e the bijective continuous linear map

Mn(Ar/Jr)−→Mn((Ar + J)/J)

induced by the inclusion Ar ↪→ A has inverse bounded in operator norm
by C. But in this case, the control pairs corresponding to the controlled
boundary map and to controlled exactness depends on C.

As a consequence, using the exact sequence

(3.4) 0→ SA→ CA→ A→ 0,

and in view of Lemma 1.26 and point (iii) of Remark 2.8, we deduce in
the setting of quantitative K-theory the analogue of the suspension iso-
morphism in K-theory.

Corollary 3.16. — Let D1
A = D1

SA,CA : K1(A) → K0(SA) be the
controlled boundary morphism associated to the semi-split and filtered ex-
tension of equation (3.4) for a filtered C∗-algebra A.

• There exists a control pair (λ, h) such that for any filtered C∗-
algebra A, then D1

A is (λ, h)-invertible.
• Moreover, we can choose a (λ, h)-inverse which is natural: there
exists a control pair (αβ , kβ) and for any filtered C∗-algebra A a
(λ, h)-controlled morphism B0

A = (βε,rA )0<ε< 1
4αβ

,r>0 : K0(SA) →
K1(A) which is an (λ, h)-inverse for D1

A and such that B0
B ◦ fS =

f ◦ B0
A for any homomorphism f : A → B of filtered C∗-algebras,

where fS : SA→ SB is the suspension of the homomorphism f .

3.4. The mapping cones

We end this section by proving that the mapping cones construction can
be performed in the framework of quantitative K-theory. Let

0→ J → A
q→ A/J→0

be a completely filtered extension of C∗-algebras. Let us set A/J [0, 1) =
C0([0, 1), A/J) and define the mapping cone of q:

Cq = {(x, f) ∈ A⊕A/J [0, 1); such that f(0) = q(x)}.

It is straightforward to check that Cq is filtered by

(Cq ∩ (Ar ⊕A/J [0, 1)r))r>0 .

Let us set
eq : J → Cq; x 7→ (x, 0)
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and
φq : SA/J → Cq; f 7→ (0, f).

We have then a completely filtered extension of C∗-algebras

0→ J
ej→ Cq

π2→ A/J [0, 1)→ 0,

where π2 is the projection on the second factor of A⊕A/J [0, 1).

Lemma 3.17. — There exists a control pair (λ, h) such that eq,∗ is (λ, h)-
invertible for any completely filtered extension of C∗-algebras 0 → J →
A

q→ A/J → 0.

Proof. — The even case is a consequence of Theorem 3.14. We deduce
the odd case from the even one using Corollary 3.16. �

It is a standard fact in K-theory that the boundary of an extension of
C∗-algebras 0→ J → A

q→ A/J → 0 can be obtain using the equality

eq,∗ ◦ ∂J,A = φq,∗ ◦ ∂A/J ,

where ∂A/J = ∂SA/J,CA/J stands for the boundary map of the extension

0→ SA/J → CA/J → A/J → 0

(corresponding to the evaluation at 1). We have a similar result in quanti-
tative K-theory:

Lemma 3.18. — With above notations, we have eq,∗◦DJ,A = φq,∗◦DA/J ,
where DA/J stands for DSA/J,CA/J .

Proof. — We can assume without loss of generality that A is unital. Let
p be an ε-r projection in Mn(A/J) and let x be a self-adjoint lift for p in
Mn(Ar) such that ‖x‖ 6 2. Using the notations of the proof of Lemma 3.5,
let us define for t in [0, 1]

• yt = typ +
kε∑
l=1

(2ıπx)l(tl − t)
l! in A;

• ft : [0, 1]→A/J : σ 7→
kε∑
l=1

(2ıπ((1− σ)t+ σ)p)l − ((1− σ)t+ σ)(2ıπp)l

l! .

Since yt is close to
∑kε
l=1

(2ıπtx)l
l! , then, (1+(yt, ft))t∈[0,1] is a path of αε-kεr

unitary in Mn(C+
q ) with y0 = 0, y1 = yp and f1 = 0. Moreover, f0 belongs

toMn(SA/J) and satisfies the conclusion of Lemma 3.5 with respect to the
semi-split extension of filtered C∗-algebras 0→ SA/J → CA/J→A/J → 0
(corresponding to evaluation at 1) starting from the ε-r-projection p. Hence,
following the construction of Proposition 3.7 in the even case, we obtain
that eq,∗ ◦ DJ,A and φq,∗ ◦ DA/J coincide on K0(A/J).
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Let us check now the odd case. Let u be an ε-r-unitary inMn(A/J). Pick
any ε-r-unitary in someMj(A/J) such that diag(u, v) is homotopic to In+j
in U3ε,2r

n+j (A/J). According to Lemma 3.4, and up to replace v by diag(v, Ik)
for some integer k, there exists an element w in U3αeε,2ke,3εr

n+j (A) homotopic
to In+j as a 3αeε-2ke,3εr-unitary and such that ‖q(w)−diag(u, v)‖ 6 3αeε.
Let (wt)t∈[0,1] be a path in U3αeε,2ke,3εr

n+j (A) with w0 = In+j and w1 = w and
set yt = q(wt) diag(In, 0)q(w∗t ). As in the proof of Proposition 3.7, we see
that yt is an element in P12αeε,4ke,3εr

n+j (A/J) such that ‖y1 − diag(In, 0)‖ 6
9αeε. Define

g : [0, 1]→Mn+j(A/J); t 7→ yt − diag(In, 0)− t(y1 − diag(In, 0)).

Then g + diag(In, 0) is the element of P12αeε,4ke,3εr
n+j (S+A/J) that we get

from u and v when we perform the construction of Proposition 3.7 in
the odd case with respect to the extension 0 → SA/J → CA/J →
A/J → 0. Now, as in the proof of Proposition 3.7, let h be an element
in Mn+j(J4ke,3εr) such that

‖w diag(In, 0)w∗ − h− diag(In, 0)‖ < 9αeε

and define

ht = wt diag(In, 0)w∗t − diag(In, 0) + t(h+ diag(In, 0)− w diag(In, 0)w∗)

for t in [0, 1]. Then diag(In, 0) + ht belongs to P12αeε,4ke,3εr
n+j (A) and

diag(In, 0) + h1 = diag(In, 0) + h is the element of P12αeε,4ke,3εr
n+j (J) that

we get from u and v when we perform the construction of Proposition 3.7
in the odd case with respect to the extension 0 → J → A

q→ A/J → 0.
Eventually, if we define

Ht : [0, 1]→Mn+j(A/J); σ 7→ g(1−σ)t+σ,

then ((ht, Ht) + diag(In, 0))t∈[0,1] is a homotopy in P12αeε,4ke,3εr
n+j (C+

q ) be-
tween ((0, g) + diag(In, 0)) and ((h, 0) + diag(In, 0)). Thus we obtain the
result in the odd case. �

As a consequence, we get that the controlled suspension morphism is
compatible with the controlled boundary maps.

Proposition 3.19. — There exists a control pair (λ, h) such that for
any completely filtered extension of C∗-algebras 0→ J → A→ A/J → 0,
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the following diagrams are (λ, h)-commutative:

K0(A/J)
DA/J−−−−→ K1(SA/J)

DJ,A
y yDSJ,SA
K1(J) DJ−−−−→ K0(SJ)

and
K1(A/J)

DA/J−−−−→ K0(SA/J)

DJ,A
y yDSJ,SA
K0(J) DJ−−−−→ K1(SJ)

,

where DJ and DA/J stands respectively for the controlled suspension mor-
phisms DSJ,CJ and DSA/J,CA/J .

Proof. — Let qS : SA → SA/J the suspension of the homomorphism
q : A → A/J . Applying Lemma 3.18 to the extensions 0 → J → A →
A/J → 0 and 0 → SJ → SA → SA/J → 0 and using the naturality of
controlled boundary maps mentioned in Remark 3.8, we get

eqS ,∗ ◦ DSJ,SA ◦ DA/J = φqS ,∗ ◦ DSA/J ◦ DA/J
= DSCq ◦ φq,∗ ◦ DA/J
= DSCq ◦ eq,∗ ◦ DJ,A
= eqS ,∗ ◦ DJ ◦ DJ,A

The proposition is then a consequence of Lemma 3.17. �

Remark 3.20. — Proposition 3.19 extend to extensions that satisfy the
assumptions of Remark 3.15, but with these notations, the control pairs
involved in the proposition depend on the number C.

4. Controlled Bott periodicity

The aim of this section is to prove that there exists a control pair (λ, h)
such that given a filtered C∗-algebra A, then Bott periodicity K0(A)

∼=→
K0(S2A) is induced inK-theory by a (λ, h)-isomorphismK0(A)→K0(S2A).
As an application, we use the controlled boundary morphism of Proposi-
tion 3.7 to close the controlled exact sequence of 3.14 into a six-term (λ, h)-
exact sequence for some universal control pair (λ, h). This will be achieved
by using the full power of KK-theory.
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4.1. Tensorization in KK-theory

Let A be a C∗-algebra and let B be a C∗-algebra filtered by (Br)r>0.
Let us define A⊗Br as the closure in the spatial tensor product A⊗B of
the algebraic tensor product of A and Br. Then the C∗-algebra A⊗B is
filtered by (A⊗Br)r>0. Moreover, if J is a semi-split ideal of A, i.e 0 →
J → A→ A/J → 0 is a semi-split extension of C∗algebras, then

0→ J⊗B → A⊗B → A/J⊗B → 0

is a semi-split extension of filtered C∗-algebras. Recall from [11] that for
C∗-algebras A1, A2 and D, G. Kasparov defined a tensorization map

τD : KK∗(A1, A2)→ KK∗(A1⊗D,A2⊗D)

in the following way: let z be an element in KK∗(A1, A2) represented by a
K-cycle (π, T, E), where

• E is a right A2-Hilbert module;
• π is a representation of A1 into the algebra L(E) of adjointable
operators of E ;

• T is a self-adjoint operator on E satisfying the K-cycle conditions,
i.e. [T, π(a)], π(a)(T 2 − IdE) are compact operators on E for any
a in A1.

Then τD(z) ∈ KK∗(A1⊗D,A2⊗D) is represented by the K-cycle (π⊗IdD,
T⊗IdD, E⊗D).

In what follows, we show that if A1 and A2 are C∗-algebras, if B is
a filtered C∗-algebra and if z is an element in KK∗(A1, A2), then the
homomorphism K∗(A1⊗B) → K∗(A2⊗B) provided by left multiplication
by τB(z) is induced by a controlled morphism. Moreover, we have some
compatibility results with respect to Kasparov product. As an outcome,
we obtain a controlled version of the Bott periodicity that induces in K-
theory the Bott periodicity.

Proposition 4.1. — Let A1 and A2 be C∗-algebras, let B be a filtered
C∗-algebra and let z be an element in KK1(A1, A2). Then there exists an
(αD, kD)-controlled morphism

TB(z) = (τε,rB (z))0<ε< 1
4αD

,r>0 : K∗(A1⊗B)→ K∗(A2⊗B)

of degree 1 inducing in K-theory the right multiplication by τB(z).

Proof. — Recall that z can be indeed represented by a odd A1-A2-K-
cycle (π, T,H⊗A2), where H is a separable Hilbert space, π is a representa-
tion of A1 into the algebra L(H⊗A2) of adjointable operators of H⊗A2 and
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T is a self-adjoint operator in L(H⊗A2) satisfying the K-cycle conditions.
Let us set PB = IdH⊗A2⊗B+T⊗IdB

2 , πB = π⊗IdB and define the C∗-algebra

E(π,T ) = {(x, y) ∈ A1⊗B
⊕
L(H⊗A2⊗B)

such that PB · πB(x) · PB − y ∈ K(H)⊗A2⊗B}.

Since PB has no propagation, the C∗-algebra E(π,T ) is filtered by
(E(π,T )

r )r>0 with

E(π,T )
r = {(x, PB · πB(x) · PB + y); x ∈ A1⊗Br and y ∈ K(H)⊗A2⊗Br}.

The extension of filtered C∗-algebras

(4.1) 0 −→ K(H)⊗A2⊗B −→ E(π,T ) −→ A1 ⊗B −→ 0

is semi-split by the cross-section

s : A1⊗B → E(π,T ); x 7→ (x, PB · πB(x) · PB).

Let us show that the associated controlled boundary (degree one) map

DK(H)⊗A2⊗B,E(π,T ) : K∗(A1⊗B)→ K∗(K(H)⊗A2⊗B)

only depends on the class z of (π, T,H⊗A2) in KK1(A1, A2). Assume that
(π, T,H⊗A2[0, 1]) is a A1-A2[0, 1]-K -cycle providing a homotopy between
two A1-A2-K-cycles (π0, T0,H⊗A2) and (π1, T1,H⊗A2). For t ∈ [0, 1] we
denote by

• et : A2[0, 1] → A2 the evaluation at t;
• Ft ∈ L(H⊗A2) the fiber at t of an operator F ∈ L(H⊗A2[0, 1]);
• πt : A1 → L(H⊗A2) the representation induced by π at the fiber
t.

Then the homomorphism E(π,T ) → E(πt,Tt); (x, y) 7→ (x, yt) satisfies the
conditions of Remark 3.8 and thus we get that

(IdK(H) ⊗ et⊗IdB)∗ ◦ DK(H)⊗A1⊗B[0,1],E(π,T ) = DK(H)⊗A1⊗B,E(πt,Tt) ,

and according to Lemma 1.26, we deduce that

DK(H)⊗A1⊗B2,E(π0,T0) = DK(H)⊗A1⊗B,E(π1,T1) .

This shows that for aA1-A2-K-cycle (π, T,H⊗A2), thenDK(H)⊗A1⊗B,E(π,T )

depends only on the class z of (π, T,H⊗ A2) in KK1(A1, A2). Finally we
define

TB(z) = (τε,rB (z))0<ε< 1
4αD

def==M−1
A2⊗B ◦ DK(H)⊗A1⊗B,E(π,T ) ,

where
• (π, T,H⊗A2) is any A1-A2-K-cycles representing z;
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• MA2⊗B is the Morita equivalence (see Example 2.2).
The result then follows from the observation that up to the Morita equiv-
alence

K∗(K(H)⊗A2⊗B)
∼=→ K∗(A2⊗B),

the boundary ∂K(H)⊗A1⊗B,E(π,T ) corresponding to the exact sequence (4.1)
is induced by right multiplication by τB(z). �

Remark 4.2. — Let B be a filtered C∗-algebra.
(i) For any C∗-algebras A1 and A2 and any elements z and z′ in

KK1(A1, A2) then

TB(z + z′) = TB(z) + TB(z′).

(ii) Let 0 → J → A → A/J → 0 be a semi-split extension of filtered
C∗-algebras and let [∂J,A] be the element of KK1(A/J, J) that
implements the boundary map ∂J,A. Then we have

TB([∂J,A]) = DJ⊗B,A⊗B .

(iii) For any C∗-algebras A1, A2 and D and any K-cycle (π, T,H⊗A2)
for KK1(A1, A2), we have a natural identification between
E(π⊗ID,T⊗ID) and E(π,T )⊗D. Hence, for any element z in
KK1(A1, A2) then TB(τD(z)) = TB⊗D(z).

For a filtered C∗-algebra B and a homomorphism f : A1 → A2 of C∗-
algebras, we set fB : A1⊗B → A2⊗B for the filtered homomorphism in-
duced by f .

Proposition 4.3. — Let B be a filtered C∗-algebra and let A1 and A2
be two C∗-algebras.

(i) For any C∗-algebra A′1, any homomorphism of C∗-algebras f :
A1 → A′1 and any z in KK1(A′1, A2), we have TB(f∗(z)) = TB(z)◦
fB,∗;

(ii) For any C∗-algebra A′2, any homomorphism of C∗-algebras g :
A2 → A′2 and any z in KK1(A1, A2), we have TB(g∗(z)) = gB,∗ ◦
TB(z).

Proof.
(i) Let A′1 be a filtered C∗-algebra, let f : A1 → A′1 be a homomor-

phism of C∗-algebras and let (π, T,H ⊗ A2) be an odd A′1-A2-
K-cycle. With the notations of the proof of Proposition 4.1, the
homomorphism

fE : Ef
∗(π,T ) → E(π,T ); (x, y) 7→ (fB(x), y)
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fits in the commutative diagram

0 −−−−→ K(H)⊗A2⊗B −−−−→ Ef
∗(π,T ) −−−−→ A1⊗B −−−−→ 0

=
y fE

y yfB
0 −−−−→ K(H)⊗A2⊗B −−−−→ E(π,T ) −−−−→ A′1⊗B −−−−→ 0

.

Thus, we get by Remark 3.8 that

TB(f∗(z)) = TB(z) ◦ f∗

for all z in KK1(A′1, A2).
(ii) Let A′2 be a C∗-algebra and let g : A2 → A′2 be a homomorphism

of C∗-algebras. For any element F in L(H⊗A2), let us denote by

F̃ = F⊗A2IdA′2 ∈ L(H⊗A2⊗A2A
′
2).

Notice that H ⊗ A2⊗A2A
′
2 can be viewed as a right A′2-Hilbert-

submodule of H⊗A′2 and under this identification, for any F in
K(H) ⊗ A2, then F̃ is the restriction to H ⊗ A2⊗A2A

′
2 of the ho-

momorphism (IdK(H)⊗g)(F ). Let z be an element of KK1(A1, A2)
represented by a K-cycle (π, T,H⊗A2). Consider the A1-A2-K-
cycle (π′, T ′,H′⊗A2) with H′ = H1 ⊕ H2 ⊕ H3, where H1, H2
and H3 are three copies of H, π′ = 0⊕ 0⊕ π and T ′ = IdH1⊗A2 ⊕
IdH2⊗A2⊕T . Then (π′, T ′,H′⊗A2) is again a K-cycle representing
z and g∗(z) is represented by the K-cycle (π′′, T ′′, E), where
• E = (H1 ⊗A′2)

⊕
(H2 ⊗A′2)

⊕
(H3 ⊗A2⊗A2A

′
2);

• π′′ = 0⊕ 0⊕ π̃;
• T ′′ = IdH1⊗A′2 ⊕ IdH2⊗A′2 ⊕ T̃ .

Using Kasparov stabilization theorem, we get that (H2 ⊗ A′2)
⊕

(H3 ⊗ A2⊗A2A
′
2) is isomorphic as a right-A′2-Hilbert module to

H⊗A′2 and hence, using this identification, we can represent g∗(z)
using a standard right-A′2-Hilbert module, as in the proof of Propo-
sition 4.1. Then, under the above identification (H2⊗A′2)

⊕
(H3⊗

A2⊗A2A
′
2) ∼= H⊗A′2,

gE : E(π,T ) → Eg∗(π,T )

(x, y) 7→ (x, P ′′Bπ′′(x)P ′′B + (IdK(H′)⊗B⊗g)(y − P ′Bπ′(x)P ′B))

restricts to a homomorphism K(H1⊕H2⊕H3)⊗A2⊗B → K(H1⊕
H)⊗A′2⊗B.
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We get now a commutative diagram

0 −−→ K(H1 ⊕H2 ⊕H3)⊗A2⊗B −−→ E(π′,T ′) −−→ A1⊗B −−→ 0

gE

y gE

y y=

0 −−→ K(H1 ⊕H)⊗A′2⊗B −−→ E(π′′,T ′′) −−→ A1⊗B −−→ 0
Hence, we get by Remark 3.8 that

DK(H1⊕H)⊗A′2⊗B,E(π′′,T ′′) = gE,∗ ◦ DK(H1⊕H2⊕H3)⊗A2⊗B,E(π′,T ′) .

But the restriction of gE to the corner K(H1)⊗A2⊗B of the C∗-
algebra K(H1 ⊕H2 ⊕H3) ⊗ A2⊗B is IdK(H1)⊗g⊗IdB . Since the
Morita equivalence

MA′2⊗B : K∗(A′2⊗B)
∼=→ K∗(K(H1 ⊕H)⊗A′2⊗B)

can be implemented by an inclusion of A′2⊗B in a corner of
K(H1)⊗A′2⊗B, and similarly for the Morita equivalence

MA2⊗B : K∗(A2⊗B)
∼=→ K∗(K(H1 ⊕H2 ⊕H3)⊗A2⊗B),

we deduce that the two following compositions coincide:

K∗(A2⊗B)) gB,∗−→ K∗(A′2⊗B)
MA′2⊗B−→ K∗(K(H1 ⊕H)⊗(A′2⊗B))

and

K∗(A2⊗B)
MA2⊗B−→ K∗(K(H1 ⊕H2 ⊕H3)⊗A2⊗B)

gE,∗−→ K∗(K(H1 ⊕H)⊗A′2⊗B).

Hence we get

TB(g∗(z)) = g∗ ◦ TB(z)

for any z in KK1(A1, A2).
�

Let us now extend the definition of TB to the even case. Consider for a
suitable control pair (αB, kB) and any filtered C∗-algebra A the (αB, kB)-
controlled morphism of odd degree BA : K∗(SA)→ K∗(A) defined by

• B0
A on K0(SA) as in Corollary 3.16;

• M−1
A ◦ DK(`2(N))⊗A,T0⊗A on K1(SA) using the Toeplitz extension

0→ K(`2(N))⊗A→ T0 ⊗A→SA→ 0

(see the discussion at the end of Section 3.2).
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Then, according to Proposition 3.10 and Corollary 3.16 there exists a con-
trol pair (λ, h) such that BA is a right (λ, h)-inverse for DSA,CA for any
filtered C∗-algebra A. Let us set αT = λαB and kT = h ∗ kB.

Now, let B be a filtered C∗-algebra, let A1 and A2 be C∗-algebras, then
define for any z in KK0(A1, A2) the (αT , kT )-controlled morphism

TB(z) = (τε,rB )0<ε< 1
4αT

,r>0 : K∗(A1⊗B)→ K∗(A2⊗B)

by
TB(z) def==BA2⊗B ◦ TB(z ⊗A2 [∂A2 ])

where
• [∂A2 ] = [∂SA2,CA2 ] ∈ KK1(A2, SA2) corresponds to the boundary
of the exact sequence 0→ SA2 → CA2 → A→ 0;

• ⊗A2 stands for Kasparov product.
Up to compose on the left with ιαDε,αT ε,kDr,kT r∗ , we can in the odd case
define TB(•) also as an (αT , kT )-controlled morphism.

Theorem 4.4. — Let B be a filtered C∗-algebra, let A1 and A2 be
C∗-algebras

(i) For any element z in KK∗(A1, A2), then TB(z) : K∗(A1⊗B) →
K∗(A2⊗B) is a (αT , kT )-controlled morphism with same degree as
z that induces in K-theory right multiplication by τB(z).

(ii) For any elements z and z′ in KK∗(A1, A2) then

TB(z + z′) = TB(z) + TB(z′).

(iii) Let A′1 be a filtered C∗-algebras and let f : A1 → A′1 be a homo-
morphism of C∗-algebras, then TB(f∗(z)) = TB(z) ◦ fB,∗ for all z
in KK∗(A′1, A2).

(iv) Let A′2 be a C∗-algebra and let g : A′2 → A2 be a homomor-
phism of C∗-algebras then TB(g∗(z)) = gB,∗ ◦ TB(z) for any z in
KK∗(A1, A

′
2).

(v) TB([IdA1 ]) (αT ,kT )∼ IdK∗(A1⊗B).
(vi) For any C∗-algebra D and any element z in KK∗(A1, A2), we have

TB(τD(z)) = TB⊗D(z).

Proof. — Since BA2⊗B is a right (λ, h)-inverse for DSA2⊗B,CA2⊗B , it
induces in K-theory a right inverse (indeed an inverse) for the (degree 1)
boundary map

∂SA2⊗B,CA2⊗B : K∗(A2⊗B)→ K∗(SA2⊗B).
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But since TB(z⊗A2 [∂SA2 CA2 ]) induces in K-theory right multiplication by
τB(z⊗A2 [∂SA2,CA2 ]), we eventually get that TB(z⊗A2 [∂SA2,CA2 ]) induced
in K-theory the composition

K∗(A1⊗B)
⊗A1⊗BτB(z)
−→ K∗(A2⊗B)

∂SA2⊗B,CA2⊗B−→ K∗(SA2⊗B)

and hence we get the first point.
Point (ii) is a consequence of Remark 4.2. Point (iii) is a consequence

of Proposition 4.3. Point (iv) is a consequence of Proposition 4.3 and of the
naturality of B• (see Remark 3.8 and Corollary 3.16), point (v) holds by
definition of B•. Point (vi) is a consequence of point (iii) of Remark 4.2. �
We end this section by proving the compatibility of TB with Kasparov

product.

Theorem 4.5. — There exists a control pair (λ, h) such that the fol-
lowing holds :
let A1, A2 and A3 be C∗-algebras and let B be a filtered C∗-algebra.

Then for any z in KK∗(A1, A2) and any z′ in KK∗(A2, A3), we have

TB(z⊗A2z
′) (λ,h)∼ TB(z′) ◦ TB(z).

Proof. — We first deal with the case z even. According to [12, Lemma
1.6.9], there exists a C∗-algebra A4 and homomorphisms θ : A4 → A1 and
η : A4 → A2 such that

• the element [θ] of KK∗(A4, A1) induced by θ is invertible.
• z = η∗([θ]−1).

Since θ∗([θ]−1) = [IdA1 ] in KK∗(A1, A1), we get in view of Remark 2.5
and of points (iii), (iv) and (v) of Theorem 4.4 that

TB(z⊗A2z
′) (λ,h)∼ TB(θ∗(z⊗A2z

′)) ◦ TB([θ]−1),

with (λ, h) = (α2
T , kT ∗kT ). But by bi-functoriality of KK-theory, we have

θ∗(z⊗A2z
′) = η∗(z′) and then the result is a consequence of points (iii) and

(iv) of Theorem 4.4. We can proceed similarly when z′ is even. Let us prove
now the result when z and z′ are odd. Then [∂A2 ] = [∂SA2,CA2 ] is an invert-
ible element in KK1(A2, SA2) and z⊗A2z

′ = z⊗A2 [∂A2 ]⊗SA2 [∂A2 ]−1⊗A2z
′

and hence using the even case, we get that

(4.2) TB(z⊗A2z
′) (λ,h)∼ TB([∂A2 ]−1⊗A2z

′) ◦ TB(z⊗A2 [∂A2 ]).

But

TB([∂A2 ]−1⊗A2z
′) = BA3⊗B ◦ TB([∂A2 ]−1⊗A2z

′⊗A3 [∂A3 ])
(λ′,h′)∼ BA3⊗B ◦ TB(z′⊗A3 [∂A3 ]) ◦ TB([∂A2 ]−1)(4.3)
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for some control pair (λ′, h′), depending only on (λ, h) and (αT , kT ), where
equation (4.3) holds by the even case applied to z′⊗A3 [∂A3 ] and [∂A2 ]−1.
Hence, for a control pair (λ′′, h′′)-depending only on (λ, h), we get applying
the even case to [∂A2 ]−1 and z⊗A2 [∂A2 ] that

(4.4) TB(z⊗A2z
′) (λ′′,h′′)∼ BA3⊗B ◦ TB(z′⊗A3 [∂A3 ]) ◦ TB(z).

In view of this equation, we deduce the odd case from the controlled
Bott periodicity, which will be proved in the next lemma: if we set [∂] =
[∂C0(0,1),C0(0,1]] ∈ KK1(C, C0(0, 1)), then there exists a control pair (α, k)
such that TA([∂]−1) is an (α, k)-inverse for DA for any filtered C∗-algebra
A. Indeed, from this claim and since for some control pair (α′, k′), the
(αB, kB)-controlled morphism BA is for every filtered C∗-algebra A a right
(α′, k′)-inverse for TA([∂]), we get that

TA([∂]−1) (α′′,k′′)∼ BA
for some controlled pair (α′′, k′′) depending only on (α′, k′) and (αT , kT ).
Noticing by using point (vi) of Theorem 4.4, that TA3⊗B([∂]−1) =
TB([∂A3 ]−1), the proof of the theorem in the odd case is then by equation
(4.4) a consequence of the even case applied to [∂A3 ]−1 and z′⊗A3 [∂A3 ] �

4.2. The controlled Bott isomorphism

We prove in this subsection a controlled version of Bott periodicity. The
proof use the even case of Theorem 4.5 and is needed for the proof of the
odd case. Let A be a filtered C∗-algebra, let us denote for short as before
DSA,CA by DA and [∂SA,CA] by [∂A] and let us set [∂] = [∂C].

Lemma 4.6. — There exists a control pair (α, k) such that for every
filtered C∗-algebra A, then TA([∂]−1) is an (α, k)-inverse for DA.

Proof. — Consider the even element z = [∂]⊗S [∂S ] ofKK∗(C, S2), where
S = C0(0, 1) and S2 = SS. The lemma is a consequence of the following
claim: there exists a control pair (λ, h) such that DSA ◦ DA

(λ,h)∼ TA(z)
for any C∗-algebra A. Before proving the claim, let us see how it im-
plies the lemma. Notice first that by point (ii) of Remark 4.2, we have
DA = TA([∂]). Since by associativity of Kasparov product [∂]−1⊗Cz =
[∂S ], we get from Theorem 4.5 applied to the even case that there ex-
ists a control pair (λ′, h′) such that for any filtered C∗-algebra A, then
TA(z) ◦ TA([∂]−1) ◦ DA

(λ,h)∼ DSA ◦ DA. Using the claim and since z is
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an invertible element of KK∗(C, S2), we obtain from Theorem 4.5 ap-
plied to the even case that there exists a control pair (α, k) such that
TA([∂]−1) is a left (α, k)-inverse for DA. Using associativity of the Kas-
parov product, we see that [∂] = z⊗S2 [∂S ]−1. Then applying twice The-
orem 4.5, on one hand to [∂] = z⊗S2 [∂S ]−1 and on the other hand to
[∂]−1⊗z = [∂S ], we get that there exists a control pair (α′, k′) such that
TA([∂]) ◦ TA([∂]−1) (α′,k′)∼ TSA([∂]−1) ◦ TSA([∂]). But according to what we
have seen before, TSA([∂]−1) ◦ TSA([∂]) (α,k)∼ IdK∗(SA).

Let us now prove the claim. It is known that up to Morita equivalence,
[∂A]−1 is the element of KK1(SA,A) corresponding to the boundary ele-
ment of the Toeplitz extension

0→ K(`2(N))⊗A→ T0 ⊗A→SA→ 0.

Let us respectively denote by D0
A : K0(A) → K1(SA) and D1

A : K1(A) →
K0(SA) the restriction of DA to K0(A) and K1(A). According to Proposi-
tion 3.10, there exists a control pair (λ′, h′) such that, on even elements

(4.5) TA([∂]−1) ◦ D0
A

(λ′,h′)∼ IdK0(A).

Since [∂S ] = [∂]−1⊗z, we get by left composition by TA(z) in equation (4.5)
and by using Theorem 4.5 in the even case that there exists a control pair
(λ, h) depending only on (λ′, h′) and such that that D1

SA ◦ D0
A

(λ,h)∼ T 0
A(z)

(here T 0
A(z) : K0(A) → K0(S2A) stands for the restriction of TA(z) to

K0(A)). For the odd case, we know from Corollary 3.16 that there ex-
ists a control pair (λ′′, h′′) such that D1

S2A : K1(S2A) → K0(S3A) is
(λ′′, h′′)-invertible. Using the previous case, and since by associativity of
the Kasparov product, we have [∂A]⊗SAτSA(z) = τA(z)⊗[∂S2A], we get by
applying twice Theorem 4.5 in the even case that there exists a control
pair (λ′′′, h′′′) such that D1

S2A ◦ D0
SA ◦ D1

A

(λ′′′,h′′′)∼ D1
S2A ◦ T 1

A(z), where
T 1
A(z) : K1(A) → K1(S2A) is the restriction of TA(z) to K1(A). Since
D1
S2A : K1(S2A) → K0(S3A) is (λ′′, h′′)-invertible, we get the result by

Remark 2.5. �

4.3. The six term (λ, h)-exact sequence

Recall from Proposition 3.19 that there exists a control pair (λ, h) such
that for any completely filtered extension of C∗-algebras 0 → J → A →
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A/J → 0, the following diagrams are (λ, h)-commutative:

K0(A/J)
DA/J−−−−→ K1(SA/J)

DJ,A
y yDSJ,SA
K1(J) DJ−−−−→ K0(SJ)

and
K1(A/J)

DA/J−−−−→ K0(SA/J)

DJ,A
y yDSJ,SA
K0(J) DJ−−−−→ K1(SJ)

As a consequence, by using Lemma 4.6 and Theorem 3.14, we get

Theorem 4.7. — There exists a control pair (λ, h) such that for any
completely filtered extension of C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the following six-term sequence is (λ, h)-exact

K0(J) ∗−−−−→ K0(A) q∗−−−−→ K0(A/J)

DJ,A
x DJ,A

y
K1(A/J) q∗←−−−− K1(A) ∗←−−−− K1(J)

Remark 4.8. — Let us consider with notations of Section 3.4
the completely filtered extension of C∗-algebras

(4.6) 0→ SA/J
φq→ Cq

π1→ A→ 0,

where π1 : Cq → A is the projection on the first factor of Cq. Since
we have a completely filtered extension of algebras 0→ J

ej→ Cq
π2→

A/J [0, 1) → 0, and since A/J [0, 1) is a contractible filtered C∗-
algebra, we see in view of Theorem 4.7 that ej,∗ : K∗(J)→ K∗(Cq)
is a controlled isomorphism. It is then plain to check that up to the
controlled isomorphism ej,∗ and DA/J : K∗(SA/J) → K∗(A/J),
we get from the completely filtered extension of C∗-algebras of
equation (4.6) (for a possibly different control pair) the controlled
six-term exact sequence of Theorem 4.7.

(i) The controlled six-term exact sequence extend to extensions that
satisfy the assumptions of Remark 3.15, but with these notations,
the control pairs involved in the proposition depend on the number
C.
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If we apply Theorem 4.7 to a filtered and split extension, we get:

Corollary 4.9. — There exists a control pair (λ, h) such that for every
split extension of filtered C∗-algebra 0 → J → A → A/J → 0, and any
filtered split cross-section s : A/J → A, then

K∗(J)⊕K∗(A/J) −→ K∗(A); (x, y) 7→ ∗(x) + s∗(y)

is (λ, h)-invertible.

5. Quantitative K-theory for crossed product C∗-algebras

In this section, we study quantitative K-theory for crossed product C∗-
algebras and discuss its applications to K-amenability.
Let Γ be a finitely generated group. A Γ-C∗-algebra is a separable C∗-

algebra equipped with an action of Γ by automorphisms. Recall that the
convolution algebra Cc(Γ, A) of finitely supported A-valued functions on Γ
admits two canonical C∗-completions, the reduced crossed product AoredΓ
and the maximal crossed product AomaxΓ. Moreover, there is a canonical
epimorphism λΓ,A : AomaxΓ→ AoredΓ which is the identity on Cc(Γ, A).

5.1. Lengths and propagation

Recall that a length on Γ is a map ` : Γ→ R+ such that
• `(γ) = 0 if and only if γ is the identity element e of Γ;
• `(γγ′) 6 `(γ) + `(γ′) for all element γ and γ′ of Γ.
• `(γ) = `(γ−1).

In what follows, we will assume that ` is a word length arising from a finite
generating symmetric set S, i.e `(γ) = inf{d such that γ = γ1 · · · γd with
γ1, . . . , γd in S}. Let us denote by B(e, r) the ball centered at the neutral
element of Γ with radius r, i.e B(e, r) = {γ ∈ Γ such that `(γ) 6 r}. For
any positive number r, we set

(AoredΓ)r
def=={f ∈ Cc(Γ, A) with support in B(e, r)}.

Then the C∗-algebra AoredΓ is filtered by ((AoredΓ)r)r>0. In the same
way, setting (AomaxΓ)r

def=={f ∈ Cc(Γ, A) with support in B(e, r)}, then
the C∗-algebra AomaxΓ is filtered by ((AomaxΓ)r)r>0 (notice that as sets,
(AoredΓ)r = (AomaxΓ)r). It is straightforward to check that two word
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lengths give rise for AoredΓ (resp. for AomaxΓ) to quantitative K-theories
related by a (1, c)-controlled isomorphism for a constant c.

For a homomorphism f : A → B of Γ-C∗-algebras, we denote respec-
tively by fΓ,red : AoredΓ → BoredΓ and fΓ,max : AomaxΓ → BomaxΓ
the homomorphisms respectively induced by f on the reduced and on the
maximal crossed product.
For any semi-split extension of Γ-C∗-algebras 0−→J

−→A
q−→A/J−→

0, we have semi-split extensions of filtered C∗-algebras

0 −→ JoredΓ
Γ,red−→ AoredΓ

qΓ,red−→ A/JoredΓ −→ 0
and

0 −→ JomaxΓ Γ,max−→ AomaxΓ qΓ,max−→ A/JomaxΓ −→ 0
and hence, by Theorem 4.7, we get:

Proposition 5.1. — There exists a control pair (λ, h) such that for any
semi-split extension of Γ-C∗-algebras

0 −→ J
−→ A

q−→ A/J −→ 0,

the following six-term sequences are (λ, h)-exact

K0(JoredΓ) Γ,red,∗−−−−−→ K0(AoredΓ) qΓ,red,∗−−−−−→ K0(A/JoredΓ)

DJoredΓ,AoredΓ

x DJoredΓ,AoredΓ

y
K1(A/JoredΓ) qΓ,red,∗←−−−−− K1(AoredΓ) Γ,red,∗←−−−−− K1(JoredΓ)

and
K0(JomaxΓ) Γ,max,∗−−−−−→ K0(AomaxΓ) qΓ,max,∗−−−−−→ K0(A/JomaxΓ)

DJoredΓ,AomaxΓ

x DJomaxΓ,AomaxΓ

y
K1(A/JomaxΓ) qΓ,max,∗←−−−−− K1(AomaxΓ) Γ,max,∗←−−−−− K1(JomaxΓ)

5.2. Kasparov transformation

In this subsection we see how a slight modification of the argument used
in Section 4.1 allowed to define a controlled version of the Kasparov trans-
formation compatible with Kasparov product.

Notice first that every element z of KKΓ
∗ (A,B) can be represented by a

K-cycle, (π, T,H⊗B), where
• H is a separable Hilbert space;
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• the right Hilbert B-module H⊗B is acted upon by Γ;
• π is an equivariant representation of A in the algebra L(H⊗B) of

adjointable operators on H⊗B;
• T is a self-adjoint operator on H⊗B satisfying the K-cycle condi-

tions, i.e. [T, π(a)], π(a)(T 2−IdH⊗B) and π(a)(γ(T )−T ) belongs
to K(H)⊗B, for every a in A and γ ∈ Γ.

Let TΓ = T⊗BIdBoredΓ be the adjointable element of (H⊗B)⊗BBoredΓ ∼=
H ⊗ BoredΓ induced by T and let πΓ be the representation of AoredΓ
in the algebra L(H ⊗ BoredΓ) of adjointable operators of H ⊗ BoredΓ
induced by π. Then (πΓ, TΓ,H ⊗ BoredΓ) is a AoredΓ-BoredΓ-K-cycle
and the Kasparov transform of z is the class JredΓ (z) of this K-cycle in
KK∗(AoredΓ, BoredΓ) [11]. In the odd case, let us set P = IdH⊗B+T

2 .
Then P induces an adjointable operator PΓ = P ⊗B IdBoredΓ of (H ⊗
B)⊗B BoredΓ ∼= H⊗BoredΓ. Let us define

E(π,T ) = {(x, y) ∈ AoredΓ⊕ L(H⊗BoredΓ)
such that PΓ · πΓ(x) · PΓ − y ∈ K(H)⊗BoredΓ}.

Since PΓ has no propagation, the C∗-algebra E(π,T ) is filtered by
(E(π,T )

r )r>0 with

E(π,T )
r ={(x, PΓ ·πΓ(x)·PΓ+y); x∈(AoredΓ)r and y∈K(H)⊗(BoredΓ)r}.

The extension of C∗-algebras

0 −→ K(H)⊗BoredΓ −→ E(π,T ) −→ AoredΓ −→ 0

is filtered semi-split by the cross-section

s : AoredΓ→ E(π,T ); x 7→ (x, PΓ · πΓ(x) · PΓ).

Let us show that DK(H)⊗BoredΓ,E(π,T ) only depends on the class of (π, T,
H⊗ B) in KKΓ

1 (A,B). Assume that (π, T,H⊗ B[0, 1]) is a Γ-equivariant
A-B[0, 1]-K-cycle providing a homotopy between two Γ-equivariant A-B-
K-cycles (π0, T0,H⊗B) and (π1, T1,H⊗B). For t ∈ [0, 1] we denote by

• et : B[0, 1]oredΓ→ BoredΓ the evaluation at t;
• Ft ∈ L(H ⊗ BoredΓ) the fiber at t of an operator F ∈ L(H ⊗
B[0, 1]oredΓ);

• πΓ,t the representation of Aored Γ induced by πΓ at the fiber t.
Then the homomorphism E(π,T ) → E(πt,Tt); (x, y) 7→ (x, yt) satisfies the

conditions of Remark 3.8 and thus we get that

(IdK(H) ⊗ et)∗ ◦ DK(H)⊗B[0,1]oredΓ,E(π,T ) = DK(H)⊗BoredΓ,E(πt,Tt) .
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According to Lemma 1.26, we deduce that

DK(H)⊗BoredΓ,E(π0,T0) = DK(H)⊗BoredΓ,E(π1,T1) .

This shows that for a Γ-equivariant A-B-K-cycles (π, T,H ⊗ B), then
DK(H)⊗BoredΓ,E(π,T ) depends only on the class z of (π, T,H ⊗ B) in
KKΓ

1 (A,B). Eventually, if we define

J redΓ (z) =M−1
BoredΓ ◦ DK(H)⊗BoredΓ,E(π,T ) ,

where
• (π, T,H⊗B) is any Γ-equivariant A-B-K-cycles representing z;
• MBoredΓ is the Morita equivalence (see Example 2.2).

we get as in Section 4.1

Proposition 5.2. — Let A and B be Γ-C∗-algebras. Then for any ele-
ment z of KKΓ

1 (A,B), there is a odd degree (αD, kD)-controlled morphism

J redΓ (z) = (Jred,ε,rΓ (z))0<ε< 1
4αD

,r>0 : K∗(Aored Γ)→ K∗(BoredΓ)

such that
(i) J redΓ (x) induces in K-theory the right multiplication by JredΓ (z);
(ii) J redΓ is additive, i.e

J redΓ (z + z′) = J redΓ (z) + J redΓ (z′).

(iii) Let A′ be a Γ-C∗-algebra and let f : A→ A′ be a homomorphism
Γ-C∗-algebras, then

J redΓ (f∗(z)) = J redΓ (z) ◦ fΓ,red,∗

for any z in KKΓ
1 (A′, B).

(iv) Let B′ be a Γ-C∗-algebra and let g : B → B′ be a homomorphism
of Γ-C∗-algebras, then

J redΓ (g∗(z)) = gΓ,red,∗ ◦ J redΓ (z)

for any z in KKΓ
1 (A,B).

(v) If
0→ J → A→ A/J → 0

is a semi-split exact sequence of Γ-C∗-algebras, let [∂J,A] be the
element of KKΓ

1 (A/J, J) that implements the boundary map ∂J,A.
Then we have

J redΓ ([∂J,A]) = DJoredΓ,AoredΓ.
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We can now define J redΓ for even element in the following way. Set αJ =
αT αD and kJ = kT ∗kD. If A and B are Γ-C∗-algebra and if z is an element
in KKΓ

0 (A,B), then we set with notation of Section 4.1

J redΓ (z) = (Jred,ε,rΓ (z))0<ε< 1
4αT

,r
def==TBoredΓ([∂]−1) ◦ J redΓ (z ⊗B [∂SB ]).

According to Lemma 4.6, there exists a control pair (λ, h) such that for any
Γ-C∗-algebra A, then J redΓ ([IdA]) (λ,h)∼ IdK∗(AoredΓ). Up to compose with
ι
αDε,αJ ε,kD,εr,kJ ,εr
∗ , we can assume indeed that J redΓ (•) is also, in the odd
case a (αJ , kJ )-controlled morphism. As for Theorem 4.4, we get.

Theorem 5.3. — Let A and B be Γ-C∗-algebras.
(i) For any element z of KKΓ

∗ (A,B), then

J redΓ (z) : K∗(Aored Γ)→ K∗(BoredΓ)

is a (αJ , kJ )-controlled morphism of same degree as z that induces
in K-theory right multiplication by JredΓ (z).

(ii) For any z and z′ in KKΓ
∗ (A,B), then

J redΓ (z + z′) = J redΓ (z) + J redΓ (z′).

(iii) For any Γ-C∗-algebra A′, any homomorphism f : A→ A′ of Γ-C∗-
algebras and any z in KKΓ

∗ (A′, B), then J redΓ (f∗(z)) = J redΓ (z) ◦
fΓ,∗.

(iv) For any Γ-C∗-algebra B′, any homomorphism g : B → B′ of Γ-
C∗-algebras and any z in KKΓ

∗ (A,B), then J redΓ (g∗(z)) = gΓ,∗ ◦
J redΓ (z).

Using the same argument as in the proof of Theorem 4.5, we see that
J redΓ is compatible with Kasparov products.

Theorem 5.4. — There exists a control pair (λ, h) such that the fol-
lowing holds: for every Γ-C∗-algebras A, B and D, any elements z in
KKΓ

∗ (A,B) and z′ in KKΓ
∗ (B,D), then

J redΓ (z ⊗B z′)
(λ,h)∼ J redΓ (z′) ◦ J redΓ (z).

We can perform a similar construction for maximal cross products.

Theorem 5.5. — Let A and B be Γ-C∗-algebras.
(i) For any element z ofKKΓ

∗ (A,B), there exists a (αJ , kJ )-controlled
morphism

JmaxΓ (z) = (Jmax,ε,rΓ (z))0<ε< 1
4αJ

,r : K∗(AomaxΓ)→ K∗(BomaxΓ)
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with same degree as z that induces inK-theory right multiplication
by JmaxΓ (z) and such that λΓ,B,∗ ◦ JmaxΓ (z) = J redΓ (z) ◦ λΓ,A,∗.

(ii) For any z and z′ in KKΓ
∗ (A,B), then

JmaxΓ (z + z′) = JmaxΓ (z) + JmaxΓ (z′).

(iii) For any Γ-C∗-algebra A′, any homomorphism f : A→ A′ of Γ-C∗-
algebras and any z inKKΓ

∗ (A′, B), then JmaxΓ (f∗(z)) = JmaxΓ (z)◦
fΓ,max,∗.

(iv) For any Γ-C∗-algebra B′, any homomorphism g : B → B′ of Γ-C∗-
algebras and any z in KKΓ

∗ (A,B), then JmaxΓ (g∗(z)) = gΓ,max,∗ ◦
JmaxΓ (z).

Moreover, there exists a controlled pair (λ, h) such that,

• for any Γ-C∗ algebra A, then JmaxΓ ([IdA]) (λ,h)∼ IdK∗(AomaxΓ);
• For any semi-split extension of Γ algebras 0→ J → A→ A/J → 0,

then JmaxΓ ([∂J,A]) (λ,h)∼ DJ,A.

Theorem 5.6. — There exists a control pair (λ, h) such that the fol-
lowing holds: for every Γ-C∗-algebras A, B and D, any elements z in
KKΓ

∗ (A,B) and z′ in KKΓ
∗ (B,D), then

JmaxΓ (z ⊗B z′)
(λ,h)∼ JmaxΓ (z′) ◦ JmaxΓ (z).

5.3. Application to K-amenability

The original definition of K-amenability is due to J. Cuntz [6]. For our
purpose, it is more convenient to use the equivalent definition given by P.
Julg and A. Valette in [10]. If Γ is a discrete group, let us denote by 1Γ the
class in KKΓ

0 (C,C) of the K-cycle (IdC, 0,C), where C is provided with
the trivial action on Γ.

Definition 5.7. — Let Γ be a discrete group. Then Γ is K-amenable
if 1Γ can be represented by a K-cycle such that the action of Γ on the
underlying Hilbert space is weakly contained in the regular representation.

(The previous definition indeed also makes sense for locally compact
groups.)

Example 5.8. — Amenable groups are obviously K-amenable. Typical
example on non-amenable K-amenable groups are free groups [6]. More
generally, J. L. Tu proved in [17] that group which satisfies the strong
Baum-Connes conjecture (i.e with γ = 1) are K-amenable. Examples of
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such group are groups with the Haagerup property [8] and fundamental
groups of compact and oriented 3-manifolds [13].

For a Γ-C∗-algebra B and an element T of L(H⊗B), where H is a sep-
arable Hilbert space, let us set TΓ,max = T⊗BIdBomaxΓ and TΓ,red =
T⊗BIdBoredΓ. If A is a Γ-C∗-algebra and π : A → L(H⊗B) is a Γ-
equivariant representation, let πΓ,red : AoredΓ → L(H⊗BoredΓ) and
πΓ,max : AomaxΓ → L(H⊗BomaxΓ) be respectively the reduced and the
maximal representation induced by π. Then, we have the following (com-
pare with the proof of [10, proposition 3.4]).

Proposition 5.9. — Let Γ be a K-amenable discrete group and let A
and B be Γ-C∗-algebras. Then any elements of KKΓ

∗ (A,B) can be repre-
sented by a K-cycle (π, T,H⊗B) such that the homomorphism πΓ,max :
AomaxΓ → L(H⊗BomaxΓ) factorises through the homomorphism λΓ,A :
AomaxΓ→ AoredΓ, i.e there exists a homomorphism

πΓ,red,max : AoredΓ→ L(H⊗BomaxΓ)

such that
πΓ,max = πΓ,red,max ◦ λΓ,A.

As a consequence, for any Γ-C∗-algebra A, then

λΓ,A,∗ : K∗(AomaxΓ)→ K∗(AoredΓ)

is an isomorphism [6].

We have the following analogous result for quantitative K-theory.

Theorem 5.10. — There exists a control pair (λ, h) such that

λΓ,A,∗ : K∗(AomaxΓ)→ K∗(AoredΓ)

is a (λ, h)-isomorphism for every Γ-C∗-algebra A.

Proof. — Let (π, T,H⊗SA) be a Γ-equivariant K-cycle as in Proposi-
tion 5.9 representing the element [∂A] of KKΓ

1 (A,SA) corresponding to
the extension

0→ SA→ CA→ A→ 0.
Let then choose πΓ,A,red,max : AoredΓ → L(H⊗BomaxΓ) such that
πΓ,max = πΓ,red,max ◦ λΓ,A. Let us set P = T+IdH⊗SA

2 and then define

E
(π,T )
red = {(x, y) ∈ AoredΓ⊕ L(H⊗ SAoredΓ) such that

PΓ,red · πΓ,red(x) · PΓ,red − y ∈ K(H)⊗ SAoredΓ},
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E(π,T )
max = {(x, y) ∈ AomaxΓ⊕ L(H⊗ SAomaxΓ) such that

PΓ,max · πΓ,max(x) · PΓ,max − y ∈ K(H)⊗ SAomaxΓ}

and

E
(π,T )
red,max = {(x, y) ∈ AoredΓ⊕ L(H⊗ SAomaxΓ) such that

PΓ,max · πΓ,red,max(x) · PΓ,max − y ∈ K(H)⊗AomaxΓ}

Then E(π,T )
red , E(π,T )

max and E(π,T )
red,max are respectively filtered by

{(x, PΓ,red · πΓ,red(x) · PΓ,red + y);
x ∈ AoredΓr and y ∈ K(H)⊗ SAoredΓr},

{(x, PΓ,max · πΓ,max(x) · PΓ,max + y);
x ∈ AomaxΓr and y ∈ K(H)⊗ SAomaxΓr}

and

{(x, PΓ,max · πΓ,red,max(x) · PΓ,max + y);
x ∈ AoredΓr and y ∈ K(H)⊗ SAomaxΓr}.

Moreover, the extension of C∗-algebras

0 −→ K(H)⊗ SAoredΓ −→ E
(π,T )
red −→ AoredΓ −→ 0,

0 −→ K(H)⊗ SAomaxΓ −→ E(π,T )
max −→ AomaxΓ −→ 0

and
0 −→ K(H)⊗ SAomaxΓ −→ E

(π,T )
red,max −→ AoredΓ −→ 0

provided by the projection on the first factor are respectively semi-split by
the filtered cross-sections

sred : AoredΓ→ E
(π,T )
red ; x 7→ (x, PΓ,red · πΓ,red(x) · PΓ,red),

smax : AomaxΓ→ E(π,T )
max ; x 7→ (x, PΓ,max · πΓ,max(x) · PΓ,max)

and

sred,max : AoredΓ→ E(π,T )
max ; x 7→ (x, PΓ,max · πΓ,red,max(x) · PΓ,max).

Let us set

f1 : E(π,T )
max → E

(π,T )
red,max : (x, y) 7→ (λΓ,A,∗(x), y)

and
f2 : E(π,T )

red,max → E
(π,T )
red : (x, y) 7→ (x, y⊗AomaxΓIdAoredΓ).
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Then the three above extensions fit in a commutative diagram

0 −−−→ K(H)⊗ SAomaxΓ −−−→ E
(π,T )
max −−−→ AomaxΓ −−−→ 0

=
y f1

y yλΓ,A

0 −−−→ K(H)⊗ SAomaxΓ −−−→ E
(π,T )
red,max −−−→ AoredΓ −−−→ 0

λΓ,K(H)⊗SA

y f2

y y=

0 −−−→ K(H)⊗ SAoredΓ −−−→ E
(π,T )
red −−−→ AoredΓ −−−→ 0

which satisfy the conditions of Remark 3.8. Hence we deduce

(5.1) DK(H)⊗SAomaxΓ,E(π,T )
red,max

◦ λA,Γ,∗ = DK(H)⊗SAomaxΓ,E(π,T )
max

and

(5.2) λK(H)⊗SA,Γ,∗ ◦ DK(H)⊗SAomaxΓ,E(π,T )
red,max

= DK(H)⊗SAoredΓ,E(π,T )
red

Let us set then

D′A =M−1
SAomaxΓ ◦ DSAomaxΓ,E(π,T )

red,max

: K∗(AoredΓ)→ K∗(SAomaxΓ).

Since we have by definition of the quantitative Kasparov transformation
the equalities

J redΓ ([∂A]) =M−1
SAoredΓ ◦ DSAoredΓ,E(π,T )

red

and

JmaxΓ ([∂A]) =M−1
SAomaxΓ ◦ DSAomaxΓ,E(π,T )

max
,

we deduce by using equations (5.1) and (5.2), Theorems 5.3, 5.4, 5.5 and 5.6
and naturality of Morita equivalence, that there exists a control pair (λ, h)
such that JmaxΓ ([∂A]−1) ◦ D′A is a (α, h)-inverse for λΓ,A,∗. �

6. The quantitative Baum-Connes conjecture

In this section, we formulate a quantitative version for the Baum-Connes
conjecture and we prove it for a large class of groups.
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6.1. The quantitative assembly maps

Let Γ be a finitely generated group equipped with a lenght ` arising
from a finite and symmetric generating set. Recall that for any positive
number d, then the d-Rips complex Pd(Γ) is the set of finitely supported
probability measures on Γ with support of diameter less than d for the
distance induced by `. We equip Pd(Γ) with the distance induced by the
norm ‖h‖ = sup{‖h(γ)‖; γ ∈ Γ} for h ∈ C0(Γ,C). Since ` is a proper
function, i.e. B(e, r) is finite for every positive number r, we see that Pd(Γ)
is a finite dimension and locally finite simplicial complexe and the action
of Γ by left translations is simplicial, proper and cocompact.
Notice that any x in Pd(Γ) can be written down in a unique way as a

finite convex combination

x =
∑
γ∈Γ

λγ(x)δγ ,

where δγ is the Dirac probability measure at γ in Γ. The functions

λγ : Pd(Γ)→ [0, 1]

are continuous and γ(λγ′) = λγγ′ for all γ and γ′ in Γ. The function

eΓ,d : Γ→ C0(Pd(Γ)); γ 7→ λ1/2
e λ1/2

γ

is a projection of C0(Pd(Γ))oredΓ with propagation less than d. Let us set
then rd,ε = kJ ,ε/αJd. Recall that kJ can be chosen non increasing and in
this case, rd,ε is non decreasing in d and non increasing in ε.

Definition 6.1. — For any Γ-C∗-algebra A and any positive numbers
ε, r and d with ε < 1/4 and r > rd,ε, we define the quantitative assembly
map

µε,r,dΓ,A,∗ : KKΓ
∗ (C0(Pd(Γ)), A)→ Kε,r

∗ (Aored Γ)

z 7→
(
J
red, εαJ

, r
kJ,ε/αJ

Γ (z)
)(

[eΓ,d, 0] ε
αJ

, r
kJ,ε/αJ

)
.

Then according to Theorem 5.3, the map µε,r,dΓ,A is a homomorphism of
Z2-graded groups. For any positive numbers d and d′ such that d 6 d′,
we denote by qd,d′ : C0(Pd′(Γ)) → C0(Pd(Γ)) the homomorphism induced
by the restriction from Pd′(Γ) to Pd(Γ). It is straightforward to check that
if d, d′ and r are positive numbers such that d 6 d′ and r > rd′,ε, then
µε,r,dΓ,A = µε,r,d

′

Γ,A ◦ qd,d′,∗. Moreover, for every positive numbers ε, ε′, d, r and
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r′ such that ε 6 ε′ 6 1/4, rd,ε 6 r, rd,ε′ 6 r′, and r < r′, we get by
definition of a controlled morphism that

(6.1) ιε,ε
′,r,r′

∗ ◦ µε,r,dΓ,A,∗ = µε
′,r′,d

Γ,A,∗ .

Furthermore, the quantitative assembly maps are natural in the Γ-C∗-
algebra, i.e. if A and B are Γ-C∗-algebras and if φ : A → B is a Γ-
equivariant homomorphism, then

φΓ,red,∗,ε,r ◦ µε,r,dΓ,A,∗ = µε,r,dΓ,B,∗ ◦ φ∗
for every positive numbers r and ε with r > rd,ε and ε < 1/4. These
quantitative assembly maps are related to the usual assembly maps in the
following way: recall from [2] that there is a bunch of assembly maps with
coefficients in a Γ-C∗-algebra A defined by

µdΓ,A,∗ : KKΓ
∗ (C0(Pd(Γ)), A) → K∗(Aored Γ)

z 7→ [eΓ,d]⊗C0(Pd(Γ))oΓ JΓ(z).

For every positive numbers r and ε with r > rd,ε and ε < 1/4, we have

(6.2) ιε,r∗ ◦ µ
ε,r,d
Γ,A,∗ = µdΓ,A,∗.

Recall that since µd′Γ,A,∗ ◦ qd,d′,∗ = µdΓ,A,∗ for all positive numbers d and
d′ with d 6 d′, the family of assembly maps (µdΓ,A)d>0 gives rise to a
homomorphism

µΓ,A,∗ : lim
d>0

KKΓ
∗ (C0(Pd(Γ)), A) −→ K∗(Aored Γ)

called the Baum-Connes assembly map.

6.2. Quantitative statements

Let us consider for a Γ-C∗-algebra A and positive numbers d, d′, r, r′, ε
and ε′ with d 6 d′, ε′ 6 ε < 1/4, rd,ε 6 r and r′ 6 r the following
statements:
QIΓ,A,∗(d, d′, r, ε): for any element x in KKΓ

∗ (C0(Pd(Γ)), A), then
µε,r,dΓ,A,∗(x) = 0 in Kε,r

∗ (Aored Γ) implies that q∗d,d′(x) = 0 in
KKΓ

∗ (C0(Pd′(Γ)), A).
QSΓ,A,∗(d, r, r′, ε, ε′): for every y in Kε′,r′

∗ (Aored Γ), there exists an ele-
ment x in KKΓ

∗ (C0(Pd(Γ)), A) such that

µε,r,dΓ,A,∗(x) = ιε
′,ε,r′,r
∗ (y).

Using equation (6.2) and Remark 1.17 we get
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Proposition 6.2. — Assume that for all positive number d there exists
a positive number ε with ε < 1/4 for which the following holds:

For any positive number r with r > rd,ε, there exists a positive number
d′ with d′ > d such that QIΓ,A(d, d′, r, ε) is satisfied.

Then µΓ,A,∗ is one-to-one.

We can also easily prove the following:

Proposition 6.3. — Assume that there exists a positive number ε′
with ε′ < 1/4 such that the following holds:

For any positive number r′ , there exist positive numbers ε, d and r with
ε′ 6 ε < 1/4, rd,ε 6 r and r′ 6 r such that QSΓ,A(d, r, r′, ε, ε′) is true.

Then µΓ,A,∗ is onto.

The following results provide numerous examples of finitely generated
groups that satisfy the quantitative statements.

Theorem 6.4. — Let A be a Γ-C∗-algebra. Then the following asser-
tions are equivalent:

(i) µΓ,`∞(N,K(H)⊗A),∗ is one-to-one,
(ii) For any positive numbers d, ε and r with ε < 1/4 and r >

rd,ε, there exists a positive number d′ with d′ > d for which
QIΓ,A(d, d′, r, ε) is satisfied.

Proof. — Assume that condition (ii) holds.
Let x be an element in some KKΓ

∗ (C0(Pd(Γ)), `∞(N,K(H) ⊗ A)) such
that

µdΓ,`∞(N,K(H)⊗A),∗(x) = 0.

Using equation (6.2), we get that ιε
′,r′

∗ (µε
′,r′,d

Γ,A,∗ (x)) = 0 for any ε′ in (0, 1/4)
and r′ > rd,ε′ and hence, by Remark 1.17, we can find ε and r > rd,ε such
that µε,r,dΓ,`∞(N,K(H)⊗A),∗(x) = 0. Recall from [14, Proposition 3.4] that we
have an isomorphism

(6.3) KKΓ
0 (C0(Pd(Γ)), `∞(N,K(H)⊗A))

∼=−→ KKΓ
0 (C0(Pd(Γ)), A)N

induced on the j th factor and up to the Morita equivalence

KKΓ
0 (C0(Pd(Γ)), A) ∼= KKΓ

0 (C0(Pd(Γ)),K(H)⊗A)

by the j th projection `∞(N,K(H)⊗A)→ K(H)⊗A. Let (xi)i∈N be the el-
ement of KKΓ

0 (C0(Pd(Γ)), A)N corresponding to x under this identification
and let d′ > d be a number such that QIΓ,A(d, d′, r, ε) holds. Naturality
of the quantitative assembly maps implies that µε,r,dΓ,A,∗(xi) = 0 and hence
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that qd,d′,∗(xi) = 0 in KKΓ
∗ (C0(Pd′(Γ)), A) for every integer i. Using once

again the isomorphism of equation (6.3), we get that qd,d′,∗(x) = 0 in
KKΓ

∗ (C0(Pd′(Γ)), `∞(N,K(H)⊗A) and hence µΓ,`∞(N,K(H)⊗A),∗ is one-to-
one.
Let us prove the converse in the even case, the odd case being simi-

lar. Assume that there exists positive numbers d, ε and r with ε < 1/4
and r > rd,ε and such that for all d′ > d, the condition QIΓ,A(d, d′, r, ε)
does not hold. Let us prove that µΓ,`∞(N,K(H)⊗A),∗ is not one-to-one. Let
(di)i∈N be an increasing and unbounded sequence of positive numbers
such that di > d for all integer i. For all integer i, let xi be an ele-
ment in KKΓ

0 (C0(Pd(Γ)), A) such that µε,r,dΓ,A,∗(xi) = 0 in K0(Aored Γ) and
qd,di,∗(xi) 6= 0 in KKΓ

0 (C0(Pdi(Γ)), A). Let x be the element of
KKΓ

0 (C0(Pd(Γ)), `∞(N,K(H) ⊗ A)) corresponding to (xi)i∈N under the
identification of equation (6.3). Let (pi)i∈N be a family of ε-r-projections,
with pi in some Mli( ˜Aored Γ) and n an integer such that

µε,r,dΓ,`∞(N,K(H)⊗A),∗(x) = [(pi)i∈N, n]ε,r

in Kε,r
0 (`∞(N,K(H) ⊗ A)oredΓ). By naturality of µε,r,dΓ,•,∗, we get that

[pi, n]ε,r = 0 in Kε,r
0 (Aored Γ) for all integer i. We see by using Proposi-

tion 1.30 that then ιε,r∗ ([(pi)i∈N, n]) = 0 in K0(`∞(N,K(H)⊗A)oredΓ). We
eventually obtain that µdΓ,A(x) = ιε,r∗ ◦ µε,r,dΓ,A (x) = 0. Since qd,di,∗(x) 6= 0
for every integer i, we get that µΓ,`∞(N,K(H)⊗A),∗ is not one-to-one. �

Theorem 6.5. — There exists λ > 1 such that for any Γ-C∗-algebra,
the following assertions are equivalent:

(i) µΓ,`∞(N,K(H)⊗A),∗ is onto;
(ii) For any positive numbers ε and r′ with ε < 1

4λ , there exist positive
numbers d and r with rd,ε 6 r and r′ 6 r for which QSΓ,A(d, r, r′,
λε, ε) is satisfied.

Proof. — Choose λ as in Remark 1.17. Assume that condition (ii) holds.
Let z be an element in K∗(`∞(N,K(H)⊗A)oredΓ) and let y be an element
in Kε,r′

∗ (`∞(N,K(H) ⊗ A)oredΓ) such that ιε,r
′

∗ (y) = z, with 0 < ε < 1
4λ

and r′ > 0. Let yi be the image of y under the composition
(6.4)
Kε,r′

∗ (`∞(N,K(H)⊗A)oredΓ)→Kε,r′

∗ (K(H)⊗Aored Γ)
∼=→ Kε,r′

∗ (Aored Γ),

where the first map is induced by the evaluation `∞(N,K(H) ⊗ A) −→
K(H) ⊗ A at i and the second map is the Morita equivalence of Propo-
sition 1.28. Let d and r be numbers with r > r′ and r > rd,ε and such
that QSΓ,A(d, r, r′, λε, ε) holds. Then for any integer i, there exists a xi in
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KKΓ
∗ (C0(Pd(Γ)), A) such that µλε,r,dΓ,A,∗ (xi) = ιε,λε,r

′,r
∗ (yi) in Kε,r

∗ (AoredΓ).
Let

x ∈ KKΓ
∗ (C0(Pd(Γ)), `∞(N,K(H)⊗A))

be the element corresponding to (xi)i∈N under the identification of equation
(6.3). By naturality of the quantitative assembly maps, we get according
to Proposition 1.30 that

µλε,r,dΓ,`∞(N,K(H)⊗A)),∗(x) = ιε,λε,r
′,r

∗ (y)

in Kε,r
∗ (`∞(N,K(H)⊗A)oredΓ). We have hence

µdΓ,`∞(N,K(H)⊗A)),∗(x) = ιε,r
′

∗ (y) = z,

and therefore µΓ,`∞(N,K(H)⊗A),∗ is onto.
Let us prove the converse in the even case, the odd case being simi-

lar. Assume that there exist positive numbers ε and r′ with ε < 1
4λ such

that for all positive numbers r and d with r > r′ and r > rd,ε, then
QSΓ,A(d, r, r′, λε, ε) does not hold. Let us prove then that µΓ,`∞(N,K(H)⊗A),∗
is not onto. Let (di)i∈N and (ri)i∈N be increasing and unbounded sequences
of positive numbers such that ri > rdi,λε and ri > r′. Let yi be an element in
Kε,r′

0 (Aored Γ) such that ιε,λε,r
′,ri

∗ (yi) is not in the range of µλε,ri,diΓ,A,∗ . There
exists an element y in Kε,r′

0 (`∞(N,K(H) ⊗ A)oredΓ) such that for every
integer i, the image of y under the composition of equation (6.4) is yi. As-
sume that for some d′, there is an x in KKΓ

0 (C0(Pd′(Γ)), `∞(N,K(H)⊗A))
such that ιε,r

′

∗ (y) = µd
′

Γ,`∞(N,K(H)⊗A),∗(x). Using Remark 1.17, we see that
there exists a positive number r with r′ 6 r and rd′,λε 6 r and such that

ιε,λε,r
′,r

∗ ◦ µε,r
′,d′

Γ,`∞(N,K(H)⊗A),∗(x) = ιε,λε,r
′,r

∗ (y).

But then, if we choose i such that ri > r and di > d′ we get by using
naturality of the assembly map and equation (6.1) that ιε,λε,r

′,ri
∗ (yi) belongs

to the image of µλε,ri,diΓ,A,∗ , which contradicts our assumption. �

Replacing in the proof of (ii) implies (i) of Theorems 6.4 and 6.5 the
algebra `∞(N,K(H) ⊗ A) by

∏
i∈N(K(H) ⊗ Ai) for a family (Ai)i∈N of Γ-

C∗-algebras, we can prove the following result.

Theorem 6.6. — Let Γ be a discrete group.
(i) Assume that for any Γ-C∗-algebra A, the assembly map µΓ,A,∗ is

one-to-one. Then for any positive numbers d, ε and r with ε < 1/4
and r > rd,ε, there exists a positive number d′ with d′ > d such
that QIΓ,A(d, d′, r, ε) is satisfied for every Γ-C∗-algebra A;
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(ii) Assume that for any Γ-C∗-algebra A, the assembly map µΓ,A,∗ is
onto. Then for some λ > 1 and for any positive numbers ε and r′
with ε < 1

4λ , there exist positive numbers d and r with rd,ε 6 r

and r′ 6 r such that QSΓ,A(d, r, r′, λε, ε) is satisfied for every Γ-
C∗-algebra A.

In particular, if Γ satisfies the Baum-Connes conjecture with coefficients,
then Γ satisfies points (i) and (ii) above.

Recall from [16, 20] that if Γ coarsely embeds in a Hilbert space, then
µΓ,A,∗ is one-to-one for every Γ-C∗-algebra A. Hence we get:

Corollary 6.7. — If Γ coarsely embeds in a Hilbert space, then for
any positive numbers d, ε and r with ε < 1/4 and r > rd,ε, there exists a
positive number d′ with d′ > d such that QIΓ,A(d, d′, r, ε) is satisfied for
every Γ-C∗-algebra A;

The quantitative assembly maps admit maximal versions defined with
notations of Definition 6.1 for any Γ-C∗-algebra A and any positive number
ε, r and d with ε < 1/4 and r > rd,ε, as

µε,r,dΓ,A,max,∗ : KKΓ
∗ (C0(Pd(Γ)), A)→ Kε,r

∗ (AomaxΓ)

z 7→
(
J
max, εαJ

, r
kJ,ε/αJ

Γ (z)
)(

[eΓ,d, 0] ε
αJ

, r
kJ,ε/αJ

)
.

As in the reduced case, we have using the same notations
• for any positive number d and d′ such that d 6 d′, then

µε,r,dΓ,A,max,∗ = µε,r,d
′

Γ,A,max,∗ ◦ qd,d′,∗.

• for every positive numbers ε, ε′, d, r and r′ such that ε 6 ε′ 6 1/4,
rd,ε 6 r, rd,ε′ 6 r′, and r < r′, then

ιε,ε
′,r,r′

∗ ◦ µε,r,dΓ,A,max,∗ = µε
′,r′,d

Γ,A,max,∗.

• the maximal quantitative assembly maps are natural in the Γ-C∗-
algebras.

Moreover, by Theorem 5.5(i), the maximal quantitative assembly maps
are compatible with the reduced ones, i.e µε,r,dΓ,A,∗ = λε,rΓ,A,∗ ◦µ

ε,r,d
Γ,A,max,∗. The

surjectivity of the Baum-Connes assembly map µΓ,A,∗ implies that the map

λΓ,A,∗ : K∗(AomaxΓ)→ K∗(AoredΓ)

is onto. We have a similar statement in the setting of quantitativeK-theory.
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Theorem 6.8. — There exists λ > 1 such the following holds : let Γ be
a finitely generated discrete group and assume that for any Γ-C∗-algebra
A, the assembly map µΓ,A,∗ is onto. Then for any positive numbers ε and
r, with ε < 1

4λ , there exists a positive number r′ with r′ > r such that
• for any Γ-C∗-algebra A;
• for any x in Kε,r

∗ (AoredΓ),
there exists y in Kλε,r′

∗ (AomaxΓ) such that λλε,r
′

Γ,A,∗(y) = ιε,λε,r,r
′

∗ (x).

7. Further comments

The definition of quantitative K-theory can be extended to the frame-
work of filtered Banach algebras, i.e. Banach algebra A equipped with a
family (Ar)r>0 of linear closed subspaces indexed by positive numbers such
that:

• Ar ⊂ Ar′ if r 6 r′;
• Ar ·Ar′ ⊂ Ar+r′ ;
• the subalgebra

⋃
r>0

Ar is dense in A.

Since we no more have an involution, we need to introduce instead a norm
control for almost idempotents. Let ε be in (0, 1/4) and let r and N be
positive numbers. An element e of A is an ε-r-N -idempotent if

• e is in Ar;
• ‖e2 − e‖ < ε;
• ‖e‖ < N ;

Similarly, if A is a unital, an element x in A is called ε-r-N -invertible if
• x is in Ar;
• ‖x‖ < N ;
• there exists an element y in Ar such that ‖y‖ < N , ‖xy − 1‖ < ε

and ‖yx− 1‖ < ε.
Quantitative K-theory can then be defined in the setting of ε-r-N -

idempotents and of ε-r-N -invertibles. We obtain in this way a bunch of
abelian groups (Kε,r,N

∗ (A))ε∈(0,1/4),r>,N>1. Let us set for a fixed N > 1

KN∗ (A) = (Kε,r,N
∗ (A))ε∈(0,1/4),r>0.

If A is a filtered C∗-algebra and e an ε-r-N -idempotent in A, then there
is an obvious (1, 1)-controlled morphism K0(A)→ KN0 (A). Approximating
((2e∗ − 1)(2e− 1) + 1)1/2e((2e∗ − 1)(e− 1) + 1)−1/2 by using a power serie
(compare with the proof of Lemma 1.11), we get that for every N > 1, there
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exists a control pair (λN , hN ) such that K0(A) → KN0 (A) is a (λN , hN )-
controlled isomorphism. Using the polar decomposition, we have a similar
statement in the odd case.
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