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A NOTE ON DEGENERATIONS OF DEL PEZZO
SURFACES

by Yuri PROKHOROV (*)

Abstract. — We prove that for a Q-Gorenstein degeneration X of del Pezzo
surfaces, the number of non-Du Val singularities is at most ρ(X)+2. Degenerations
with ρ(X) + 2 and ρ(X) + 1 non-Du Val points are investigated
Résumé. — Nous montrons que pour une dégénérescence Q-Gorenstein X de

surfaces de del Pezzo, le nombre de singularités non-Du Val est au plus ρ(X) + 2.
Les dégénérescences avec ρ(X) + 2 et ρ(X) + 1 points non-Du Val sont étudiées.

1. Introduction

This paper continues the classification of Q-Gorenstein degenerations of
del Pezzo surfaces started in [11], [6]. Let X → Z be a family of surfaces over
a smooth curve Z such that a general fiber is a smooth del Pezzo surface
and the special fiber X := Xo is reduced, normal and has only quotient
singularities. Assume further that X is Q-Gorenstein and −KX is ample
over Z. Such kind of families appear naturally in the three-dimensional
minimal model program [8], [10] and in the study of certain moduli spaces
[3], [4]. It expected that the combinatorial structure of singularities of X
is related to exceptional vector bundles on smooth del Pezzo surfaces but
this relation still looks mysterious (cf. [5]).
In this paper study the special fiber X of the above family under the

condition that the Picard number ρ(X) is large. The case ρ(X) = 1 was
investigated completely in [6]. Our main result is the following.

Keywords: del Pezzo surface, T-singularity, deformation.
Math. classification: 14J10, 14E30.
(*) Partially supported by RScF grant no. 14-21-00053.



370 Yuri PROKHOROV

Theorem 1.1. — Let X be a del Pezzo surface with only quotient sin-
gularities and let s(X) be the number of its non-Du Val points(1) . Assume
that X admits a Q-Gorenstein smoothing. Then

(i) s(X) 6 ρ(X) + 2,
(ii) if s(X) = ρ(X) + 2, then X is toric,
(iii) if s(X) = ρ(X) + 1, then X admits an effective C∗-action.

Similar to [6, Th. 1.3], as a consequence of our techniques we verify a
particular case of Reid’s general elephant conjecture (cf.[17, 3.4B]):

Theorem 1.2. — Let f : X → Z be a del Pezzo fibration over a smooth
curve. That is, X is a 3-fold with terminal singularities, f has connected
fibers, and −KX is ample over Z. Fix a point o ∈ Z and assume that
the fiber f−1(o) is reduced, irreducible, normal, and has only quotient
singularities. Then, for some ample divisor A on Z, a general member S ∈
|−KX+f∗A| is normal and has only Du Val singularities in a neighborhood
of f−1(o).

Furthermore, we give a characterization of log surfaces that admit a
C∗-actions (Theorem 5.1) and establish the existence of 1-complements on
arbitrary del Pezzo surfaces with T-singularities (Theorem 4.1).

Acknowledgement. — The work was written during my stay at the In-
ternational Centre for Theoretical Physics, Trieste. I would like to thank
ICTP for hospitality and support.

2. Preliminaries

Throughout this paper, we work over the field C of complex numbers.
ρ(X) denotes the Picard group of a variety X. We use standard definitions,
notation, and facts of the Minimal Model Program [9], [10].

Proposition-Definition [17, 3.6], [10, 5.19] 2.1. — Let P ∈ X be the
germ of a normal variety at a point P and let D be a Weil divisor on X.
Assume that D is Q-Cartier at P , that is, rD is a Cartier divisor near P
for some positive integer r. Suppose that r is the smallest such r. Then r
is called the index of D.
There exists a covering π : X] → X which is Galois with group µr such

that X] is normal, π is etale over the the locus X0 ⊂ X where KX is
Cartier, and P ] := π−1(P ) is a single point. The divisor KX] = π∗KX is
Cartier. Such a covering is called canonical index-one covering of P ∈ X.
(1)For various definitions of Du Val (rational double) singularities we refer to [2].

ANNALES DE L’INSTITUT FOURIER



DEGENERATIONS OF DEL PEZZO SURFACES 371

2.1. T-singularities [8], [19]

Definition 2.2. — Let X be a normal surface such that KX is Q-
Cartier. We say that a deformation X/(0 ∈ S) over a germ (0 ∈ S) with 0-
fiber X0 = X is Q-Gorenstein if, locally analytically at every point P ∈ X,
X/S is induced by an equivariant deformation of the canonical index-one
covering (X] 3 P ])→ (X 3 P ) (see 2.1).

Definition [8, Def. 3.7] 2.3. — Let P ∈ X be a quotient singularity of
dimension 2. We say P ∈ X is a T-singularity if it admits a Q-Gorenstein
smoothing. That is, there exists a Q-Gorenstein deformation of P ∈ X over
a smooth curve germ such that the general fiber is smooth.

Proposition [8, Prop. 3.10] 2.4. — A T-singularity is either a Du Val
singularity or a cyclic quotient singularity of the form 1

dn2 (1, dna − 1) for
some positive integers d, n, a with gcd(a, n) = 1.

2.2. Noether’s formula

For a T-singularity P ∈ X, define

µP =
{
r if P ∈ X is a Du Val singularity of type Ar, Dr, or Er,
d− 1 if P ∈ X is of type 1

dn2 (1, dna− 1).

This number coincides with the Milnor number of P ∈ X [11, Sec. 3].

Proposition [6]. 2.5. — Let X be a projective rational surface with
T-singularities. Then

K2
X + ρ(X) +

∑
P∈SingX

µP = 10.

Corollary 2.6. — Let X be a del Pezzo surface with T-singularities.
Then K2

X + ρ(X) 6 10.

2.3. Del Pezzo surfaces with T-singularities

Proposition [6]. 2.7. — Let X be a projective surface with T-singula-
rities such that −KX is nef and big. Then

dimH0(X,OX(−nKX)) = 1
2n(n+ 1)K2

X + 1.

Corollary 2.8. — Let X be a projective surface with T-singularities
such that −KX is nef and big. Then

dim | −KX | = K2
X > 0.

TOME 65 (2015), FASCICULE 1



372 Yuri PROKHOROV

2.4. Divisorial adjunction [9, ch. 16]

Let X be a normal variety and S ⊂ X a reduced subscheme of pure
codimension one. Assume that the pair (X,S) is lc (log canonical [9, 2.10])
in codimension two. Then there exists a naturally defined effective Q-Weil
divisor DiffS(0), called the different, such that

(KX + S)|S = KS + DiffS(0).

Now let B be a Q-divisor, which is Q-Cartier in codimension two. Then
the different for KX + S +B is defined by the formula

(KX + S +B)|S = KS + DiffS(B).

In particular, if B is a boundary and (X,S +B) is lc in codimension two,
then B is Q-Cartier in codimension two. Moreover, none of the components
of DiffS(B) are contained in the singular locus of S.

2.5. Classification of two-dimensional log canonical pairs with
reduced boundary [9, ch. 3 & Prop. 16.6], [10, Th. 4.15]

Let P ∈ (X,C) be the germ of a two-dimensional log pair where X is
normal and C is a (possibly reducible) reduced curve. Assume that (X,C)
is lc. Then one of the following possibilities holds where all isomorphisms
are isomorphisms of analytic germs:

2.9.1. — (X,C) is plt (purely log terminal, [9, 2.13]). Then

(X,C) ' (C2, {x1 = 0})/µm(1, a), with gcd(a,m) = 1, m > 1,

Index(KX + C) = Index(C) = m, DiffC(0) = (1− 1/m)P.

2.9.2. — (X,C) is not plt and C analytically reducible. Then

(X,C) ' (C2, {x1x2 = 0})/µm(1, a), with gcd(a,m) = 1, m > 1,

Index(KX + C) = 1, DiffC(0) = 0.

2.9.3. — (X,C) is not plt and C analytically irreducible. Then

(X,C) ' (C2, {x1x2 = 0})/G,

Index(KX + C) = 2, DiffC(0) = 1,
where G ⊂ GL2(C) is a finite subgroup of dihedral type without reflections
(see [1] for the precise description of G).

ANNALES DE L’INSTITUT FOURIER
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2.6. 1-complements.

Let X be a normal variety and let D be a boundary on X (an effective
Q-divisor with coefficients 6 1). Write D = S + B, where S := bDc (resp.
B := {D}) is the integral (resp. fractional) part of D. A 1-complement of
KX +D is a divisor D+ ∈ | −KX | such that (X,D+) is log canonical and
D+ > S + b2Bc. In particular, if D = 0, then a 1-complement of KX is a
divisor D+ ∈ | −KX | such that (X,D+) is log canonical. We say that the
log divisor KX + D is 1-complementary if there exists a 1-complement of
KX +D.

Proposition [16, Prop. 4.3.2] 2.10. — Let f : X → Y be a birational
contraction and let D be a boundary on X such that

(i) KX +D is nef over Y ;
(ii) the coefficients of f∗D satisfy the inequality di > 1/2.

Assume that KY + f∗D is 1-complementary. Then so is KX +D.

Proposition [16, Prop. 4.4.1] 2.11. — Let (X,D = S + B) be a log
variety, where S := bDc and B := {D}. Assume that

(i) KX +D is plt;
(ii) −(KX +D) is nef and big;
(iii) S 6= 0;
(iv) the coefficients of D =

∑
diDi satisfy the inequality di > 1/2.

Further, assume that there exists a 1-complement KS +DiffS(B)+ of KS +
DiffS(B). Then there exists a 1-complement KX + S +B+ of KX + S +B

such that DiffS(B)+ = DiffS(B+).

2.7. Contractions of surfaces with Du Val singularities

For convenience of the reader we state facts about MMP for Du Val
surfaces.

Definition [13](2) 2.12. — Let y ∈ Y be a smooth point on a surface
and let (u, v) be a local coordinates near y. A weighted blowup with weights
(1, n) of a y ∈ Y is the blowup X → Y of the ideal (u, vn).

Clearly, a weighted blowup depends on n and on the choice of coordi-
nates. For n = 1 the above defined map is the usual blowup of y ∈ Y . From
easy local computations (see [13, §1]) we obtain the following.

(2)For general definition see e.g. [10, 4.56] or [16, 3.2].

TOME 65 (2015), FASCICULE 1



374 Yuri PROKHOROV

Lemma 2.13. — Let y ∈ Y be a smooth surface germ and let f : X → Y

be a weighted blowup with weights (1, n), n > 2. Let E = f−1(y) be the
exceptional divisor and let π : X̃ → X be the minimal resolution. Then
the exceptional locus of the composition X̃ → Y is a simple normal divisor
whose dual graph looks as follows:

•— ◦— · · ·—◦︸ ︷︷ ︸
n−1

where the vertex • corresponds to a (−1)-curve (the proper transform of E)
and the vertices ◦ correspond to π-exceptional (−2)-curves. In particular,
X has exactly one singular point and this point is Du Val of type An−1.

Corollary 2.14. — In the above notation we have KX · E = −1.

Theorem ([13, Theorem 1.4]) 2.15. — Let X be a surface with Du
Val singularities and let f : X → Y be an extremal Mori contraction. Let
E ⊂ X be the exceptional divisor and let y := f(E). Then Y is smooth at
y and f is a weighted blowup of y ∈ Y with weights (1, n) for some n > 1.

2.8. Contractions of surfaces with T-singularities

The following is the local variant of Theorem 4.1 below.

Proposition [14, Prop. 4.7] 2.16. — LetX be a surface with T-singula-
rities and let f : X → Y be a contraction such that −KX is f -ample. Then,
near each fiber f−1(y), y ∈ Y , there exists a 1-complement of KX .

Corollary 2.17. — Let X be a surface with T-singularities and let
f : X → Y be a birational contraction such that −KX is f -ample. If the
fiber f−1(y) is not a point, then y ∈ Y is a cyclic quotient singularity (or
smooth).

Proof. — Let D ∈ | − KX | be a 1-complement of KX near the fiber.
If X has only Du Val singularities, then Y is smooth at y by Theorem
2.15. So we assume that KX is not Cartier near f−1(y). Then D 6= 0 and
D ∩ f−1(y) 6= ∅. Denote DY := f∗D. Since D ∼ −KX is f -ample, we
have Supp(D) 6⊂ f−1(y). Hence DY 6= 0. The pair (Y,DY ) is lc because so
(X,D) is. Moreover, KY + DY ∼ f∗(KX + D) ∼ 0. By the classification
2.5 the point y ∈ Y is a cyclic quotient singularity. �

Warning 2.18. — In general it is not true that the singularities of Y are
of type T.

ANNALES DE L’INSTITUT FOURIER
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3. E- and D-singularities

Proposition 3.1. — Let X be a del Pezzo surface with at worst quo-
tient singularities and such that dim | −KX | > 0. Then X has no Du Val
points of type Dn or En contained in Bs | −KX |.

Corollary 3.2. — Let X be a del Pezzo surface with T-singularities.
Then X has no Du Val points of type Dn or En contained in Bs | −KX |.

Let P ∈ X be a Du Val point of type Dn or En such that P ∈ Bs |−KX |.
Let D ∈ | −KX | be a general member. Write D =

∑
diDi, where the Di

are prime divisors and di > 0.

Lemma 3.3. — Notation as above.
(i) For any component Di of D we have D2

i > 0.
(ii) If D2

i = 0 for some Di ⊂ D, then P is the only singular point of
X lying on Di, the pair (X,Di) is lc, and di = 1.

(iii) All the components Di pass through P and do not meet each other
elsewhere.

Proof. — Let Di be a component passing through P . Assume that D2
i <

0. Then Di generates a birational extremal ray. If KX is not Cartier along
Di, then by [14, Cor. 4.3] X has no Du Val points of type Dn or En
on Di, a contradiction. If KX is Cartier along Di, then X has only Du
Val singularities in a neighborhood of Di and we have a contradiction by
Theorem 2.15 (because our ray is KX -negative). This proves (i) modulo
(iii).
Now assume that D2

i = 0 and Di 3 P . Then Di generates a contractible
KX -negative extremal face. Thus there is a contraction f : X → Z, where
Z is a smooth curve, such that Di = f−1(z)red for some z ∈ Z. Since
D ∈ |−KX | is a general member, the scheme fiber f∗z is not contained in
D. So, f∗z 6= Di, i.e. f∗z is not reduced. By [14, Cor. 4.3] KX is Cartier
along Di. Since −KX · f∗z = 2, we have −KX ·Di = 1 and Di is a fiber
of multiplicity 2. Since 2Di = f∗z is not contained in D, we have di = 1.
Finally, by [16, Prop. 7.1.3, Th. 7.1.12] the pair (X,Di) is lc. This proves
(ii) modulo (iii).
Assume that (iii) does not hold. Then there is a component Di such

that P ∈ Di and Di ∩ Dj 3 Q 6= P for some j 6= i (because SuppD is
connected). Put D′ := D− diDi. By the above, D2

i > 0. Hence the divisor
−(KX +Di +D′) ∼ (di − 1)Di is nef. Then by the adjunction we have

deg DiffDi(D′) 6 −degKDi 6 2.

TOME 65 (2015), FASCICULE 1
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On the other hand, DiffDi
(D′) > P + Q. Hence, DiffDi

(D′) = P + Q and
(X,Di + D′) is lc near Di [9, 17.6]. Since P ∈ X is not a cyclic quotient
singularity, the pair (X,Di) is strictly lc (i.e. lc but not plt) at P (see 2.5).
In particular, no component of D′ pass through P . Hence, KX + Di + D′

is not Cartier at P (see 2.9.2), so D 6= Di + D′ and di > 1. In this case,
D2
i > 0 by (ii). Then

(KX +Di +D′) ·Di = −(di − 1)D2
i < 0

and deg DiffDi(D′) < 2. The contradiction proves (iii). �

Proof of Proposition 3.1. — Let now Q ∈ X be a non-Du Val point and
let Di be a component of D passing through Q. Write D = diDi +D′.
If D = Di, then by 2.9.1 the pair (X,D) is not plt at Q. Hence, as above,

DiffD(0) = P + Q. By [9, 17.6] (X,D) is lc near D. But then KX + D is
not Cartier near Q, a contradiction.
Therefore, D 6= Di. Since dim |D| > 0, D′ 6= 0 (and D′ has a reduced

movable component). Note that the divisor −(KX +Di +D′) ∼ (di− 1)Di

is nef. Then by the adjunction we have

deg DiffDi
(D′) 6 −degKDi

6 2.

Since the coefficients of DiffDi
(0) are > 1/2 and (X,Di) is not plt at P ,

Supp DiffDi(D′) = {P, Q}. Write DiffDi(0) = a0P + bQ and DiffDi(D′) =
aP+bQ. Since (X,Di) is not plt at P , a > a0 > 1. Hence b < 1 and (X,Di)
is plt at Q. Thus, b = 1− 1/m for some m > 3 (because Q ∈ X is not Du
Val of type A1) and a 6 4/3. If (X,Di) is not lc at P , then a0 > 1 + 1/l,
where l is the minimal positive integer such that l(KX + Di) is Cartier
at P . Recall that for the Weil divisor class group of a Du Val singularity
(X,P ) we have

(X,P ) D2n+1 D2n E6 E7 E8

Cl(X,P ) Z/4Z Z/2Z⊕ Z/2Z Z/3Z Z/2Z 0

(see, e.g., [1]). So in our case we have a0 > 5/4 and a > 5/4 + 1/4 = 3/2,
a contradiction.
Thus we may assume that (X,Di) is lc at P . In particular, (X,P ) is

of type Dn. Then a0 = 1. Since a 6 4/3, we have only one possibility:
b = 2/3, a = 5/4, and 2D′ is not Cartier at P . Moreover, D′ is irreducible
(and reduced), (X,D′) is not lc at P (see 2.9.2), and so DiffD′(0) > 5

4P .
Again by 2.9.2 2Di is Cartier at P . Hence,

DiffD′(Di) >
(

5
4 + di

2

)
P > 2P,
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a contradiction. �

4. Existence of 1-complements

In this section we prove the following important fact (cf. [6, Th. 7.1]).

Theorem 4.1. — Let X be a del Pezzo surface with T-singularities.
Then there exists a 1-complement of KX .

We need a few preliminary facts.

Definition [15, §2] 4.2. — Let X be a normal projective variety. We
say that X is FT (Fano type) if there is a Q-boundary ∆ such that (X,∆)
is a klt (Kawamata log terminal) log Fano.

Proposition [15, §2] 4.3. — Let X be an FT variety.
(i) The Mori cone NE(X) is polyhedral and has contractible faces.
(ii) If f : X → Z be any contraction of normal varieties. Then Z is

FT. In particular, the FT property is preserved under MMP.
(iii) Let Ξ be a boundary on X such that (X,Ξ) is lc and −(KX +

Ξ) is nef. Let f : Y → X be a birational extraction such that
a(E,X,Ξ) < 0 for every f -exceptional divisor E. Then Y is also
FT.

(iv) Assume the LMMP in dimension dimX. Then the D-MMP works
on X with respect to any divisor D.

Proposition 4.4. — Let (Y,C) be a log pair where Y is an FT surface
and C is an irreducible curve. Assume that (Y,C) is plt, −(KY +C) is nef
and big, and | − (KY + C)| 6= ∅. Then one of the following holds:

(i) KY + C has a 1-complement,
(ii) Y has three or four singular points on C and either

(a) C2 < 0, KY · C > 0, or
(b) dim | −KY | = 0 and −KY ∼ bC, b > 2.

Proof. — First of all note that the curve C is smooth (see 2.9.1). By
Proposition 2.11 we can extend complements from (C,DiffC(0)) to Y . Thus,
for (i), it is sufficient to show existence of a 1-complement of KC+DiffC(0).
Assume the converse and write

DiffC(0) =
∑(

1− 1
mi

)
Pi, degKC + deg DiffC(0) = (KX +C) ·C 6 0

(see 2.9.1). Thus,
∑

(1 − 1/mi) 6 2. Since, by our assumption, the log
divisor KC + DiffC(0) is not 1-complementary, easy computations [9, 19.5]

TOME 65 (2015), FASCICULE 1
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show that DiffC(0) is supported in three or four points Pi. In particular,
degKC < 0 and so C ' P1.

Assume that C2 6 0. Then C generates an extremal face. Since Y is FT,
this extremal face is contractible: there is a contraction ϕ : Y → Y ′ such
that y := ϕ(C) is a point. By Lemma 4.6 below KY · C > 0. If C2 = 0,
then Y ′ is a curve, ϕ is a rational curve fibration, and C = ϕ−1(y)red. In
this case, KY ·C < 0, a contradiction. Thus C2 < 0 and we are in the case
(iia).
Assume that C2 > 0. Let D ∈ |− (KY +C)| be a general member. Write

D = aC + D′, where a > 0 and C is not a component of D′. If D′ = 0,
we get case (iib). (Here b = a+ 1 > 2 because KX + C is not Cartier near
singular points on C, see 2.9.1.) Thus we may assume that D′ 6= 0. Since
the support of

(a+ 1)C +D′ ∈ | −KY |
is connected, D′ meets C. Further,

(4.5) deg DiffC(D′) = −degKC +(KY +C+D′) ·C = 2− (a−1)C2 6 2.

By the above, DiffC(D′) has at least one point of multiplicity > 1 (and
multiplicities of all points are > 1/2). Since DiffC(D′) > DiffC(0), the only
possibility is

DiffC(D′) = P1 + 1
2P2 + 1

2P3,

where P1 ∈ C∩Supp(D′) and P2, P3 /∈ C∩Supp(D′). By 2.9.1 KY +C+D′
is not Cartier at P2 and P3. Thus KY + C + D′ 6∼ 0 and a > 1. On the
other hand, deg DiffC(D′) = 2, so by (4.5) a = 1, a contradiction. �

Lemma [16, Prop. 7.1.12] 4.6. — Let S → Z be a K-negative extremal
contraction from a surface S with log terminal singularities, where Z is not
a point. Then S has at most two singular points on each fiber.

Proof of Theorem 4.1. — Let X be a del Pezzo surface with at worst
quotient singularities and such that dim | −KX | > 0 and let D ∈ | −KX |
be a general member. Take t ∈ Q so that (X, tD) is maximally lc. If t = 1,
then KX +D is a 1-complement. So from now on we assume that t < 1.

Consider the case where (X, tD) is plt. Write tD = C + B, where C :=
btDc 6= ∅ and B is an effective fractional divisor. Since X is an FT variety,
we can run −(K + C)-MMP and obtain

ϕ : X −→ X̄.

Since
−(KX + C) ≡ B − (1− t)KX ,

ANNALES DE L’INSTITUT FOURIER
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all the contractions are B-negative. Hence they are birational and we end
up with a model (X̄, C̄) such that −(KX̄ + C̄) is nef. We have

−(KX̄ + C̄) ≡ B̄ − (1− t)KX̄ ,

where −KX̄ is ample and B̄ := ϕ∗B is effective. Hence the divisor −(KX̄ +
C̄) is big. Further,

KX + C +B ≡ −(1− t)D ≡ (1− t)KX .

Hence all the contractions in ϕ are (K+C+B)-negative. Therefore, (X̄, C̄+
B̄) is plt and so is (X̄, C̄). So, B̄ 6= 0 and D̄ := ϕ∗D 6= C̄. Apply Proposition
4.4 to (X̄, C̄). The case (iia) does not occur because −KX̄ is ample and
the case (iib) does not occur because

dim | −KX̄ | > dim | −KX | > 0.

Hence, there exists a 1-complement of KX̄ + C̄. By Proposition 2.10 we can
pull back 1-complements from X̄ to X.
Now consider the case where (X, tD) is not plt. Put B := tD. Consider

an inductive plt blowup [16, Prop. 3.1.4] δ : X̂ → X, that is, a birational
extraction such that ρ(X̂/X) = 1 and

KX̂ + B̂ + C = δ∗(KX +B),

where C is the (irreducible) exceptional divisor and B̂ is the strict transform
of B. Moreover, the pair (X̂, C + (1− ε)B̂) is plt for any ε > 0. Write

KX̂ + D̂ + aC = δ∗(KX +D),

where D̂ is the strict transform of D and a > 1. Then D̂ + aC ∈ | −KX̂ |,
so dim | − KX̂ | > 0. By Proposition 4.3 the variety X̂ is FT. Run the
−(K + C)-MMP. As above all the contractions are B̂-negative. So we end
up with a model (X̄, C̄) where −(KX̄ + C̄) is nef and big (and C̄ 6= 0):

X̂
ϕ

��?
??

??
??

δ

����
��

��
��

X X̄

(the case X̂ = X̄ is not excluded). Since NE(X̂) is polyhedral, −(KX̂ +
C + (1 − ε)B̂) is ample for some 0 < ε � 1. Hence the plt property of
the pair (X̂, C + (1− ε)B̂) is preserved. In particular, (X̄, C̄) is plt. Apply
Proposition 4.4 to (X̄, C̄). The case (iib) does not occur because

dim | −KX̄ | > dim | −KX̂ | > 0.
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Assume that we are in the case (iia). Then C̄2 < 0 and KX̄ · C̄ > 0.
In particular, C̄ is contractible: there is a contraction ψ : X̄ → X̌ of
C̄, where X̌ is an FT surface. As in [6, Proof of Th. 7.1] we see that
P̌ := ψ(C̄) ∈ X̌ is a singular point and it is not a cyclic quotient singularity.
According to Zariski’s main theorem the composition υ = ψ ◦ϕ ◦ δ−1 :
X 99K X̌ is a morphism. By Corollary 3.2 υ is not an isomorphism (because
δ(C) ∈ Bs | −KX |). Since X is a del Pezzo, υ is a K-negative contraction.
On the other hand, by Corollary 2.17 P̌ is a cyclic quotient singularity, a
contradiction. Therefore, the case (iia) does not occur and so there exists
a 1-complement of KX̄ + C̄. Now as above by Proposition 2.10 we can pull
back 1-complements from X̄ to X. �

5. Tori actions

For a normal projective surface X we denote by %(X) the numerical
Picard number, that is, the rank of the group of Weil divisors modulo
numerical equivalence. Clearly, %(X) > ρ(X) and the equality holds if X
is Q-factorial. For a Q-divisor D =

∑
diDi on X we denote

‖D‖ :=
∑
di,

ς(X,D) := %(X) + 2− ‖D‖.

We say that a log pair (X,D) is toric if X is a toric variety and D is
the (reduced) invariant boundary. We say that a log pair (X,D) admits
an effective C∗-action if the variety X admits such an action so that the
divisor D is C∗-invariant.
The statements (i) and (ii) of the following theorem ware proved by

Shokurov in much more general form [18]. For the convenience of the reader
we provide simplified complete proofs.

Theorem 5.1. — Let (X,D) be a projective normal log surface such
that D is an integral (effective) divisor, the pair (X,D) is lc, and KX+D ∼
0. Then

(i) ς(X,D) > 0;
(ii) if the equality holds, then (X,D) is toric;
(iii) if ς(X,D) = 1, then (X,D) admits an effective C∗-action.

Remark 5.2. — LetX be a projective normal surface and letD ∈ |−KX |
be a divisor such that the pair (X,D) is lc. Then the property ς(X,D) = 0
characterizes toric pairs. On the other hand, the condition ς(X,D) 6 1
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is sufficient but not necessary for (X,D) to admit an effective C∗-action.
For example, the product C × P1, where C is an elliptic curve, admits an
effective C∗-action but for any D ∈ | −KX | we have ς(X,D) > 2.

The rest of this section is devoted to the proof of Theorem 5.1. We will
use the following fact which is an easy consequence of the definition.

Lemma 5.3. — Let ϕ : Y ′ → Y be a birational morphism of normal
surfaces, and let D′ be a reduced boundary on Y ′. Denote by N(ϕ,D′) the
number of ϕ-exceptional curves that are not contained in the support of
D′. Then

ς(Y ′, D′) = ς(Y, g∗D′) +N(ϕ,D′).

Let (X,D) be a projective log surface such that (X,D) is lc,KX+D ∼ 0,
and

(5.4) ς := ς(X,D) 6 1.

Let f : (X ′, D′) → (X,D) be a minimal dlt modification, that is, a bira-
tional map such that the log pair (X ′, D′) is dlt (divisorial log terminal [9,
2.13]),

KX′ +D′ ∼ f∗(KX +D), f∗D
′ = D,

and any f -exceptional divisor has multiplicity 1 in D′ (see e.g. [9, Prop.
21.6.1], [16, Prop. 3.1.2]). By Lemma 5.3

ς(X ′, D′) = ς(X,D) = ς 6 1.

Hence, (5.4) holds for (X ′, D′). Since (X ′, D′) is dlt, X ′ is non-singular
near D′ [9, Prop. 16.6]. Moreover, X ′ has at worst Du Val singularities
outside of D′.

Run the K-MMP:

(X ′, D′) = (X(1), D(1)) ϕ1−→ (X(2), D(2)) ϕ2−→ · · · ϕl−1−→ (X(l), D(l)) = (Y,DY ).

Let E(i) ⊂ X(i) be the ϕi-exceptional divisor.

Claim 5.5. — For each i = 1, . . . , l we have
(i) X(i) has at worst Du Val singularities;
(ii) X(i) is non-singular near D(i);
(iii) ϕi is the weighted blowup with weights (1, n), n > 1 of a smooth

point ϕi(E(i)) ∈ X(i+1);
(iv) D(i) is a simple normal crossing divisor;
(v) E(i) ·D(i) = 1.
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Proof. — One can prove (i)-(iii) by induction on i using the following
scheme:

(i)i, (ii)i =⇒ (iii)i, (i)i+1, (ii)i+1.

Indeed, if (i)i holds, then ϕi is a weighted blowup by Theorem 2.15 and so
X(i+1) is smooth at ϕi(E(i)).
Since the pair (X(i), D(i)) is lc, (ii) implies (iv) and (v) follows from

Corollary 2.14 because D(i) ∼ −KX(i) . �

Claim 5.6. — For each i = 1, . . . , l we have ς(X(i), D(i)) 6 ς 6 1, in
particular, D(i) 6= 0.

Proof. — It follows from Lemma 5.3. �

By Lemma 5.3 and because X(i) is non-singular near D(i), on each step
we have one of the following possibilities:

5.7.1. — ς(X(i+1), D(i+1)) = ς(X(i), D(i)), E(i) ⊂ D(i), and ϕi is the
usual blowup of a singular point of D(i);

5.7.2. — ς(X(i+1), D(i+1)) = ς(X(i), D(i))− 1, and E(i) 6⊂ D(i).

Corollary 5.8. — Suppose that we are in the case 5.7.1 above. Fur-
thermore suppose that X(i+1) admit an action of a connected algebraic
group G so that the boundary D(i+1) is G-invariant. Then the action lifts
to X(i) so that D(i) is G-invariant.

Corollary 5.9. — Suppose that we are in the case 5.7.2 above. Fur-
thermore suppose that (X(i+1), D(i+1)) is a toric surface. Then the action
of some one-dimensional subtorus T lifts to X(i) so that D(i) is T -invariant.

Proof. — Since E(i) ·D(i) = 1 and E(i) 6⊂ D(i), the curve E(i) meets only
one component D(i)

0 ⊂ D(i) so that E(i) ·D(i)
0 = 1. Let π : X̄(i) → X(i) be

the minimal resolution near E(i). By Lemma 2.13 the dual graph of X̄(i)

has the following form:

�— •— ◦— · · ·—◦︸ ︷︷ ︸
n−1

where • corresponds to E(i), � corresponds to D
(i)
0 , and the vertices ◦

correspond to π-exceptional (−2)-curves. Thus X̄(i) is obtained fromX(i+1)

by making successive blowups of a fixed point on the proper transform of
D

(i)
0 . The stabilizer of this point is a one-dimensional subtorus in the big

torus acting on X(i+1). �
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At the end of our MMP we get a log surface (Y,DY ) admitting a fiber
type extremal DY -positive contraction h : Y → Z. Moreover,

(5.10) ς(Y,DY ) 6 ς 6 1.

Recall that Y is non-singular near DY . In particular, all the component of
DY are Cartier divisors. Moreover, KY + DY ∼ 0 and Y has at worst Du
Val singularities outside of DY .

First we consider the case where Z is a point. Then Y is a del Pezzo
surface with at worst Du Val singularities and Pic(Y ) ' Z. In particular,
%(Y,DY ) = 1. Since ‖DY ‖ > 2, the divisor −KY is not a primitive element
of Pic(Y ). In this case, Y is either a projective plane P2 or a singular quadric
P(1, 1, 2) (see e.g. [12, Lemma 6]). Moreover we have one of the following:

5.11.1. — Y ' P2, DY = D1 +D2 +D3, where Di are lines in general
position, ς(Y,DY ) = 0;

5.11.2. — Y ' P2, DY = D1 +D2, where D1 is a line and D2 is a conic
meeting D1 transversely at two distinct points, ς(Y,DY ) = 1;

5.11.3. — Y ' P(1, 1, 2),DY = D1+D2, where the class ofDi generates
Pic(Y ) and again D1 and D2 meet each other transversely at two distinct
points, ς(Y,DY ) = 1.

Claim. — The pair (Y,DY ) is toric in the case 5.11.1 and admits an
effective C∗-action in cases 5.11.2 and 5.11.3.

Proof. — Modulo change of coordinates x, y, z in P2 or P(1, 1, 2) we have
5.11.1 =⇒ DY = {xyz = 0},
5.11.2 =⇒ DY = {(xy − z2)z = 0},
5.11.3 =⇒ DY = {(xy − z)z = 0}.

Then the statement of the claim is an easy exercise. �

In all cases 5.11.1–5.11.3 we have ς(Y,DY ) > 0. This proves (i) of The-
orem 5.1. Moreover, if ς(X,D) = 0, then we are in the case 5.11.1. In
particular, (Y,DY ) is a toric surface. Since ς(Y,DY ) = ς(X ′, D′) = 0, on
each step of our MMP we have the possibility 5.7.1. By Corollary 5.8 both
(X ′, D′) and (X,D) are toric.

Now assume that ς(X,D) = 1. If moreover ς(Y,DY ) = 1, then (Y,DY )
is of type 5.11.2 or 5.11.3 and each step of our MMP is of type 5.7.1. By
Corollary 5.8 the action of the corresponding one-dimensional torus lifts to
X ′. Hence (X ′, D′) and (X,D) admit effective C∗-actions. Finally assume
that ς(X,D) = 1 and ς(Y,DY ) = 0. Then (Y,DY ) is toric and all but one
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steps of our MMP are of type 5.7.1. As above we can apply Corollaries 5.8
and 5.9 to conclude that (X,D) admits an effective C∗-action.
Now consider the case where Z is a curve. Then Z is smooth and h :

Y → Z is a rational curve fibration with Pic(Y/Z) ' Z. For a general fiber
F we have

DY · F = −KY · F = 2.
Let D0 be a h-horizontal component of DY . We claim that D0 is a section.
Indeed, assume thatD0 is a double section. Then by the adjunction formula

D0 · (DY −D0) = −D0 · (KY +D0) = −degKD0 6 2.

Since ‖DY ‖ > 3 and DY is a simple normal crossing divisor, it has at least
two vertical components Di with D0 ·Di = 2. Thus D0 · (DY −D0) > 4, a
contradiction.
Hence, D0 is a section. Then DY has another h-vertical component D1

which is also a section of h. Since D0 is a Cartier divisor, h : Y → Z

is a smooth P1-fibration. If D0 is not a rational curve, then as above by
adjunction degKD1 = 0 and D0 is disjoint from DY − D0. On the other
hand, DY − D0 has at least one h-vertical component, a contradiction.
Hence, D0 is a smooth rational curve and Y is a Hirzebruch surface Fe,
e 6= 1. Let Σ be the minimal section of Fe and let F be a fiber. Since
Di · (DY − Di) = −degKDi

= 2 for each component Di ⊂ DY , we have
one of the following possibilities (up to permutation of D0 and D1):

5.12.1. — D0 ·D1 = 0, ‖DY ‖ = 4, D0 = Σ, D1 ∼ Σ + eF , D2 and D3
are distinct fibers, ς(Y,DY ) = 0;

5.12.2. — D0 ·D1 = 1, ‖DY ‖ = 3, D0 = Σ, D1 ∼ Σ + (e+ 1)F , D2 is a
fiber, ς(Y,DY ) = 1.

Then we can complete the proof similar to what we did page 383 (with
5.11.1–5.11.3) by using the following.

Claim. — The pair (Y,DY ) is toric in the case 5.12.1 and admits an
effective C∗-action in the case 5.12.2.

Proof. — The statement is obvious in the case e = 0, so we assume
that e > 2. Let π : (Y,DY )→ (Y ′, D′Y ) be the contraction of the negative
section. Then Y ′ is the weighted projective plane P(1, 1, e). We may assume
that in suitable orbifold coordinates x, y, z the boundary D′Y is given by
the equation xyfe(x, y, z) = 0 (resp. xfe+1(x, y, z) = 0) in the case 5.12.1
(resp. 5.12.2), where fd(x, y, z) denotes some polynomial of weighted degree
d.

ANNALES DE L’INSTITUT FOURIER



DEGENERATIONS OF DEL PEZZO SURFACES 385

In the case 5.12.1, since D′Y is a simple normal crossing divisor outside of
the origin (0 : 0 : 1) andD′1 does not pass through (0 : 0 : 1), the polynomial
fe(x, y, z) contains z. Then by a coordinate change we get fe(x, y, z) = z.
Hence (Y ′, D′Y ) is toric. Since π is the minimal resolution, the torus action
lifts to Y .
Similarly, in the case 5.12.2 fe+1(x, y, z) contains zy (because (Y ′, D′Y ) is

lc). By a coordinate change we get fe+1(x, y, z) = zy+xe+1. Then (Y ′, D′Y )
admits an C∗-action (x, y, z) 7−→ (x, λy, λ−1z). �

6. Proof of main theorems

Now Theorem 1.1 is a consequence of the following.

Proposition 6.1. — Let X be a projective normal surface and let s(X)
be the number of its points where KX is not Cartier. Assume that X has
a 1-complement D ∈ | −KX |. Then

(i) s(X) 6 %(X) + 2,
(ii) if s(X) = %(X) + 2, then X is toric,
(iii) if s(X) = %(X) + 1, then X admits an effective C∗-action.

Proof. — By the classification of log canonical singularities of pairs [10,
Thm. 4.15], D is a nodal curve, and, at each singularity P ∈ X, either
D = 0 and P ∈ X is a Gorenstein log canonical singularity, or the pair
P ∈ (X,D) is locally analytically isomorphic to the pair ( 1

n (1, a), (uv = 0))
for some n and a. Moreover D has arithmetic genus 1 because 2pa(D)−2 =
(KX +D) ·D = 0 (note that the adjunction formula holds because KX +D

is Cartier [9, 16.4.3]). Thus D is either a smooth elliptic curve, or a rational
curve with a node, or a cycle of smooth rational curves.
Let s′ be the number of singular points of X lying on D. Then

# Sing(D) > s′ > s(X).

By the above # Sing(D) = ‖D‖. Then the assertion follows from Theorem
5.1. �

The proof of Theorem 1.2 is essentially the same as the proof of [6,
Theorem 1.3].

7. Examples

A natural way to produce examples of del Pezzo surfaces as in (iii) of
Theorem 1.1 is to use deformations:
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Theorem [6, Prop. 3.1] 7.1. — Let X be a projective surface such that
X has only T-singularities and −KX is nef and big. Then there are no
local-to-global obstructions to deformations of X.

Thus we can start with some known examples and construct new ones
by deforming their singularities. The behavior of the Picard number is
described by Noether’s formula 2.5 and by the following

Proposition [6, Prop. 2.3] 7.2. — Let (P ∈ X )/(0 ∈ S) be a Q-
Gorenstein deformation of a T-singularity P ∈ X of type 1

dn2 (1, dna − 1)
and let P1, . . . , Pl be all the singular points of a fiber Xs, s ∈ S. Then the
possible types of P1, . . . , Pl ∈ Xs are as follows:

a) Ad1−1, . . . , Adl−1 or
b) 1

d1n2 (1, d1na− 1), Ad2−1, . . . , Adl−1,
where d1, . . . , dl is a partition of d.

Remark 7.3. — In the above situation, the case Sing(Xs) = ∅ is not
excluded. This is possible only if d = 1 and in this case we put l = 1.

Corollary 7.4. — Let X be a projective surface with T-singularities
and let X/(0 ∈ S) be a Q-Gorenstein deformation induced by a local
deformation of one point P ∈ X. Then, in the notation of 7.2, for a general
fiber Xs, s ∈ S we have

ρ(Xs)− ρ(X) = l − 1,

Now we can take one of the toric surfaces with T-singularities and ρ(X) =
1 described in [6, §4] and deform it in a suitable way.

Example 7.5. — Take the weighted projective plane X := P(a2, b2, 5c2),
where a, b, c, are given by the following Markov-type equation

a2 + b2 + 5c2 = 5abc

(cf. [7]). Then X has three singular points which are of type T and K2
X = 5.

More precisely,

Sing(X) =
{

1
a2 (b2, 5c2), 1

b2
(a2, 5c2), 1

5c2 (a2, b2)
}

For the third point we have
1

5c2 (a2, b2) = 1
5c2 (1, 5cα− 1),

where α = abδ and δ is taken so that a2δ ≡ 1 mod 5c2. Thus deforming
this point to one of the following collection of singularities

• 1
c2 (1, cα− 1), A3;
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• 1
2c2 (1, 2cα− 1), A2;

• 1
3c2 (1, 3cα− 1), A1;

• 1
4c2 (1, 4cα− 1),

we get examples of del Pezzo surfaces as in (iii) of Theorem 1.1 with K2
X =

5, ρ(X) = 2, s(X) = 3.
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