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ON FUNCTIONS WITH A CONJUGATE

by Paul BAIRD & Michael EASTWOOD (*)

Abstract. — Harmonic functions of two variables are exactly those that ad-
mit a conjugate, namely a function whose gradient has the same length and is
everywhere orthogonal to the gradient of the original function. We show that there
are also partial differential equations controlling the functions of three variables
that admit a conjugate.
Résumé. — Les fonctions harmoniques en deux variables sont exactement celles

qui admettent une fonction conjuguée, à savoir une fonction dont le gradient a la
même longueur et est partout orthogonal au gradient de la fonction d’origine. Nous
montrons qu’il existe des équations aux dérivées partielles qui contrôlent également
les fonctions de trois variables qui admettent une fonction conjuguée.

1. Introduction

A pair of smooth real-valued functions f and g on a Riemannian mani-
fold M are said to be conjugate if and only if

(1.1) ‖∇f‖ = ‖∇g‖ and 〈∇f,∇g〉 = 0.

In this article, we shall address the following question. When does a given
smooth function f : M → R admit a conjugate function? When M is 2-
dimensional the pair of functions (f, g) : M → R2 is mutually conjugate
if and only if the mapping (f, g) is conformal away from isolated points
where its differential vanishes. It is well-known that, in this case, f must
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differential equation, 3-harmonic function, conformal Killing field.
Math. classification: 53A30.
(*) The first author is grateful for support provided by the Australian Research Council
and to the Mathematical Sciences Institute at the Australian National University; part of
this work was carried out under the award of a délégation auprès du CNRS. The second
author is a Federation Fellow of the Australian Research Council and is grateful to the
Département de Mathématiques á l’Université de Bretagne Occidentale for support and
hospitality while working on this article.



278 Paul BAIRD & Michael EASTWOOD

be harmonic and, conversely, a harmonic function locally always admits
a conjugate, unique up to an additive constant. When M is of higher di-
mension, then the pair (f, g) : M → R2 is said to be semiconformal. As
discussed in [6], semiconformality is one of the two conditions that (f, g)
be a harmonic morphism. In fact, if M = Rn and both f and g are polyno-
mial, then it is the only condition [1]. In this article, we shall be concerned
with f defined on an open subset in R3. We extend our earlier work [3] in
which we derived some necessary conditions on f in order that it admit a
conjugate under a non-degeneracy condition, to now obtain necessary and
sufficient conditions in all cases.
An example of a pair of conjugate functions in three variables is

f = x2
x1

2 + x2
2 + x3

2

x22 + x32 g = x3
x1

2 + x2
2 + x3

2

x22 + x32 .

The Hopf mapping S3 → S2 viewed in stereographic coördinates

f = (1− ‖x‖2)x2 + 2x1x3

x22 + x32 g = (1− ‖x‖2)x3 − 2x1x2

x22 + x32

provides another good example. In these two cases, the pair (f, g) enjoys
an evident symmetry with respect to rotation about the x1-axis. This is
not usual, as is illustrated by the following example:–

f = log
√
x12 + x22 + x32 g = arccos x1√

x12 + x22 + x33 .

In all three examples, the pair (f, g) is smooth away from the x1-axis.
We shall frequently need to manipulate tensors and for this purpose, we

use Penrose’s abstract index notation [13]. We shall write

fi = ∇if fij = ∇i∇jf et cetera,

where ∇i is the flat connection on Rn or, more generally, the metric con-
nection on a Riemannian manifold. Also, let us ‘raise and lower’ indices
with the metric δij in the usual fashion and write a repeated index to
denote the invariant contraction over that index. Thus, f ii = ∆f is the
Laplacian and f igi = 〈∇f,∇g〉. We shall use round and square brackets
to denote symmetrising and skewing over the indices they enclose. For ex-
ample, φ(ij)k = 1

2φijk + 1
2φjik and ∇[iφj] is the exterior derivative of a

1-form φi.
In order to find necessary and sufficient conditions for a function f de-

fined on an open set of R3 to admit a conjugate, we begin by constructing
conformal invariants that reflect geometric constraints that derive from
(1.1) and its derivatives.
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ON FUNCTIONS WITH A CONJUGATE 279

A conformal differential invariant is a polynomial in the derivatives of
f as well as the inverse (Euclidean) metric, that transforms by scaling
under the action of the Möbius group on R3 ∪ {∞} (the amount of scaling
being called the weight of the invariant: for details see Appendix A). An
elementary conformal invariant is the first order one J := f ifi of weight
−2. We shall require invariants up to third order. In Appendix A we give a
more thorough treatment of conformal invariants and derive a list of those
that we require; these will be labelled with uppercase Roman letters.

Higher order conformal invariants may be built from lower order ones
by using simple rules. For example, if φi is a conformally invariant 1-form
of weight −1, then the trace ∇iφi is conformally invariant. Applying this
procedure to the 1-form

√
Jfi yields Z/

√
J , where, up to a multiple, the

operator Z is the 3-Laplacian, a well-known conformal invariant in dimen-
sion 3. The trace-free part of ∇(iφj) is invariant whenever φj has weight 2.
Applying this construction to J−1fi yields an invariant ψij from which we
deduce another invariant X via the formula:

ψijψij = 2
3Z

2 − JX .

The invariant X plays a fundamental role in our characterization. Its
explicit expression is given in §2 below. A necessary condition that f admit
a conjugate is that X 6 0 (Theorem 2.1). In what we refer to as the generic
case X < 0, there are exactly four distinct vectors (two up to sign) called
conjugate directions, which potentially may be the gradient of a conjugate
function. When X = 0 there are either exactly two conjugate directions,
so up to sign any conjugate must be unique, or infinitely many; these two
cases are distinguished by another conformal invariant derived from X and
Z, which we call Y . By normalising coördinates, we explain the geometric
interpretation of these conditions.
The next step is to understand when a conjugate direction ωi is integrable

and so is the gradient of a function. In §3 we show that in the generic case,
integrability is equivalent to the vanishing of two polynomial expressions in
ωi and the derivatives up to third order of f (Theorem 3.1). Our objective
is then to eliminate ωi to obtain conditions involving just derivatives of
f . However, a difficulty arises in that we only have explicit expressions for
quadratic terms in ωi. Thus, instead of trying to determine whether a spe-
cific conjugate direction is integrable, we ask rather that one or the other
be integrable without specifying which. This leads to a set of three equa-
tions involving just quadratic terms in ωi (Theorem 4.1). In §4, we show
how to elimiate ωi in a normalized coördinate system to give three third
order differential equations in f . Each equation is a conformally invariant
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280 Paul BAIRD & Michael EASTWOOD

homogeneous expression in the derivatives of f with a certain weight and
degree. To write these down in terms of conformal invariants, we explore
combinations of invariants that have the same weight and degree and use
ad hoc methods to equate terms. An invariant derivation without recourse
to normal coördinates is given in Appendix B.
In §5 we deal with special cases, the first of which concerns functions

that admit a unique conjugate direction (up to sign). In terms of conformal
invariants, these are characterized by the conditions X = 0 and Y 6= 0. The
analysis proceeds in a similar way to the generic case, except that now the
characterization requires just two third order equations, made explicit in
Corollary 5.4. The next special case concerns functions that admit infinitely
many conjugates, characterized by X = Y = 0. Now, J−1fj is a conformal
Killing field, all of which can be written down explicitly, as detailed in
Appendix C. This enables us to write down all conjugate pairs in this case.
The final special case discusses functions of two variables that admit a
conjugate (in R3).
Examples are discussed in §6. For the case of spherical symmetry, up to

scaling and addition of a constant, log ||x|| is the unique function that ad-
mits a conjugate, in fact infinitely many. If f is assumed to have cylindrical
symmetry, then the corresponding examples give a nice illustration of the
generic case. For a conjugate pair (f, g), fibres of the associated map into
R2 are helices which wind around concentric cylinders; right-handed screw
or left-handed screw now corresponds to the two choices of conjugate. Fi-
nally, in §7, for a function f that admits a conjugate g, we discuss how the
conformal invariants X(g) and Z(g) of g relate to those of f . This enables
us to give a characterization of 3-harmonic conjugate pairs.

2. A necessary condition

Theorem 2.1. — LetM be an 3-dimensional Riemannian manifold and
f : M → R a smooth function. In order to admit a conjugate, f must satisfy
the differential inequality

(2.1) X := 2fijfjf ikfk − f ifif jkfjk + f ifi(f jj)2 6 0.

Proof. — A proof of this theorem was given in [3]. In fact, a version
was proved there valid in any dimension. Here we give a more efficient
proof only valid in three dimensions. However, this proof will allow us to
draw additional and useful conclusions. In addition, the method of proof (in
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ON FUNCTIONS WITH A CONJUGATE 281

Lemma 2.2) will provide a good illustration of the normalisation techniques
occurring throughout the rest of this article.
If f is to admit a conjugate, then there must be a closed 1-form ωj such

that

(2.2) f jωj = 0 and ωjωj = f jfj .

Indeed, (1.1) implies that we may find an ωj that is exact. We shall show
that the inequality (2.1) is necessary in order to find a closed ωj satisfy-
ing (2.2). To proceed, let us differentiate the equations (2.2) with respect
to ∇i. We obtain

(2.3) f ijωj + ωijfj = 0 and ωijωj = f ijfj .

Since we are supposing that ωij = ∇iωj is symmetric we may transvect
the second of these with fi and use the first to eliminate ωijfi. This gives

f ijωiωj + f ijfifj = 0.

We now have the following equations

(2.4) f iωi = 0 ωiωi = f ifi f ijωiωj + f ijfifj = 0

and we claim it is a matter of algebra to show that the inequality (2.1)
must hold if there is to be a solution ωi. This is detailed in the following
Lemma, which we state independently for future use. Notice that if ωi is
real then so is Tijk in which case TijkT ijk > 0. �

Lemma 2.2. — If fij is a 3 × 3 symmetric matrix and fi is a 3-vector,
then

(2.5) (f ifi)X + 12TijkT ijk = 0

where

(2.6) Tijk = f[iωjfk]`ω
`

and ωi is any solution, real or complex, of the equations (2.4).

Proof. — If fi = 0 then the conclusion is trivial. Otherwise, let us choose
coördinates so that f1 = f2 = 0. We may also orthogonally diagonalise the
quadratic form fij restricted to the plane orthogonal to fi. In other words,
we may further change coördinates to arrange that f12 = 0. Having made
these choices, the quantity X becomes, after a short calculation,

(2.7) X = 2(f3)2(f11 + f33)(f22 + f33).

Another short calculation yields

(2.8) TijkT
ijk = 1

6 (f22 − f11)2ω1
2ω2

2

TOME 65 (2015), FASCICULE 1



282 Paul BAIRD & Michael EASTWOOD

whilst the equations (2.4) become

(2.9) ω3 = 0 ω1
2 + ω2

2 = f3
2 f11ω1

2 + f22ω2
2 + f33f3

2 = 0

the second two of which may be written as

(2.10)
[

1 1
f11 + f33 f22 + f33

] [
ω1

2

ω2
2

]
=
[
f3

2

0

]
.

Now there are two cases. If f11 = f22, then (2.8) implies that TijkT ijk = 0.
But (2.10) implies that f11 + f33 = 0 and then (2.7) shows that X = 0 and
(2.5) reduces to 0 = 0. On the other hand, if f11 6= f22, then we may use
(2.10) to solve (2.9), obtaining

(2.11) ω1
2 = f3

2 f22 + f33

f22 − f11
and ω2

2 = f3
2 f11 + f33

f11 − f22
.

and compute

12TijkT ijk = 2(f22 − f11)2ω1
2ω2

2 = −2f3
4(f11 + f33)(f22 + f33).

A comparison with (2.7) immediately yields (2.5), as required. �

From now on we shall suppose that fi is non-zero (at a particular point
and hence nearby as well). In case that f admit a conjugate, it is then clear
from (1.1) that the pair (f, g) is a submersion (near the point in question).
The nature of the singularities of a semiconformal mapping is not known
in general [2].
Notice that it follows from the proof of this lemma that the equations

(2.4) always have solutions if we allow ωi to be complex and generically (in
fact, precisely when X 6= 0) there are four solutions. Alternatively, this is
geometrically clear: the first equation restricts matters to a plane wherein
the second and third equations describe planar quadrics.
Perhaps our proof of Lemma 2.2 seems bizarre but, in fact, we have used

a familiar technique. The Cayley-Hamilton Theorem, for example, is often
proved, even for real matrices, by employing Jordan canonical form over
the complex numbers. Not only that, but Lemma 2.2 can be proved without
normalisation by means of the Cayley-Hamilton Theorem applied to fij re-
stricted, as a symmetric form, to the plane orthogonal to fi (the details of
this proof being left to the reader). Another proof avoiding normalisation
may be obtained by expanding the identity 0 = f[iωjfk

kf`]
`. In fact, it is

a consequence of Weyl’s Second Fundamental Theorem of Invariant The-
ory [15] that dimension-dependent identities must arise by ‘skewing over
too many indices’. To use normalisation as we have done, however, is a
simple enough method that we shall employ throughout this article.

ANNALES DE L’INSTITUT FOURIER
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The quantities occurring in the proof of Lemma 2.2 suggest other com-
binations of derivatives with geometric significance. The operator

(2.12) f 7→ Z ≡ f ijfifj + f ifif
j
j ,

for example is, up to a multiple, the well-known 3-Laplacian [7, 10] and in
normal coördinates

(2.13) f1 = f2 = f12 = 0

at a point becomes

(2.14) Z = f3
2(f11 + f22 + 2f33).

Also, the quantity J ≡ f ifi is f3
2. Therefore, from (2.7),

(2.15)
Y ≡ Z2 − 2JX

= f3
4(f11 + f22 + 2f33)2 − 4(f3)4(f11 + f33)(f22 + f33)

= f3
4(f11 − f22)2

and we recognise that the vanishing of this expression when X = 0 is
exactly the criterion discovered in the proof of Lemma 2.2 for there to be
infinitely many solutions ωi to the system (2.4). In summary, if we allow
complex solutions of (2.4) then

(2.16)
X 6= 0 ⇐⇒ ∃ 4 distinct solutions

X = 0 and Y 6= 0 ⇐⇒ ∃ 2 distinct solutions
X = 0 and Y = 0 ⇐⇒ ∃ ∞-many solutions.

If we restrict attention to the case when (2.4) has real solutions, then
Lemma 2.2 implies that X 6 0 whence

(2.17)
X 6= 0 ⇐⇒ X < 0 and ∃ 4 distinct solutions

X = 0 and Y 6= 0 ⇐⇒ Y > 0 and ∃ 2 distinct solutions
Y = 0 ⇐⇒ X = 0 and ∃ ∞-many solutions,

the last two conclusions following from Y = Z2 − 2JX upon noting that
both terms on the right hand side are non-negative.

3. Integrability of the conjugate direction:
the generic case

Recall that if f is to admit a conjugate function near any particular
point, then there must be a solution ωj at that point of the algebraic equa-
tions (2.4). These three equations, specifically the third one, were derived
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284 Paul BAIRD & Michael EASTWOOD

under the assumption that ωj extend to a closed form near the point in
question but our approach from now on is to take ωj to be defined at a
particular point by the equations (2.4) and ask whether it may be extended
to a smooth closed form near that point whilst maintaining (2.4). This is
entirely equivalent to finding a local conjugate for f . As a matter of ter-
minology, we shall refer to a solution ωj of (2.4) as a conjugate direction.
In case that X < 0 (at the point in question and hence nearby as well),
we have just seen from (2.17) that there are four distinct solutions of (2.4)
for ωj . It follows that any one of these solutions uniquely and smoothly
extends as a conjugate direction. Therefore, the only remaining question
in case X < 0 is whether this extension is closed and we shall refer to this
as integrability. We show that integrability is equivalent to a further two
polynomial equations in ωi and the derivatives of f .

Resolution of these further equations combined with (2.4) will lead to
necessary and sufficient differential conditions on the function f in order
that it admit a conjugate. All of this is under the assumption that X < 0
and we shall refer to this as the generic case. The case X ≡ 0 will be studied
separately.

Theorem 3.1. — Let ωj be a conjugate direction determined by (2.4).
Then provided X < 0, the tensor field ωij is symmetric in its indices if and
only if

f ijkfifjfk + f ijkfiωjωk + 2f ijfjkfifk − 2f ijfjkωiωk = 0(3.1)
f ijkfifjωk + f ijkωiωjωk + 4f ijfjkfiωk = 0.(3.2)

Proof. — Since X 6= 0, the identity of Lemma 2.2, namely

(3.3) f jfjX + 12TijkT ijk = 0 ,

where Tijk = f[iωjfk]lω
l, shows that the vector field f ijωj is independent

of f i and ωi. Therefore, the tensor field ωij is symmetric in its indices if
and only if

(3.4) uivj(ωij − ωji) = 0 ,

where ui and vj are any vector fields taken from the set {f i, ωi, f ijωj}.
Looking back at (2.3), which was obtained by differentiating (2.2), we see
that

f iωj(ωij − ωji) = f ijfifj + f ijωiωj .
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ON FUNCTIONS WITH A CONJUGATE 285

This already vanishes by assumption. It is our third equation from (2.4).
Differentiating this third equation gives

0 = f i∇i(f jkfjfk + f jkωjωk)
= f ijkfifjfk + f ijkfiωjωk + 2f jkf ijfifk + 2f jkωijf iωk .

We notice that the last term f jkωijf
iωk occurs as the first component of

the symmetry condition f if jkωk(ωij − ωji) = 0, which therefore holds if
and only if

f ijkfifjfk + f ijkfiωjωk + 2f jkf ijfifk + 2f jkωjif iωk = 0 ,

where we have replaced ωij by ωji in the last term. But now (2.3) shows
that we can replace ωjif i with −fjiωi. This yields (3.1). Similarly, the
equation

0 = ωi∇i(f jkfjfk + f jkωjωk) = · · ·
shows that the final symmetry condition ωif jkωk(ωij − ωji) = 0 reduces
to (3.2). �

Corollary 3.2. — Locally, a smooth function f with X < 0 admits
a smooth conjugate if and only if there is a smooth solution ωi of the
equations (2.4), (3.1) and (3.2).

Proof. — Symmetry of ωij is precisely the condition that ωi be exact
and, therefore, locally of the form ∇ig for some smooth function g. �

Of course, we know that equations (2.4) admit smooth solutions when
X < 0 so the only issue is whether we can find a solution for which (3.1)
and (3.2) are also satisfied. Also, if ωi is a solution then so is −ωi.

4. Resolution of the equations: the generic case

Throughout this section we shall suppose that X < 0. Recall that under
this hypothesis f has four conjugate directions at each point, occurring
in two pairs that differ only by sign. In other words, the solutions of the
equations (2.4) have the form {±ωi,±ηi} for ωi and ηi smooth linearly
independent 1-forms. Let us consider the expressions

p+ ≡ f ijkfifjfk + f ijkfiωjωk + 2f ijfjkfifk − 2f ijfjkωiωk
p− ≡ f ijkfifjfk + f ijkfiηjηk + 2f ijfjkfifk − 2f ijfjkηiηk
q+ ≡ f ijkfifjωk + f ijkωiωjωk + 4f ijfjkfiωk
q− ≡ f ijkfifjηk + f ijkηiηjηk + 4f ijfjkfiηk
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According to Corollary 3.2 and the discussion that immediately follows it,
we now know that f admits a conjugate if and only if

p+ = q+ = 0 or p− = q− = 0.

These two possibilities are captured by the following theorem.

Theorem 4.1. — Locally, a smooth function f with X < 0 admits a
smooth conjugate if and only if

p+p− = 0 q+q− = 0 (p+q−)2 + (p−q+)2 = 0.

Proof. — Evidently, the vanishing of these three quantities is equivalent
to p+ = q+ = 0 or p− = q− = 0. �

The condition p+p− = 0 was already resolved in [3]. We recapitulate and
refine the argument as follows. Firstly, we write p+ using normal coordi-
nates (2.13) to discover that

(4.1) p+ = pe + poω1ω2

where

(4.2) pe = f3
3f333 + 2f3

2(f13
2 + f23

2 + f33
2)

+ (f3f113 − 2f11
2 − 2f13

2)ω1
2 + (f3f223 − 2f22

2 − 2f23
2)ω2

2

and
po = 2f3f123 − 4f13f23.

In normal coördinates (η1, η2) = (±ω1,∓ω2). It follows that

(4.3) p− = pe − poω1ω2

and hence that

(4.4) p+p− = pe
2 − po2ω1

2ω2
2.

But, since ωi is subject to (2.4), we know that ω1
2 and ω2

2 are determined
in normal coördinates by (2.11). In [3] we used this to eliminate ω1

2 and
ω2

2 from pe in (4.2) and then from p+p− in (4.4) to discover by trial and
error that Y 2p+p− could be written as an explicit Riemannian invariant in
the derivatives of f , where Y is the invariant Z2 − 2JX from (2.15). We
can argue more systematically as follows. Firstly, we may obtain ηi from
ωi without recourse to normal coördinates.

Lemma 4.2. — The conjugate direction ηi is determined by the conju-
gate direction ωi via the formula

(4.5)
√
Y ηi = 2f jkfjωkfi + (Z − 2f jkfjfk)ωi − 2Jfijωj .
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Proof. — Since it is evidently coördinate-free, we may verify this formula
in normal coördinates (2.13). Substituting from (2.14) we see that the right
hand side of (4.5) becomes

2(f13f3ω1 + f23f3ω2)fi + f3
2(f11 + f22)ωi − 2f3

2fi
jωj

In more detail,
i right hand side of (4.5)
1 f3

2(f11 + f22)ω1 − 2f3
2(f11ω1) = f3

2(f22 − f11)ω1

2 f3
2(f11 + f22)ω2 − 2f3

2(f22ω2) = f3
2(f11 − f22)ω2

3 2(f13f3ω1 + f23f3ω2)f3 − 2f3
2(f13ω1 + f23ω2) = 0

On the other hand, from (2.15) the left hand side of (4.5) becomes√
f34(f11 − f22)2ηi

and the whole of (4.5) reduces to (η1, η2) = ±(ω1,−ω2) depending on the
sign chosen for the square root of Y . �

Note that since Y > 0 when X < 0 we could always insist of taking the
positive square root of Y in (4.5) to obtain a consistent smooth choice of
conjugate direction ηi once ωi is chosen. In any case, now let us consider
pe in more detail. From (4.1) and (4.3) we see that

(4.6) pe = 1
2 (p+ + p−).

Note that p+ does not see the sign of ωi and p− does not see the sign
of ηi. Moreover, interchanging ωi and ηi interchanges p+ and p−. Hence,
from (4.6) we see that pe depends only on the derivatives of f . In principle,
we could now use (4.5) to substitute for ηi in p−. We conclude that Y pe
is a polynomial in fi, fij , fijk, and ωi, which is actually independent of ωi
when (2.4) holds. Equation (2.4) may now be used to eliminate ωi from Y pe
leaving a polynomial in fi, fij , fijk. In practice, this is quite an intricate
matter, which we consign to §B. The result is:

Y pe = 1
2Y (p+ + p−) = 1

2 (ZS − 2XR+ 2XY ),

where R and S are two further conformal invariants derived in §A.
Let us apply similar reasoning to some of the other quantities occurring

above. From (4.1) and (4.3) we see that

p0ω1ω2 = 1
2 (p+ − p−).

As we have already observed, interchanging ωi and ηi interchanges p+

and p−, hence changing the sign of p+−p−. As is readily verified in normal
coördinates, another quantity with this property is

E ≡ εijkfiωjfk`ω`
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where εijk is a choice of volume form, uniquely normalised up to sign by
εijkεijk = 6. Specifically, if we further constrain our normal coördinates
(2.13) by requiring that ε123 = 1, then

E = f3(f22 − f11)ω1ω2.

As above, it follows that we may use (4.5) to eliminate ηi from

Y Epoω1ω2 = 1
2E(Y p+ − Y p−).

Moreover, this quantity is stable under interchange of ωi and ηi. It must
be a polynomial in fi, fij , fijk alone, which is given by:

Y Epoω1ω2 = 1
2E(Y p+ − Y p−) = − 1

4JXV,

where this calculation is once more detailed in §B and V is one of our list
of conformal invariants derived in §A. But from Lemma 2.2, we have the
identity

(4.7) E2 = − 1
2J

2X.

We conclude that

P ≡ 8Y 2p+p− = 2Y 2(p+ + p−)2 − 2Y 2(p+ − p−)2

= 2(ZS − 2XR+ 2XY )2 +XV 2.

The vanishing of P is then our fourth conformally invariant condition (in
addition to the first three (2.4)), obtained in [3], for the existence of a
conjugate in the generic caseX < 0. We now proceed similarly to obtain the
two other conditions to provide a necessary and sufficient set of conditions.
First we observe that Q ≡ Y

√
Y q+q− is conformally invariant, where we

use Lemma 4.2 to define ηi by a choice of square root for Y . Certainly it is a
Riemannian invariant and we shall compute it in normal coördinates (2.13).
According to the proof of Lemma 4.2, we may take

√
Y = f3

2(f22 − f11) η1 = ω1 η2 = −ω2,

in which case

q+ = q1ω1 + q2ω2 and q− = q1ω1 − q2ω2,

where
q1 = f3

2f133 + f111ω1
2 + 3f122ω2

2 + 4f3f13(f11 + f33)
q2 = f3

2f233 + f222ω2
2 + 3f112ω1

2 + 4f3f23(f22 + f33)

so that

Q = Y
√
Y q+q− = f3

6(f22 − f11)3(q1
2ω1

2 − q2
2ω2

2)
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from which ω1
2 and ω2

2 may be eliminated with (2.11). The result is a
polynomial expression in f and its derivatives. In terms of the various
conformal invariants developed in §A it turns out that

Q = 1
6JZB −

1
4JU −

1
4ZS

2

+X(XZ3 − JX2Z + 6W + 1
4JM −

2
7ZXR+ 5

7RS

− 15
7 N + 2

9ZA−
9

10F −
2

21ZK + 10
21T + 6

25G−
17
42JD),

as may be verified in normal form (2.13).
The final condition (p+q−)2 + (p−q+)2 = 0 can similarly be expressed in

terms of conformal invariants; although we do not attempt to write down
the expression, we discuss how this can be done in §B.

5. Special cases

5.1. Functions with a unique conjugate direction

Suppose now that f is a function that admits a unique conjugate direc-
tion up to sign. By (2.17), this occurs when X = 0 and Y > 0. We first
prove an analogue of Theorem 3.1.

Theorem 5.1. — Let ωj be a conjugate direction determined by (2.4),
with X = 0 and Y > 0. Then the tensor field ωij is symmetric in its indices
if and only if

εijkfiωj
(
Jfk

lmflωm − 2fklf l(fmnfmωn)
)

= 0(5.1)
εijkfiωj

(
Jfk

lmωlωm + fk
lfl(fmnfmfn + Z)

)
= 0(5.2)

Proof. — As in the proof of Theorem 3.1, ωij is symmetric in its indices
if and only if uivj(ωij −ωji) = 0, where ui and vj are linearly independent
vector fields. However, since X = 0, by Lemma 2.2, the vector field f ijωj
is a linear combination of f i and ωi and we have to use an alternative. A
judicious choice turns out to be the vector field

νi = εijkfjfk
lωl − εjklfjωkfli .

A short calculation using the identity

εijkεlmn = 6δi[lδjmδkn] ,

shows that εijkνif jωk = −Z/J , which is non-zero by hypothesis (since
Y = Z2). In particular, νi has a non-zero component orthogonal to f i and
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ωi. In order to bring this vector field into play, rather than differentiate the
third equation from (2.4), we differentiate the equation:

(5.3) εijkfiωjfk
lωl = 0 .

This gives

(5.4) εijkfiωjfklmω
l + εijkfmiωjfk

lωl − ωmiνi = 0 .

First transvect this with fm. Then the resulting symmetry condition
fmνi(ωmi − ωim) = 0 holds if and only if

εijkfiωjfklmf
lωm + εijkfimf

mωjfk
lωl − fmωimνi = 0 .

But from (2.3), the last term can be replaced by ωmfimνi which is equal
to [εlmnflfmrfrωn/(fsfs)]f ijfiωj (since εijkfjωkfimωm = 0 by (5.3)). On
multiplying through by J , we obtain the equation
(5.5)
Jεijkfiωjfk

lmflωn − Jεijkfilflfjmωmωk − (εijkfiωjfklfl)fmnfmωn = 0 .

However, from (5.3) we deduce the identity

Jfjmω
m + (fklfkfl)ωj − (fklfkωl)fj = 0 .

Indeed, the left-hand side is both orthogonal and colinear to the span of fj
and ωj . On replacing Jfjmωm by (fklfkωl)fj − (fklfkfl)ωj in the middle
term of (5.5), we obtain (5.1). Similarly, on transvecting (5.4) with ωm, we
conclude that the symmetry condition ωmνi(ωmi − ωim) = 0 is equivalent
to (5.2). �

As for the generic case, we can summarise the conditions that f admits
a conjugate as follows.

Corollary 5.2. — Locally, a smooth function f with X = 0 admits
a smooth conjugate if and only if there is a smooth solution ωi of the
equations (2.4), (5.1) and (5.2).

We can express these conditions in terms of the derivatives of f either by
using invariant arguments, or by expressing them in normal coördinates.
To do this invariantly, the following lemma can be employed to eliminate
quadratic terms in ωi.

Lemma 5.3. — Suppose X = 0 and Y 6= 0. Let Qij be any symmetric
form. Then

(5.6) ZQijωiωj = −ZQijfifj + 2JQijfifjkfk + J2(fkkQll −Qklfkl) .
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Proof. — Recall that E ≡ εijkfiωjfk`ω` satisfies E2 = −J2X/2, so that
(5.7)
X = 0 ⇔ E = 0 ⇔ Jfjkω

k + (fklfkfl)ωj − (fklfkω`)fj = 0 ,

where the latter equality occurs since the LHS is both orthogonal and
colinear to the span of fj and ωj . We then apply this to the identity given
by transvecting f[iωjfk

kQl]
l = 0 with f iωj . An alternative proof is simply

to check that the formula holds in the Riemannian normalisation. �

Equation (5.1) can now be written in the form Qijωiωj = 0, where

Qij = −εiklfk(Jflmjfm − 2flmfm(fnjfn))
−εjklfk(Jflmifm − 2flmfm(fnifn)),

which, by Lemma 5.3 can be written as an invariant expression in the
derivatives of f . However, it is more direct and somewhat simpler to just
write out (5.1) in the Riemannian normalisation.
From the proof of Lemma 2.2, we see thatX = 0 implies that the product

ω1ω2 = 0. Thus (5.1) becomes:

f3
3(ω1

2 − ω2
2)(f3f123 − 2f13f23) = 0 .

But since Y 6= 0 (f22 − f11 6= 0), ω1
2 − ω2

2 = J and this is equivalent to

f3
5(f3f123 − 2f13f23) = 0 ,

which we recognize to be a multiple of V (which is given in normal coör-
dinates by 4J2f3(f22 − f11)(f3f123 − 2f13f23)). Thus (2.4) and (5.1) corre-
spond to the conformally invariant condition V = 0.
We give an invariant treatment of (5.2) as follows. Differentiate the right-

hand identity of (5.7):

0 = ∇i(Jfjkωk + (fklfkfl)ωj − (fklfkωl)fj)
= 2(filf l)fjkωk + Jfijkω

k + Jfj
kωik + fiklf

kf lωj + 2fklfikflωj
+ fklfkflωij − fiklfkωlfj − fklfikωlfj − fklfkωilfj − fklfkωlfij .(5.8)

Note that for the moment we do not assume symmetry of ωij .
Recall the fundamental identities: ωijωj = f ijfj and ωijfj = −f ijωj .

Transvect (5.8) with ωj to obtain:

0 = −2filf lf jkfjfk + Jfijkω
jωk + J(fjkωj)ωik

+Jfiklfkf l + 2Jfklfikfl + (fklfkfl)(fijf j)− fklfkωlfijωj .

From (5.7), Jfjkωj = (f lmflωm)fk − (f lmflfm)ωk, so that

J(fjkωj)ωik = (f lmflωm)ωikfk − (f lmflfm)ωikωk

= −(f lmflωm)fikωk − (f lmflfm)fikfk ,
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which gives the identity:

Jfijkω
jωk+Jfijkf jfk−2(fklfkfl)fijf j−2(fklfkωl)fijωj+2Jfklfikfl=0.

From this, we deduce that (5.2) has the equivalent form:

εijkfiωj
(
−Jfklmflfm − 2Jfklf lmfm + fk

lfl(3fmnfmfn + Z)
)

= 0⇔
εijkfiωj

(
−σk + J(J∇k(∆f)− 1

2 ∆f∇kJ)
)

= 0 ,(5.9)

where σk is the conformally invariant 1-form given by Theorem A.3 of
Appendix A. Even though J∇k(∆f) − 1

2 ∆f∇kJ is not itself conformally
invariant, its component orthogonal to the span of fi and ωi is, so the left-
hand side of (5.9) is conformally invariant. Now square this and use Lemma
5.3 to eliminate quadratic terms in ωi. We obtain an identity involving only
the derivatives of f , which we identify in terms of conformal invariants as:

(5.10) 25
14N + 3

5G+ 3
4F + 1

21T −
17
21ZK −

7
9ZA = 0 .

Corollary 5.4. — Locally, a smooth function f with X = 0 admits a
smooth conjugate if and only if V ≡ 0 and (5.10) are satisfied.

5.2. Functions that admit infinitely many conjugates

When X and Y both vanish, the function f admits infinitely many con-
jugate directions. The following gives a complete description.

Theorem 5.5. — Suppose f is a smooth real-valued non-constant func-
tion such that its invariants X and Y both vanish. Then, up to scale and
conformal transformation, f is one of the following

(5.11) x1 log(x1
2 + x2

2 + x3
2) arctan

(
x3

x2

)
x1

x12 + x22 + x32 .

Proof. — From (A.5) we deduce immediately that φij = 0. But

φij = the symmetric trace-free part of J2∇i[J−1fj ]

whose vanishing is precisely saying that J−1fj is a conformal Killing field
Vj all of which can be written down explicitly. Following [8],

Vj = −sj −mjkx
k + λxj + xjrkx

k − 1
2rjxkx

k

where sj and rj are arbitrary vectors, λ is a arbitrary constant, and mij is
an arbitrary skew matrix. We may invert

Vj = (fkfk)−1fj ⇐⇒ fj = (V kVk)−1Vj
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and inquire whether fj is closed. As a condition on Vj , this reads

(5.12) V kVk∇[iVj] + 2V kV[i∇j]Vk = 0,

the consequences of which are best viewed using a normal form for Vj such
as those provided by Theorem C.5 in §C. Specifically, matrices of the form
(C.6) provide conformal Killing fields of the form

λ
(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
+ µ

(
x2

∂

∂x3
− x3

∂

∂x2

)
in accordance with the conventions of [8]. However, only when µ = 0 or
λ = 0 is (5.12) satisfied. When both vanish, we obtain the linear functions
which are equivalent under scaling and conformal transformation to the
first of (5.11). Otherwise we obtain the second two, respectively. Matrices
from the next group provide nothing new but matrices of the form (C.7)
correspond to the conformal Killing fields

µ
(
x2

∂

∂x3
− x3

∂

∂x2

)
− (x1

2 − x2
2 − x3

2) ∂

∂x1
− 2x1x2

∂

∂x2
− 2x1x3

∂

∂x3

and (5.12) is satisfied precisely when µ = 0. This gives rise to the final
possibility for f in the list (5.11). �

In fact, all of the functions with X = Y = 0 admit, not only infinitely
many conjugate directions, but infinitely many conjugates. According to
Theorem 5.5, it suffices to check this for the four cases (5.11). The first
three of these are discussed in detail elsewhere in this article, specifically
in §6.1, §6.3, and §6.2 respectively. Finally, the functions

f = x1

x12 + x22 + x32 g = x2 cos θ + x3 sin θ
x12 + x22 + x32

form a conjugate pair for any θ.

5.3. Functions of two variables that admit a conjugate in R3

Let f = f(x2, x3) be a function of two variables only. Then many confor-
mal invariants simplify and in the case of a unique conjugate direction, the
equations have a simple interpretation. As a first observation, it is easily
checked that X factors as a product:

X = (∆f)(f i∇iJ) ,

so that we also have

Z = 1
2f

i∇iJ + J∆f , Y =
( 1

2f
i∇iJ − J∆f

)2
.
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Furthermore, by its expression in the Riemannian normalisation, one sees
that V ≡ 0. In particular, the fourth condition for a conjugate: P ≡ 0
simplifies to

ZS − 2XR+ 2XY = 0 .

Now suppose X = 0 and Y > 0. Then either ∆f = 0, in which case
ω = (0,−f3, f2) is, up to sign, the unique integrable conjugate direction and
we are in the case of a planar function with planar conjugate, or f i∇iJ = 0
and ∆f 6= 0. We can now exploit Theorem 5.1. Since (5.1) is equivalent to
V ≡ 0, this is vacuous. However, (5.2) now comes into play. By going into
the Riemannian normalisation, one sees that the third order terms of this
equation vanish, and it becomes:

(εijkfiωjfklfl)(fmnfmfn + Z) = 0 .

However, since ∆f 6= 0, it is also the case that fmnfmfn + Z 6= 0 and the
equation becomes

εijkfiωjfk
lfl = 0 .

Let us write this out explicitly in coördinates:

−ω1f2f3
lfl + ω1f3f2

lfl = 0 .

But ω1 must be non-zero otherwise we are once more in the situation of a
planar function with a planar conjugate whence ∆f = 0, contrary to our
hypothesis. On combining this with the condition f i∇iJ = 0, we obtain
the simultaneous equations in f2

kfk and f3
kfk:{

f3f2
kfk − f2f3

kfk = 0
f2f2

kfk + f3f3
kfk = 0

Since f2
2 + f3

2 6= 0, these only admit the solution f2
kfk = f3

kfk = 0. But
this implies that

∇l(fkfk) = 0 ⇔ ||∇f || = constant .

The unique conjugate direction is thus given up to sign by

ω = (
√
f22 + f32, 0, 0).

Furthermore this case occurs precisely when f satisfies the eikonal equation
||∇f ||2 = constant. This should be compared with the example of a func-
tion having spherical symmetry as discussed in §6.3 below, where now the
conjugate must satisfy an eikonal equation, even though there is no con-
formal transformation which sends concentric spheres to parallel planes.
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6. Some examples

In general, it is not the case that a function will admit a conjugate,
even locally. For example, the function f = x1x2x3 has the property that
X = 6f2. In particular X cannot be 6 0 on any open set, so that f does
not admit a conjugate on any open set.
Recall from the Introduction that the pair (f, g) of a function and its

conjugate define a semi-conformal mapping into R2. In the analytic cate-
gory, such mappings arise (i) as the extension to the boundary at infinity
of a harmonic morphism on the associated heaven space of the domain,
see [5]; (ii) from local CR hypersurfaces in the standard Levi-indefinite
hyperquadric in CP3, see [4]. The latter perspective leads to an explicit
construction of semiconformal mappings from a holomorphic function of
two complex variables, which, in a first form was given in [12] then refined
in [4]. In what follows, we highlight some particular cases of interest when
a function f admits a conjugate function.

6.1. Linear and quadratic functions

Any linear function f admits infinitely many conjugate functions, also
linear; indeed the two invariants X and Y both vanish identically. The only
quadratic function that admits a conjugate is, up to isometries and scaling,
f = x1

2−x2
2−x3

2. Note that f has an isolated critical point at the origin,
however its conjugate g = x1

√
x22 + x32, although of class C1 at the origin,

is not smooth there. It is unknown if a pair of smooth conjugate functions
(f, g) can have an isolated critical point. When they are harmonic and so
determine a harmonic morphism, this is impossible [6].

6.2. Cylindrical symmetry

Let r2 = x2
2 + x3

2 and suppose that f = f(r) so that its level sets are
concentric cylinders. Then by solving the equations (2.4), we obtain the
conjugate direction:–

(ω1, ω2, ω3) =
(√

f ′ 2 + rf ′f ′′, x3

√
−f ′f ′′
r

,−x2

√
−f ′f ′′
r

)
whose four-valuedness corresponds to taking different signs for the square
roots. Then for any branch, dω = 0 if and only if

f ′ 2 + rf ′f ′′ = C,
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where C is a constant which is > 0. This has as first integral:–

(6.1) f ′ 2 = A

r2 + C,

where A > 0 is a constant, and ω is now given by

(ω1, ω2, ω3) =
(
√
C,

x3
√
A

r2 ,−x2
√
A

r2

)
Then X = 2Cf ′f ′′/r = −2AC/r4 is 6 0 with the inequality strict provided
neither of A nor C vanish.

In fact we can integrate (6.1) explicitly to obtain

f =
{ √

A ln
{√

A+Cr2−
√
A√

Cr

}
+
√
A+ Cr2 (C > 0)

√
A ln r (C = 0)

The conjugate function is given by g =
√
Cx1−

√
A arctan(x3/x2), interpo-

lating between the two special case given by A = 0 (f =
√
Cr) and C = 0

(f =
√
A ln r). In fact the mapping (f, g) has fibres which are helices lying

on the cylinders r = constant. When C = 0 these helices become circles
lying in planes orthogonal to the x1-axis and when A = 0 they become lines
parallel to the x1-axis. Geometrically, we can interpret the four-valuedness
of ω as corresponding to the choice of a right-hand screw or a left-hand
screw for the helices, together with a choice of orientation. In the special
cases we obtain just two equal and opposite directions.

6.3. Spherical symmetry

Let r2 = x1
2 + x2

2 + x3
2 and suppose that f = f(r) depends on the

radial coordinate only. Then

X = 2f ′(r)2
(
f ′′(r) + f ′(r)

r

)2

so that if f is to admit a conjugate, the necessary condition X 6 0 forces
f to be either constant or to satisfy the differential equation

f ′′(r) + f ′(r)
r

= 0 .

This has general solution f = A log r+B, where A and B are arbitrary con-
stants. For convenience, we take f = log r. Note that spherical symmetry
implies that Y ≡ 0 and so there are infinitely many conjugate directions.
In fact any conjugate function g must satisfy ∂g/∂r = 0 and ||∇g|| = 1/r.
Thus g is determined by its values on say the sphere r = 1, where it must
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satisfy the equation ||∇g|| = 1. Such an equation is know as an eikonal
equation and solutions are determined by initial data on a hypersurface
(i.e. a curve) in the sphere S2. It should be noted that the sphere S2 does
not admit a nowhere vanishing vector field and since we require ||∇g|| = 1,
then g cannot be globally defined on S2. Thus even though the function
f defined on R3 \ {0} admits infinitely many different conjugate functions
in a neighbourhood of any point of its domain, the domain of any of these
conjugate functions cannot coincide with that of f .

6.4. An Ansatz

The following Ansatz provides a method of obtaining many pairs of con-
jugate functions. Let h(x, y) satisfy the partial differential equation:

(6.2)
(
∂h

∂x

)2
+ 4y

(
∂h

∂y

)2
+ 4h∂h

∂y
= 0 .

Then the functions {
f = x2h(x1, x2

2 + x3
2)

g = x3h(x1, x2
2 + x3

2)

are conjugate. For example, by taking h = (x2/y) + 1, we obtain the pair
of conjugate functions of the Introduction. A straightforward calculation
shows that the only product solutions h(x, y) = u(x)v(y) to (6.2), have the
form

h = becxe
√

1−c2y

1 +
√

1− c2y
,

where b and c are constants. In fact, with reference to §5.1, every solution
obtained by this Ansatz satisfies X ≡ 0.

7. Invariants of the conjugate

For a function f which admits a conjugate g, we can ask which of its
properties are shared by its conjugate. More specifically, can we express
the conformal invariants of g in terms of those of f ? For the invariant X,
this turns out to be simply done. In order to be clear on which invariants
are being considered, in this section we shall write X(f) and X(g) and so
on, for the invariants of the respective functions.
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Theorem 7.1. — If f admits a conjugate function g, then X(f) =
X(g).

Proof. — In addition to (2.4), we have the identities:

gijfj + f ijgj = 0 and gijgj = f ijfj .

Set vi = εijkf
jgk. Then we can decompose gij in terms of a symmetric

basis:

gij = 1
J2 (gklfkfl)fifj + 1

J2 (gklgkgl)gigj + 1
J4 (gklvkvl)vivj

+ 2
J2 (gklfkgl)f(igj) + 2

J3 (gklfkvl)f(ivj) + 2
J3 (gklgkvl)g(ivj)

= 1
J

(gkk)(Jδij − fifj − gigj)−
2
J
fk(ig

kfj) + 2
J
fk(if

kgj)

+ 1
J2 (fklfkgl)(fifj − gigj)−

2
J2 (fklfkfl)f(igj) .

As a first application of this formula, we deduce the identity:

(7.1) f ijgij − (f ii)(gjj) = 0 .

Furthermore

gijgij = (gkk)2+ 2
J
fkjg

kf ljgl+
2
J
fkjf

kf ljfl−
2
J2 (fklfkgl)2− 2

J2 (fklfkfl)2 ,

which implies that

X(g) = −2fkjgkf ljgl + 2
J

(fklfkgl)2 + 2
J

(fklfkfl)2 .

In normal coördinates, on applying (2.11), the RHS equals

−2g1
2f2

11 − 2g2
2f22

2 + 2f3
2f33

2 = 2f3
2(f11 + f33)(f22 + f33) ,

which is precisely X(f). �

Corollary 7.2. — If f admits a conjugate function g, then for any
ε ∈ R, the function f + εg admits g − εf as a conjugate and X(f + εg) =
(1 + ε2)2X(f).

Proof. — That f + εg and g− εf are conjugates, is easily checked. Then

X(f + εg) = X(f)
+ε{4(fijgj + gi

jfj)f ikfk − 2J(gijfij − (f ii)(gjj))}
+ε2{4fijfjgikgk + 4fijgjgikfk + 2gijfjgikfk + 2fijgjf ikgk
−J [f ijfij + gijgij − (f ii)2 − (gjj)2]}

+ε3{4(fijgj + gi
jfj)gikgk − 2J(gijfij − (f ii)(gjj))}

+ε4X(g) .
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But the coefficients of the odd powers of ε vanish on account of (2.4) and
(7.1), so from Theorem 7.1, we obtain

X(f + εg) = X(f) + ε2(X(f) +X(g)) + ε4X(g) = (1 + ε2)2X(f) .

�

Note that if we view the pair (f, g) of a function and its conjugate as
defining a semiconformal map into R2, then the replacement of (f, g) by
(f+εg, g−εf) amounts to multiplication of f+ig by 1−iε when we identify
R2 with the complex plane C. Indeed, semiconformality is preserved under
conformal transformations of both the domain and codomain.
To calculate the invariant Z(g) in terms of invariants of f turns out

to be more challenging. In fact Z(g) depends on the choice of conjugate
direction, so that, in the generic case, the appropriate quantity to consider
is the product

√
Y Z(ω)Z(η). This can be calculated by the methods of §B

to produce an expression involving third order derivative of f which we
don’t attempt to write down. On the other hand, information about Z(g)
can be obtained as in the above Corollary.

Lemma 7.3. — If f admits a conjugate g, then we have

Z(f + εg) = (1 + ε2)(Z(f) + εZ(g)) .

Furthermore,

Z(g) = d

dε
Z(f + εg)|ε=0 ;

that is, Z(g) = Zf (g) where Zf is the linearisation of the operator Z at f .

In fact the latter part of the lemma is easily deduced directly from (2.4):

Z(g) = gijgigj + (gigi)(gjj) = f ijfigj + (f ifi)(gjj) ,

where, for a given f with ∇f non-zero, the RHS is now a linear operator
on g, which, since the principal term is the Laplacian, is elliptic.
Proof. — We have:

Z(f + εg) = Z(f) + ε(gijfifj + 2f ijgifj + J∆g)
ε2(2gijgifj + f ijgigj + J∆f) + ε3Z(g)

= Z(f) + ε(f ijfigj + J∆g) + ε2(f ijfifj + J∆f) + ε3Z(g)
= (1 + ε2)(Z(f) + εZ(g)) .

The last part of the lemma now follows from this formula, or as indicated
above, directly from (2.4). �
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An interesting problem is to characterize those conjugate pairs that are
3-harmonic, i.e. conjugate pairs (f, g) satisfying Z(f) = Z(g) = 0, for
then the mapping (f, g) determines a 3-harmonic morphism [11]. If both X
and Y vanish, then so does Z and we have a complete description in this
case given by Theorem 5.5. Up to conformal transformation, the different
conjugate 3-harmonic pairs are given by

(x1, x2),
( 1

2 log(x1
2 + x2

2 + x3
2), arctan(x3/x2)

)
,( x1

x12 + x22 + x32 ,
x2

x12 + x22 + x32

)
.

More generally, by the homogeneity of Z(f) in f , the function f is 3-
harmonic if and only if it satisfies the linearisation of Z at f : Zf (f) = 0,
so that by Lemma 7.3, Zf (f) = Zf (g) = 0 is a necessary and sufficient
condition for a conjugate pair (f, g) to be 3-harmonic.

Appendix A. Conformal invariants

Suppose f is a smooth function defined on an open subset U ⊆ R3. As
usual, we denote the partial derivatives of f by subscripts

fi = ∂f

∂xi
, fij = ∂2f

∂xi∂xj
, fijk = ∂3f

∂xi∂xj∂xk
, . . . .

Equivalently, we may regard these quantities as tensors obtained by re-
peated application of the flat connection ∇i corresponding to the flat met-
ric δij . Suppose Ω is a smooth non-vanishing function defined on U such
that δ̂ij ≡ Ω2δij is also flat. If we let Υi = ∇i log Ω, then it is well-known [6]
that these functions are precisely the solutions of

∇iΥj = ΥiΥj − 1
2δijΥ

kΥk

and that all solutions are obtained by the conformal transformations of the
round sphere S3 viewed as flat-to-flat conformal rescalings via stereographic
projection. Let ∇̂i denote the metric connection for δ̂ij and write

f̂ = f, f̂i = ∇̂if, f̂ij = ∇̂i∇̂jf, f̂ijk = ∇̂i∇̂j∇̂kf, . . . .

A conformal differential invariant of f of weight w is a polynomial

I = I(δij , f, fi, fij , fijk, . . .)

in the derivatives of f and the inverse metric δij with the property that it
is invariant under arbitrary coördinate transformation and

(A.1) I(δ̂ij , f̂ , f̂i, f̂ij , f̂ijk, . . .) = ΩwI(δij , f, fi, fij , fijk, . . .)
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for all flat-to-flat conformal rescalings Ω. As detailed in [9], this notion
of invariance is the same as requiring equivariance under the action of
SO(4, 1) on the 3-sphere, with R3 ↪→ S3 by stereographic projection. It is
straightforward to write down explicit formulae for the effect of flat-to-flat
rescalings on derivatives

(A.2)

f̂i = fi
f̂ij = fij − 2Υ(ifj) + δijΥkfk
f̂ijk = fijk − 6Υ(ifjk) + 3δ(ijΥpfk)p

... + 6Υ(iΥjfk) − 3δ(ijΥk)Υpfp − 3
2 ΥpΥpδ(ijfk)

with a view to verifying (A.1) by direct calculation. It is difficult to find
conformal invariants from this direct point of view. Certainly J ≡ δijfifj =
f ifi is an invariant of weight −2. Perhaps the simplest second order invari-
ant is

Z ≡ f ijfifj + Jf jj .

It has weight −4 but it is usual to omit the powers of Ω in verifying in-
variance (this is easily made precise by regarding the invariant as taking
its values in an appropriate line-bundle). Specifically, as a linear combina-
tion of complete contractions it is manifestly invariant under coördinate
transformation and

f̂ ij f̂if̂j = f ijfifj −Υifif
jfj = f ijfifj − JΥkfk

Ĵ f̂ jj = Jf jj + JΥkfk

whence
f̂ ij f̂if̂j + Ĵ f̂ jj = f ijfifj + Jf jj ,

as required. The familiar quantity

(A.3) X = 2fijfjf ikfk − f ifif jkfjk + f ifi(f jj)2

is a conformal invariant of weight −6. That it is a polynomial in the
derivatives of f invariant under coördinate change is already manifest.
Its conformal invariance, however, is most easily seen from the identity
of Lemma 2.2:–

JX + 12TijkT ijk = 0, where Tijk = f[iωjfk]lω
l.

Here, recall that ωj is any solution of the equations (2.4). We make take
ω̂i = ωi to obtain a solution of the conformally transformed equations
resulting from (A.2). Then

f̂klω̂
l = fklω

l −Υlωlfk + Υlflωk
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and so Tijk is a conformally invariant tensor (of weight −2). Notice, how-
ever, that Tijk is not an expression solely in f and its derivatives but also
involves ωj . It may also be imaginary-valued. It is only in the combination
TijkT

ijk that ωj can be eliminated using the relations (2.4). Of course, it
is also possible to check the conformal invariance of X directly from the
expression (A.3).
In the remainder of this section we construct an extensive menagerie of

conformal differential invariants of f . It is possible, in principle [9], to list
all such invariants. In practise, however, it is easier to construct invariants
by a number of tricks (see [14]). Apart from the particular invariant V
constructed below, these will turn out to be sufficient for our purposes.
The new connection ∇̂i is related to ∇i by

∇̂iφj = ∇iφj −Υiφj −Υjφi + δijΥkφk

when acting on an arbitrary 1-form φj . It follows that

∇i[Ω−1φi] = Ω−1∇iφi,

which we will more conveniently express by saying if φi has conformal
weight −1, then φi 7→ ∇iφi is conformally invariant. Similarly,

φj 7→ ∇(iφj) − 1
3∇

kφkδij

is conformally invariant when φj has weight 2. Where J does not vanish
we may consider the smooth 1-form J1/2fi. It has weight −1 whence

J1/2∇j [J1/2fj ]

is conformally invariant (of weight −4). As written here, this is not a poly-
nomial but if we expand it we obtain

1
2 [∇jJ ]fj + J∇jfj = f ijfifj + f ifif

j
j ,

which is a perfectly good polynomial. It follows that this is an invariant
whether or not J vanishes. It is our previous invariant Z. Another viewpoint
on this construction is that f j∇jJ + 2J∇jf j is a conformally invariant
bilinear differential pairing between fi and J . There are many such pairings
on R3 as follows.
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Lemma A.1. — The following pairings are conformally invariant.

ψ︸︷︷︸
weight v

× φ︸︷︷︸
weight w

7→ vψ∇iφ− wφ∇iψ︸ ︷︷ ︸
weight v + w

ψi︸︷︷︸
weight v

× φ︸︷︷︸
weight w

7→ (v + 1)ψi∇iφ− wφ∇iψi︸ ︷︷ ︸
scalar of weight v + w − 2

ditto 7→ vψ[i∇j]φ+ wφ∇[iψj]︸ ︷︷ ︸
skew of weight v + w

ditto 7→ (v − 2)[ψ(i∇j)φ− 1
3δijψ

k∇kφ]
− wφ[∇(iψj) − 1

3δij∇
kψk]︸ ︷︷ ︸

symmetric trace-free of weight v + w

Proof. — These are all easily verified by direct calculation. Alternatively,
we may employ evident variations on the trick used so far. For example,
for non-vanishing ψ and φ we may write the first pairing as

φ−v+1ψw+1∇i[φvψ−w],

which is clearly invariant since φvψ−w has weight zero. All of these pairings
are similarly based on well-known conformally invariant linear differential
operators. �

Notice that the bundles occurring in these pairings are irreducible in
the sense that they are associated to irreducible representations of the
orthogonal group. These are the bundles between which it is relatively
straightforward to find invariant pairings. Here are two more examples
that we shall need.

Lemma A.2. — The following pairings are conformally invariant for ψ
of weight v and φij being symmetric trace-free and of weight w.

ψ × φij 7→ vψ∇iφij − (w + 1)φij∇iψ︸ ︷︷ ︸
weight v + w − 2

ψ × φij 7→ vψ[∇(iφjk) − 2
5δ(ij∇lφk)l]

− (w − 4)[φ(ij∇k)ψ − 2
5δ(ijφk)l∇lψ]︸ ︷︷ ︸

symmetric trace-free of weight v + w

Proof. — Easily verified by direct calculation. �
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In fact, all the invariant pairings that we shall need may be constructed
from invariant linear differential operators. (There are, however, many in-
variant pairings that do not arise in this way.) We are now able to list
almost all the conformal invariants that we shall use.

Theorem A.3. — The following are conformal differential invariants of
a smooth function f locally defined on R.

J ≡ f ifi Z ≡ f ijfifj + Jf jj

X ≡ 2fijfjf ikfk − Jf jkfjk + J(f jj)2

If we now define
σi ≡ J∇iZ − 2Z∇iJ τi ≡ J∇iX − 3X∇iJ
φij ≡ Jfij − 2f(ifj)

kfk − 1
3Jf

k
kδij + 2

3f
klfkflδij ,

then the following are also conformal invariants.

R ≡ f iσi S ≡ f iτi A ≡ σiσi B ≡ τ iτi
D ≡ σiτi T ≡ φijσiσj U ≡ φijτiτj

If we now define
ρijk ≡ J∇(iφjk) − 3φ(ij∇k)J − 2

5δ(ij∇lφk)l + 6
5δ(ijφk)l∇lJ

λj ≡ 2J∇iφij − φij∇iJ,

then the following are also conformal invariants.

F ≡ ρijkφijλk G ≡ φijλiλj K ≡ σiλi
M ≡ τ iλi N ≡ σiρijkφjk W ≡ ρijkρij lφkl.

Proof. — We have already observed that J , Z, and X are conformally
invariant. The remaining invariants in this theorem are manufactured from
these basic ones by using Lemmata A.1 and A.2 as appropriate. �

There is one more invariant that we shall need and its construction is
slightly different. LetQij be any symmetric form and set υ = εjkl(JfkiQij−
f iQijfkmf

m)fl. Then the following identity holds:

(A.4) Y (Qijωiωj −Qijηiηj) = 4Eυ

(recall that E ≡ εijkfiωjfk
`ω`). In the case when Qij = f ijkfk − 2f ikfkj ,

one may check that υ is conformally invariant. It is convenient and consis-
tent with [3] to define the related conformal invariant V = 4Jυ. It has a
different character to our previous invariants in that it changes sign under
change of orientation. It is said to be an odd invariant.
It is useful to record the conformal weight and homogeneity in f for each

of the invariants of Theorem A.3 together with V :–
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J Z X R S V A B D

weight −2 −4 −6 −8 −10 −11 −14 −18 −16
degree 2 3 4 6 7 8 10 12 11

T U F G K M N W

weight −18 −22 −18 −18 −14 −16 −18 −18
degree 13 15 13 13 10 11 13 13

Any polynomial combination with consistent total weight will also be in-
variant. For example, the quantity Y = Z2 − 2JX introduced in (2.15) is
a conformal invariant of weight −8 (and homogeneity 6). Other evident in-
variants are not necessarily new. For example, it is easily verified by direct
computation that

(A.5) φijφij = 2
3Z

2 − JX.

This gives yet another verification that X is conformally invariant.

Appendix B. Invariant derivation of certain equations

Our aim is to eliminate ωi from polynomial expressions of the form
F (fi, fij , fijk, ...., ωi), given that the equations (2.4) hold. We suppose that
X < 0, so that in particular Y > 0. Recall that

ηi = 1√
Y

{
2(fklfkωl)fi + (Jfkk − fklfkfl)ωi − 2Jfikωk

}
,

gives the other conjugate direction, where an ambiguity of sign arises with
the choice of square root.

Lemma B.1. — Let Qij be any symmetric form. Then

Y (Qijωiωj +Qijηiηj) = 2Qijfifj(JX − Z2)(B.1)
+2J2Qj

j(Zfll −X)− 2J2ZQijfij + 4JZQijfikfkfj√
Y Qijωiηj = −ZQijfifj + 2JQijfifjkfk + J2(fkkQll −Qklfkl)(B.2)

Proof. — Both formulae can be deduced by skew-symmetrising over the
indices of an appropriate 4-tensor. For example, to derive the second, con-
sider the four tensor: Tijkl = fiωjfk

kQl
l and apply the identity: T[ijkl] = 0.

On transvecting first with f i, then with ωj and applying (2.4), the result
follows. �
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Now let us find invariant proofs of some of the identities of §4. Recall

p+ ≡ f ijkfiωjωk + f ijkfifjfk − 2f ijfjkωiωk + 2f ijfjkfifk
p− ≡ f ijkfiηjηk + f ijkfifjfk − 2f ijfjkηiηk + 2f ijfjkfifk
q+ ≡ f ijkωiωjωk + f ijkfifjωk + 4f ijfjkfiωk
q− ≡ f ijkηiηjηk + f ijkfifjηk + 4f ijfjkfiηk .

Theorem B.2. — The following identities hold:

Y (p+ + p−) = ZS − 2XR+ 2XY(B.3)
Y (p+ − p−) = EV/J .(B.4)

where X,Y, Z,R, S, V are the standard conformal invariants and where
E ≡ εijkfiωjfk`ω`.

Proof. — The first identity is an application of (B.1), where we have set
Qij = f ijkfk − 2f ikfkj . For the second, we apply (A.4) with symmetric
form Qij = f ijkfk − 2f ikfkj . �

Note that both the LHS and the RHS of equation (B.4) change sign
under the interchange of the conjugate directions, the equation itself being
well-defined and independent of this operation.
The condition p+p− ≡ 0 of Theorem 4.1 now follows since

4Y 2p+p− = Y 2(p+ + p−)2 − Y 2(p+ − p−)2.

On applying (4.7), this gives the necessary condition P ≡ 0 of §4:

2(ZS − 2XR+ 2XY )2 +XV 2 = 0 .

Now consider the remaining conditions. We claim that we can use (B.1)
and (B.2) to write qijkωiωjωk as a linear form in ωi, where qijk is any
symmetric tensor.
For this, first set Qij = qijkωk. Then from (B.1),

(B.5) Y qijkωiωjωk = −Y qijkηiηjωk + 2qijkfifjωk(JX − Z2)
+ 2J2qj

jkωk(Zfll −X)− 2J2Zqijkfijωk + 4JZqijkfilflfjωk .

We now have to calculate Y qijkηiηjωk. For this we set Qij =
√
Y qijkηk

and apply (B.2):

Y qijkηiηjωk =
√
Y Qijωiηj

= −Zqijkfifjvk + 2Jqijkfifj lflvk + J2(fjjqllkvk − qijkfijvk)
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where vi =
√
Y ηi = 2(fklfkωl)fi + (Jfkk − fklfkfl)ωi − 2Jfikωk. On

expanding the right-hand side and substituting into (B.5), we obtain:

Y qijkωiωjωk = ωi

{
qijkfjfk(−Y − 2Zf lmflfm)

+Jqijj
[
Y + Z(fmnfmfn)− 2(fmnfmfn)2

]
+J(Z + 2f lmflfm)(2qijkfj lflfk − Jqijkfjk)− 2JZqjklfjfkfli

−2f infn
[
2Jqjklfjfkflmfm + J2fj

jqk
klfl − J2qjklfjkfl − Zqjklfjfkfl

]
+4J2qjklfjfk

mfmfl
i + 2J3(fjjqkklfli − qjklfjkfli)

}
,

as claimed.
We can now express Y q+ by setting qijk = f ijk and then adding

Y (f ijkfjfkωi + 4f jkfkifjωi):

Y q+ = ωi

{
− 2Zf ijkfjfk(f lmflfm)

+Jf ijj
[
Y + Z(fmnfmfn)− 2(fmnfmfn)2

]
+J(Z + 2f lmflfm)(2f ijkfj lflfk − Jf ijkfjk)− 2JZqjklfjfkfli

−2f infn
[
2Jf jklfjfkflmfm + J2fj

jfk
klfl − J2f jklfjkfl − Zf jklfjfkfl

]
+4J2f jklfjfk

mfmfl
i + 2J3(fjjfkklfli − f jklfjkfli) + 4f jkfkifj

}
This has the form Y q+ ≡ αiωi, where each αi is an explicit Riemannian in-
variant polynomial expression in fi, fij , fijk, which at each point is defined
up to addition of an arbitrary linear combination:

af i + b[(fklfkfl)ωi + Jf ikωk] .

By symmetry, we must also have Y q− = αiηi. Then the fifth condition
Y
√
Y q+q− ≡ 0 has the form rijωiηj = 0, where rij is the symmetric form

rij = (1/
√
Y )αiαj . We can now apply (B.2) to give an invariant derivation

of the quantity Q ≡ Y
√
Y q+q− of §4.

The final equation of Theorem 4.1 is (p+q−)2 + (p−q+)2 = 0. But

4{(p+q−)2 + (p−q+)2} = {(p+ + p−)2 + (p+ − p−)2}{(q+)2 + (q−)2}
−2(p+ + p−)(p+ − p−){(q+)2 − (q−)2} ,

which we can see as a product of conformally invariant terms that we can
deal with. First, multiply the whole expression by Y 3

√
Y . Then Y (p+ +p−)

is given by (B.3), whilst Y (p+ − p−) is given by (B.4). On the other hand,

Y
√
Y ((q+)2 + (q−)2) = rijωiωj + rijηiηj ,

which can be expressed using (B.1) above, whereas

Y
√
Y ((q+)2 − (q−)2) = rijωiωj − rijηiηj
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can be expressed using (A.4). Note that the result involves E2, which by
(4.7) can be written in terms of conformal invariants of §A.

Appendix C. Normalising conformal Killing fields

The conformal Killing fields on R3 form a finite-dimensional vector space
on which O(4, 1) acts via the conformal automorphisms of S3. It is the ad-
joint representation o(4, 1) and so the question of normalising a conformal
Killing field up to conformal transformations comes down to finding canon-
ical representatives for the orbits of this action. This is a question of linear
algebra, which may be stated more generally as follows. Suppose we are
given a real symmetric n × n matrix H of Lorentzian signature meaning
that there is a real invertible n× n matrix such that

(C.1) AtHA =

 1 0 0 0
0 . . . 0 0
0 0 1 0
0 0 0 −1

.
SupposeN is a real skew n×nmatrix. We would like to find a real invertible
n × n matrix A such that AtHA and AtNA are placed in some canonical
form. For example, we may insist on (C.1) for AtHA but following [8, 9]
we normally prefer (written in block form)

(C.2) AtHA =
[ 0 0 1

0 Id 0
1 0 0

]
,

where Id is the (n− 2)× (n− 2) identity matrix.

Lemma C.1. — SupposeH is a real symmetric n×nmatrix of Lorentzian
signature and N is a real skew n × n matrix. Suppose that, regarded as
a complex matrix, H−1N has only one eigenvector up to scale. Then, the
eigenvalue is zero, it must be that n = 3, and we can find an invertible real
3× 3 matrix A such that

AtHA =
[ 0 0 1

0 1 0
1 0 0

]
and AtNA =

[ 0 0 0
0 0 2
0 −2 0

]
.

Proof. — Notice that

H 7→ AtHA and N 7→ AtNA =⇒ H−1N 7→ A−1H−1NA.

Therefore, without loss of generality, we may suppose that H−1N is in
Jordan canonical form. Our hypothesis says that there is just one Jordan
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block with the eigenvalue λ down the diagonal. But

tr(H−1N) = tr(N t(Ht)−1) = − tr(NH−1) = − tr(H−1N)

so λ = 0. In particular, the eigenspace is the same as the kernel of N .
Suppose u is a non-zero vector in this kernel and consider

u⊥ ≡ {v s.t. utHv = 0}.

Since
utHH−1Nv = utNv = vtN tu = −vtNu = 0,

it follows that H−1N preserves u⊥. The hypothesis that H−1N has only
one eigenvector up to scale now forces u ∈ u⊥. In other words u is null,
i.e. utHu = 0. It is well-known that O(n−1, 1) acts transitively on the null
vectors. Therefore we may suppose that

H =
[ 0 0 1

0 Id 0
1 0 0

]
and u =

[ 1
0
0

]
.

It follows that

N =
[ 0 0 0

0 M −r
0 rt 0

]
where M is a skew (n− 2)× (n− 2) matrix. Therefore,

H−1N =
[ 0 rt 0

0 M −r
0 0 0

]
and (H−1N)2 =

[ 0 rtM −rtr
0 M2 −Mr
0 0 0

]
From the Jordan canonical form of H−1N we see that, not only does its
trace vanish, but also the traces of its higher powers. In particular,

0 = tr((H−1N)2) = tr(M2)

and since M is skew it follows that M = 0 and hence that rankN = 2.
Since the kernel of N is supposedly 1-dimensional, n = 3 is forced and

N =
[ 0 0 0

0 0 −r
0 r 0

]
.

Finally, if we take

A =
[
µ−1 0 0

0 1 0
0 0 µ

]
,

then

AtHA =
[ 0 0 1

0 1 0
1 0 0

]
and AtNA =

[ 0 0 0
0 0 −µr
0 µr 0

]
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and so we can insist that µr = −2 if we so wish. �

Lemma C.2. — SupposeH is a real symmetric n×nmatrix of Lorentzian
signature and N is a real skew n×n matrix. Then the eigenvalues of H−1N

lie on the real or imaginary axes.

Proof. — Suppose that x+ iy is an eigenvalue, i.e.

(C.3) H−1N(u+ iv) = (x+ iy)(u+ iv) for some u+ iv 6= 0.

Writing out the real and imaginary parts separately gives

(C.4) H−1Nu = xu− yv and H−1Nv = yu+ xv.

We argue by contradiction, supposing that neither x nor y vanishes. In this
case we see from (C.4) that neither u nor v vanishes. Because N is skew,
we see from (C.4) that

0 = utNu = utHH−1Nu = xutHu− yutHv,
0 = vtNv = vtHH−1Nv = yvtHu+ xvtHv.

Therefore
xutHu = yutHv = yvtHu = −xvtHv.

Since we are supposing that x 6= 0, we conclude that utHu = −vtHv.
Again using (C.4), we now find that

0 = utNv + vtNu = utH−1HNv + vtH−1HNu = 2yutHu+ 2xutHv,

whence
0 = xutHu− yutHv and 0 = yutHu+ xutHv.

Therefore (x2 + y2)utHu = 0 and so utHu = 0. Bearing in mind our
assumption that y 6= 0, we have found two real vectors u and v with

u 6= 0, v 6= 0, utHu = 0, vtHv = 0, utHv = 0.

For H of Lorentzian signature this forces v = tu for some t ∈ R. Substitut-
ing back into (C.3) and taking out a factor of (1 + it) gives

H−1Nu = (x+ iy)u

and hence that y = 0, our required contradiction. �

Lemma C.3. — SupposeH is a real symmetric n×nmatrix of Lorentzian
signature and N is a real skew n × n matrix. Suppose that H−1N has a
non-zero real eigenvalue λ. Then −λ is also an eigenvalue and we can find
an invertible real n× n matrix A such that (in block form)

AtHA =
[ 0 0 1

0 Id 0
1 0 0

]
and AtNA =

[ 0 0 λ
0 M 0
−λ 0 0

]
,
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where M is a skew (n− 2)× (n− 2) matrix.

Proof. — Certainly, we may arrange that AtHA is of the required form
and we shall suppose, without loss of generality, that H is already nor-
malised like this. Write H−1Nu = λu for u 6= 0. Then

0 = utNu = utHH−1Nu = λutHu

so utHu = 0. Therefore, by a suitable A we may arrange

u =
[ 0

0
1

]
, and this forces H−1N =

[ · · 0
· · 0
· · λ

]
.

Bearing in the mind that N is skew, this implies

N =
[ · · λ
· · 0
−λ 0 0

]
, and then H−1N =

[ −λ 0 0
· · 0
· · λ

]
.

It follows that −λ is an eigenvalue, say H−1Nv = −λv for some v 6= 0 and,
reasoning as above, vtHv = 0. Since u and v are not proportional, we may
scale them so that utHv = 1. Finally, if we arrange that

v =
[ 1

0
0

]
, then H−1N =

[ −λ 0 0
0 · 0
0 · λ

]
.

This immediately implies that N has the desired form. �

With these Lemmata on hand we are now in a position to establish a
general canonical form. As already mentioned, we shall prefer (C.2) for
AtHA. When n = 2 there is almost nothing more to do:–

AtHA =
[

0 1
1 0

]
and AtNA =

[
0 λ
−λ 0

]
simply because N is skew. It remains to observe that we can change the
sign of λ using

A =
[

0 1
1 0

]
but that λ2 is well-defined because the characteristic polynomial

det(H−1N − t id) = t2 − λ2

is invariant. The first interesting case is n = 3.
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Theorem C.4. — Suppose H is a real symmetric 3 × 3 matrix of
Lorentzian signature and N is a real skew 3 × 3 matrix. Then we can
find an invertible real 3× 3 matrix A such that

AtHA =
[ 0 0 1

0 1 0
1 0 0

]
and AtNA is

(C.5)
[ 0 0 λ

0 0 0
−λ 0 0

]
or 1√

2

[ 0 λ 0
−λ 0 −λ
0 λ 0

]
or

[ 0 0 0
0 0 2
0 −2 0

]
.

Furthermore, these three possible canonical forms are distinct apart from
changing the sign of λ in the first two cases and the coincidence of the first
two cases when λ = 0.

Proof. — If H−1N has only one eigenvector up to scale, then Lemma C.1
applies and we obtain the third case of (C.5). Else, Lemma C.2 implies that
either all eigenvalues are real or they are iλ,−iλ, 0 for some λ 6= 0.
Firstly, let us suppose they are all real. They could still all be zero in

which case the kernel N is at least 2-dimensional. But the rank of a skew
matrix is always even so thenN = 0. Otherwise, if λ 6= 0 is a real eigenvalue,
then Lemma C.3 gives the first of (C.5).
When iλ is an eigenvalue, then

H−1N(u+ iv) = iλ(u+ iv)

implies that
H−1Nu = −λv and H−1Nv = λu.

It follows that
0 = utNu = utHH−1Nu = −λutHv
0 = utNv + vtNu = utHH−1Nv + vtHH−1Nu = λ(utHu− vtHv)

and so if λ 6= 0, we conclude that

utHu = vtHv and utHv = 0.

In this case, by a suitable A we may arrange

u = 1√
2

[ 1
0
1

]
and v =

[ 0
1
0

]
,

from which the second of (C.5) is forced. Interchanging u and v changes
the sign of λ. Otherwise, the distinctions between these canonical forms
is clear from the Jordan canonical form of H−1N and its characteristic
polynomial. �
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It is easy to generalise these canonical forms to n×n matrices. The only
one we shall need is the 5× 5 case and we state it here.

Theorem C.5. — Suppose H is a real symmetric 5 × 5 matrix of
Lorentzian signature and N is a real skew 5 × 5 matrix. Then we can
find an invertible real 5× 5 matrix A such that

AtHA =


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0


and AtNA is

(C.6)


0 0 0 0 λ
0 0 0 0 0
0 0 0 µ 0
0 0 −µ 0 0
−λ 0 0 0 0


well-defined up to
(λ, µ) 7→ (−λ, µ) or (λ,−µ)
or (−λ,−µ),

or 
0 λ/

√
2 0 0 0

−λ/
√

2 0 0 0 −λ/
√

2
0 0 0 µ 0
0 0 −µ 0 0
0 λ/

√
2 0 0 0


well-defined up to
(λ, µ) 7→ (−λ, µ) or (λ,−µ)
or (−λ,−µ) or (µ, λ)
or (−µ, λ) or (µ,−λ)
or (−µ,−λ),

or

(C.7)


0 0 0 0 0
0 0 0 0 2
0 0 0 µ 0
0 0 −µ 0 0
0 −2 0 0 0

 well-defined up to µ 7→ −µ.

Furthermore, these canonical forms are distinct except for the evident co-
incidence of the first two cases when λ = 0.
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