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ON QUANTITATIVE OPERATOR K-THEORY

by Hervé OYONO-OYONO & Guoliang YU (*)

ABSTRACT. — In this paper, we develop a quantitative K-theory for filtered
C*-algebras. Particularly interesting examples of filtered C*-algebras include group
C*-algebras, crossed product C*-algebras and Roe algebras. We prove a quantita-
tive version of the six term exact sequence and a quantitative Bott periodicity. We
apply the quantitative K-theory to formulate a quantitative version of the Baum-
Connes conjecture and prove that the quantitative Baum-Connes conjecture holds
for a large class of groups.

RiESUME. —  Dans cet article, nous développons une K-théorie quantitative
pour les C*-algeébres filtrées. Parmi les exemples les plus intéressants de telles C*-
algebres figurent les algebres de Roe, les C'*-algebres de groupes et les C*-algebres
de produits croisés. Nous établissons une version quantitative de la suite exacte
a six termes en K-théorie ainsi que de la périodicité de Bott. Nous formulons en
utilisant la K-théorie quantitative une version quantitative de la conjecture de
Baum-Connes. Nous montrons que cette conjecture de Baum-Connes quantitative
est vérifiée pour une large classe de groupes.

Introduction

The receptacles of higher indices of elliptic differential operators are
K-theory of C*-algebras which encode the (large scale) geometry of the
underlying spaces. The following examples are important for purpose of
applications to geometry and topology.

e K-theory of group C*-algebras is a receptacle for higher index the-
ory of equivariant elliptic differential operators on covering spaces
[1, 2, 5, 11];
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606 Hervé OYONO-OYONO & Guoliang YU

e K-theory of crossed product C*-algebras and more generally grou-
poid C*-algebras for foliations serve as receptacles for longitudi-
nally elliptic operators [3, 4];

e the higher indices of elliptic operators on noncompact complete
Riemannian manifolds live in K-theory of Roe algebras [15].

The local nature of differential operators implies that these higher indices
can be defined in term of idempotents and invertible elements with finite
propagation. Using homotopy invariance of the K-theory for C*-algebras,
these higher indices give rise to topological invariants.

In the context of Roe algebras, a quantitative operator K-theory was
introduced to compute the higher indices of elliptic operators for noncom-
pact spaces with finite asymptotic dimension [19]. The aim of this paper
is to develop a quantitative K-theory for general C*-algebras equipped
with a filtration. The filtration structure allows us to define the concept of
propagation. Examples of C*-algebras with filtrations include group C*-
algebras, crossed product C*-algebras and Roe algebras. The quantitative
K-theory for C*-algebras with filtrations is then defined in terms of homo-
topy classes of quasi-projections and quasi-unitaries with propagation and
norm controls. We introduce controlled morphisms to study quantitative
operator K-theory. In particular, we derive a quantitative version of the
six term exact sequence. In the case of crossed product algebras, we also
define a quantitative version of the Kasparov transformation compatible
with Kasparov product. We end this paper by using the quantitative K-
theory to formulate a quantitative version of the Baum-Connes conjecture
and prove it for a large class of groups.

This paper is organized as follows: In section 1, we collect a few notations
and definitions including the concept of filtered C*-algebras. We use the
concepts of almost unitary and almost projection to define a quantitative
K-theory for filtered C*-algebras and we study its elementary properties. In
section 2, we introduce the notion of controlled morphism in quantitative
K-theory. Section 3 is devoted to extensions of filtered C*-algebras and
to a controlled exact sequence for quantitative K-theory. In section 4, we
prove a controlled version of the Bott periodicity and as a consequence,
we obtain a controlled version of the six-term exact sequence in K-theory.
In section 5, we apply K K-theory to study the quantitative K-theory of
crossed product C*-algebras and discuss its application to K-amenability.
Finally in section 8, we formulate a quantitative Baum-Connes conjecture
and prove the quantitative Baum-Connes conjecture for a large class of
groups.
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1. Quantitative K-theory

In this section, we introduce a notion of quantitative K-theory for C*-
algebras with a filtration. Let us fix first some notations about C*-algebras
we shall use throughout this paper.

o If B is a C*-algebra and if by,..., by are respectively elements of
M,,(B),...,M,,(B), we denote by diag(b1,...,bg) the block di-
by
agonal matrix of My, 4...4n, (B).
by,

e If X is a locally compact space and B is a C*-algebra, we denote
by Cy(X, B) the C*-algebra of B-valued continuous functions on
X vanishing at infinity. The special cases of X = (0,1], X =[0,1),
X = (0,1) and X = [0,1], will be respectively denoted by CB,
B[0,1), SB and BJ[0,1].

e For a separable Hilbert space H, we denote by IC(H) the C*-algebra
of compact operators on H.

e If A and B are C*-algebras, we will denote by A ® B their spatial
tensor product.

1.1. Filtered C'*-algebras

DEFINITION 1.1. — A filtered C*-algebra A is a C*-algebra equipped
with a family (A,),so of closed linear subspaces indexed by positive num-
bers such that:

A. C A ifr<r';

A, is stable by involution;

A A C Ar+7"’;'

the subalgebra U A, is dense in A.

r>0
If A is unital, we also require that the identity 1 is an element of A, for

every positive number r. The elements of A, are said to have propagation r.

e Let A and A’ be respectively C*-algebras filtered by (4, ), and
(Al)r>0. A homomorphism of C* -algebras ¢ : A— A’ is a fil-
tered homomorphism (or a homomorphism of filtered C*-algebras)
if p(A,) C A, for any positive number .

e If Ais a filtered C*-algebra and X is a locally compact space, then
Co(X, A) is a C*-algebra filtered by (Co(X, Ar))r>o- In particular
the algebras C'A, A[0,1], A[0,1) and SA are filtered C*-algebras.

TOME 65 (2015), FASCICULE 2



608 Hervé OYONO-OYONO & Guoliang YU

e If A is a non unital filtered C*-algebra, then its unitarization Ais
filtered by (A, + C),~0. We define for A non-unital the homomor-
phism

pA:ﬁ—HC;a—i—zn—)z
for a € A and z € C.

Prominent examples of filtered C*-algebra are provided by Roe algebras
associated to proper metric spaces, i.e. metric spaces such that closed balls
of given radius are compact. Recall that for such a metric space (X,d), a
X-module is a Hilbert space Hx together with a x-representation px of
Co(X) in Hx (we shall write f instead of px(f)). If the representation is
non-degenerate, the X-module is said to be non-degenerate. A X-module is
called standard if no non-zero function of Cy(X) acts as a compact operator
on Hy.

The following concepts were introduced by Roe in his work on index
theory of elliptic operators on noncompact spaces [15].

DEFINITION 1.2. — Let Hx be a standard non-degenerate X-module
and let T' be a bounded operator on Hx.

(i) The support of T' is the complement of the open subset of X x X
{(z,y) € X x X s.t. there exist f and g in Cy(X) satisfying
f(x) #0,9(y) #0 and f-T-g=0}.

(ii) The operator T is said to have finite propagation (in this case
propagation less than r) if there exists a real r such that for any x

and y in X with d(z,y) > r, then (x,y) is not in the support of T'.

(iii) The operator T is said to be locally compact if f - T and T - f are
compact for any f in Co(X). We then define C[X] as the set of
locally compact and finite propagation bounded operators of Hx,

and for every r > 0, we define C[X], as the set of elements of C[X]
with propagation less than r.

We clearly have C[X], - C[X]» C C[X]y4r. We can check that up to
(non-canonical) isomorphism, C[X] does not depend on the choice of Hx.

DEFINITION 1.3. — The Roe algebra C*(X) is the norm closure of C[X]
in the algebra L(Hx) of bounded operators on Hx. The Roe algebra in
then filtered by (C[X];)r>o0-

Although C*(X) is not canonically defined, it was proved in [9] that up
to canonical isomorphisms, its K-theory does not depend on the choice
of a non-degenerate standard X-module. Furthermore, K,(C*(X)) is the
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natural receptacle for higher indices of elliptic operators with support on
X [15].

If X has bounded geometry, then the Roe algebra admits a maximal ver-
sion [7] filtered by (C[X];)r>0. Other important examples are reduced and
maximal crossed product of a C'*-algebra by an action of a discrete group
by automorphisms. These examples will be studied in detail in Section 5.

1.2. Almost projections/unitaries

Let A be a unital filtered C*-algebra. For any positive numbers r and ¢,
we call

e an element u in A an e-r-unitary if u belongs to A,, ||[u*-u—1]| < e
and ||u-u* —1|] < e. The set of e-r-unitaries on A will be denoted
by US"(A).

e an element p in A an e-r-projection if p belongs to A,., p = p* and
|lp?> — p|| < e. The set of e-r-projections on A will be denoted by
P=7(A).

For n integer, we set U;"(A) = US" (M, (A)) and P57 (A) = P*" (M, (4)).
For any unital filtered C*-algebra A, any positive numbers € and r and
any positive integer n, we consider inclusions

, 0
PE,T A PE,I A . p
n ( );> n+1( )ap'_> <0 0)
and

e,r e,r u 0
Ui ) = Uik (5 7).

This allows us to define

U4 = |Jugr)

neN
and
Pr(4) = | P57 (A).
neN
Remark 1.4. — Let r and € be positive numbers with ¢ < 1/4;

(i) If p is an e-r-projection in A, then the spectrum of p is included in
(1—\/21+45’ 1—\/21—45> U (1+\/21—457 1+\/21+4s) and thus ||p| < 1 +¢.

TOME 65 (2015), FASCICULE 2



610 Hervé OYONO-OYONO & Guoliang YU

(ii) If u is an e-r-unitary in A, then
1l—e<|ull <1+¢/2,
1—e/2 < |lut]| <1+e,
Ju =t < (14 e)e.
(iii) Let ko : R — R be a continuous function such that
o Koe(t) =0if t < 1=t
o Koo(t)=1if t > HvI=te,
If p is an e-r-projection in A, then ko (p) is a projection such that
lp — ko.e(p)|| < 2¢ which moreover does not depends on the choice
of kg . From now on, we shall denote this projection by o (p).
(iv) If u is an e-r-unitary in A, set #;(u) = u(u*u)~/2. Then x; (u) is
a unitary such that |ju — &1 (u)|| < e.
(v) If p is an e-r-projection in A and ¢ is a projection in A such that
lp — ¢q|l < 1—2e, then ko(p) and ¢ are homotopic projections [18,
Chapter 5].

(vi) If uw and v are e-r-unitaries in A, then uwv is an £(2 4 €)-2r-unitary
in A.

DEFINITION 1.5. — Let A be a C*-algebra filtered by (A;)r>o-

e Let po and p1 be e-r-projections. We say that py and p; are ho-
motopic e-r-projections if there exists an e-r-projection q in A[0, 1]
such that q(0) = po and ¢q(1) = py. In this case, q is called a ho-
motopy of e-r-projections in A and will be denoted by (q:)¢e[0,1]-

e If A is unital, let ug and uy be e-r-unitaries. We say that ug and
uy are homotopic e-r-unitaries if there exists an e-r-unitary v in
AJ0, 1] such that v(0) = ug and v(1) = us. In this case, v is called
a homotopy of e-r-unitaries in A and will be denoted by (vt):e[0,1]-

Example 1.6. — Let p be an e-r-projection in a unital filtered C*-
algebra A. Set ¢; = coswt/2 and s; = sinnwt/2 for t € [0,1] and let us
2
considerer the homotopy of projections (h¢)e(o,1) with hy = ( “ ct?)
: CtSt St

in M(C) between diag(1,0) and diag(0,1). Set (g¢)¢cjo,1) = (diag(p,0) +
(1 —p) ® hi)ico- Since g7 — gr = s7(p* — p) @ Iy, we see that (g:)sepo,1)
is a homotopy of e-r-projections between diag(1,0) and diag(p,1 — p) in
My (A).

Next result will be used quite extensively throughout the paper and is
fairly easy to prove.
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LEMMA 1.7. — Let A be a C*-algebra filtered by (A;)r>o-

(i) If p is an e-r-projection in A and q is a self-adjoint element of
A, such that ||p — q|| < %2_1’”, then ¢ is an e-r-projection. In
particular, if p is an e-r-projection in A and if q is a self-adjoint
element in A, such that ||p — q|| < ¢, then q is a 5e-r-projection in
A and p and q are connected by a homotopy of be-r-projections.

(ii) If A is unital and if u is an e-r-unitary and v is an element of
A, such that |lu —v| < M, then v is an e-r-unitary. In
particular, if u is an e-r-unitary and v is an element of A, such
that ||u — v|| < e, then v is an 4e-r-unitary in A and u and v are
connected by a homotopy of 4e-r-unitaries.

(iii) If p is a projection in A and q is a self-adjoint element of A, such
that ||p — q|| < §, then ¢ is an e-r-projection.

(iv) If A is unital and if u is a unitary in A and v is an element of A,
such that |[u —v|| < §, then v is an e-r-unitary.

COROLLARY 1.8. — Let u be an e-r-unitary in a unital filtered C*-
algebra A, then diag(u,u*) and I are homotopic as 3e-2r-unitaries in
Ms(A).

Proof. — According to point (vi) of Remark 1.4 and with notations of
Example 1.6, we see that (diag(1,u) (& %) - diag(1,u*) - ( 2, of ))te[o,l] is
a homotopy of 3e-2r-unitaries between diag(u,u*) and diag(uu*,1). Since
[luu* — 1] < &, we deduce from Lemma 1.7 that uu* and 1 are homotopic
3e-2r-unitaries. |

LEMMA 1.9. — There exists a number A > 4 such that for any positive
number € with € < 1/\, any positive real r, any e-r-projection p and e-r-
unitary W' in a filtered unital C*-algebra A, the following assertions hold:

(i) WpW™* is a Ae-3r-projection of A;
(ii) diag(WpW™*,1) and diag(p, 1) are homotopic Ae-3r-projections.

Proof. — The first point is straightforward to check from Remark 1.4.
For the second point, with notations of Example 1.6, use the homotopy of
e-r-unitaries

( Wei+s? (Wfl)stcf,) [ _ ((g: ;ft) ~diag(W, 1) . (f;t Z:
te

(W—1)sper Ws2+c? 0,1] - ))tE[O,l]

to connect by conjugation diag(WpW*, 1) to diag(p, WW*) and then con-
nect to diag(p, 1) by a ray. O

Recall that if two projections in a unital C*-algebra are close enough
in norm, then there are conjugated by a canonical unitary. To state a

TOME 65 (2015), FASCICULE 2



612 Hervé OYONO-OYONO & Guoliang YU

similar result in term of e-r-projections and e-r-unitaries, we will need the
definition of a control pair.

DEFINITION 1.10. — A control pair is a pair (A, h), where

e A>1;
o h:(0,55) — (1,+00); € = he is a map such that there exists a
non-increasing map g : (0, 75) — (0,400), with h < g

LEMMA 1.11. — There exists a control pair (A, h) such that the follow-
ing holds:

for every positive number r, any ¢ in (0, ﬁ) and any e-r-projections p
and q of a filtered unital C*-algebra A satisfying ||p — q|| < 1/16, there
exists an Ae-her-unitary W in A such that |WpW™* — q|| < )e.

Proof. — We follow the proof of [18, Proposition 5.2.6]. If we set
2= (2r0(p) = 1)(2ro(q) = 1) + 1,

e then

lz=2 < 2[ko(p) — ko(q)ll
< 8 +2(p—dql

and hence z is invertible for € < 1/16.
e Moreover, if we set U = z|27!| and since zr¢(q) = ko(p)z, then we
have ko(q) = Uko(p)U*.

Let us define z/ = (2p — 1)(2¢ — 1) + 1. Then we have ||z — 2/|] < 9e
and [|2/|| < 3. If € is small enough, then ||z*z — 4]] < 2 and hence the
spectrum of 2"z’ is in [2,6]. Let us consider the expansion in power serie
Srenant® of t = (1+¢)71/2 on (0,1) and let n. be the smallest integer
such that >, lax|/2% < . Let us set then W = 2/ /237 ay, (%)k.
Then for a suitable A (not depending on A, p, g or €), we get that W is a

Ae-(4ne + 2)r-unitary which satisfies the required condition. O

Remark 1.12. — The order of h when ¢ goes to zero in Lemma 1.11 is
Ce3/2 for some constant C.

1.3. Definition of quantitative K-theory

For a unital filtered C*-algebra A, we define the following equivalence
relations on P (A) x N and on UL (A):

ANNALES DE L’INSTITUT FOURIER
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e if p and ¢ are elements of PZJ(A4), [ and I’ are positive inte-
gers, (p,1) ~ (q,l') if there exists a positive integer k and an ele-
ment h of P (A[0,1]) such that h(0) = diag(p, Ix+rr) and h(1) =
diag(q, Ik+l)-

e if u and v are elements of U (A), u ~ v if there exists an element
h of U327 (A[0,1]) such that h(0) = u and h(1) = v.

If p is an element of P (A) and [ is an integer, we denote by [p, (., the
equivalence class of (p,l) modulo ~ and if u is an element of U (A) we
denote by [u]. , its equivalence class modulo ~.

DEFINITION 1.13. — Let r and ¢ be positive numbers with e < 1/4. We
define:

(i) K5"(A) =P (A) x N/ ~ for A unital and

K5"(A) ={[p,l]er € P*"(A) x N/ ~ such that dim ro(pa(p)) =1}

for A non unital.
(i) K;7(A) = U (A)) ~ (with A = A if A is already unital).

Remark 1.14. — We shall see in Lemma 1.23 that as it is the case for
K-theory, K" (e) can indeed be defined in a uniform way for unital and
non-unital filtered C*-algebras.

It is straightforward to check that for any unital filtered C*-algebra A,
if p is an e-r-projection in A and u is an e-r-unitary in A, then diag(p,0)
and diag(0, p) are homotopic e-r-projections in M3(A) and diag(u, 1) and
diag(1,u) are homotopic e-r-unitaries in Ms(A). Thus we obtain the fol-
lowing;:

LEMMA 1.15. — Let A be a filtered C*-algebra. Then K;"(A) and
K{"(A) are equipped with a structure of abelian semi-group such that

p, e + [P, ]er = [diag(p, p), 1+ 1']cr
and
[uler + [W]er = [diag(u, v)]e,r,
for any [p, 1], and [p',l']. , in K" (A) and any [u]. , and [v/]. , in K7 (A).

According to Example 1.6, for every unital filtered C*-algebra A, any
e-r-projection p in M, (A) and any integer [ with n > [, we see that [I,, —
p,n — ], is an inverse for [p,!]. . In the same way, using Corollary 1.8,
we get that for any e-r-unitary w in M, (A), then [diag(u, u*)]e, = [1e.r-

Hence we get:

TOME 65 (2015), FASCICULE 2
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LEMMA 1.16. — If A is a filtered C*-algebra, then K" (A) = K5 (A)®
K{"(A) is a Zy-graded abelian group.

We have for any filtered C*-algebra A and any positive numbers 7, 7/, €
and ¢’ with e <&’ < 1/4 and r < v’ natural group homomorphisms
o 1" K5 (A)—Ko(A); [p,l]er = [ro(p)] = [1];
o 17" Ky (A)— Ky (A); [uler > [uls
e,r e,r e,r
® L =1y D
o 1" Ky (A=K " (A); [p e = [Py e s
o 7T KT (A)— K" (A); [u]er > [u]er
e e’ rr’ e e’ rr’ e’ rr’
® L =1 @ 11

’ ’
£, ,T,T

If some of the indices r, 7’ or €, ¢’ are equal, we shall not repeat it in ¢5

Remark 1.17. — Let py and p; be two e-r-projections in a filtered C*-
algebra such that ko(pg) and ko(p1) are homotopic projections. Then for
any ¢ in (0, 1/4), this homotopy can be approximated for some r’ by a e-r'-
projection. Hence, using point (iii) of Remark 1.4, there exists a homotopy
(q¢)iefo,1) of e-" projections in A such that ||po — qo|| < 3¢ and [|p1 — 1| <
3e. We can indeed assume that 7' > r and thus by Lemma 1.7, we get that
po and p; are homotopic as 15e-r'-projections. Proceeding in the same way
for the odd case we eventually obtain:

there exists A > 1 such that for any filtered C*-algebra A, any € € (0, ﬁ)
and any positive number r, the following holds:

Let z and 2’ be elements in K3 (A) such that 15" (z) = 12" (2') in K.(A),
then there exists a positive number ' with 7/ > r such that Li’)‘e’r’r/(x) =
ST (31 in K257 (A).

LEMMA 1.18. — Let p be a matrix in M, (C) such that p = p* and
|[p?>—pl| < € for somee in (0,1/4). Then there is a continuous path (p;)ejo,1]
in M,,(C) such that

® po=p;
e p; = I with k = dim ko(p);
e p; =p; and ||p? — pi|| < € for every t in [0, 1].
Proof. — The selfadjoint matrix p satisfies ||[p? — p|| < € if and only if
the eigenvalues of p satisfy the inequality
—e< XN -)A<eg,
i.e.
N (Lo VIFE 1o VT U VI =4 +1
2 ’ 2 2

)

\/1+4£+1>
5 )
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Let A1,..., A\ be the eigenvalues of p lying in (1_ V21+45, 1= V21_45) and let

Ak+1s- -5 An be the eigenvalues of p lying in ( v 1_245+1, v 1+§5+1). We set
for ¢t € [0, 1]

o Nis=thfori=1,...,k

o =t +1—-tfori=k+1,...,n.
Since A — A2 — X is decreasing on (1_ vatde 1o V21_45) and increasing on
(\/17245“7 \/1+245+1> then,

—£ < >‘12,t — i <€

for all tin [0,1] and i = 1,...,n. If we set p, = u - diag(A1¢,..., Adne) - U

where u is a unitary matrix of M,,(C) such that p = u-diag(A, ..., An)-u*,
then

® Do =D;

* p1 = ro(p);

e p; =p; and ||p? — p¢|| < € for every t in [0, 1].

Y
Since there is a homotopy of projections in M, (C) between ro(p) and Iy
with k& = dim ko (p), we get the result. a

Let us equip C with the trivial filtration (i.e C, = C for every positive
number 7). As a consequence of the previous lemma, we obtain:
COROLLARY 1.19. — For any positive numbers with e < 1/4, then
K" (C) = Z; [p,l]er = dim ko (p) —
is an isomorphism.
LEMMA 1.20. — Let u be a matrix in M, (C) such that ||u*u —I,|| < ¢

and |juv* — I,|| < e for € in (0,1/4). Then there is a continuous path
(u¢)eejo,1) in M, (C) such that

° uy = u;

o uy = Iy;

o |uju, — I,|| < e and |Jugu; — I,|| < € for every ¢ in [0,1].

Proof. — Since w is invertible, u*u and uu* have the same eigenvalues

ALy .-, A, and thus |Ju*u — || < € and |Juu* — I,|| < € if and only if
AM€E€(l—gl+e)fori=1,...,n. Let usset
o hy=w- diag()\ft/z, ey )\;tm) -w* where w is a unitary matrix of

M, (C) such that u*u = w - diag(A1, ..., Ap) - w*;
e vy = u-hy forallt € [0,1]. Then vjv; = w-diag(A] %, ..., A1) -w*.
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Since |[A\; 7" — 1| < ¢ for all all ¢ € [0,1], we get that ||vjv; — I,|| < € and
|lvevf —I,]| < € for every t in [0, 1]. The matrix v; is unitary and the result
then follows from path-connectness of U, (C). O

As a consequence we obtain:

COROLLARY 1.21. — For any positive numbers r and £ with ¢ < 1/4,
then we have K" (C) = {0}.

1.4. Elementary properties of quantitative K-theory

Let A; and As be two unital C*-algebras respectively filtered by (A1 ,,)r>0
and (A, )r>o and consider A; @ A, filtered by (A1, & Azr)r>0. Since we
have identifications PZ (Ay @ Ag) = PSY (A1) x PEY(A2) and UL (A @
Ag) 2 UL (Ar) x UL (Az) induced by the inclusions A; < A; @ Az and
As — A1 ® Ay, we see that we have isomorphisms K5 (A1) @ K" (A2) —
Kg’r(Al (&%) A2) and Kf’r(Al) ) K?r(Ag) ; Kf’r(Al ) AQ)

LEMMA 1.22. — Let A be a filtered non unital C*-algebra and let € and
r be positive numbers with ¢ < 1/4. We have a natural splitting

KT (A) = KE™(A) @ Z.
Proof. — Viewing A as a subalgebra of A, the group homomorphisms
K;"(A) — Ky"(A)oZ
P, ller = (Ip,dimso(pa(p))le.r, dim ro(pa(p)) — 1)

and
KA eZ — Ki'(A)
o p 0 ’
per o [ Do),
are inverse one of the other. O

Let us set AT = A @ C equipped with the multiplication
(aa ‘T) ' (b7 y) = (ab + xb + ya, :cy)

for @ and b in A and x and y in C. Notice that

e AT is isomorphic to A ® C with the algebra structure provided by
the direct sum if A is unital;
e AT = A if A is not unital.
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Let us define also p4 in the unital case by ps : AT — C; (a,2) — x. We
know that in usual K-theory, we can equivalently define for A unital the
Zs-graded group K, (A) as AT by
Ko(A) = kCI‘pA7* : Ko(A+) — Ko((C) =7
and
K1 (A) = K1 (A7).
Let us check that this is also the case for our Zg-graded groups K.*"(A4). If

the C*-algebra A is filtered by (A;)>0, then AT is filtered by (A, +C).~o.
Let us define for a unital filtered algebra A

K" (A) = {[p,l]e.r € P""(A") x N/ ~ such that dimko(pa(p)) =1}

and
Ki7"(A) = U (A7) ) ~.
Proceeding as we did in the proof of Lemma 1.22, we obtain a natural
splitting
KT (AT) =5 KT (A) @ Z.
But then, using the identification AT =2 A@ C and in view of Lemmas 1.18
and 1.20, we get

LEMMA 1.23. — The Za-graded groups K" (A) and K.*"(A) are nat-
urally isomorphic.

This allows us to state functoriallity properties for quantitative K-theory.
If ¢ : A — B is a homomorphism of unital filtered C*-algebras, then since
¢ preserve e-r-projections and e-r-unitaries, it obviously induces for any
positive number r and any ¢ € (0,1/4) a group homomorphism

¢ KO (A) — K2'(B).

In the non unital case, we can extend any homomorphism ¢ : A — B to a

homomorphism ¢+ : At — BT of unital filtered C*-algebras and then we

use Lemmas 1.22 and 1.23 to define ¢ : Ki" (A) — K{"(B). Hence, for

any positive number r and any € € (0,1/4), we get that K" (e) is a co-

variant additive functor from the category of filtered C*-algebras (together

with filtered homomorphisms) to the category of Zs-abelian groups.
DEFINITION 1.24.

(i) Let A and B be filtered C*-algebras. Then two homomorphisms
of filtered C*-algebras 19 : A — B and 11 : A — B are homotopic
if there exists a path of homomorphisms of filtered C*-algebras
Y+ A — B for 0 <t <1 between vy and 1, and such that t —
is continuous for the pointwise norm convergence.
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(ii) A filtered C*-algebra A is said to be contractible if the identity
map and the zero map of A are homotopic.

Example 1.25. — 1If A is a filtered C*-algebra A, then the cone of A
CA={f e C(]0,1], A) such that f(0) =0}
is a contractible filtered C*-algebra.
We have then the following obvious result:

LEMMA 1.26. — If ¢ : A — B and ¢ : A — B are two homotopic
homomorphisms of filtered C*-algebras, then ¢%" = ¢'S" for every positive
numbers € and r with € < 1/4. In particular, if A is a contractible filtered
C*-algebra, then K" (A) = {0} for every positive numbers ¢ and r with
e < 1/4.

Let A be a C*-algebra filtered by (A, ),~o and let (By)ren be an increas-

ing sequence of C*-subalgebras of A such that U By, is dense in A. Assume

keN
that (J, o BxN A, is dense in By, for every integer k. Then for every integer

k, the C*-algebra By, is filtered by (B N A, )r>o. If A is unital, then By is
unital for some k, and thus we will assume without loss of generality that
By, is unital for every integer k.

PROPOSITION 1.27. — Let A be a unital C*-algebra filtered by (A, )r>o
and let (By)ren be an increasing sequence of C*-subalgebras of A such that
° U (Bx N A,) is dense in By, for every integer k,
>0
° U (Br N A,) is dense in A, for every positive number r.
keN
Then the Zy-graded groups K" (A) and lilgn K" (By) are isomorphic.

Proof. — In particular, we see that U By, is dense in A. Let us denote

keN
by

Tier: hlin K" (By) — K2"(A)

the homomorphism of groups induced by the family of inclusions By < A
where k runs through integers. We give the proof in the even case, the
odd case being analogous. Let p be an element of P;"(A) and let § =
[p?> — p|| > 0 and choose a < 2. Since U(Bk NA,) is dense in A,,

keN
there is an integer k and a selfadjoint element g of M, (By N A,) such that

lp — ¢l < «. According to Lemma 1.18, ¢ is a e-r projection. Let ¢’ be
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another selfadjoint element of M, (B N A,) such that ||p — ¢|| < a. Then
llg — ¢'|| < 2a and if we set ¢x = (1 —t)g + t¢’ for ¢t € [0, 1], then

g7 —all < a7 — qall + llaeg — @l + 11° — all + llg — &
< llge —all(llgell + llall +1) + 4a +0
< 12a+46
< e

and thus g and ¢’ are homotopic in P;"(By). Therefore, for p € P;"(A) and
q in some M, (BrNA,) satisfying ||¢—p|| < @, we define Y _ .([p,l]c )
to be the image of [¢,[]., in liin K" (By). Then Tj _ . is a group homo-
morphism and is an inverse for Yy .,. We proceed similarly in the odd
case. g

1.5. Morita equivalence

For any unital filtered algebra A, we get an identification between
Py (Mg (A)) and P;; (A) and therefore between P (M (A)) and PZY (A).
This identification gives rise to a natural group isomorphism between
K" (A) and K" (Mg (A)), and this isomorphism is induced by the in-
clusion of C*-algebras

ta: A= Mg(A); a— diag(a,0).
Namely, if we set e1; = diag(1,0,...,0) € My(C), definition of the func-
toriality yields
S ller =lp@ers + L@ (I — e1),l]er € Ky (Mg (A))
for any p in P{"(A) and any integer [ with | < n. We can verify that

(LZT*)_l [Q7 l]&,’r = [q, kl]s,r

for any ¢ in P;"(My(A)) and any integer [ with I < n, where on the right
hand side of the equality, the matrix ¢ of M, (My(A)) is viewed as a matrix
of Mnk‘ (A)

In a similar way, we obtain in the odd case an identification between
USY (M (A)) and USY (A) providing a natural group isomorphism between
K" (A) and K" (Mg (A)). This isomorphism is also induced by the inclu-
sion ¢4 and we have

LA,*[x]s,r = [(L’ ®ei 1+ I, ® (Ik — 61’1)]5)r S Kf’r(Mk(A))
for any x in US"(A).
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Let us deal now with the non-unital case. For usual K-theory, Morita
equivalence for non-unital C*-algebra can be deduced from the unital case
by using the six-term exact sequence associated to the split extension 0 —
A — A — C — 0. But for quantitative K-theory this splitting only gives
rise (in term of Section 2.1) to a controlled isomorphism (see Corollary 4.9).
In order to really have a genuine isomorphism, we have to go through
the tedious following computation. If B is a non-unital C'*-algebra, let us

identify My (B) with My (B) @& M (C) equipped with the product
(byA\) - (', N') = (BB + b + DX, AN)

for b and b’ in My (B) and A and X in M (C). Under this identification, if
A is not unital, let us check that the group homomorphism

—_~

@y K77 (A) = K7 (M (A)); (2, M)]er = (@ @ €11, Aler
induced by the inclusion ¢4 is invertible with inverse given by the compo-
sition

Wy K77 (Mi(A)) = K7 (Mi(4) = K77 (A),

where the first homomorphism of the composition is induced by the inclu-
sion

Mi(A) — Mk(ﬁ); (a,2) — (a, zIg).

Let (z, A) be an element of U5 (A), with x € M,,(A) and A € M,,(C). Then
Ui0®i[(z,N)]er =[(z®@e11,A® Ii)]er,

where we use the identification M,;(C) = M, (C) ® My(C) to see z @ e1 1
and A ® I respectively as matrices in M,,;(A) and M,,;(C). According to
Lemma 1.20, as a e-r-unitary of M,,(C), X is homotopic to I,,. Hence

(z®e1,1,AQk)]er =[(zQ@e11,AQ@e11 + L[,;_1)]

and from this we get that W, o ®; is induced in K-theory by the inclusion
map A — My(A); a — diag(a,0) which is the identity homomorphism
(according to the unital case).

—~—

Conversely, let (y, \) be an element in U;" (M (A)) with
y € Myp(Mi(A)) = My (A) ® M(C)
and A € M,,(C). Then
Oy 0 Wi [(y, Mler = [(y @ €11, A& Ii)le.r,

where
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e y®ei,1 belongs to M, (My(A))®M(C) = M, (A)©M(C)o M (C)
(the first two factors provide the copy of M,,(My(A)) where y lies
in and e; 1 lies in the last factor).

e A\ ® I} belongs to the algebra M, (M (C)) = M,,(C) ® Mg (C) that
multiplies M, (A) @ My(C) ® My (C) on the first two factors.

Let
o: M, (A) ®@ Mp(C) ® Mi(C) - M, (A) ® M;(C) @ M(C)

be the C*-algebra homomorphism induced by the flip of M (C) ® M (C).
This flip can be realized by conjugation of a unitary U in M (C)® M (C) =
M2 (C). Let (Ug)tejo,1) be a homotopy in Uy2(C) between U and I>. Let
us define

A={(z,2® I}); v € Mp(A) ® M(C) @ My(C), z € M,(C)}

C Mn(My(A)) © My (C),

where z ® I}, is viewed as 2z ® I ® I in

e~

M (Mi(A)) ® My(C) = M, (C) @ My (A) © My(C).
Then for any ¢ € [0, 1],
A=A (2,200) = (T, oU) -z (I, oU) " 2@ 1)
is an automorphism of C*-algebra. Hence,

(I, oU) (y@ern) I, @U ), A@ )

e~

is a path in U (M (A)) between (y®e1,1, A\@I;) and (o(y®e11), AR I).
The range of o(y ® e1,1) being in the range of the projection I,, ® e1 1 ® I,

te(0,1]

we have an orthogonal sum decomposition
(cly®er1),A\®Ix) = (c(y®@e11),A®e11) + (0, A @ (Ix —e11))

(recall that A®eq 1 and A® (I — eq,1) multiply M,,(A4) ® My (C) ® My (C)
on the first two factors). By Lemma 1.20, A is homotopic to I,, in U (C)
and thus (o(y®e1,1), A®I}) is homotopic to (oc(y®e1,1), A®e1,1)+ (0,1, ®
(Ix —e1,1)) in Uy (Mg (A))) which can be viewed as

dlag((y7 )‘)7 (07 Ik(k—l))

in My (M, (My(A)). From this we deduce that [(y,N)]e, = [(y ® €1,1,A ®

——

Ie)]e.r in K77 (Mi(A)).
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For the even case, by an analogous computation, we can check that the
group homomorphisms

—_~—

K" (A) = Kg" (Mi(A); [(p, @) D]e.r = [(p @ €1,1,0), ler

and

Ko (My(A)) = K5 (A); [(p, ), Dlesr = [(p,a ® Ii), Klle,r,
respectively induce by restriction homomorphisms @, : K;"(A) —
K5 (My(A)) and U : K" (My(A)) — K" (A) which are inverse of each
other, where in the right hand side of the last formula, we have viewed
p € M, (Mi(A)) as a matrix in Mp,(A) and ¢ ® I, € M,,(C) ® My (C) as
a matrix in M, (C). Since ®g is induced by ¢4, we get from Lemma 1.22
that ", : K" (A) — Ky (My(A)) is an isomorphism.

Let A be a C*-algebra filtered by (A,)r>o. Then K(H) ® A is filtered
by (K(H) ® A,)r>o and applying Proposition 1.27 to the increasing family
(M} (A)T)ren of C*-subalgebras of K(H) ® A, Lemmas 1.22 and 1.23, and
the discussion above, we deduce the Morita equivalence for K" (e).

ProroOSITION 1.28. — If A is a filtered algebra and H is a separable
Hilbert space, then the homomorphism

A—KH) @A a— 0

induces a (Zg-graded) group isomorphism (the Morita equivalence)
MET KT (A) —» KT(K(H) @ A)

for any positive number r and any ¢ € (0,1/4).

1.6. Lipschitz homotopies

DEFINITION 1.29. — If A is a C*-algebra and C is a positive integer,
then a map h = [0,1] — A is called C-Lipschitz if for every t and s in [0, 1],
then ||h(t) — h(s)|| < CJt — s|.

PrOPOSITION 1.30. — There exists a number C' such that for any unital
filtered C*-algebra A and any positive numbers r and € with e <1/4 then:

(i) if po and p; are homotopic in P;"(A), then there exist integers
k and | and a C-Lipschitz homotopy in Py}, . (A) between
diag(po, I, 0;) and diag(ps, I, 0;).
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(i) if up and u; are homotopic in U (A) chen there exist an integer
E,2T

k and a C-Lipschitz homotopy in Ui+k (A) between diag(ug, Ix,)
and diag(u, Ig).

Proof.

(i) Notice first that if p is an e-r-projection in A, then the homotopy
1 0 0
of e-r-projections of Ms(A) between <O O) and (](; 1 —p> in
Example 1.6 is 2-Lipschitz.
Let (pt)teo,1] be a homotopy between pg and p; in P;"(A). Set

o = infyepoy S22 and let tg =0 <t < ... < t; = 1bea
partition of [0, 1] such that ||py, —p¢,_, || < a fori e {1,...,k}. We
construct a homotopy of e-r-projections with the required property
between diag(po, In(k—1),0) and diag(p1, Ink—1),0) in My 2-1)(A)
as the composition of the following homotopies.

e We can connect diag(ps,, Ink—1),0) and diag(py, In,0, ...
..., I;,,0) within PZ’(Tzkfl)(A) by a 2-Lipschitz homotopy.

e As we noticed at the beginning of the proof, we can connect
diag(pey, In, 0, ..., I,,0) and diag(pi,, In — Pty Dtys-- - In —
Dty Pt ) Within sz’(gkfl)(A) by a 2-Lipschitz homotopy.

e The e-r-projections diag(pey, In — Dty Dty s - - - » In—Dt,,, Pt ) and
diag(pey, In — Dtgs - -+ s Pty_ys In — Dty - Dr,,) satisfy the norm
estimate of the assumption of Lemma 1.7(i) and hence then
can be connected within PZ)(T%A) (A) by a ray which is clearly
a 1-Lipschitz homotopy.

e Using once again the homotopy of Example 1.6, we see that
diag(ptm]n —Ptos- s Pty In - ptk,—l7ptk) and diag(ov I’ﬂﬂ te
..., 0,1, pt,) are connected within PZ’(TQ,%I)(A) by a 2-Lip-
schitz homotopy.

e Eventually, diag(0, I, ...,0,In,ps,) and diag(p,, Ink—1),0)
are connected within PZ’(TQ,%I) (A) by a 2-Lipschitz homotopy.

(i) Let (u¢)eejo,1) be a homotopy between ug and u; in U;"(A). Set
a = infyep ) and let tp =0 < t; < ... <t =1be
a partition of [0,1] such that |Juy, — us,_,|| < « for i € {1,...,k}.
We construct a homotopy with the required property between
diag(ug, Iank) and diag(ui, lonk) within Uie(’;,:H)(A) as the com-
position of the following homotopies.

e Since I and diag(uy ug,, ..., uf, uy, ) satisfy the norm esti-
mate of the assumption of Lemma 1.7(ii), then diag(us,, Ink)

e—llugue—In|l
3
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is a 3e-2r-unitary that can be connected to diag(uy,, uf uy,, ...
e uf U ) i USSR )(A) by a 1-Lipschitz homotopy.

n(k+1
e Proceeding as in the first point of Corollary 1.8, we see that
diag(ly,uf,,...,uf_ , Ink) and diag(uf ,...,u; , Iyks1)) can
be connected within Ui{% +1)(4) by a 2-Lipschitz homotopy
and thus, in view of Remark 1.4,
diag(us,, uy, ey, - - - Uf, Uty Ink) =
dla‘g(Ina U:I’ s 7u:k ’ Ink) . diag(ut(w Uty ooy Uty Ink)
and
diag(uz,, ..., uf,, Ingrs1)) - diag(uey, Uty s - - Ugys Ing) =
diag(uy, Uy, - -+ 5 Ug, Uty Uty s Ink)

can be connected within Uff(f]: 1 1)(4) by a 4-Lipschitz homo-
topy.

e Since ||u;, us,_, — I|| < &, we get by using once again Lemma
1.7(ii) that diag(uy, wey, ..., uf, Ut,_,, Ut Ing) and diag(lnz,
g, , Ink) can be connected within Uig(’;krﬂ) (A) by a 1-Lipschitz
homotopy.

e Eventually, diag(Ix, ut,, Ink) can be connected to diag(us,,

I5,y) within U?;i:l)n(A) by a 2-Lipschitz homotopy.

O

COROLLARY 1.31. — There exists a control pair (ap, kp) such that the
following holds:

For any unital filtered C*-algebra A, any positive numbers € and r with
€< ﬁ and any homotopic e-r-projections qo and q; in PS"(A), then there
is for some integers k and | an aye-ky cr-unitary W in UZﬁ’Tl"ET(A) such
that

|| diag<q07lkvol) - Wdlag(QlaIkaOl)W*H < QpeE.

Proof. — According to Proposition 1.30, we can assume that gg and ¢;
are connected by a C-Lipschitz homotopy (qt)¢[o,1), for some universal
constant C. Let tg = 0 < t; < --- < t, = 1 be a partition of [0,1]
such that 1/32C < [t; — t;—1] < 1/16C. With notation of Lemma 1.11,
pick for every integer ¢ in {1,...,p} a Ae-l.-unitary W; in A such that
IWige, W7 — qu. |l < Ae. If we set W = W, --- W7, then W is a 3P)e-
pler-unitary such that ||[WqgoW™* — q1]] < 2PAe. Since p < 2C, we get the
result. ]
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2. Controlled morphisms

As we shall see in Section 3, usual maps in K-theory such as bound-
ary maps factorize through group homomorphism of quantitative K-theory
groups with expansion of norm control and propagation controlled by a
control pair. This motivates the notion of controlled morphisms for quan-
titative K-theory in this section.

Recall that a control pair is a pair (A, h), where

e A >1;
e h:(0,55) = (1,+00); € = he is a map such that there exists a
non-increasing map g : (0, 75) — (1,400), with h < g.
The set of control pairs is equipped with a partial order: (A, h) < (N, 1) if
A< N and he < hL for all € € (0, &)

2.1. Definition and main properties

For any filtered C*-algebra A, let us define the families ICo(A4) =
(K5 (A))o<e<rjarso, Ki(A) = (K7 (A))ocecr/arso and K.(A)
(KST(A))O<E<1/4,T'>O~

DEFINITION 2.1. — Let (A h) be a control pair, let A and B be fil-
tered C*-algebras, and let i, j be elements of {0,1,*}. A (A, h)-controlled
morphism

is a family F = (F*")oc.c 1,0 of group homomorphisms
R e,r Ae,her
UKD (A) = K (B)

such that for any positive numbers ¢, €', r and v’ with 0 < e <&’ < 4 and
her < hor', we have

’ !’ ’ ’ ’
e’ o Lj’e o L;\E,)\E Jherhorr o F&T.

If it is not necessary to specify the control pair, we will just say that F
is a controlled morphism.

Let A and B be filtered algebras. Then it is straightforward to check
that if F : IC;(A) — K;(B) is a (A, h)-controlled morphism, then there is
group homomorphism F : K;(A) — K;(B) uniquely defined by F o " =
L;‘E7h” o F©". The homomorphism F will be called the (), h)-controlled
homomorphism induced by F. A homomorphism F' : K;(A) — K;(B) is
called (A, h)-controlled if it is induced by a (A, h)-controlled morphism. If
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we don’t need to specify the control pair (A, h), we will just say that F is
a controlled homomorphism.
Example 2.2.

(i) Let A and B be C*-algebras respectively filtered by (4, ),so and
(B)r>o and let f : A — B be a homomorphism. Assume that
there exists d > 0 such that f(A,) C By, for all positive r. Then
f gives rise to a bunch of group homomorphisms

(f + K37(4) — K3 (B))

0<e<$,r>0
and hence to a (1, d)-controlled morphism f, : K.(A) — K.(B).

(ii) The bunch of group isomorphisms

(MG": K2T(A) = KT (K(H)@A))

0<e<:,r>0
of Proposition 1.28 defines a (1, 1)-controlled morphism
My Ki(A) = K (K(H)®A)

and
M;l KL (K(H)®A) — K (A)

inducing the Morita equivalence in K-theory.

If (A\,h) and (N, k') are two control pairs, define

hh':(0 ) = (0,400); & — hych.

1
TANN
Then (AN, hxh') is a control pair. Let A, By and By be filtered C*-algebras,
let 4,5 and [ be in {0,1,%} and let F = (FE’T)0<e<ﬁ,r>0 s Ki(A) —
K;(B1) be a (aF,kr)-controlled morphism, let G = (G*")gcec 1,50 ¢
KC;(B1) — Ki(Bs2) be a (ag, kg)-controlled morphism. Then GoF : IC;(A) —
Ki(Bs) is the (agar, kg * kx)-controlled morphism defined by the family

(GoFekF.er o ]:577')0<6<4;77.>0.
aFag

Remark 2.3. — The Morita equivalence for quantitative K-theory is

natural, i.e
Mpo f = (Idcpy)@f) o Ma
for any homomorphism f : A — B of filtered C*-algebras.

Notation 2.4. — Let A and B be filtered C*-algebras, let (A, h) be a
control pair, and let F = (FE"T)0<5<@,T>0 : Ki(A) = Kj(B) (resp. G =
(G=")o<ec o r>0) De a (ar, kr)-controlled morphism (resp. a (ag, kg)-

ag’

controlled morphism). Then we write F O g if

ANNALES DE L’INSTITUT FOURIER



ON A QUANTITATIVE OPERATOR K-THEORY 627

L] (a]:,k}-) ()\ h) and (Oég,kg) ()\ h)
o for every e in (0, £5) and 7 > 0, then
L?}'Evkavk}‘,s"'ahs"' o F&T = L?gE,AE,kg,ET,hET oG

If F and G are controlled morphisms such that .7-" Q for a control
pair (A, k), then F and G induce the same morphism in K-theory.

Remark 2.5. — Let F : ICZ(AQ) — ,C](Bl) (resp. F o ’CZ(AQ) —
K;(B1)) be a (ar, kr)-controlled (resp. a (crr, kzs)-controlled) morphisms
and let g : ’Cz/(Al) — ICZ(AQ) (resp. g/ : IC](Bl) — KI(BQ)) be a (Ozg, kg)—
controlled (resp. a (ags, kgr)-controlled) morphism. Assume that F O 5
for a control pair (A, k), then

.g/of g/of/;
e Fog@g F'og.

agr N kgrxh
g g

(agA,hxkg)
~Y

If ¢ is an element in {0,1,*} and A is a filtered C*-algebra, we denote
by Zd,(a) the controlled morphism induced by Id 4.

Let F: ’Cl(Al) — ’Cl'/(Bl)7 F' ICJ(AQ) — ]CZ(BQ), g : ICZ(Al) ( 2)
and G’ : Ky/(B1) — Ki(Bz) be controlled morphisms and let (A, k) be a
control pair. Then the diagram

Ki(By) —2 5 Ku(Bs)

fT T}"
Ki(A)) —2— K;(Ay)

Ak

is called (A, h)-commutative (or (A, h)-commutes) if G' o F "Fo g.

DEFINITION 2.6. — Let (A, h) be a control pair, and let F : K;(A) —
KC;(B) be a (ar, kr)-controlled morphism with (ar, kr) < (X, h).

o F is called left (A, h)-invertible if there exists a controlled mor-
phism
G: K;(B) — Ki(4)

such that G o F ) Zdg,(a)- The controlled morphism G is then

called a left (A, h)-inverse for F. Notice that definition of O
implies that (arag, kr * kg) < (A h).

o F is called right (A, h)-invertible if there exists a controlled mor-
phism
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such that Fo§G ) Zdg,(B)- The controlled morphism G is then
called a right (A, h)-inverse for F.

o F is called (), h)-invertible or a (A, h)-isomorphism if there exists
a controlled morphism

g:K;(B) = Ki(4)

which is a left (A, h)-inverse and a right (A, h)-inverse for F. The
controlled morphism G is then called a (A, h)-inverse for F (notice
that we have in this case necessarily (ag,kg) < (A h)).

We can check easily that indeed, if F is left (A, h)-invertible and right
(A, h)-invertible, then there exists a control pair (M, h') with (A h) <
(N, k'), depending only on (), h) such that F is (X, h')-invertible.

DEFINITION 2.7. — Let (A, h) be a control pair and let F : K;(A) —
K;(B) be a (ar, kr)-controlled morphism.
o F is called (A, h)-injective if (ar,kr) < (A h) and for any 0 <
e < 45, any r > 0 and any z in K;"(A), then F*"(z) = 0 in
Kfrs’kf’sr(B) implies that 152" (2) = 0 in K}*"<"(A);
o F is called (A, h)-surjective, if for any 0 < e < ﬁ, any r > 0
and any y in K" (B), there exists an element x in K" (A) such

that F)‘E’h“r(x) — L;,(X}')\Eﬂ-,k}",)\ehET(y) in K;Xfx\a,kf,xaher(B)'

Remark 2.8.

(i) It is straightforward to check that if F is left (A, h)-invertible, then
F is (A, h)-injective and that if F is right (A, h)-invertible, then
there exists a control pair (A, h") with (A, h) < (N, h), depending
only on (A, h) such that F is (X, h')-surjective.

(ii) On the other hand, if F is (A, h)-injective and (A, h)-surjective,
then there exists a control pair (X, ') with (A, h) < (N, R'), de-
pending only on (A, h) such that F is a (N, h')-isomorphism.

h
h

2.2. Controlled exact sequences

DEFINITION 2.9. — Let (A, h) be a control pair,
o Let F = (FE’T)O<s<ﬁ,r>O : Ki(A) — K;j(B1) be a (ar,kr)-
controlled morphism, and let G = (G*")occc 1 50+ Kj(B1) —
ag’
Ki(B2) be a (ag, kg)-controlled morphism, where i,j and | are
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in {0,1,x} and A, By and By are filtered C*-algebras. Then the
composition

Ki(A) 5 K;(By) S Ki(By)
is said to be (A, h)-exact at K;(B1) if G o F = 0 and if for any
0<e< m, any v > 0 and any y in K;’T(Bl) such
that G="(y) = 0 in K;ge’kg’sr(Bg), there exists an element x in
K" (A) such that

FAE,hAsT(:E) _ L?a}')\emkf,xshsr(y)

. Aekr ache
in K;‘f SEFART (B,
e A sequence of controlled morphisms

F —1 F 1
Ky (A1) T K (A) TS Ky (Arn) 25 K (Agg2) - -

is called (A, h)-exact if for every k, the composition

Fr_1 %
Kio 1 (Aro1) 75" Ko (A) T5 ity (Arsn)

is (A, h)-exact at IC;, (Ag).

3. Quantitative K-theory and extensions of filtered
C*-algebras

The aim of this section is to establish a controlled exact sequence for
quantitative K-theory with respect to filtered extension of C*-algebras i.e
extension such that the ideal inherits a structure of filtered C*-algebra. We
also prove that for these extensions, the boundary maps are induced by
controlled morphisms. As in K-theory, one is a map of exponential type
and the other is an index type map, and the later in turn fits in a long
(A, h)-controlled exact sequence for some universal control pair (A, h).

3.1. Extensions of filtered C*-algebras

Let A be a C*-algebra filtered by (4, ),~¢ and let
0-J—A%A/T—0

be an extension of C*-algebras. For any positive number r set J,. = J N A,
and assume that the bijective continuous linear map

A )T — (A + )T
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induced by the inclusion A, < A is indeed an isometry i.e for any positive
number r and any x in A,., then

inf ||z = inf ||z .
inf [z +y] = inf o+

Then ¢(A,) = (A, + J)/J is closed in A/J. Moreover, for any € J and
any number € > 0 there exists a positive number r and an element a of
A, such that ||z — al| < e. Since ||¢(a)|| < ¢, there exists an element y in
J, such that |ja — y|| < & and thus ||z — a|| < 2¢. Hence J is filtered by
(A, N J)rso and A/J is filtered by (¢(Ar))r>0-

DEFINITION 3.1. — Let A be a C*-algebra filtered by (A;),>o, let J be
an ideal of A and set J. = J N A,. The extension of C*-algebras

0-J—-A—A/J—=0

is called a completely filtered extension of C*-algebras if the bijective con-
tinuous linear map

A )T — (A + )T
induced by the inclusion A, < A is a complete isometry i.e for any integer

n, any positive number r and any x in M, (A,), then

inf z+yll= inf z + vyl

Numerous examples of such extensions arise from the analogous in the
setting of filtered C*-algebras of semi-split extensions.

DEFINITION 3.2. — Let A be a C*-algebra filtered by (A;)r>¢ and let
J be an ideal of A. The extension of C*-algebras

0—-J—>A—A/TS0

is said to be filtered and semi-split (or a semi-split extension of filtered C*-
algebras) if there exists a completely positive (complete) norm decreasing
cross-section

st AjJ— A
such that

s(q(Ar)) € A,
for any number r > 0. Such a cross-section is said to be semi-split and
filtered.

LEMMA 3.3. — Any semi-split extension of filtered C*-algebra is com-
pletely filtered.
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Proof. — Let 0 — J — A — A/J % 0 be a filtered and semi-split
extension and let s : A/J — A be a semi-split and filtered crossed section.
Let r be a positive number, let n be an integer and let x be an element of
M, (A,). Since s(q(4,)) C A,, there exists an element z in M, (J,) such
that = + z = s(¢(x)). Then we have

[z 4zl < fls(a(@)]

~X

< lg(@)ll

< inf ||z 4y

< einf e+l
We get hence that ||z + z|| = inf,car, () [lz + y|| and the extension is
completely filtered . a

We have the following analogous of the lifting property for unitaries of
the neutral component.

LEMMA 3.4. — There exists a control pair (ae,k.) such that for any
completely filtered extension of C*-algebras

0—J—A-5 A/ —0,

with A unital, the following holds: for every positive numbers r and € with
e < ﬁ and any e-r-unitary V homotopic to I, in U;"(A/J), then for
some integer j, there exists a ce-ke r-unitary W homotopic to Iy; in

szj’kc‘sr(A) and such that ||¢(W) — diag(V, I;)|| < aee.

Proof. — According to Proposition 1.30, we can assume that V and I,
are connected by a C-Lipschitz homotopy (V;):eo,1], for some universal
constant C. Let tgp = 0 < t; < --- < t, = 1 be a partition of [0,1]
such that 1/16C < |t; — t;—1] < 1/8C. Then we get that |[V;—1 — V;|| <
1/8 and hence ||V;—1V;* — I,,]| < 1/2. Let I. be the smallest integer such
that >, 4y 27%/k < ¢ and Dokl log¥ 2/k! < & and let us consider
the polynomial functions P.(z) = Yk, % /k! and Q. (x) = — Yb_, & /k.
Since

1 —2z— P.oQ.(2)] =|expolog(l —2) — P- 0 Q.(2)| < 3¢
for every complex number z such that |z| < 1/2, we get then
(3.1) [Vie1 Vi = Pz 0 Qe(In — Vi V)|l < 3e.
For i = 1,...,p, let Z; be a lift for I, — V;_1V* in M,,(Az;,,) such that
I1Z:|l < 1/2. Let us set for ¢ in [0,1] and ¢ in {1,...,p}

wi = (1 L2 @42)).
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s QE(Zi)*QE(Z:)
Since T E—

eXp (Qs(zt);Qs(Zf))

P (1 (L2 QD)) o (1 (L2250 | .

for every ¢ in [0,1] and i. Hence, according to Lemma 1.7, we get that
(Wi)tep,1) is a homotopy of 3e-202-unitaries between I, and W}l =

P. (W) Since V;_1V;* is close to the unitary V,_1V*(V;V;* ;.
Vi_1V)71/2  then ¢(W}) is uniformly close (in 7) to

is skew-adjoint and ||w

| < log2, then

is a unitary such that

exp(log(Vie1 Vi (ViVi Viea Vi) 72)) = Vi Vi (ViVie Vi Vi) 22

(the logarithm is well defined since ||V;_1 V;*(V;Vi* Vi V)2 =1, || < 1).
Therefore we get for some universal positive number « that ||g(W}) —
Vie1l Vi < ae. If we set now W = W --- W, and since p < 16C, then W
satisfies the required property. O

LEMMA 3.5. — There exists a control pair (o, k) such that for any com-
pletely filtered extension of C*-algebras

0—-J—>A—>A/J—=0
with A unital the following holds :

For any integer n, any e-r-projection p in M, (A/J) and any self-adjoint
lift « for p in M, (A,) such that ||z|| < 2, there exists an element y, In
M, (Jk_r) such that

|1, + yp — exp(2urz)|| < ae/4.
In particular I,, + y, is an ae-ker-unitary of M, (J*).

+oo
Proof. — Let k. be the smallest integer such that Z 16'/1! < ¢ and

I=k.+1
set

k
= (2ura)
ZP*Z no
1=0

Then z, belongs to M, (Ax,») and we have

la(zp) = Inll < lla(zp — exp(ema))|| + [lg(exp(umz)) — g(exp(vmro(p)))ll
< lzp — exp(ema)|| + || exp(emp) — exp(emko(p))||
< Je,

ANNALES DE L’INSTITUT FOURIER



ON A QUANTITATIVE OPERATOR K-THEORY 633

with A = 1+ 2¢'%. Hence there exists an element y, in M, (Jx_) such that
[1n + Yp — Z;DH < Ae

and we have
I, + yp — exp(2urz)|| < (2A + 1)e.

The end of the statement is then a consequence of Lemma 1.7. O

Remark 3.6. — With notations of the lemma,

(i) if y, and y, are two elements of M,,(Ji.,) that satisfy the conclu-
sion of the lemma, then according to Lemma 1.7,we see that I,, +y,
and I,, + ¥, are homotopic as 2ae-k.r-unitaries of M, (J*);

(ii) Let 2 and o’ two self-adjoint lifts for p in M,,(A,) such that ||z| < 2
and ||z’|| < 2. Applying the first point of the remark and the lemma
to the completely filtered extension of C*-algebras

0— J[0,1] — A[0,1] — A/J[0,1] = O
and to the constant e-r-projection
[0,1] = M,(A/J);t —p
with lift
[0,1] = M, (A,);t — (1 —t)z + ta’,

we get that z and 2z’ give rise to homotopic 2ae-k.r-unitaries of
M, (J*).

3.2. Controlled boundary maps

For any extension 0 — J — A — A/J — 0 of C*-algebras we denote by
054 K.(A)J) — K,.(J) the associated (odd degree) boundary map.

PROPOSITION 3.7. — There exists a control pair (ap, kp) such that for
any completely filtered extension of C*-algebras

0—J—A-L5 A/ —0,
there exists a (ap, kp)-controlled morphism of odd degree
DJ,A = (8322)0<84(’1D ST : IC* (A/J) - ’C*(J)

which induces in K-theory 054 : K.(A/J) = K.(J).

Proof. — Let us first prove the result when when A is unital.
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Let p be an element of P;"(A/J) and let x be a self-adjoint lift
for p in M,,(A,) such that ||z|| < 2. Then there exists a lift z for
ko(p) in M, (A) such that ||z — x| < 2. Fix a control pair (a, k)
as in Lemma 3.5, and let y, in M, (J,) be such that ||I, + y, —
exp(2wr)|| < ae/4. Then

e J;4([ko(p)]) is the class of exp(2imxo) in Ky (J);

e I, +yp is an ae-k.r-unitary of M, (J*), and according to Re-
mark 3.6
— any two such ae-k.r-unitaries are homotopic in U297 (),
— any two self-adjoint lifts for p in M, (A,) with norm at

most 2 give rise to ae-k.r-unitaries which are homotopic
in U2asker(Jt).

o |1, +yp — exp(2imzo)|| < (/4 + €*°)e and hence, if € is small
enough then I,, +y, and exp(2umx) are homotopic elements of
GL,(J7T).

Applying Lemma 3.5 to A/J[0, 1], we see that the map

Py (A)T) — USRI )ipes I+,

preserves homotopies and hence gives rise to a bunch of well defined
group homomorphism

aj:;l : KS,T(A/‘]) — K12a87kzr(‘]); [ >l]€,r — [In + ypbaa,ker

which in the even case satisfies the required properties for a con-
trolled homomorphism.

In the odd case, we follow the route of [18, Chapter 8]. For any
element u of Uy"(A/J), pick any element v in some U;"(A/J)
such that diag(u,v) is homotopic to I,4; in Uii’_?r (A/J) (we can
choose in view of Lemma 1.8 v = u*). According to Lemma 3.4,
and up to replace v by diag(v, I}) for some integer k, there exists
an element w in Uzief’%e'“"(A) such that ||¢(w) — diag(u,v)|| <
3aee. Let us set x = wdiag(l,,0)w*. Then z is an element in
P02 452 (4) such that ||q(z) — diag(Ln, 0)|| < 9ace. Let h be a
self-adjoint element of M,y ;(Asg, 5. N J) such that

| — diag(I,,0) — h|| < 9a.e.

According to Lemma 1.7, we get that h + diag(l,,0) belongs to

Piia;aAke,gar(J) and we define then

8;2([@6,«) = [h + diag(1,,0), n]3250acs,8kﬁ,35r .
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Using once again Lemma 1.7, we see that two choices of self-adjoint
elements of M,, (A, ,.»NJ) that satisfy equation (3.2) gives rise
to the same class in ngsoaeg’ng’SET(J+). Moreover, it is straight-
forward to check that (compare with [18, Chapter 8]).

e two choices of elements satisfying the conclusion of Lemma, 3.4
relatively to diag(u,v) give rise to homotopic elements in
Pif?aeE’Skf’asr(J) (this is a consequence of Lemma 1.7).

e Replacing u by diag(u, I,,) and v by diag(v, I},) gives also rise
to the same element of ngg’oa“’s’gk“"“T(J).

Applying now Lemma 3.4 to the exact sequence
0— J[0,1) — A[0,1] — A/J[0,1] — 0,

we get that 95", ([ulc )
e only depends on the class of u in K7 (A/J);
e does not depend on the choice of v such that diag(u,v) is
connected to I,,4; in U,V (A/J).

n+j
e Using Lemma 1.7, it is plain to check that for a suitable con-
trol pair (ap,kp), then Dja = (8;’2)0<8%T is a (ap,kp)-
b QD7

controlled morphism inducing the (odd degree) boundary map
O0ja:K.(A)J) = K.(J).

e If A is not unital, use with notations of Section 1.4 the completely
filtered extension

0—=J—= AT 5 AT /J =0

to define 95, as the composition

e,r

=~ 87 QapeE ”
K7 (A)) = K7 (A 0) 25 KPProer ()

and

e,r

J,AT

K57 (ALT) = K57 (AT/7) 25 K722 (),
where the left morphisms in the compositions are induced by the
inclusion A/J — A*t/J.
a
For a completely filtered extension of C*-algebras

0—J—A-5 A/ —0,

we set DY 4 : Ko(A/J) = K1(J), for the restriction of Dy 4 to Ko(A/J)
and Dj 4 : K1(A/J) = Ko(J), for the restriction of Dy 4 to Ki(A/J).
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Remark 3.8.

(i) Let A and B be two filtered C*-algebras and let ¢ : A — B be
a filtered homomorphism. Let I and J be respectively ideals in A
and B and assume that

e0—+JI—>A—A/] -0and 0 —J - B — B/J — 0 are
completely filtered extensions of C*-algebras.
e o(I)C J,
then Dy p 0 s = ¢s 0 Dy 4.

(i) Let 0 — J — A —55 A/J — 0 be a split extension of fil-
tered C*-algebras, i.e there exists a homomorphism of filtered C*-
algebras s : A/J — A such that qos = Ids/;. Then we have
Dja=0.

For a filtered C*-algebra A, we have defined the suspension and the cone
respectively as SA = Cy((0,1), A) and CA = Cy((0,1], A). Then SA and
CA are filtered C*-algebras and evaluation at the value 1 gives rise to a
semi-split filtered extension of C*-algebras

(3.3) 0—-SA—-CA—-A—=0

and in the even case, the corresponding boundary dsa.ca : Ko(4) —
K7(SA) implements the suspension isomorphism and has the following easy
description when A is unital: if p is a projection, then dsa ca[p] is the class
in K;(SA) of the path of unitaries

[0,1] = U, (A); t = pe*™ + 1 — p.
Let us show that we have an analogous description in term of almost pro-
jection. Notice that if ¢ is an e-r-projection in A, then
2g 0 [0,1] = At g™ +1—¢
is a bSe-r-unitary in SA. Using this, we can define a (5, 1)-controlled mor-
phism Z4 = (23" )o<e<1/20,r50 : Ko(A) = K1(SA) in the following way:
e for any ¢ in P;"(A) and any integer k let us set
Vor 0 10,1] — U?f’r(gjﬁl) t— diag(e 2 1 1) - (1 — g + ge®™);
e define then Z5" (g, kle.r) = [Vakse.r-

PROPOSITION 3.9. — There exists a control pair (A, h) such that for any

unital filtered C*-algebra A, then D 4 g ) Z4.

Proof. — Let [gq, k], be an element of K" (A), with ¢ in P{"(A) and k
integer. We can assume without loss of generality that n > k. Namely, up
to replace n by 2n and using a homotopy between diag(q, 0) and diag(0, q)
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in P57 (A), we can indeed assume that ¢ and diag(lx,0) commute. As
in the proof of Lemma 3.5, define [, as the smallest integer such that
B 16'/1' < e. Let us consider the following paths in M,,(A)

0 M (A o 37 Gt (= ) ding(7, 0)

=0

and
2 [0,1)—M,,(A);t — exp(2em diag(—tIy,0))(1 — g + €*™q).
Since ¢ and I commutes, then

exp(2ur(diag(—tly,0) +tq)) = exp(2vmdiag(—tly,0)) - exp(2emtq)

and hence
z(t) = exp(2vr diag(—t1y,0)) exp(2imtq)

N (2um(tq + (1 —t) diag(Iy, 0)))"
—Z( (tg +( l!) gLk ))).

I=lc+1
We get therefore

lz(t) =2 @) < e+ ge*™ + (1 — q) — exp 2urtq]|
< e+ 2||ko(q) — q|| + || exp 2emtro(q) — exp 2umtq||
< e(544em).
Let us set

l

- 2 ~ (2
y [0, 1] — My (A); t > 2(t)—1—(1—t) diag (I}, 0 Z ) tz ”q

=1 =1

For some oy > ay, we get then that 1 + y and 2’ are homotopic elements
in Usss’ka’ET(SA). Using the semi-split filtered cross-section A — C'A; a —
[t — ta] for the extension of equation (3.3), we get in view of the proof of
Proposition 3.7,
as€,ko . ,
7 0 gk calla Klew) = (14 Ylase ko ors

and thus we deduce

k
0 e 0 0gh call Klew) = [ lawe ko v

We get the result by using a homotopy of unitaries in Mn(g’;l) between
t > diag(e 28" 1,...,1)
and t — exp(2r diag(—tIy, In—x)). |
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The inverse of the suspension isomorphism is provided, up to Morita
equivalence by the Toeplitz extension: let us consider the unilateral shift .S
on ¢?(N), i.e the operator defined on the canonical basis (e,)nen of £2(N)
by S(en) = ent1 for all integer n. Then the Toeplitz algebra T is the C*-
subalgebra of £(¢?(N)) generated by S. The algebra of compact operators
K(¢£3(N)) is an ideal of 7 and we get an extension of C*-algebras

0— K(2(N) =T 5L Cs,) =0,

called the Toeplitz extension, where S; denote the unit circle. Let us define
To = p~1(Cp(0,1)), where Cy(0,1) is viewed as a subalgebra of C(S;). We
obtain then an extension of C*-algebras

0 — K(P2(N)) = To B Co(0,1) — 0.

For any C*-algebra A, we can tensorize this exact sequence to obtain an
extension

0= KPAN))RA—= Ty A=SA =0
which is filtered and semi-split when A is a filtered C*-algebra.

PROPOSITION 3.10. — There exists a control pair (A, h) such that

(k)
D (e2m)@a,Toea © 24~ Ma

for any unital filtered C*-algebra A.

Proof. — Let ¢ be an e-r-projection in M, (A). We can assume indeed
without loss of generality that n = 1. The Toeplitz extension is semi-split by
the section induced by the completely positive (complete) norm decreasing
map s : C(S1) — T; f — My, where if 7y stands for the projection
L%(S;) = ¢*(Z) — 1*(N), then M; is the composition

2(N) < 2(2) = L*(S,) 5 L2(S1) 8 12(N),
S 1-Ss* )

(f- being the pointwise multiplication by f). Notice first that (o e

is a unitary lift of S; — M3(C); z — diag(z, z) in M>(T) under the homo-
morphism induced by p: T — C(S;). Under the section induced by s, we
see that z, lifts to 1 ® (1 — ¢) + 5 ® ¢, and hence

S 1-86*
W_<O o >®q+12®(1—Q)

is a lift in US™"(To ® A) of diag(z,, z;). Since [|g(1 — g)|| < €, we see that
W+ diag(1,0)W is close to

ST 0N (1 0Y (S 1=8STY L (1 0Y
1-ss5+ s)\o o/\o s* T7\o o -
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Hence, W* diag(1,0)W is an element of P5°**"(Ty @ A) which is close to
diag(1, (1 — S5*) ® q). Since
MA([(L O}s,r) = [diag(oa (1 - SS*) Y q)]s,r>

we get the existence of a positive real a; such that the proposition holds. O

3.3. Long exact sequence

We follow the route of [18, Sections 6.3, 7.1 and 8.2] to state for com-
pletely filtered extensions of C*-algebras (A, h)-exact long exact sequences
in quantitative K-theory, for some universal control pair (A, h).

PROPOSITION 3.11. — There exists a control pair (A, h) such that for
any completely filtered extension of C*-algebras
0—J 1A% A)J—0,
the composition
Ko(J) 25 Ku(A) B KL (A)T)
is (\, h)-exact at K. (A).

Proof. — We can assume without loss of generality that A is unital.
In the even case, let y be an element of K;"(A) such that ¢.(y) = 0 in
K§"(A/J), let e be an e-r-projection in M, (A) and let k be a positive
integer such that y = [e, k].,». Up to stabilization, we can assume that
k < n and that ¢(e) is homotopic to pr = diag(lg,0) as an e-r-projection
in M, (A/J). According to Corollary 1.31, there exists up to stabilization
a ape-kp cr-unitary W of M, (A/J) such that

([Wa(e)W* — pill < ane.
Then diag(W,W*) is homotopic to Iz, as a 3ape-2kp r-unitary of
Moy, (A/J). Let choose as in Lemma 3.4, a control pair (a, 1), an integer j
and a ae-l.r-unitary V of Ma,;(A) such that

lg(V) — diag(W, W*, I.y;)|| < ae.

If we set ¢/ = V diag(e,0)V*, then ¢’ is a 4dae-2l.r-projection in Ms,1;(A).
Moreover, since

llg(e') — diag(1,,,0)|| < (4o + ap)e,
there exist an element f in Mo, ;(JT) such that

If— €|l < (4o + ap)e.
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Then, according to Lemma 1.7, f is for a suitable A\ a Ae-2[.r-projection
of Mapix(JH) homotopic to €. Then = = [f, k]xc 21 defines a class in
K527 (J). As in the proof of (ii) of Lemma 1.9 we can choose A big enough
so that diag(e’, Io,+;) and diag(e, 0, I2,+;) are homotopic Ae-2ky, .r-pro-
jections of Ms, (A) and hence we get the result in the even case.

For the odd case, let y be an element in K;"(A) such that ¢.(y) = 0
in K]""(A/J) and let us choose an e-r-unitary V in some M, (A) such
that y = [V].,. In view of Lemma 3.4 and up to enlarge the size of the
matrix V', we can assume that ||g(V) — ¢(W)|| < aee with W a aee-ke o1-
unitaries of M, (A) homotopic to I,,. Hence W*V and V are homotopic
3aee-(ke,e + 1)r-unitary of M, (A). Since

lg(W™V) = In|| < (2cc + 1)e,
there exists U in M, (A) such that

o the coeflicients of U — I, lie in Ji__41;
o |U—-W*V| < (2ate + 1)e.

In particular, we get that U is a Ae-(k.+1)r-unitary for some A > 1 depend-
A‘57(1<5e.,5"1'1)7'

ing only on a.. Hence, x = [U]xc (x, .+1)r defines a class in K (J)
with the required property. O
PROPOSITION 3.12. — There exists a control pair (A, h) such that for

any completely filtered extension of C*-algebras

0—J A5 AT —0,
the composition

Dl

Ki(A) % K1(A)T) =5 Ko(])

is (A, h)-exact at K1(A/J).
Proof. — We can assume without loss of generality that A is unital. Let
y be an element of K7*"(A/.J) such that 95", (y) = 0 in KJoo*2<"(4).]) and
let U be an e-r-unitary of M, (A/J) such that y = [U].,,. With notation
of Lemma 3.4, let j be an integer and W be a 3a.e-2k. 3.r-unitary in
Ms,,45(A) such that
lg(W) — diag(U, U™, I;)|| < 3ce.

As in the proof of Proposition 3.7, set x = W diag(l,,,0)W* and let h be
an element in My, ;(Jak, ,.r) such that

|z — h — diag(l,,, 0)]| < 9a.e.

Since 97" (y) = 0, we can up to take a larger n assume that h + diag(Z,,0)
is homotopic to diag(1,,0) as a ape-kp ¢r-projection of M2n+j(j). Since z
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is close to h+diag(1,,0), we get from Corollary 1.31 that up to take a larger
j, there exists for a control pair (1), depending only on the control pairs
(an, kp) and (ap, kp) of Corollary 1.31 and Lemma 3.5, an ae-l.r-unitary
V' in M2n+j(j) such that

|W diag(I,,0)W* — V' diag(I,,0)V"*| < ae.
Indeed up to unlarge the control pair («,!) using (., k), we can assume
that V = p;(V)V*W is a ae-l.r-unitary in Mo, ;(A) such that
lg(V) — diag(U, U™, I;)|| < ae.
Since for a suitable constant o’ depending only on o we have
lps (V') diag(In, 0)ps (V™) — diag(Ln, 0)|| < oe,

we obtain that

|V diag(I,,,0)V* — diag(I,,0)|| < ¢
and

|V* diag(I,,0)V — diag(I,,0)| < ¢

for some constant o’ depending only on o'. Hence the n x n-left upper
corner X of V' is an o’e-l.r-unitary in M,,(A) such that ||¢(X)—-U| < ¢
and then we get the result. O

PROPOSITION 3.13. — There exists a control pair (A, h) such that for
any completely filtered extension of C*-algebras

0—J A5 AT —0,

the composition
Dja

Ki(A)T) 5" Ko(J) & Ko(A)
is (A, h)-exact at KCo(J).

Proof. — 1t is enough to prove the result for A unital. Let y be an element
of K5 (J) such that j3"(y) = 0 in K" (A), let e be an e-r-projection in
M,,(J*) and let k be a positive integer such that y = [e, k. ... If we set py, =
diag(Ix,0), we can indeed assume without loss of generality that ||g(e) —
pi|| < 2¢ (where JT is viewed as a subalgebra of A). Up to stabilization, we
can also assume that e is homotopic to py as an e-r-projection in M, (A).
According to Corollary 1.31, there exists up to stabilization a ape-ky, o7-
unitary W of M,,(A) such that

lle = WppW™*|| < ape.
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Up to replace n by 2n, W by diag(W,W*) and e by diag(e,0), we can
assume that W is homotopic to I,, as a 3ape-2ky, cr-unitary. Since
laW)pea(W™) = pill - < [laW)pra(W™) — q(e)l| + [la(e) — pxll
< (24 ap)e,
then
lg(W*)peg(W) — pill < (2 + 4ap)e.

Hence for an o’ > 1 depending only on ay,, the left-up n x n corner Vi and
the right bottom corner Vo of ¢(W) are o'e-k. r-unitaries of M, (A/J)
such that

la(W)aq(W™) — diag(V1, V2) diag(V1, V2)"|| < (an + a')e
and

la(W*)q(W) — diag(Vy, Va)* diag(Vy, V)| < (an + o')e.
Hence ¢g(W) is close to diag(Vi, V2) and hence there is a A > 1 depending
only on a. such that as a Ae-ky, .r-unitary of M, (A/J), then diag(Vi, V2)

is homotopic to ¢(W) and hence to I,,. We can indeed choose A big enough

such that if we set © = [Vi]re.k then

e,eT?

Ae ke,
8J7EA Er(x) = [67 k])\a657k8.(xake,sr

_ Li,'r,)\s,ke’gr(y).

O
From Propositions 3.11, 3.12 and 3.13 we can derive the analogue of the

long exact sequence in K-theory.

THEOREM 3.14. — There exists a control pair (A, h) such that for any
completely filtered extension of C*-algebras
0—J-L A5 A4/ —0,

the sequence

K1 () 255 K1 (A) 25 K (A)T) 228 Ko () 25 Ko(A) 25 Ko(A/T)

is (A, h)-exact.
Remark 3.15. — With notation of Definition 3.1, the statement of the
long exact sequence of Theorem 3.14 can be extended to the following sit-

uation: there exists a positive number C' such that for any positive number
r, any integer n and any z in M,,(A,), then

inf o4yl <C inf oyl
yEM, (Jr) yeEM(J)
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i.e the bijective continuous linear map
M, (A.)J)—M,((A-+ J)/J)

induced by the inclusion A, < A has inverse bounded in operator norm
by C. But in this case, the control pairs corresponding to the controlled
boundary map and to controlled exactness depends on C.

As a consequence, using the exact sequence
(3.4) 0—>SA—-CA—-A—0,

and in view of Lemma 1.26 and point (iii) of Remark 2.8, we deduce in
the setting of quantitative K-theory the analogue of the suspension iso-
morphism in K-theory.

COROLLARY 3.16. — Let D}y = D§, 4 : Ki(A) — Ko(SA) be the
controlled boundary morphism associated to the semi-split and filtered ex-
tension of equation (3.4) for a filtered C*-algebra A.

e There exists a control pair (A, h) such that for any filtered C*-
algebra A, then DY is (A, h)-invertible.

e Moreover, we can choose a (A, h)-inverse which is natural: there
exists a control pair (ag, kg) and for any filtered C*-algebra A a
(A, h)-controlled morphism BY = ( 16477.)0<5<ﬁ,r>0 : Ko(SA) —

K1(A) which is an (\, h)-inverse for DY and such that B% o fg =
f o BY for any homomorphism f : A — B of filtered C*-algebras,
where fg: SA — SB is the suspension of the homomorphism f.

3.4. The mapping cones

We end this section by proving that the mapping cones construction can
be performed in the framework of quantitative K-theory. Let

0—-J— A% A/J=0

be a completely filtered extension of C*-algebras. Let us set A/J[0,1) =
Co([0,1), A/J) and define the mapping cone of ¢:
Cqy={(z,f) e A® A/J[0,1); such that f(0) = g(x)}.
It is straightforward to check that Cj is filtered by
(Cy 11 (Ar © AJT0,1),)),..
Let us set
eq:J = Cy; x— (2,0)
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and
¢q:SA/T = Cy; f— (0, f).
We have then a completely filtered extension of C*-algebras
0—J3 ¢, A/J[0,1) =0,
where 79 is the projection on the second factor of A @® A/J[0,1).

LEMMA 3.17. — There exists a control pair (A, h) such that ey . is (A, h)-
invertible for any completely filtered extension of C*-algebras 0 — J —
AL AT 0.

Proof. — The even case is a consequence of Theorem 3.14. We deduce
the odd case from the even one using Corollary 3.16. g

It is a standard fact in K-theory that the boundary of an extension of
C*-algebras 0 — J — A 5 A/J — 0 can be obtain using the equality

€q,x © 8J,A = (bq,* © 6A/J7
where 04/7 = Osa/5,ca/s stands for the boundary map of the extension
0—SA/J—-CA/J — A/ =0

(corresponding to the evaluation at 1). We have a similar result in quanti-
tative K-theory:

LEMMA 3.18. — With above notations, we have eq «0Dja = ¢¢+°D 4,1,
where D 4,y stands for Dgas5cayg-

Proof. — We can assume without loss of generality that A is unital. Let
p be an e-r projection in M, (A/J) and let x be a self-adjoint lift for p in
M, (A,) such that ||z|| < 2. Using the notations of the proof of Lemma 3.5,
let us define for ¢ in [0, 1]

k
(2t — 1)
i yt:typ"_Zi( )l'( ) in A;
=1 ’

ke l l
2 1—-o0)t —((1—=o)t 2
O AL S BT ) ) (= )t o))
=1 '
Since y; is close to Zﬁl (2";!“3)1 , then, (14 (ys, ft))tejo,1) is a path of ae-k.r
unitary in Mn(C’;r) with yo = 0, y1 = yp and f1; = 0. Moreover, fy belongs
to M, (SA/J) and satisfies the conclusion of Lemma 3.5 with respect to the
semi-split extension of filtered C*-algebras 0 — SA/J — CA/J—A/J — 0

(corresponding to evaluation at 1) starting from the e-r-projection p. Hence,

following the construction of Proposition 3.7 in the even case, we obtain
that eg . 0Dy and ¢4 0 Dy, coincide on Ko(A/J).
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Let us check now the odd case. Let u be an e-r-unitary in M,,(A/J). Pick
any e-r-unitary in some M;(A/J) such that diag(u,v) is homotopic to I,y

in U35’2T(A/J). According to Lemma 3.4, and up to replace v by diag(v, Ix)

n+j
. . . pr3ace,2ke .
for some integer k, there exists an element w in Un(f; *"(A) homotopic

to In4; as a 3aee-2ke 3.r-unitary and such that ||¢(w) —diag(u, v)|| < 3aee.
Let (w¢)te[0,1] be a path in Uiicf’ka”(A) with wy = I4; and w; = w and
set vy = q(wy) diag(I,,0)q(w;). As in the proof of Proposition 3.7, we see
that y; is an element in P:ﬁ;‘s’%“’“T(A/J) such that ||y; — diag(1,,0)|| <
9a.e. Define

g: [07 1} — Mn+J(A/J)7 t— Yt — diag(-[na 0) - t(yl - diag(Inv O))

Then g + diag(I,,0) is the element of Pii()}ea’%e'ssr(S*A/J) that we get
from v and v when we perform the construction of Proposition 3.7 in
the odd case with respect to the extension 0 — SA/J — CA/J —
A/J — 0. Now, as in the proof of Proposition 3.7, let h be an element

in My j(Jak, s.r) such that
|w diag(l,,0)w* — h — diag(I,,0)| < Yoe
and define
hy = wy diag(I,, 0)w; — diag(I,,0) + t(h + diag(1,,0) — wdiag(l,, 0)w™)

for ¢ in [0,1]. Then diag(I,,0) + h, belongs to Piio;es’4ke‘3gr(A) and
diag(l,,0) + hy = diag(Iy,0) + h is the element of Piiajes’4ke’3sr(J) that
we get from u and v when we perform the construction of Proposition 3.7
in the odd case with respect to the extension 0 — J — A %5 A/J — 0.

Eventually, if we define
H, - [Ov 1} - Mn-‘r](A/J)v 0= g(1—0)t+o>

then ((he, Hy) + diag(Zn,0))se(o 1) is a homotopy in P:iajeeAke,agr(C;) be-

tween ((0,g) + diag(I,,,0)) and ((h,0) + diag(,,0)). Thus we obtain the
result in the odd case. ]

As a consequence, we get that the controlled suspension morphism is
compatible with the controlled boundary maps.

PROPOSITION 3.19. — There exists a control pair (A, h) such that for
any completely filtered extension of C*-algebras 0 — J — A — A/J — 0,
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the following diagrams are (\, h)-commutative:

Ko(A)T) —2L15 Ky (SAJT)

'DJ,Al JV'DSJ‘SA

Ki(J) —22s Ko(SJ)
and

Kr(ALT) =25 Ko(SALT)

D.},Al lDSJ,SA

Ko(J) —21= Ki(SJ)
where D; and Dy, ; stands respectively for the controlled suspension mor-
phisms Dsjcy and Dsaygca)-
Proof. — Let qg : SA — SA/J the suspension of the homomorphism
q: A — A/J. Applying Lemma 3.18 to the extensions 0 — J — A —

A/J - 0and 0 —» SJ — SA — SA/J — 0 and using the naturality of
controlled boundary maps mentioned in Remark 3.8, we get

¢qs,+ ©DsajgoDasg
Dsc, o ¢gx°Days

€gs,x 9 Dsysa0Dayy

Dsc,0eqx°Dya

=  €qg,x O'DJODJ,A
The proposition is then a consequence of Lemma 3.17. g

Remark 3.20. — Proposition 3.19 extend to extensions that satisfy the
assumptions of Remark 3.15, but with these notations, the control pairs
involved in the proposition depend on the number C.

4. Controlled Bott periodicity

The aim of this section is to prove that there exists a control pair (A, h)
such that given a filtered C*-algebra A, then Bott periodicity Ko(A) 5
Ko(S%A) is induced in K-theory by a (), h)-isomorphism Ko(A4) — Ko (S2A).
As an application, we use the controlled boundary morphism of Proposi-
tion 3.7 to close the controlled exact sequence of 3.14 into a six-term (A, h)-
exact sequence for some universal control pair (A, k). This will be achieved
by using the full power of K K-theory.
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4.1. Tensorization in K K-theory

Let A be a C*-algebra and let B be a C*-algebra filtered by (B;);>0-
Let us define A®B, as the closure in the spatial tensor product A®QB of
the algebraic tensor product of A and B,. Then the C*-algebra A®B is
filtered by (A®B,),~o. Moreover, if J is a semi-split ideal of A, i.e 0 —
J— A— A/J — 0 is a semi-split extension of C*algebras, then

0— J®B — A®B — A/J®B — 0

is a semi-split extension of filtered C*-algebras. Recall from [11] that for
C*-algebras A;, A; and D, G. Kasparov defined a tensorization map

D - KK*(Al,AQ) — KK*(A1®D,A2®D)

in the following way: let z be an element in K K, (A1, As) represented by a
K-cycle (7, T, &), where
e & is a right As-Hilbert module;
e 7 is a representation of A; into the algebra L£(€) of adjointable
operators of &;
e T is a self-adjoint operator on &£ satisfying the K-cycle conditions,
ie. [T,7(a)], n(a)(T? — Zdg) are compact operators on & for any
ain A;.
Then 7p(z) € KK,(A1®D, Ay®D) is represented by the K-cycle (n®Idp,
TRIdp,ERD).

In what follows, we show that if A; and A, are C*-algebras, if B is
a filtered C*-algebra and if z is an element in KK,.(A1, Ay), then the
homomorphism K,(A1®B) — K.(A2®B) provided by left multiplication
by 75(z) is induced by a controlled morphism. Moreover, we have some
compatibility results with respect to Kasparov product. As an outcome,
we obtain a controlled version of the Bott periodicity that induces in K-
theory the Bott periodicity.

PrOPOSITION 4.1. — Let A; and As be C*-algebras, let B be a filtered
C*-algebra and let z be an element in K K;(A1, As). Then there exists an
(ap, kp)-controlled morphism

T5(2) = (75" (2))oce< 1L >0  Ku(A1®B) = K. (A:0B)

Tap

of degree 1 inducing in K-theory the right multiplication by 75(z).

Proof. — Recall that z can be indeed represented by a odd A;-As-K-
cycle (m, T, H®Az), where H is a separable Hilbert space, 7 is a representa-
tion of A; into the algebra L(H®As) of adjointable operators of H® A5 and
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T is a self-adjoint operator in L(H®Ay) satisfying the K-cycle conditions.

Let us set Pg = IdH®A2®QB+T®IdB, mg = m®Idp and define the C*-algebra

ECT = {(z,y) € A1oBED L(H®A2®B)
such that Pp-7mp(z) - Pp —y € K(H) ® A2@B}.

Since P has no propagation, the C*-algebra E(™T) is filtered by
(B ),50 with
E™T) = {(x, P -mp(x) - Pp+1y); v € A1®B, and y € K(H) @ A,®B,}.
The extension of filtered C*-algebras
(4.1) 0— KH)® A;@B — E™T) — A1 @ B — 0
is semi-split by the cross-section

s: 41®B — E™D; ¢ s (2, Pg - wp(z) - Pp).
Let us show that the associated controlled boundary (degree one) map
Dx(yas08,80m 1 Ki(A1®0B) = K (K(H)®A2@B)

only depends on the class z of (7,7, H® As) in KK; (A1, A). Assume that
(m, T, H® A3]0,1]) is a A1-A5[0,1]-K -cycle providing a homotopy between
two Aj-As-K-cycles (mg, Ty, H ® As) and (w1, T1, H ® As). For ¢ € [0,1] we
denote by
e ¢;: As[0,1] — Ay the evaluation at t;
o F; € L(H ® As) the fiber at t of an operator F € L(H ® A3[0,1]);
o m: Ay — L(H ® Ay) the representation induced by 7 at the fiber
t.

Then the homomorphism E(™T) — BT (1. y) — (x,v,) satisfies the
conditions of Remark 3.8 and thus we get that
(Zd3) ® er@Idp) D)2 4,080,150 = Dxanea, e, BT,

and according to Lemma 1.26, we deduce that

Dic(1)o 410 B2, E0.T0) = D)o a, 08,5111 -

This shows that for a A;-As-K-cycle (7, T, H® Az), then Dy (1) g 4, 0B, T)
depends only on the class z of (7,7, H ® As) in KK;(A;, As). Finally we
define

T(2) = (75" (2))o<e<

where

def —1
— My, 08 ° Dk(wyoa,eB,B01);

1
dap
o (m,T,H®As) is any A;-Ay-K-cycles representing z;
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e Ma,»p is the Morita equivalence (see Example 2.2).

The result then follows from the observation that up to the Morita equiv-
alence
K.(K(H) ® A,®B) = K.(A,®B),

the boundary 9y (3)g 4,08, corresponding to the exact sequence (4.1)
is induced by right multiplication by 75(2). O

Remark 4.2. — Let B be a filtered C*-algebra.
(i) For any C*-algebras A; and A and any elements z and 2’ in
KKl(Al, AQ) then
TB(Z + Z’) = TB(Z) + TB(Z/).

(ii) Let 0 = J - A — A/J — 0 be a semi-split extension of filtered
C*-algebras and let [0;.4] be the element of KK;(A/J,J) that
implements the boundary map 0 4. Then we have

TB([01,4]) = DyoB,A0B-

(iii) For any C*-algebras A;, A; and D and any K-cycle (7,7, H®As)
for KK;(A;1,As), we have a natural identification between
E(m®Ip.T®Ip) and E™T)@D. Hence, for any element z in
KKl(Al, Ag) then TB(TD(Z)) = TB®D(Z).

For a filtered C*-algebra B and a homomorphism f : A; — Ay of C*-
algebras, we set fp : A1®B — A>®B for the filtered homomorphism in-
duced by f.

PROPOSITION 4.3. — Let B be a filtered C*-algebra and let A; and A,
be two C*-algebras.

(i) For any C*-algebra A’, any homomorphism of C*-algebras f :
Ay — A} and any z in KK, (A}, As), we have Tp(f*(2)) = Tp(z)o
fB.ss

(ii) For any C*-algebra A), any homomorphism of C*-algebras g :
Ay — Al and any z in KK;(A1, As), we have Tp(g.(2)) = gB.« ©
TB(Z)

Proof.

(i) Let A} be a filtered C*-algebra, let f : A; — A} be a homomor-
phism of C*-algebras and let (m,T, H ® A3) be an odd A}-As-
K-cycle. With the notations of the proof of Proposition 4.1, the

homomorphism

fE BN o D (2y) = (fa(2),y)
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fits in the commutative diagram

0 —— K(H)®Ay®B — BI' 51— 4,@B — 0

| A e

0 —— K(H)® A®B —— E™T) 4 A'@B —— 0

(i)

gEtE

Thus, we get by Remark 3.8 that
T(f*(2)) = Ts(2) o f.

for all z in KK;(A}, As).
Let A} be a C*-algebra and let g : A2 — A} be a homomorphism
of C*-algebras. For any element F in £L(H ® As), let us denote by

F= FRa,ldy, € LIH® Ag®4,A3).

Notice that H ® Aa®4, A5 can be viewed as a right Aj-Hilbert-
submodule of H® A, and under this identification, for any F' in
K(H) ® As, then F is the restriction to H ® As® 4, A, of the ho-
momorphism (Idj(3)®g)(F). Let z be an element of K K1 (A1, As)
represented by a K-cycle (7,7, H®As). Consider the A;-As-K-
cycle (7', T, H'®As) with H' = H1 ® Ha & Hs, where Hy, Ho
and M3 are three copies of H, 7/ = 00 0@ 7 and T' = Idy, g4, ©
Idy,0n, ®T. Then (', T', H'®A,) is again a K-cycle representing
z and g.(z) is represented by the K-cycle (x”,T",E), where

o £=(H1®A) P(Ha® AY) P(Hs ® As®4,Ab);

e =000 T,

o 1" =Tdy, o, ® Ldpypa, O T
Using Kasparov stabilization theorem, we get that (He ® AL) P
(Hs ® Aa®a,A%) is isomorphic as a right-Aj-Hilbert module to
H ® A} and hence, using this identification, we can represent g.(z)
using a standard right- AS-Hilbert module, as in the proof of Propo-
sition 4.1. Then, under the above identification (He ® AL) @ (Hs ®
A2®A2A/2) =H & A/27

(m,T) — B9 (m,T)
(z,y) — (2, Pgn"(2)Pp + (Idx()o5®9)(y — Ppr’(z)Pg))

restricts to a homomorphism K(Hi @ Ha DH3)RA20B — K(H1 @
H)RALRB.
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We get now a commutative diagram
0 — K(H1®Hy®Hs)® A,0B — E™T) — A/ @B — 0
ol o]
0 — KH,oH)®A,eB — ECT) — A/@B — 0
Hence, we get by Remark 3.8 that

DK(H1®H)®A;®B,E(”"vT”> =9Ex © DIC(Hl@HQ@H3)®A2®B,E<"’«T')'

But the restriction of gg to the corner (H;)RA2RB of the C*-
algebra IC(H1 @ Ha @ H3) ® A2®B is Idi(3,)®9®Idp. Since the
Morita equivalence

Muyep : Ku(A4@B) 5 K. (K(H1 & H)® A0 B)

can be implemented by an inclusion of A5,®B in a corner of
K(H1)®AL®B, and similarly for the Morita equivalence

Muyop : Ki(A2®B) 5 K, (K(Hy ® Ha @ Hs)®A,0B),
we deduce that the two following compositions coincide:

MA’2®B

K.(A;0B)) 225 K, (A4,®B) 2 K (KM, ® H)®(AL,®B))
and
Ko (As@B) 257 K (K(Hy @ Ho @ Ha) @ As®B)
L5 Ku(K(Hy @ H)®AL2B).
Hence we get
TB(9+(2)) = g« 0 Tp(2)
for any z in KK;(A1, 4s).
0

Let us now extend the definition of 75 to the even case. Consider for a
suitable control pair (agp, k) and any filtered C*-algebra A the (ag, kg)-
controlled morphism of odd degree Ba : K.(SA) — K.(A) defined by

e BY% on Ko(SA) as in Corollary 3.16;
. M;,l o Dicrr(v))@A, o4 on Ki(SA) using the Toeplitz extension

0> KPP(N))®A—= Ty A+SA =0

(see the discussion at the end of Section 3.2).
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Then, according to Proposition 3.10 and Corollary 3.16 there exists a con-
trol pair (A, h) such that B4 is a right (A, h)-inverse for Dga ca for any
filtered C*-algebra A. Let us set a = Aag and k1 = h * k.

Now, let B be a filtered C*-algebra, let A; and A be C*-algebras, then
define for any z in K Ky(A1, A2) the (a7, k1)-controlled morphism

T5(2) = (75" Jo<e<

0 P Ku(A1@B) = K (A20B)

by

To(2) = Ba,op 0 Ta(z @a, [04,))

where

o [04,] = [0s4,,04,] € KK1(As,SAs) corresponds to the boundary
of the exact sequence 0 — SA; — CAy — A — 0;
® ®4, stands for Kasparov product.

Up to compose on the left with (SPSTEFPIATT we can in the odd case

define Tp(e) also as an (a7, k7)-controlled morphism.

THEOREM 4.4. — Let B be a filtered C*-algebra, let Ay and As be
C*-algebras
(i) For any element z in KK,(A1, As), then Tp(z) : Ki(A1®B) —
K.(A2®B) is a (a1, k1 )-controlled morphism with same degree as
z that induces in K-theory right multiplication by 75(z).
(ii) For any elements z and 2z’ in KK,(A, A3) then

Te(z+2") = Ts(z) + Ta(7).

(iii) Let A} be a filtered C*-algebras and let f : A; — A} be a homo-
morphism of C*-algebras, then Tp(f*(z)) = Tp(z) o fp.« for all z
in KK, (A}, As).

(iv) Let A, be a C*-algebra and let g : A, — As be a homomor-

phism of C*-algebras then Tp(g.(2)) = gp,« o Te(z) for any z in
KK, (A1, AS).

aT,k
(v) To(l1da)) 7 Tdx (a,0m)-
(vi) For any C*-algebra D and any element z in KK, (A1, A2), we have
Ts(mp(2)) = Tep(2)-

Proof. — Since Ba,gp is a right (A, h)-inverse for Dsa,oB,c4,08, it
induces in K-theory a right inverse (indeed an inverse) for the (degree 1)
boundary map

(95',42@3’0,42@3 : K*(A2®B) — K*(SA2®B).
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But since Tp(284,[0s4, ca,]) induces in K-theory right multiplication by
TB(2®4,[0s4,,c4,]), we eventually get that Tp(2®a,[0s4,,c4,]) induced
in K-theory the composition

K.(A0B) T2 g (a,0B) P9850 k(94,0 B)

and hence we get the first point.

Point (ii) is a consequence of Remark 4.2. Point (iii) is a consequence
of Proposition 4.3. Point (iv) is a consequence of Proposition 4.3 and of the
naturality of B, (see Remark 3.8 and Corollary 3.16), point (v) holds by
definition of B,. Point (vi) is a consequence of point (iii) of Remark 4.2. O

We end this section by proving the compatibility of T with Kasparov
product.

THEOREM 4.5. — There exists a control pair (A, h) such that the fol-
lowing holds :

let Ay, As and Az be C*-algebras and let B be a filtered C*-algebra.
Then for any z in KK,(A;, As) and any 2’ in KK, (As, A3), we have

TB(Z®A2Z/) (/\fljl) TB(Z/) o TB<Z)

Proof. — We first deal with the case z even. According to [12, Lemma
1.6.9], there exists a C*-algebra A4 and homomorphisms 6 : Ay — A; and
n: Ay — A such that

e the element [0] of KK, (A4, A1) induced by 6 is invertible.

o z=n.(0]).
Since 0.([0]7') = [Ida,] in KK.(A1, A1), we get in view of Remark 2.5
and of points (iii), (iv) and (v) of Theorem 4.4 that

Ta(om?) X To0"(c0n2) o To(] ),
with (A, h) = (a3, k7 * k7). But by bi-functoriality of K K-theory, we have
0*(2®4,%") = n*(z') and then the result is a consequence of points (iii) and
(iv) of Theorem 4.4. We can proceed similarly when 2z’ is even. Let us prove
now the result when z and 2’ are odd. Then [04,] = [0s4,,c4,] is an invert-
ible element in K K;(Az,SAs) and 2®4,2 = 20 4,[04,|®s54,[04,] 1 ®a4,2’
and hence using the even case, we get that

(4.2) To(z@a,2") " To(04,] ' ®a,2") 0 To (2@ a4, [04,]).

But
Te([04,) ' ®4,2") = Bason o Ta([04,] '®4,2'©4,104,])
(4.3) AL Bayon o Ta(2'®@a,(04,]) o To([04,] ™)
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for some control pair (A, k'), depending only on (A, h) and (a7, k1), where
equation (4.3) holds by the even case applied to 2'®,[04,] and [04,] " .
Hence, for a control pair (\”, h”")-depending only on (A, h), we get applying
the even case to [04,] ! and 2®4,[04,] that

@4)  To(oa,2) Y Bies o T(#@a,[04,]) 0 To(2).

In view of this equation, we deduce the odd case from the controlled
Bott periodicity, which will be proved in the next lemma: if we set [0] =
[0c4(0,1),00(0,1)] € KK1(C,Cp(0,1)), then there exists a control pair (a, k)
such that T4 ([0]71) is an («, k)-inverse for D, for any filtered C*-algebra
A. Indeed, from this claim and since for some control pair (o', k'), the
(as, kp)-controlled morphism B4 is for every filtered C*-algebra A a right
(o, k')-inverse for T4([0]), we get that

_ a//’k//
Ta(9)™) < Ba
for some controlled pair (o, k") depending only on (o/, k') and (a7, k7).
Noticing by using point (vi) of Theorem 4.4, that Ta,ep([0]7!) =
T5([04,]71), the proof of the theorem in the odd case is then by equation
(4.4) a consequence of the even case applied to [04,] ! and 2/®4,[04,] O

4.2. The controlled Bott isomorphism

We prove in this subsection a controlled version of Bott periodicity. The
proof use the even case of Theorem 4.5 and is needed for the proof of the
odd case. Let A be a filtered C*-algebra, let us denote for short as before
Dsa,ca by Dy and [(95',4,0,4] by [BA] and let us set [6] = [ac]

LEMMA 4.6. — There exists a control pair (a, k) such that for every
filtered C*-algebra A, then Ta([0]™") is an (o, k)-inverse for Dy.

Proof. — Consider the even element z = [9]®5[0s] of K K. (C, S?), where
S = (Cp(0,1) and S? = SS. The lemma is a consequence of the following

claim: there exists a control pair (A, h) such that Dga o Dy O Ta(z)
for any C*-algebra A. Before proving the claim, let us see how it im-
plies the lemma. Notice first that by point (ii) of Remark 4.2, we have
Da = Ta([0)). Since by associativity of Kasparov product [0] '®@cz =
[0s], we get from Theorem 4.5 applied to the even case that there ex-
ists a control pair (A, h') such that for any filtered C*-algebra A, then

Ta(z) o Ta([0]71) 0o Da O Dsa o Da. Using the claim and since z is
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an invertible element of KK, (C,S?), we obtain from Theorem 4.5 ap-
plied to the even case that there exists a control pair (a, k) such that
Ta([0]71) is a left (a,k)-inverse for D4. Using associativity of the Kas-
parov product, we see that [0] = 2®g2[0s] 1. Then applying twice The-
orem 4.5, on one hand to [0] = 2®g¢2[ds]~! and on the other hand to
[0] '®z = [9s], we get that there exists a control pair («/,k’) such that

Ta([0]) o Ta([0)71) (o) Tsa([0]71) 0 Tsa([0]). But according to what we

have seen before, Ts([0]7!) o Tsa([0]) (o) Tdx, (sa)-

Let us now prove the claim. It is known that up to Morita equivalence,
[04]71 is the element of K K;(SA, A) corresponding to the boundary ele-
ment of the Toeplitz extension

0= KPN))®A—=To® A=SA — 0.

Let us respectively denote by DY : Ko(A4) — K1(SA) and DY : K1(4) —
Ko(SA) the restriction of Dy to Ko(A) and K1 (A). According to Proposi-
tion 3.10, there exists a control pair (X', h') such that, on even elements
_ N !

(4.5) Ta(0]™) 0 D% M2 Tde, ).

Since [0s] = [9]"'®z, we get by left composition by T4 (z) in equation (4.5)
and by using Theorem 4.5 in the even case that there exists a control pair
(A, h) depending only on (X, ') and such that that D}, o DY O TL(2)
(here T9(2) : Ko(A) — Ko(S?A) stands for the restriction of T4(z) to
Ko(A)). For the odd case, we know from Corollary 3.16 that there ex-
ists a control pair (A”,h”) such that Di., : Ki1(S?A) — Ko(S®A) is
(N, h'")-invertible. Using the previous case, and since by associativity of
the Kasparov product, we have [04|®saTsa(z) = Ta(2)®[0s2.4], we get by

applying twice Theorem 4.5 in the even case that there exists a control

A/// h///
pair (A", h""") such that D, , o D%, o DY AT Dis 4 0 TA(2), where

Ti(z) : Ki(A) — K1(S%A) is the restriction of Ta(z) to Ki(A). Since
Dioy : K1(S%A) — Ko(S3A) is (A, h)-invertible, we get the result by
Remark 2.5. O

4.3. The six term (), h)-exact sequence

Recall from Proposition 3.19 that there exists a control pair (A, h) such
that for any completely filtered extension of C*-algebras 0 — J — A —
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A/J — 0, the following diagrams are (A, h)-commutative:

and

Ko(A)J) =225 Ky (SALT)

DJ,AJ{ lDSJ,SA

Ki(J) —2L5  Ko(SJ)

K (A)T) 220 Ko(SALT)

DJ,AJ/ l’DS.],SA

KolJ) —225 Ki(SJ)

As a consequence, by using Lemma 4.6 and Theorem 3.14, we get

THEOREM 4.7. — There exists a control pair (A, h) such that for any
completely filtered extension of C*-algebras

0—J A5 AT —0,

the following six-term sequence is (A, h)-exact

(4.6)

Ko(J) —5— Ko(A) —— Ko(4/J)

’D.I,AT D.],Al
Ki(A)T) +— Ki(A) «2— Ki(J)

Remark 4.8. — Let us consider with notations of Section 3.4
the completely filtered extension of C*-algebras

084/ %, ™ A0,

where 1 : Cy — A is the projection on the first factor of C,. Since
we have a completely filtered extension of algebras 0 — J Y Cy 3
A/J[0,1) — 0, and since A/J[0,1) is a contractible filtered C*-
algebra, we see in view of Theorem 4.7 that e; . : K. (J) = K4 (Cy)
is a controlled isomorphism. It is then plain to check that up to the
controlled isomorphism e;, and Dy, : K. (SA/J) — Ku(A/J),
we get from the completely filtered extension of C*-algebras of
equation (4.6) (for a possibly different control pair) the controlled
six-term exact sequence of Theorem 4.7.

The controlled six-term exact sequence extend to extensions that
satisfy the assumptions of Remark 3.15, but with these notations,
the control pairs involved in the proposition depend on the number

C.
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If we apply Theorem 4.7 to a filtered and split extension, we get:

COROLLARY 4.9. — There exists a control pair (X, h) such that for every
split extension of filtered C*-algebra 0 — J — A — A/J — 0, and any
filtered split cross-section s : A/J — A, then

Ka(J) @ Ki(A)T) — Ki(A); (2,9) = 2 (2) + 54(y)
is (A, h)-invertible.

5. Quantitative K-theory for crossed product C*-algebras

In this section, we study quantitative K-theory for crossed product C*-
algebras and discuss its applications to K-amenability.

Let I" be a finitely generated group. A I'-C*-algebra is a separable C*-
algebra equipped with an action of I' by automorphisms. Recall that the
convolution algebra C..(T', A) of finitely supported A-valued functions on T’
admits two canonical C*-completions, the reduced crossed product AXeql"
and the maximal crossed product AX,,q.[". Moreover, there is a canonical
epimorphism Ar 4 : AX eI = AX,eql which is the identity on C.(T, A).

5.1. Lengths and propagation

Recall that a length on I' is a map £ : I' — R™ such that

e /(v) =0 if and only if v is the identity element e of T}

o /(vy') < () + £(v") for all element v and 7’ of T.

o U(y)=L(v).
In what follows, we will assume that £ is a word length arising from a finite
generating symmetric set S, i.e £(y) = inf{d such that v = ~; - - -4 with
Y,.--,7q in S}. Let us denote by B(e,r) the ball centered at the neutral
element of I' with radius r, i.e B(e,r) = {7 € T such that ¢(y) < r}. For
any positive number r, we set

(ANTEdF)Tg{f € C.(T', A) with support in B(e,r)}.

Then the C*-algebra Ax,..qI" is filtered by ((AX,eal’)r)r>0. In the same

way, setting (Axmax]f‘),«g{f € C.(TI', A) with support in B(e,r)}, then

the C*-algebra A X q. T is filtered by ((AXmaezD')r)r>0 (notice that as sets,
(AXreal)r = (AXpmaaD)r). Tt is straightforward to check that two word
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lengths give rise for Ax,.cqI" (resp. for AXnq.I") to quantitative K-theories
related by a (1, ¢)-controlled isomorphism for a constant c.

For a homomorphism f : A — B of ['-C*-algebras, we denote respec-
tively by frrea : AXredl' = BXpegl’ and fromaz @ AXmazl = BX el
the homomorphisms respectively induced by f on the reduced and on the
maximal crossed product.

For any semi-split extension of I'-C*-algebras 0 — J -+ A5 A/J —»
0, we have semi-split extensions of filtered C*-algebras

00— J><|mdF jﬂ)d AxredI‘ qﬁfi A/J><1,,edI‘ — 0

and

T, max qr,max=
0 — J¥maal 228" Axtppaal "5 A/ T X mael — 0

and hence, by Theorem 4.7, we get:

PROPOSITION 5.1. — There exists a control pair (A, h) such that for any
semi-split extension of I'-C*-algebras

0—J-1 A5 A4/ —0,
the following six-term sequences are (A, h)-exact
Ko(J5real) T2 KCo(AXypeal) 2% Ko(A/J Xpeal)
D.]xmdr,AxmdrT D.]xTEdF,AxTEdFJ/

K1(A) T peql) €55 Ky (AXpeal) <25 Ky (I X peqT)

and
/Co(JleazF) JT,maz,* ICO(AXImazF) ar,mazx,* IC()(A/JNm(mF)
DJxrch’AxmaﬂEFT DJX‘WLazF:ANWLamFl

K1(A)J ¥ maal) <2022 K (AXmael) 425 Ky (J X maglD)

5.2. Kasparov transformation

In this subsection we see how a slight modification of the argument used
in Section 4.1 allowed to define a controlled version of the Kasparov trans-
formation compatible with Kasparov product.

Notice first that every element z of KK (A, B) can be represented by a
K-cycle, (m,T,H ® B), where

e 71 is a separable Hilbert space;
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e the right Hilbert B-module H ® B is acted upon by I’;
e 7 is an equivariant representation of A in the algebra L(H®B) of
adjointable operators on ‘H ® B;
e T is a self-adjoint operator on H ® B satisfying the K-cycle condi-
tions, i.e. [T, 7(a)], 7(a)(T? — Zdngp) and m(a)(y(T) — T) belongs
to K(H) ® B, for every a in A and v € T.
Let Tr = T®pZdpx,.,r be the adjointable element of (H®B)® B X eql’ =
H ® BX,.ql' induced by T and let 7 be the representation of AX;eql’
in the algebra L£(H ® BX,.ql') of adjointable operators of H ® BX.eql’
induced by w. Then (nr, 1T, H ® BX,eql') is & AX,eq-BX,eql-K-cycle
and the Kasparov transform of z is the class JLe¥(2) of this K-cycle in
KK, (AXpeql', BXyegl') [11]. In the odd case, let us set P = M.
Then P induces an adjointable operator Pr = P ®p Zdgx,.,r of (H ®
B) ®p BXpeal' 2 H @ BXyeql. Let us define

ETT) = {(2,y) € Axyeal' ® L(H @ BXyeql)
such that Pr-7p(z) - Pr —y € K(H) @ BXpeal'}.
Since Pr has no propagation, the C*-algebra E(™T) is filtered by
(E™T)),50 with
E{™D ={(z, Pp-mr(z)-Pr+y); 2 € (Axeal), and y € K(H)©(BXeal), }-
The extension of C*-algebras
0 — K(H) @ BXpegl — BT —5 Ax,0qT — 0
is filtered semi-split by the cross-section
st Axtpeql = E™T): ¢ (@, P - p(z) - Pp).
Let us show that Dy (3ygBx,.,r, g only depends on the class of (m, T,
H ® B) in KKT (A, B). Assume that (7,T,H ® B[0,1]) is a [-equivariant

A-B|0,1]-K-cycle providing a homotopy between two I'-equivariant A-B-
K-cycles (7o, Ty, H ® B) and (m1,T1,H ® B). For t € [0, 1] we denote by

o ¢;: B[0,1]Xeql’ = BXyeql the evaluation at t;

o Fy € L(H ® Bxyeql') the fiber at t of an operator F € L(H ®
B[Oa 1] ><]rech>;

o 7 the representation of A X,.4 I' induced by 71 at the fiber ¢.

Then the homomorphism E(™T) — BT (1, 4) s (z,v,) satisfies the
conditions of Remark 3.8 and thus we get that

(Zdxc () ® €t)x © Dic(2)@B[0,1] %y eal, EET) = Dic(2)@ Bty al, BT -
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According to Lemma 1.26, we deduce that

D’C(H)®B><redF,E("0’T0> = D/C(H)@medF,E(ﬂ’Tﬂ .

This shows that for a T-equivariant A-B-K-cycles (7,T,H ® B), then
Dic(3)@Bx,eqr, g™ depends only on the class z of (7,7, ® B) in
KKY(A, B). Eventually, if we define

red _ —1
Ire(z) = M, .. © Px(r)@Bx,eal BT

where

e (m,T,H® B) is any I'-equivariant A-B-K-cycles representing z;
e Mpy,.,r is the Morita equivalence (see Example 2.2).

we get as in Section 4.1

PROPOSITION 5.2. — Let A and B be I'-C*-algebras. Then for any ele-
ment z of KK} (A, B), there is a odd degree (ap, kp)-controlled morphism

jlred(z) = (J;ed’87T(Z))0<e< L r>0 - Ki(A Xrea T) = Ko(Bxpeal')

dap

such that
(i) JEed(z) induces in K-theory the right multiplication by Jre%(z);
(i) Jred is additive, i.e
TEN 2+ 2) = T ) + TE(R).
(iii) Let A’ be a I'-C*-algebra and let f : A — A’ be a homomorphism
I'-C*-algebras, then
T (2)) = T4 (2) © frred,s
for any z in KKI (A, B).
(iv) Let B’ be a I'-C*-algebra and let g : B — B’ be a homomorphism
of I'-C*-algebras, then
Tt (g (2)) = grorea . o TL°(2)
for any z in KK (A, B).
(v) If
0-J—>A—A/J—=0

is a semi-split exact sequence of I'-C*-algebras, let [0y 4] be the
element of KK} (A/J,J) that implements the boundary map 0 .
Then we have

TE(05.4) = Porar
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We can now define ;¢ for even element in the following way. Set oy =
arap and kg = krxkp. If Aand B are I'-C*-algebra and if z is an element
in KK{' (A, B), then we set with notation of Section 4.1

T =) = (7 (oo i ST ar (071 0 T2z 5 [955))

According to Lemma 4.6, there exists a control pair (A, k) such that for any
[-C*-algebra A, then J;¢([Ida]) O Tdy, (Ax,.,r)- Up to compose with

e,ag¢ek Lk . .
Ly POATEEPEDET T e can assume indeed that J754(e) is also, in the odd

case a (ag, k j)—controlled morphism. As for Theorem 4.4, we get.

THEOREM 5.3. — Let A and B be I'-C*-algebras.
(i) For any element z of KKI'(A, B), then

T (2) 1 Kyu(A Xpeqg T) = Ky (BXyeal')

isa (ag, kg)-controlled morphism of same degree as z that induces
in K-theory right multiplication by J5¢?(z).
(ii) For any z and 2’ in KK (A, B), then

jlred(z Ny ) Jred( ) jlred(zl).

(iii) For any I'-C*-algebra A’, any homomorphism f : A — A’ of T-C*-
algebras and any z in KK (A', B), then Jre4(f*(2)) = Jred(z) o
frs.

(iv) For any I'-C*-algebra B’, any homomorphism g : B — B’ of T'-
C*-algebras and any z in KKI(A, B), then Jt°%(g.(2)) = gr.. o
T4 (2).

Using the same argument as in the proof of Theorem 4.5, we see that
j{“l is compatible with Kasparov products.

THEOREM 5.4. — There exists a control pair (A, h) such that the fol-
lowing holds: for every I'-C*-algebras A, B and D, any elements z in
KKL(A, B) and 2’ in KKI'(B, D), then

(A,h)

Feed(z @p o) X () o JEe(z).

We can perform a similar construction for maximal cross products.

THEOREM 5.5. — Let A and B be I'-C*-algebras.

(i) For any element z of K K (A, B), there exists a (a7, k7)-controlled
morphism

T (z) = (Jltnm’67r(z))0<s< L

da 7

i Ka(AXmael) = K (BXnaal')
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with same degree as z that induces in K-theory right multiplication
by Jia®(z) and such that Ar g . o Jf®(2) = JE°U(2) o Ar, 4 -

(ii) For any z and 2’ in KK (A, B), then

T (24 ) = T ) + T ().

(iii) For any I'-C*-algebra A’, any homomorphism f : A — A’ of T-C*-
algebras and any z in K KL (A’ B), then J{"%*(f*(2)) = J"%*(2)o
fF,maa:,*'

(iv) For any I'-C*-algebra B’, any homomorphism g : B — B’ of I'-C*-
algebras and any z in KK (A, B), then J7*(g.(2)) = gr.maz.« ©
T (z).

Moreover, there exists a controlled pair (A, h) such that,

o for any I'-C* algebra A, then J{"**([Id4]) O Tdi. (AxmanT);

e For any semi-split extension of T algebras0 — J — A — A/J — 0,
AR
then Jae ([0, 4]) ) D, 4.

THEOREM 5.6. — There exists a control pair (A, h) such that the fol-
lowing holds: for every I'-C*-algebras A, B and D, any elements z in
KKL(A, B) and 2’ in KKI'(B, D), then

ijax(Z ®B Zl> ();dl) jr{nax(zl) o jleraa:(z>.

5.3. Application to K-amenability

The original definition of K-amenability is due to J. Cuntz [6]. For our
purpose, it is more convenient to use the equivalent definition given by P.
Julg and A. Valette in [10]. If T is a discrete group, let us denote by 1r the
class in KK{'(C,C) of the K-cycle (Idc,0,C), where C is provided with
the trivial action on T.

DEFINITION 5.7. — Let I' be a discrete group. Then I' is K-amenable
if 1p can be represented by a K-cycle such that the action of I" on the
underlying Hilbert space is weakly contained in the regular representation.

(The previous definition indeed also makes sense for locally compact
groups.)

Example 5.8. — Amenable groups are obviously K-amenable. Typical
example on non-amenable K-amenable groups are free groups [6]. More

generally, J. L. Tu proved in [17] that group which satisfies the strong
Baum-Connes conjecture (i.e with v = 1) are K-amenable. Examples of
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such group are groups with the Haagerup property [8] and fundamental
groups of compact and oriented 3-manifolds [13].

For a I-C*-algebra B and an element T of L(H®DB), where H is a sep-
arable Hilbert space, let us set Tt mar = T®pldpx,,,,r and Tt req =
Teopldpx,.,r- If Ais a I-C*-algebra and 7 : A — L(H®B) is a I'-
equivariant representation, let 7 yeq @ AXpegl' — L(H@®BX,eql') and
T maz © AXmagl = L(HOBX 4,T") be respectively the reduced and the
maximal representation induced by 7. Then, we have the following (com-
pare with the proof of [10, proposition 3.4]).

PRrROPOSITION 5.9. — Let I be a K-amenable discrete group and let A
and B be I'-C*-algebras. Then any elements of KK! (A, B) can be repre-
sented by a K-cycle (m,T,H®B) such that the homomorphism Tr maq
AXpazl = LIHR@B X masI") factorises through the homomorphism Ar 4 :
AXpael = AX,eql, i.e there exists a homomorphism

T ,red,mazx * AX]redF — £(I}LUX)-B><Irrw,:v]-—w)
such that

T, mazx = TT,red,maz © )\F,A~

As a consequence, for any I'-C*-algebra A, then
Ar Ay Ko (Aximaal') = Ky (Axpeal’)
is an isomorphism [6].
We have the following analogous result for quantitative K-theory.
THEOREM 5.10. — There exists a control pair (A, h) such that
Ar, s - K (AXmael) = Ko(AXpeql)
is a (), h)-isomorphism for every I'-C*-algebra A.

Proof. — Let (7,T,H®SA) be a I'-equivariant K-cycle as in Proposi-
tion 5.9 representing the element [04] of KKI (A, SA) corresponding to
the extension

0—+SA—-CA—A—0.

Let then choose 7r A redmaz @ AXreall — L(H®BXpma,I') such that
T mag = 7T, red,maz © AT, A- Let us set P = w%“ and then define

EﬁTer(;T) = {($, y) € Axredr (&) »C(H & SANTedF) such that
Prred - Trred(T) - Prrea —y € K(H) @ SAXeql'},
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E™D) — {(2,y) € AXpmael ® L(H ® SAXa,T) such that
PF,maz . WF,ma:c(-'L‘) : PF,maa: -y S K:(H) & SAX]ma:cF}

and

ECD = {(2,y) € AxXpeal & L(H & SAx e, T) such that
PF,ma:r . 7rl—‘7red,maw($> : PF,ma:v -y S K:(H) & Axmawr}’

Then ™1, BT and E™T)  are respectively filtered by

red red,mazx

{(xa PF,red : WF,red(‘r) : PF,red + y)»
T € AXypegl'y and y € K(H) @ SAXeal'r},

{(Ia Pl",maac : ﬂT,max(I) : PF,max + y);
€ AX el and y € K(H) @ SAX el }

and

{(IE, PF,max : 7TI‘,redJrLa:v(l') ‘ PF,max + y)7
x € AXpegl'y and y € K(H) @ SAX maul's }

Moreover, the extension of C*-algebras

0 — K(H) ® SAxeql’ — BT 5 Ax, gl — 0,

red

0 — K(H) ® SAX ool — BT 5 At gl — 0

and
0 — K(H) ® SAx el — BT

red,max

— AXypeql’ — 0

provided by the projection on the first factor are respectively semi-split by

the filtered cross-sections
- A r E(W,T). P . . P
Sred @ AXpeql — red L = (.’E, I',red WF,red(x) F,red);

).
Smax - AX]maa:F — E(Tr ) T = (5E7 PF,max . 7TT‘,maw(x) : PF,maa:)

max
and
Sred,max - AX]redF — Eg&z;), T (13, Pl",marc * T red,mazx (I) : Pl",mafc)-
Let us set
T
f B = Bt (@,9) = Orax(@),9)
and

fo: BT S BT (2,y) & (2, y® a5, Idax, )

red,mazx red
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Then the three above extensions fit in a commutative diagram

0 — K(H) ® SAX gl — ETD Ayl —— 0

| o e

0 — K(H) ® SAXmael — BT 4 Axpeql —— 0

red,mazx

Ar,)c(H@s;ml le l:

0 — KH)® A%l — E™D 4 Axpel —— 0

red

which satisfy the conditions of Remark 3.8. Hence we deduce

(5.1) DK(%)@SANMMF,ETE;QQI SRV D/C(%)@SAXWMF,EL&;?
and
(5:2)  Aer)osaTx © Di3)@840mann 2D = Pregoes s, ar, 500

red,max

Let us set then

D)y =Mgh, oD K (A peal’) = Ky (SAXmaeT).

SAX mas, BT

red,maw

Since we have by definition of the quantitative Kasparov transformation
the equalities

Jlred([aA]) = ME.}{NTMF ° DSAxredr,E“"T)

red

and
T ([0a]) = MGt © Dt nd

we deduce by using equations (5.1) and (5.2), Theorems 5.3, 5.4, 5.5 and 5.6
and naturality of Morita equivalence, that there exists a control pair (A, h)
such that Ji%*([04]7') o D'y is a (a, h)-inverse for Ar 4 .. O

6. The quantitative Baum-Connes conjecture

In this section, we formulate a quantitative version for the Baum-Connes
conjecture and we prove it for a large class of groups.
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6.1. The quantitative assembly maps

Let I" be a finitely generated group equipped with a lenght ¢ arising
from a finite and symmetric generating set. Recall that for any positive
number d, then the d-Rips complex Py(T") is the set of finitely supported
probability measures on I' with support of diameter less than d for the
distance induced by £. We equip Py(T") with the distance induced by the
norm ||kl = sup{||h(y)|; v € T'} for h € Co(T,C). Since ¢ is a proper
function, i.e. B(e,r) is finite for every positive number r, we see that P;(T")
is a finite dimension and locally finite simplicial complexe and the action
of ' by left translations is simplicial, proper and cocompact.

Notice that any z in Py(T") can be written down in a unique way as a
finite convex combination

x = Z Ay ()05,

~ver

where d, is the Dirac probability measure at 7 in I'. The functions
Ay 0 Py(T) — [0, 1]
are continuous and y(\y/) = A, for all v and +' in IT". The function
era: T = Co(Pa(l)); v AY2AL/2

is a projection of Co(Py(T"))XreqI” with propagation less than d. Let us set
then r4e = k7 c/q,d. Recall that k7 can be chosen non increasing and in
this case, rq. is non decreasing in d and non increasing in €.

DEFINITION 6.1. — For any I'-C*-algebra A and any positive numbers
e, r and d with ¢ < 1/4 and r > rq., we define the quantitative assembly
map

et s KK (Co(Pa()), A) = K27 (A x,eq 1)
red

PN (JF )W’k,],s/a.] (Z)) <[6F,d70] e 7‘) .

g’ kye/ay

Then according to Theorem 5.3, the map M?:&d is a homomorphism of

Zs-graded groups. For any positive numbers d and d' such that d < d,
we denote by gq.q : Co(Py(T)) — Co(Py(T")) the homomorphism induced
by the restriction from Py (T') to Py(T'). It is straightforward to check that
if d, d’ and r are positive numbers such that d < d’ and r > rg ., then

d d’ .
pe’y = pp’s" ©qa,a .« Moreover, for every positive numbers ¢, €', d, r and
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r’ such that ¢ < & < 1/4, rqe < 7, rqe < 7/, and r < 1/, we get by
definition of a controlled morphism that

e.e’ rr’ e,r,d e r'.d
(61) L*) 7o MF’,A,* = /J’F,’A,’* :

Furthermore, the quantitative assembly maps are natural in the I'-C*-
algebra, i.e. if A and B are I'-C*-algebras and if ¢ : A — B is a I'-
equivariant homomorphism, then

erd _  erd
¢F,red,*,5,r o MRA,* - MF, « © (b*

B,
for every positive numbers r and ¢ with r > rg. and ¢ < 1/4. These
quantitative assembly maps are related to the usual assembly maps in the
following way: recall from [2] that there is a bunch of assembly maps with
coefficients in a ['-C*-algebra A defined by

M?‘,Aﬁ : KK}:(CO(Pd(F))a A) — K*(A Nred F)
z = [er.d ®cy(pym))xr Jr(2)-

For every positive numbers r and € with r > r4 . and € < 1/4, we have
(6.2) 7o pll = i a e

Recall that since /ff{Am o q4,d x = u%7A7* for all positive numbers d and
d" with d < d', the family of assembly maps (,u%’A)d>0 gives rise to a
homomorphism

UT A - 536 KK (Co(Py(T)), A) — K.(A Xpeq T)

called the Baum-Connes assembly map.

6.2. Quantitative statements

Let us consider for a I'-C*-algebra A and positive numbers d,d’,r,1’, ¢
and ¢ with d < d', ¢’ < e < 1/4, rqe < r and 7 < r the following
statements:

QI a.(d,d re): for any element z in KKI(Co(Py(T)),A), then
,u,ffAd*(x) = 0 in K" (A XpeqT) implies that ¢, (z) = 0 in
KK} (Co(Py(T)), A).

QSr,a«(d,r, 1" e,¢"): for every y in Kfl’T,(A Xreqa I'), there exists an ele-
ment z in KKL (Cy(Py(T)), A) such that

7d ’ ’
HETL (@) = £ )

Using equation (6.2) and Remark 1.17 we get
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PROPOSITION 6.2. — Assume that for all positive number d there exists
a positive number € with € < 1/4 for which the following holds:

For any positive number r with r > rq ., there exists a positive number
d'" with d’ > d such that QIv a(d,d ,r, ) is satisfied.

Then pr A« is one-to-one.
We can also easily prove the following:

PROPOSITION 6.3. — Assume that there exists a positive number &'
with ¢’ < 1/4 such that the following holds:

For any positive number r’ | there exist positive numbers ¢,d and r with
e’ <e<1/4,rqe <randr’ <rsuch that QSr a(d,r, 7 e,€') is true.

Then pr 4.« is onto.

The following results provide numerous examples of finitely generated
groups that satisfy the quantitative statements.

THEOREM 6.4. — Let A be a I'-C*-algebra. Then the following asser-
tions are equivalent:
(1) fir g (N, K(H)®A),» 1S Oone-to-one,
(ii) For any positive numbers d, ¢ and r with ¢ < 1/4 and r >

rqe, there exists a positive number d' with d* > d for which
QIr a(d,d,r ) is satisfied.

Proof. — Assume that condition (ii) holds.

Let « be an element in some KKI'(Co(Py(T)),¢>(N,K(H) ® A)) such
that

:LL(Ii‘,EOC(N,IC(H)GBA),*(I') =0.

Using equation (6.2), we get that S (uli:’f‘:’*d(:r)) =0 for any ¢’ in (0,1/4)
and ' > rq . and hence, by Remark 1.17, we can find € and r > 74, such
that /“L;‘:?i(N,IC(H)@A),*(x) = 0. Recall from [14, Proposition 3.4] that we
have an isomorphism

(6.3)  KKE(Co(Pa(I), (N, K(H) ® A)) —» KK (Co(Pa(I)), A)"
induced on the j th factor and up to the Morita equivalence
KK (Co(Pa(I)), A) = KK (Co(Pa(I)),K(H) ® A)

by the j th projection £>° (N, K(H)® A) — K(H) ® A. Let (z;);en be the el-
ement of KK} (Co(Py(T)), A)N corresponding to = under this identification
and let d’ > d be a number such that QIr a(d,d’,r, ) holds. Naturality

of the quantitative assembly maps implies that u‘?’,ff*(xi) = 0 and hence
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that qq.a «(z;) = 0 in KK (Co(Py(T)), A) for every integer i. Using once
again the isomorphism of equation (6.3), we get that g4 «(z) = 0 in
KK (Co(Py(I)),0>°(N,K(H) ® A) and hence jir g (v, (3)4),« is one-to-
one.

Let us prove the converse in the even case, the odd case being simi-
lar. Assume that there exists positive numbers d, ¢ and r with ¢ < 1/4
and r > rq. and such that for all d’ > d, the condition QIr a(d,d’,r,¢)
does not hold. Let us prove that pp geo(n x(2)04),« 18 NOt one-to-one. Let
(d;)ien be an increasing and unbounded sequence of positive numbers
such that d; > d for all integer . For all integer i, let x; be an ele-
ment in K K§ (Co(Py(T')), A) such that ﬂfﬁ;’f* (x;) =01in Ko(A Xpeq ') and
qaa, «(r;) # 0 in KK (Co(Py(T)),A). Let = be the element of
KKE(Co(Py(T)), £ (N,K(H) ® A)) corresponding to (z;);eny under the
identification of equation (6.3). Let (p;):en be a family of e-r-projections,
with p; in some M;, (A/x:;F) and n an integer such that

u?772’i(N7K(H)®A),*(x) = [(pi)ien; 1e,r

in K" (0> (N,K(H) ® A)X,eql'). By naturality of ui’;”‘i, we get that
[pisn]e,r = 0in K" (A X,eq T) for all integer i. We see by using Proposi-
tion 1.30 that then (" ([(p:)ien, n]) = 0 in Ko(£>° (N, K(H)® A)Xeql’). We
eventually obtain that u%A(m) =" 0 M?’Zd(x) = 0. Since qq,q4,.+(z) # 0

for every integer i, we get that ur s x(#)2A4),« 18 NOt one-to-one. O

THEOREM 6.5. — There exists A > 1 such that for any I'-C*-algebra,
the following assertions are equivalent:
(1) pr oo (v (H)@A),« IS ONtO;
(ii) For any positive numbers € and r’ with e < ﬁ, there exist positive
numbers d and r with rq. < r and v’ < r for which QSr a(d,r,r’,
Ae, €) Is satisfied.

Proof. — Choose A as in Remark 1.17. Assume that condition (ii) holds.
Let z be an element in K, (£>°(N, L(H)® A)X,..qI") and let y be an element
in K57 (0°(N, K(H) ® A)xyeql) such that 5" (y) = z, with 0 < ¢ < =
and 7’ > 0. Let y; be the image of y under the composition
(6.4)

K27 (00 (N, K(H)©A) #real) = K2 (K(H)®A %pea T) = K27 (A reaT),

where the first map is induced by the evaluation ¢>°(N,K(H) ® A) —
K(H) ® A at i and the second map is the Morita equivalence of Propo-
sition 1.28. Let d and r be numbers with » > ' and r» > rq,e and such
that QSr a(d,r, 7', Ae, €) holds. Then for any integer ¢, there exists a x; in
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KKI'(Cy(Py(T)), A) such that ufﬁi{f(xl) — o T(y;) in K" (AXpeal).
Let
x € KK (Co(Py(T)), (> (N,K(H) @ A))

be the element corresponding to (x;);en under the identification of equation
(6.3). By naturality of the quantitative assembly maps, we get according
to Proposition 1.30 that

Ae,r,d

Ae,r’
Fp goo (N K(H)®A)) ( ) =127 (y)
in K" (0°(N,K(H) ® A)%,eql’). We have hence

Mld“,éoo(N,lC(H)(g)A)),*(x) =15" (y) =z,

and therefore up g N x(2)0A),« 1S onto.

Let us prove the converse in the even case, the odd case being simi-
lar. Assume that there exist positive numbers € and r’ with € < ﬁ such
that for all positive numbers r and d with » > ' and r > rg., then
QSr,a(d,r,7", \e, €) does not hold. Let us prove then that jip ge (v, (1)@4)
is not onto. Let (d;);en and (7;);en be increasing and unbounded sequences
of positive numbers such that r; > 74, - and r; > /. Let y; be an element in
Kg’r,(A Xreq I') such that GAE T () is not in the range of uf‘fi;’d”’. There
exists an element y in Kg’rl (L°(N,K(H) ® A)Xeql') such that for every
integer 4, the image of y under the composition of equation (6.4) is y;. As-
sume that for some d’, there is an z in KKE (Co(Py (T)), £ (N, K(H)® A))
such that Li’rl( )= /A‘I{/em(N K(H)oA) (@ ) Using Remark 1.17, we see that
there exists a positive number r with 7' < r and rg y < r and such that

’ VAT
e, e, v’ T

7 A
Ly °© /U’F,Zx(N,IC(H)@A),*(x) =07 " "

Y)-

But then, if we choose i such that r; > r and d; > d’ we get by using

naturality of the assembly map and equation (6.1) that /5% " " (y;) belongs
Ae,ri,d

to the image of BT Ay *_ which contradicts our assumption. (]

Replacing in the proof of (ii) implies (i) of Theorems 6.4 and 6.5 the
algebra (>°(N,KC(H) ® A) by [[,cn(K(H) ® A;) for a family (A;)sen of T-
C*-algebras, we can prove the following result.

THEOREM 6.6. — Let I' be a discrete group.

(i) Assume that for any I'-C*-algebra A, the assembly map pr 4 . is
one-to-one. Then for any positive numbers d, ¢ and r with e < 1/4
and r > rq., there exists a positive number d' with d’ > d such
that QI a(d,d',r,e) is satisfied for every I'-C*-algebra A;
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(ii) Assume that for any I'-C*-algebra A, the assembly map ur s Is
onto. Then for some X\ > 1 and for any positive numbers ¢ and r’
with € < ﬁ,
and v < r such that QSr a(d,r,7’, \e,€) is satisfied for every I'-

C*-algebra A.

In particular, if T satisfies the Baum-Connes conjecture with coefficients,

there exist positive numbers d and r with rq. < r

then T satisfies points (i) and (ii) above.

Recall from [16, 20] that if T coarsely embeds in a Hilbert space, then
UT, A« is one-to-one for every I'-C*-algebra A. Hence we get:

COROLLARY 6.7. — If T' coarsely embeds in a Hilbert space, then for
any positive numbers d, € and r with e < 1/4 and r > rq., there exists a
positive number d' with d’ > d such that QIv a(d,d ,r,e) is satisfied for
every I'-C*-algebra A;

The quantitative assembly maps admit maximal versions defined with
notations of Definition 6.1 for any I'-C*-algebra A and any positive number
g, rand d with e <1/4 and r > rq., as

e e KL (Co(Pa(T)), A) — K57 (AXa0T)

2 (JF 7@”“,},5/0‘.] (Z)) ([er,d70] e 7‘) .

2y’ kye/ay

As in the reduced case, we have using the same notations
e for any positive number d and d’ such that d < d’, then

e,r,d _end
iu‘l",A,max,* - MF,A,max,* O qd,d’ -
e for every positive numbers ¢, ¢/, d, r and 7’ such that ¢ < &’ < 1/4,
Tae ST, 7qe <1, and r <71/, then

’

’ ’ ’
L‘E:a 7T e,r.d — e',r',d
* H’F,A,max,*'

° N‘F,A,maz,*

e the maximal quantitative assembly maps are natural in the I'-C*-
algebras.

Moreover, by Theorem 5.5(i), the maximal quantitative assembly maps

. . . d d
are compatible with the reduced ones, i.e up"}", = AR, o up ) e «- The

surjectivity of the Baum-Connes assembly map pir, 4, implies that the map
A1",14,* : K, (Ax}ma:vr) — K, (Axredr)

is onto. We have a similar statement in the setting of quantitative K-theory.
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THEOREM 6.8. — There exists A > 1 such the following holds : let T be
a finitely generated discrete group and assume that for any I'-C*-algebra
A, the assembly map pr a,« is onto. Then for any positive numbers € and
r, with ¢ < ﬁ, there exists a positive number 1’ with v’ > r such that
e for any I'-C*-algebra A;
o for any x in Ko (AX,.ql),

there exists y in K?E’T/(Axmmf) such that A?EX'*(y) = Srenr ().

7. Further comments

The definition of quantitative K-theory can be extended to the frame-
work of filtered Banach algebras, i.e. Banach algebra A equipped with a
family (A, ),>o of linear closed subspaces indexed by positive numbers such
that:

o A. C A ifr < rl;
4 Ar . Ar’ C Ar+r’;
e the subalgebra U A, is dense in A.

r>0
Since we no more have an involution, we need to introduce instead a norm

control for almost idempotents. Let € be in (0,1/4) and let » and N be
positive numbers. An element e of A is an e-r-N-idempotent if

e cisin A,;

o [le* —ell <&

o llef <NV
Similarly, if A is a unital, an element x in A is called e-r-N-invertible if

e risin A,;

o [zl < N;

e there exists an element y in A, such that ||y|| < N, |lay — 1| < e

and |jyz — 1] < e.
Quantitative K-theory can then be defined in the setting of e-r-IN-

idempotents and of e-r-N-invertibles. We obtain in this way a bunch of
abelian groups (Kf’T’N(A))Ee(071/4)7r>7N>1. Let us set for a fixed N > 1

’CiV(A) = (Ki’T’N(A))ee(o,1/4),r>o~

If A is a filtered C*-algebra and e an e-r-N-idempotent in A, then there
is an obvious (1, 1)-controlled morphism Ko(A) — K (A). Approximating
((2¢* —1)(2e — 1) +1)*/2e((2¢* —1)(e — 1) + 1)~/2 by using a power serie
(compare with the proof of Lemma 1.11), we get that for every N > 1, there
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exists a control pair (Ay,hy) such that Ko(A) — KJ(A) is a (An, hy)-
controlled isomorphism. Using the polar decomposition, we have a similar

statement in the odd case.
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