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SPHERICAL ROOTS OF SPHERICAL VARIETIES

by Friedrich KNOP

Abstract. — Brion proved that the valuation cone of a complex spherical
variety is a fundamental domain for a finite reflection group, called the little Weyl
group. The principal goal of this paper is to generalize this theorem to fields of
characteristic unequal to 2. We also prove a weaker version which holds in charac-
teristic 2, as well. Our main tool is a generalization of Akhiezer’s classification of
spherical varieties of rank 1.
Résumé. — Brion a prouvé que le cône de valuations d’une variété sphérique

complexe est un domaine fondamental pour un groupe de réflexion finie, appelée
petit groupe de Weyl. L’objectif principal de cet article est de généraliser ce théo-
rème à des corps de caractéristique différent de 2. Nous prouvons aussi une version
plus faible qui tient en caractéristique 2. Notre outil principal est une généralisation
du classement d’Akhiezer des variétés sphériques de rang 1.

1. Introduction

Let G be a connected reductive group defined over an algebraically closed
field k of arbitrary characteristic p. A G-variety X is spherical if the Borel
subgroup B of G has an open orbit in X. For p = 0 there exists a well-
developed structure theory for spherical varieties. The present paper is part
of a program to generalize this structure theory to arbitrary characteristic.
A crucial part of characteristic zero theory depends on Akhiezer’s list,

[1], of spherical varieties of rank 1. In the companion paper [13] we compiled
results which can be proved without such a list. In the present paper we
use Akhiezer’s list, after generalizing it to arbitrary characteristic, to prove
Brion’s theorem on the structure of the valuation cone.

More precisely, for p = 0, Brion proved in [7] that the valuation cone of
a spherical variety is the fundamental domain of a finite reflection group,

Keywords: Spherical varieties, spherical roots, homogeneous varieties, fields of positive
characteristic.
Math. classification: 14M27, 14L30, 14G17.



2504 Friedrich KNOP

the little Weyl group WX of X. Following Brion, we define WX to be the
group generated by the reflections about the codimension-1-faces of the
valuation cone V(X). Our first important result, Theorem 4.3, states that
WX is always finite. This entails immediately that V(X) is always a union
of Weyl chambers of WX .
Next, we investigate when V(X) consists of just one chamber. Since coun-

terexamples were known by Schalke [18] for p = 2 it came a bit as a surprise
that V(X) is indeed a single Weyl chamber whenever p 6= 2 (Corollary 4.7).

There is even a version of Brion’s theorem which is valid for arbitrary,
possibly non-spherical,G-varieties. In that case, one considers the set V0(X)
of G-invariant valuations of k(X) which are trivial on the subfield k(X)B .
Then again, V0(X) is the fundamental domain for a unique reflection group
WX , provided that p 6= 2. As a matter of fact, this statement is a formal
consequence of the spherical case (this was already observed in [12]).
Back to the spherical case: in characteristic zero there are, besides

Brion’s, several approaches to the little Weyl group. Unfortunately, they all
use Lie algebra techniques which do not carry over to positive characteris-
tic. Also, it seems to be hard to make Brion’s original proof work for p 6= 0.
But still, we follow his proof in “spirit” in that we carefully investigate the
dihedral angles of V(X) and that we use case-by-case arguments.

More precisely, we study the normal vectors to the codimension-1-faces
of V(X). Properly normalized they are called the spherical roots of X. This
is now where the rank-1-varieties come in: they provide us with all possible
spherical roots. For p = 0 their classification was achieved by Akhiezer, [1].
For arbitrary p we follow mostly a simplification due to Brion, [6]. It turns
out (see the table §7) that there are no surprises: all cases are known from
characteristic zero or can be reduced to a known one using an inseparable
isogeny.
Using this table it is not difficult to see that the angle of any two spherical

roots of X is almost always obtuse. Then, for ruling out the few exceptions,
we use the structure theory developed in [13]. For p = 2, some cases remain
which are all listed in Theorem 4.5.

Acknowledgment: I would like to thank Guido Pezzini for many discus-
sions on the matter of this paper.

Notation: In the entire paper, the ground field k is algebraically closed.
Its characteristic exponent is denoted by p, i.e., p = 1 if char k = 0 and
p = char k, otherwise. The group G is connected reductive, B ⊆ G is a
Borel subgroup, and T ⊆ B is a maximal torus. Let Ξ(T ) = Ξ(B) be its
character group. The set of simple roots with respect to B is denoted by
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SPHERICAL ROOTS OF SPHERICAL VARIETIES 2505

S ⊂ Ξ(T ). For α ∈ S let Pα ⊆ G be the corresponding minimal parabolic
subgroup. The Weyl group of G with respect to T is W .

For a spherical variety X let Ξ(X) ⊆ Ξ(T ) be the group of weights
of B-semiinvariant rational functions on X. By definition, the rank of X
is rkX := rk Ξ(X). We also use the variants ΞQ(X) = Ξ(X) ⊗ Q and
Ξp(X) = Ξ(X) ⊗ Zp with Zp := Z[ 1

p ]. For any root α of G let αr be the
linear function χ 7→ 〈χ, α∨〉 restricted to ΞQ(X).

A subgroup H ⊆ G is called spherical if X = G/H is spherical. In that
case, we call rkX the corank of H
The set V(X) of G-invariant valuations of X can be considered as a

subset of the dual space NQ(X) = Hom(ΞQ(X),Q) (see [11, Cor. 1.8]). It
is known to be a finitely generated convex cone ([11, Cor. 5.3]). A spherical
root of X is a primitive element σ ∈ Ξp(X)∩ZS such that σ is non-positive
on V(X) and V(X) ∩ {σ = 0} is one of its codimension-1-faces. The set of
spherical roots is denoted by Σ(X).
Let Bx0 ⊆ X be the open B-orbit. The irreducible components of Gx0 \

Bx0 are called the colors of X. We say that α ∈ S is of type (p) if Pαx0 =
Bx0. The set of simple roots α which are of type (p) is denoted by S(p)(X)
or simply S(p).

2. Classification of spherical varieties of rank one

The aim of this section is to state the classification of (reduced) spherical
subgroups H ⊆ G with rkG/H = 1. Thereby, we get also a list of all
possible spherical roots. In characteristic zero, this has been first achieved
by Akhiezer [1]. Here, we follow closely a simplification due to Brion [6].
We start by describing the process of (parabolic) induction. For that

let P ⊆ G be a parabolic subgroup, G0 a connected reductive group and
π : P � G0 a surjective homomorphism. Let X0 be a G0-variety. Via π, one
may consider X0 as a P -variety. Then X = G×P X0 is called the G-variety
induced from the G0-variety X0 (via π). In practice, it is convenient to
induce from a parabolic subgroup −P which is opposite to the chosen Borel
subgroup B. The homomorphism from −P to G0 is still denoted by π.

The homomorphism π factors through the Levi subgroup L = −P/−Pu.
Put T0 = π(T ). Then π induces an inclusion π∗ : Ξ(T0) ↪→ Ξ(T ). We call
π central if π∗(S(G0)) ⊆ S(L). If π is smooth then it is central. Thus,
in characteristic zero, π is always central. We may always choose π to be
central, if we so wish: just replace G0 by G0 := −P/(kerπ)red.

TOME 64 (2014), FASCICULE 6



2506 Friedrich KNOP

The following is well-known in characteristic zero:

2.1. Lemma. — Let X be the G-variety induced from the G0-variety X0.
a) X is spherical if and only if X0 is spherical.

Assume this. Then:
b) Ξ(X) = Ξ(X0). In particular, rkX = rkX0.
c) V(X) = V(X0).

Assume, additionally, that π is central. Then
d) Σ(X) = Σ(X0).
e) S(p)(X) = S(p)(X0) ∪ S(kerπ).

Proof. — Assertions a) and b) follow from the fact that X contains P×L
X0 = Pu ×X0 as a B-invariant open subset.
For the rest of the assertions we may replace X0 by its open G0-orbit and

therefore assume that X0 and X are homogeous. Then, up to a positive
scalar, the elements of V(X) correspond to smooth embeddings X ↪→ X

such that D = X \X is a homogeneous divisor. The canonical morphism
X → G/−P extends to X. Thus, X is of the form G×−P X0 where X0 \X0
is a homogeneous divisor, as well. Hence it corresponds to an element of
V(X0). This easily implies c). Assertion d) is now a direct consequence of
c) and the definition of spherical roots.
Finally, assume Pα, α ∈ S(G) stabilizes the open B-orbit X1 in X. Then

its image Pu in G/−P is stabilized, as well. This shows α ∈ S(L). In that
case, Pα stabilizes X1 if and only if π(Pα) ⊆ G0 stabilizes the open B0-orbit
in X0. Assertion e) follows. �

Of particular importance is the case when X0 = G0/H0 is homogeneous.
Then X = G/H is homogeneous, as well, with H = π−1(H0). If H cannot
be obtained by induction in a non-trivial way, i.e., with dimG0 < dimG,
then it is called cuspidal. Thus, this means two things:

a) The only parabolic P ⊆ G with Pu ⊆ H ⊆ P is P = G.
b) The only connected normal subgroup K of G with K ⊆ H is K = 1.

Observe that cuspidality is preserved under isogenies. More precisely, image
and preimage of a cuspidal subgroup under an isogeny are cuspidal.
Any finite subgroup H of the 1-dimensional torus G = Gm is certainly

cuspidal. Spherical varieties of rank one which are parabolically induced
from a torus are called horospherical. In other words, a spherical subgroup
H ⊂ G of corank 1 is horospherical if it is of the form kerχ where χ is a
non-trivial character of a parabolic subgroup of G. We are going to prove
later:

ANNALES DE L’INSTITUT FOURIER



SPHERICAL ROOTS OF SPHERICAL VARIETIES 2507

2.2. Lemma. — Assume that G contains a cuspidal spherical subgroup
of corank 1. Then either G ∼= Gm or G is semisimple.

Hence, it suffices to treat the case that G is semisimple. In the following it
is convenient to assume that G is even of adjoint type which is obviously
not a big loss of generality. The main classification theorem is now:

2.3. Theorem. — Let G be a semisimple group of adjoint type and let
H ⊂ G be a cuspidal spherical subgroup of corank 1. Then:

a) The pair (G,H) appears in the table §7.
b) The coefficients of the spherical root σ ∈ Σ(G/H) are indicated in

the column with caption “σ”. The set S(p)(G/H) is denoted in the
form of black dots.

Remark. — The table is a bit condensed in the sense that an entry
〈s〉 ·H0 denotes the two groups H = H0 and its normalizer H = 〈s〉H0. In
characteristic p 6= 2, the spherical roots for these groups differ by a factor
of 2 which is also indicated.

Before we proceed to the proof of Theorem 2.3 we discuss, following
Luna, the notion of an “abstract spherical root” of G:

2.4. Definition. — a) A spherical root of G is an element σ ∈ ZS such
that there is a spherical G-variety X of rank 1 with Σ(X) = {σ}. The set
of spherical roots of G is denoted by Σ(G).

b) A spherical root σ of G is compatible to S′ ⊆ S if there is a spherical
G-variety X of rank 1 with Σ(X) = {σ} and S(p)(X) = S′.

We introduce the support |σ| ⊆ S of a spherical root σ as the smallest
set of simple roots needed to express it. In other words,

(2.1) |σ| := {α ∈ S | nα 6= 0}

when

(2.2) σ =
∑
α∈S

nαα with nα = nα(σ) ∈ Z>0.

Now, the following recipe on how to determine all spherical roots and all
compatible sets follows directly from Lemma 2.1.

a) σ ∈ Σ(G) if and only if (|σ|, σ) appears in table §7.
b) σ and S′ ⊆ S are compatible if and only if all α ∈ S′ \ |σ| are

orthogonal to σ and |σ| ∩S′ consists of exactly the “black vertices”
in the diagram of σ in table §7.

TOME 64 (2014), FASCICULE 6



2508 Friedrich KNOP

Example. — The spherical roots for the root system A3 are:

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3

2α1, 2α2, 2α3 for p 6= 2
α1 + 2α2 + α3, α1 + α3

α1 + qα3, qα1 + α3 for q = pa > 1

The roots in the last row are new to positive characteristic. In particular, as
opposed to characteristic 0, a fixed group may have infinitely many abstract
spherical roots.

3. Proof of the classification

This section is devoted to the proof of Theorem 2.3. Let X = G/H

be spherical of rank 1. Then NQ(X) ∼= Q and V(X) is either equal to
NQ(X) (in case X is horospherical) or a halfline (otherwise). Thus, it fol-
lows from the theory of spherical embeddings (see [11]) that X admits a
unique smooth equivariant completion X such that ∂X := X \X is pure
of codimension one and consists of either two (horospherical case) or one
(otherwise) homogeneous components. The embedding X is maximal in the
following sense: Let X ′ be a complete normal G-variety and ϕ : X ′ → X a
birational G-equivariant morphism. Then ϕ is an isomorphism.

3.1. Lemma. — Let H ⊂ G be a spherical subgroup of corank 1 and let
H ⊆ K ⊆ G. Then either K/H or G/K is a complete variety.

Proof (same as [6, 1.3 Lemme]). — Assume Y := K/H is not a complete
variety. Then it is not closed inX. Let Y denote its closure. ThenG×KY →
X is an isomorphism, by maximality. Thus, by inverting this morphism, we
obtain an equivariant morphism X � G/K which implies that G/K is a
complete variety. �

A first application is the
Proof of Lemma 2.2. — Let H ⊂ G be spherical of corank 1, let Z ⊆ G

be the connected center of G, and put K := ZH. Then H is normal in
K with K/H = Z/(Z ∩ H) a torus. Thus, if G/K is complete then K is
a parabolic in G and H is induced from K/H. Cuspidality implies G =
K/H ∼= Gm. If, on the other hand, K/H is complete then H = K, i.e.,
Z ⊆ H. But then Z = 1 since H is cuspidal, i.e., G is semisimple. �

From here to the end of this section, G will denote a semisimple group
of adjoint type (unless stated otherwise). Moreover, H ⊂ G is spherical of
corank 1. The classification forks then into two cases:

ANNALES DE L’INSTITUT FOURIER
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3.2. Lemma. — Let H ⊂ G be cuspidal. Then H is reductive or there is
a parabolic subgroup P ⊂ G with P = HPu.

Proof (similar to [6, 1.3 Théorème]). — By a theorem of Borel-Tits [2,
3.1], there is a parabolic subgroup P ⊆ G with H ⊆ P and Hu ⊆ Pu.
Choose P minimal with this property and put K = HPu. Then either
G/K or K/H is complete.
In the first case, K is parabolic in G. Since H ⊆ K ⊆ P and Hu ⊆

HuPu = Ku we get K = P by minimality of P .
In the second case, K/H = Pu/(H ∩ Pu) is affine, connected, and com-

plete, hence trivial. This and cuspidality imply P = G and Hu = Pu = 1,
i.e., H is reductive. �

Before we proceed we transfer a result of Dynkin [8, 15.1 Theorem] for
semisimple Lie algebras in characteristic 0 to semisimple groups in arbitrary
characteristic. The proof is basically the same.

3.3. Lemma. — Let G be a semisimple group with G1, . . . , Gs its simple
normal subgroups. Let H ⊂ G be maximal among connected reductive
proper subgroups. Then either

a) H = Hi

∏
j 6=iGj for some i where Hi ⊂ Gi is a maximal connected

reductive proper subgroup or
b) H = Hij

∏
l 6=i,j Gl for some i 6= j where Hij ⊂ GiGj is a connected

subgroup such that the projections Hij → Gi/(Gi∩Gj) and Hij →
Gj/(Gi ∩Gj) are isogenies.

Proof. — Without loss of generality we may assume G = G1 × . . .×Gs
with s > 2. Suppose that one of the projections H → Gi is not surjective
and denote its image by Hi. Then H is contained in, hence is equal to
Hi

∏
j 6=iGj .

Now assume that all projections H → Gi are surjective. Then for every
i there is a simple normal subgroup N ⊆ H such that the composition
N ↪→ H ↪→ G� Gi is an isogeny. All other factors of H are then mapped
to the trivial group in Gi. Furthermore, there must be one factor N of H
which is being mapped surjectively to more than one factor, say Gi and
Gj , of G since otherwise H = G. Put Hij = N . Thus, H is contained in,
hence is equal to Hij

∏
l 6=i,j Gl. �

3.4. Lemma. — Assume G is not simple and that H is cuspidal and
reductive. Then G/H is isomorphic to (PGL(2)×PGL(2))/(id×Fq)PGL(2)
where Fq is a Frobenius morphism.

TOME 64 (2014), FASCICULE 6
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Proof (similar to [6, 2.2 Corollaire]). — Assume first that H is con-
nected. Then H is maximal among all connected reductive subgroups of G
(Lemma 3.1). Since H, being cuspidal, does not contain any simple factor
of G, Lemma 3.3 implies that G, being of adjoint type, is the direct product
of two simple factors, G = G1 × G2, and that ϕi : H → Gi is an isogeny.
Thus, there is a finite morphism H ×H/∆(H)→ G/H which implies that
H, as an H ×H-variety, is of rank 1. But this rank equals the rank of H
as a group. We conclude that the Gi are semisimple, of rank one, and of
adjoint type and therefore isomorphic to PGL(2). Any isogeny from SL(2)
to PGL(2) contains the (schematic) center of SL(2) in its kernel. Thus,
since ϕ1×ϕ2 is an embedding we see that also H ∼= PGL(2), as well. More-
over, ϕ1 and ϕ2 must be (conjugate to) powers of the Frobenius morphism
and one of them is the identity. Thus, up to a switch of factors, we have
G = PGL(2)× PGL(2) and H = (id×Fq)PGL(2).
Finally, let H be not necessarily connected. Then H0 = (id×Fq)PGL(2)

and H0 ⊆ H ⊆ NG(H0) = H0, i.e., H = H0. �

3.5. Lemma. — Assume that G is simple andH is cuspidal and reductive.
Then (G,H) appears in the table §7.

Proof. — Assume first, that H is connected. Then we refrain from gen-
eralizing the arguments of Brion in [6, 2.3, 2.4]. Instead, with [14] we have
now a classification of all connected spherical reductive subgroups of simple
groups at our disposal. This generalizes Krämer’s classification [15] in char-
acteristic zero. In a nutshell, the outcome of [14] is that, up to an isogeny
of G, there appears only one more case in positive characteristic, namely
H = G2 × SL(2) ⊂ G = Sp(8) in char k = 2. But that case has rank 3
by [14, Prop. 4.5]. As a result, all pairs H ⊂ G appear in Krämer’s list
and therefore must appear in Akhiezer’s list [1], as well (always up to an
isogeny of G).
If H is non-connected, then it is a subgroup of the normalizer N =

NG(H0) of its connected component. Thus we have compute the normal-
izers of all connected subgroups in the list. The result will be that H0

is of index at most two in its normalizer. This implies H = N whenever
N 6= H0. These cases are indicated by the presence of 〈sα〉.
There are three main cases to consider. The first are those cases which are

special to characteristic 2 and 3. For all of them there is a bijective isogeny
to a case defined over Z. The same holds for PGL(2) embedded diagonally
into PGL(2)×PGL(2). Clearly, the normalizers are not affected. This way,
we may assume that H ⊂ G is defined over Z.

ANNALES DE L’INSTITUT FOURIER
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Then we consider the equal rank case, i.e., where H contains a maximal
torus T of G. In that case, every element of N/H is represented by an
element of the Weyl group, which normalizes the root system of H. This
means that N/H is independent of the characteristic. Thus we may just
copy the results from characteristic zero.
In the remaining cases, all automorphisms of H are inner. This implies

N = CH where C is the centralizer of H in G. We argue that C = 1 and
therefore N = H in all cases.

Now we discuss the cases separately. First, let H = G2 in G = SO(7). If
p 6= 2, the representation of H on k7 is irreducible. Thus C consists only
of scalars and therefore C = 1. For p = 2, the pair H ⊂ G is isogenous to
G2 ⊂ PSp(6). Again the irreducibility of the G2-module k6 implies C = 1.

All other cases are of the form H = SO(2n − 1) in G = PSO(2n) with
n > 2 (the case n = 2 and n = 3 are the same as PGL(2) ⊂ PGL(2)2 and
PSp(4) ⊂ PGL(4), respectively). It suffices to show that C̃, the centralizer
of SO(2n − 1) in SO(2n) consists only of scalars. Let u ∈ C̃ be unipotent
and let v0 ∈ k2n be the vector fixed by SO(2n − 1). Since v0 is unique
up to a scalar, it follows that uv0 = v0 and therefore u ∈ SO(2n − 1).
Because the center of SO(2n − 1) is trivial, we conclude u = 1. Thus, C̃
consists only of semisimple elements. If p = 2 this implies C̃ = 1 since k2n is
indecomposable as SO(2n−1)-representation. If p 6= 2 then k2n = k⊕k2n−1.
Thus, if s ∈ C̃ then s = diag(λ, µ, . . . , µ) with λ2 = µ2 = λµ2n−1 = 1. This
implies λ = µ ∈ {±1}. Thus s is a scalar. �

According to Lemma 3.2, the last remaining step in the classification is:

3.6. Lemma. — Assume that H is cuspidal and that there is a parabolic
subgroup P ⊂ G with P = HPu. Then (G,H) is either isomorphic to
(PGL(n),GL(n−1)), n > 2 or one of the non-reductive pairs in the table §7.

Proof (generalization of [6, 2.1]). — Assume first that H is connected.
Let L ⊆ P be a Levi subgroup. Then, by assumption, the homomorphism
H → P/Pu ∼= L is surjective. Thus, Hu is mapped to a unipotent normal
subgroup of L, i.e., to 1 which means Hu ⊆ Pu. Let Z ⊆ L be the center
of L. It is a torus since G is of adjoint type. Hence, it can be lifted to a
subtorus Z ′ of H. Because Z ′ is P -conjugate to Z we may, without loss of
generality, assume that Z = Z ′ ⊆ H. But then L = CP (Z) ⊆ H (see, e.g.,
[3, 11.14 Cor. 2]), i.e., H = LnHu.
Recall the maximal compactification X of X = G/H and let let Y ⊆ X

be the closure of Y = P/H ⊆ G/H. Then G ×P Y → X is proper and
birational, hence an isomorphism by the maximality property of X. This

TOME 64 (2014), FASCICULE 6
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shows that Y consists of two P -orbits, namely Y and ∂Y = Y \ Y . The
latter is a complete P -orbit of codimension 1 in Y . In particular, since Pu,
being solvable, has a fixed point in ∂Y it acts in fact trivially and L acts
transitively on ∂Y .

The 1-dimensional root subgroups Uα ⊂ B, α ∈ S, generate U = (B,B).
Thus, since H is not horospherical, there is a simple root α such that
Uα 6⊆ H. This means Uα ⊆ Pu but Uα 6⊆ Hu. Then C := UαH/H ⊆ Y ,
the Uα-orbit in P/H, is an affine curve. It is closed, since Y = Pu/Hu is
affine and Uα is unipotent. Now let C be its closure in Y . Let −B ⊆ G be
the Borel subgroup opposite to B. Then Uα is normalized by −B∩L which
implies that C is −B ∩ L-invariant. Because −B ∩ L is a Borel subgroup of
L, we infer that LC is an irreducible closed L-invariant subset of Y . Since
C meets ∂Y and L acts transitively on ∂Y this implies that ∂Y ( LC. For
dimension reasons we get Y = LC and therefore Y = LC. But the center
Z ⊆ L has only two orbits in C, namely {0} and its complement. This
shows that L acts transitively on Y \ {0}.
At this point we can show that it was no loss of generality to assume

that H is connected. Indeed let H̃ ⊆ P be a subgroup with H̃0 = H. Then
H̃/H is a finite L-invariant subset of Y . Hence H̃/H = {0} and therefore
H̃ = H.

Let Q ⊆ G be the parabolic generated by P and U−α. Then Uα 6⊆ Qu
implies that α is not a weight in QuHu. Hence QuHu/Hu is a proper L-
invariant subvariety of Y = Pu/Hu which means Qu ⊆ Hu ⊆ H ⊆ Q.
Since H is cuspidal we conclude that Q = G, i.e., that P is a maximal
parabolic subgroup corresponding to the set of simple roots Σ′ = Σ(G) \
{α}. Moreover, the cuspidality of H implies that G is simple and that Σ(G)
is connected.
Since Pu acts transitively on Y and L acts transitively on Y \ {0} the

action of P on Y is doubly transitive. According to [10, Satz 2] there is
an isomorphism Y ∼= An such that the P -action is given by a surjective
homomorphism π : P � (Gm · G0) n Gn

a where Gn
a acts by translations,

Gm acts by scalars, and G0 is either SL(n), n > 2 or Sp(n), n > 2 even or
G2, with n = 6 and char k = 2. This means in particular that Y = Pu/Hu

is a linear representation of L. It is irreducible with lowest weight α.
We conclude that α is an “end” of Σ and Σ′ is of type A or C in general or

of type B if char k = 2. Moreover, −α is a p-power multiple of the canonical
representation (or its dual). Up to isomorphism, this leaves precisely the
following cases:

(3.1) (Σ, α) = (An, α1), (Bn, αn), (Cn, α1), (G2, α1)
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in arbitrary characteristic and

(3.2) (Σ, α, p) = (Cn, αn, 2), (Bn, α1, 2), (G2, α2, 3)

in characteristic p > 0. Using a non-central isogeny, the latter cases reduce
to the former.
Clearly all cases appear (see table). Moreover, H contains the maximal

torus T . Therefore, Hu is generated by all Uβ where β is a root of Pu which
is not a weight of Y . This shows uniqueness of H. �

Finally, we prove part b) of Theorem 2.3. For this we use the following

3.7. Lemma. — Let X = G/H be defined over a field of characteristic
p > 0 and that X can be lifted to a homogeneous varity X0 over a field of
characteristic 0. Then X is spherical if and only if X0 is. Morover, there
are equalities Ξp(X) = Ξp(X0) and S(p)(X) = S(p)(X0).

Proof. — By assumption, there is a complete discrete valuation ring R
with residue field k and uniformizer π ∈ R and a smooth R-scheme X which
has X and X0 as special fiber and generic geometric fiber, respectively.
Then the equivalence of X and X0 being spherical is [14, Thm. 3.4].
According to [14, Lem. 3.1], for every B-semininvariant f on X there

is an n > 1 such that fn extends to a semiinvariant on X . Moreover, [9,
Prop. 41], the exponent n can be chosen to be a power of p. This combined
shows Ξ(X) ⊆ Ξp(X0).
Conversely, for let χ ∈ Ξ(X0) let f be a semiinvariant on X0 with char-

acter χf = χ. After possibly replacing R by a (ramified) extension we may
assume that f is a rational function on X which has poles at most along
X. Thus, there is a unique exponent m ∈ Z such that f̃ := πmf is regular
on X . Then, the restriction of f̃ to X is a B-semiinvariant with character
χ. This even shows Ξ(X0) ⊆ Ξ(X).
For X quasiaffine, the equality S(p)(X) = S(p)(X0) follows from

S(p)(X) = {α ∈ S | αr = 0}. The general case is reduced to this by
passing to an affine cone over X. �

Now let H ⊂ G be a member of Table §7 which can be lifted to char-
acteristic zero. Then Ξ(X0) and S(p)(X0) are well known (see, e.g., [19,
Table 1]). From this and the Lemma it is easy to determine Ξp(X) and
S(p)(X).

All other cases are isogenous to liftable ones. So the corresponding data
can be easily calculated, as well. This finishes the proof of Theorem 2.3.
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4. The structure of the valuation cone

Our main application for classifying spherical roots is to extend Brion’s
Theorem [7] on the structure of the valuation cone of a spherical variety.

In the following, we choose an auxiliaryW -invariant rational scalar prod-
uct on ΞQ(T ). For any 0 6= σ ∈ ΞQ(X) let

(4.1) sσ(χ) = χ− σr(χ)σ, with σr(χ) := 2(χ, σ)
(σ, σ)

be the unique orthogonal reflection of ΞQ(X) with sσ(σ) = −σ.

4.1. Lemma. — Let X be a spherical G-variety and σ ∈ Σ(X). Then:

a) There is nσ ∈W with nσ|ΞQ(X) = sσ.
b) Assume σ 6∈ 2S. Then there is a root β of G with σr = βr.

Proof. — We check all items of the table §7.
1. case: σ = uα where α is a root of G and u ∈ {1, 2}. Then clearly nσ = sα
works for a). Moreover, b) is trivial for u = 1. So let u = 2. Then p 6= 2
and there are three cases to consider:

• |σ| = Bn (n > 2), α = α1 + . . . + αn, and αn ∈ S(p)(X). Then
αrn = 0. On the other hand σr = 1

2α
r = 1

2 (2βr + αrn) = βr where
β = α1 + . . .+ αn−1 is a root.

• |σ| = G2, α = 2α1 + α2, and α2 ∈ S(p). Then σr = 1
2α

r = 1
2 (2αr1 +

3αr2) = αr1.
• |σ| = G2, α = 3α1 + 2α2, α1 ∈ S(p), and p = 3. Then σr = 1

2α
r =

1
2 (αr1 + 2αr2) = αr2.

For the other cases we first prove a). For this, we use the following
observation: let σ = uα + vβ with u, v ∈ Q>0 and α, β orthogonal roots
of G. Assume u−1αr − v−1βr = 0. Then sσ = sαsβ |ΞQ(X). Indeed, the
assumptions imply σr = u−1αr = v−1βr. Hence

(4.2) sαsβ(χ) = χ− αr(χ)α− βr(χ)β = χ− σr(χ)σ = sσ(χ)

for all χ ∈ ΞQ(X).

2. case: σ = α1 + qα2 with α1, α2 ∈ S orthogonal. Then αr1− q−1αr2 = 0 by
[13, (5.2)].

3. case: In the remaining four cases, we claim that there is a decomposition
σ = uα + vβ where u, v ∈ Q>0 and α, β are orthogonal roots of G with
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u−1α∨ − v−1β∨ ∈ 〈γ∨ | γ ∈ S(p)〉Q. Indeed:

|σ| = A3 σ = α1 + 2α2 + α3 = α+ β = ε1 + ε2 − ε3 − ε4,

α = α1 + α2 = ε1 − ε3,

β = α2 + α3 = ε2 − ε4,

α∨ − β∨ = α∨1 − α∨3 = (ε1 − ε2)− (ε3 − ε4)
|σ| = B3 σ = α1 + 2α2 + 3α3 = α+ β = ε1 + ε2 + ε3,

α = α1 + α2 + 2α3 = ε1 + ε3,

β = α2 + α3 = ε2,

α∨ − β∨ = α∨1 − α∨2 = (ε1 − ε2)− (ε2 − ε3)
|σ| = Dn σ = 2α1 + . . .+ 2αn−2 + αn−1 + αn = α+ β = 2ε1,

α = α1 + . . .+ αn−2 + αn−1 = ε1 − εn,
β = α1 + . . .+ αn−2 + αn = ε1 + εn,

α∨ − β∨ = α∨n−1 − α∨n = (εn−1 − εn)− (εn−1 + εn)
|σ| = C3 σ = 2α1 + 4α2 + 3α3 = 2α+ β = 2ε1 + 2ε2 + 2ε3
(p = 2) α = α1 + α2 + α3 = ε1 + ε3,

β = 2α2 + α3 = 2ε2,
1
2α
∨ − β∨ = 1

2α
∨
1 − 1

2α
∨
2 = 1

2 (ε1 − ε2)− 1
2 (ε2 − ε3).

This shows a) in all cases. For b) use σr = u−1αr = v−1βr and the fact
that in each case one of u or v is 1. �

Remarks. — a) The proof shows that nσ can be chosen to be either
a reflection sα or nσ = sαsβ where α and β are very orthogonal roots
meaning that there is w ∈ W such that wα and wβ are orthogonal simple
roots.

b) The element nσ can be chosen independently of the choice of the
scalar product on Ξ(T ). Hence, also sσ is independent of the scalar
product.

4.2. Definition. — The subgroup of WX ⊆ GL(ΞQ(X)) generated by
all sσ, σ ∈ Σ(X), is called the little Weyl group of X.

4.3. Theorem. — Let X be a spherical variety. Then:
a) The little Weyl group WX is finite.
b) The groups Ξp(X) and ZS ∩ Ξp(X) are WX -invariant.
c) The set RX := WXΣ(X) is a (finite) root system with Weyl group

WX .

Proof. — a) The little Weyl group is finite since, by Lemma 4.1a), it is
a subquotient of W .

b) Let σ ∈ Σ(X). Then σ ∈ Ξp(X). Moreover, it follows from [13, Corol-
lary 2.4] (for σ ∈ 2S) and Lemma 4.1b) (for σ 6∈ 2S) that σr takes values
in Zp on Ξp(X). This combined implies the sσ-invariance of Ξp(X). Then
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the invariance of ZS ∩ Ξp(X) follows from the W -invariance of ZS and
Lemma 4.1a).

c) follows from the fact that RX consists of primitive vectors in the
WX -invariant lattice ZS ∩ Ξp(X). �

Remark. — The group Ξ(X) itself is, in general, not WX -invariant.
Take for example G = GL(2) and X = A2 × (q)P1. Here (q)P1 denotes
the projective line with the Frobenius twisted G-action. Then Ξ(X) =
Zqε1 ⊕ Zε2 which is not sα-stable unless q = 1.

4.4. Corollary. — The valuation cone V(X) of a spherical variety X
is the union of Weyl chambers for the little Weyl group WX .

Remark. — Schalke, [18], has shown that if p=2 andX=PGL(3)/SO(3)
then Σ(X) = {α1, α1 + α2}. Thus V(X) can be identified with the set of
rational triples (x1, x2, x3) with x1 + x2 + x3 = 0 and x1 6 x2, x3 which is
the union of the two chambers {x1 6 x2 6 x3} and {x1 6 x3 6 x2}.

The next goal is now to prove that V(X) is actually just one Weyl cham-
ber, provided that p 6= 2. A constraint on the angles between spherical
roots is given by the following theorem. Its proof is deferred to section 5.

4.5. Theorem. — Let X be a spherical variety and let σ, τ ∈ Σ(X) be
distinct spherical roots with (σ, τ) > 0. Then p = 2 and, up to a switch of
σ and τ , the triple |σ| ∪ |τ |, σ, τ is contained in the following table.
(4.3)
|σ| ∪ |τ | σ τ

A2 α1 α1 + α2
Bn, n > 2 α2 + . . .+ αn α1 + 2α2 + . . .+ 2αn
Cn, n > 2 2α2 + . . .+ 2αn−1 + αn α1 + 2α2 + . . .+ 2αn−1 + αn
G2 α2 α1 + α2

Remark. — In characteristic 2 one can show that all exceptional cases
in Theorem 4.5 do occur. Namely:

• Σ(X) = {α1, α1 + α2} ⊂ A2 where X = SL(3)/SO(3) (see [18]).
• Σ(X) = {α2 + . . .+αn, α1 + 2α2 + . . .+ 2αn} ⊂ Bn, n > 2 where X
is the open SO(2n+ 1)-orbit in the Grassmannian of codimension-
2-subspaces in k2n+1 (the defining representation).

• Σ(X) = {2α2 + . . .+2αn−1 +αn, α1 +2α2 + . . .+2αn−1 +αn} ⊂ Cn,
n > 2, is isogenous to the preceding case, thus occurs as well. More
concretely: the variety Sp(2n)/O(2n) is isomorphic to an affine
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space A2n on which Sp(2n) acts by affine linear transformations.
Now X is the open orbit in the set of affine lines of A2n.

• Σ(X) = {α2, α1 + α2} ⊂ G2 where X = G/H and
H = SO(3) · U2α1+α2U3α1+α2U3α1+2α2 ⊂ Pα2 ⊂ G2.

Details will appear elsewhere.

From Theorem 4.5 we derive the main result of this paper:

4.6. Theorem. — Let X be a spherical variety which is defined over a
field of characteristic p 6= 2. Then Σ(X) is a system of simple roots for the
root system RX = WXΣ(X).

Proof. — According to Theorem 4.5, the angle between any two spherical
roots is > π

2 . Hence [4, Ch. 5, §3, no. 5, Lemme 3] (or [7, Théorème 3.1])
implies that Σ(X) is linearly independent. Now we argue as in the proof of
[7, Théorème 3.5]. �

The following corollaries are immediate consequences:

4.7. Corollary. — Let p 6= 2. Then the valuation cone V(X) of a
spherical variety X is a Weyl chamber for the little Weyl group WX .

4.8. Corollary. — Let p 6= 2 and X a spherical variety. Then the set
Σ(X) of spherical roots is linearly independent. This means, in particular,
that the valuation cone V(X) is a cosimplicial cone.

The theory of spherical embeddings, [11], provides us with the following
relaxed verion of a wonderful embedding:

4.9. Corollary. — Let p 6= 2 and let X = G/H be a homogeneous
spherical variety such that Hred is of finite index in its normalizer. Then
there is an equivariant normal completion X ↪→ X with the following
properties:

a) The boundary X \X is the union of r = rkX irreducible divisors
D1, . . . , Dr.

b) The map I 7→
(⋂

i∈IDi

)red is a bijection between subsets of {1, . . . , r}
and the set of orbit closures in X.

Proof. — The condition on the normalizer implies that the valuation
cone V(X) is pointed ([11, Thm. 6.1]). Thus, C = V(X) defines a toroidal
embedding X ↪→ X. Properties a) and b) follow from the fact that V(X)
is a simplicial cone. �
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Remark. — Observe, that, as opposed to wonderful varieties, we made
no claims of smoothness or transversality.

Theorem 4.5 has also the following consequence:

4.10. Corollary. — Every (internal) dihedral angle of the valuation
cone equals either

(4.4) 1
6π,

1
4π,

1
3π,

1
2π,

2
3π,

3
4π, or

5
6π.

The last three values occur only for p = 2.

5. The angles between spherical roots

This section is devoted to the proof of Theorem 4.5. We are going to use
the notation

(5.1) |σ|p := |σ| ∩ S(p), |σ|s := |σ| \ S(p)

which we call the parabolic support and the singular support of σ. An
inspection of table §7 shows that the singular support consists of either 1
or 2 elements.
We start with a trivial but useful observation, the saturation principle:

5.1. Lemma. — Let σ be a spherical root, let α ∈ |σ|, and let β ∈ S(p)

be connected to α in the Dynkin diagram (i.e., (α, β) < 0). Then β ∈ |σ|,
as well.

Proof. — Since α and β are connected we have (α, β) < 0. Now suppose
β 6∈ |σ|. Then

(5.2) 0 = (β, σ) = nα(β, α) +
∑

γ∈|σ|\{α}

nγ(β, γ) < 0,

a contradiction. �

First we show that the angle between almost any two spherical roots is
automatically obtuse, just for combinatorial reasons. The length of a root
does not play a rôle for that. Therefore, we are considering only spherical
roots σ which are reduced, i.e., for which 1

2σ is not a spherical root.

5.2. Lemma. — Let σ and τ be two distinct reduced spherical roots of
G which are compatible with some subset S(p) ⊆ S. Assume that both σ
and τ have connected support and that (σ, τ) > 0. Then, up to a switch of
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σ and τ , the triple |σ| ∪ |τ |, σ, τ is contained in the following table:
(5.3)
|σ| ∪ |τ | σ τ

A2 α1 α1 + α2
B2 α1 α1 + α2
G2 α2 α1 + α2

Additionally for p = 2:
B2 α1 + α2 α1 + 2α2
Bn, n > 2 α2 + . . .+ αn−1 + αn α1 + 2α2 + . . .+ 2αn−1 + 2αn
Cn, n > 3 2α2 + . . .+ 2αn−1 + αn α1 + 2α2 + . . .+ 2αn−1 + αn

Additionally for p = 3:
G2 α1 3α1 + α2

Proof. — The case #|σ| ∪ |τ | = 2 can be easily handled case by case.
These provide for six cases in the table. Therefore, assume from now on
that #|σ| ∪ |τ | > 2. Let σ =

∑
α∈S nαα. Then, because of

(5.4) 0 < (σ, τ) =
∑
α∈|σ|s

nα(α, τ)

we have |σ|s ∩ |τ |s = |σ|s ∩ |τ | 6= ∅.
First, we treat the case that #|σ|s = 1. Then |σ|s ⊆ |τ |. The saturation

principle and the connectedness of |σ| imply that |σ| ⊆ |τ |. If also #|τ |s = 1
then, by symmetry, |τ | ⊆ |σ|, as well. An inspection of the list of spherical
roots shows that this is not possible with #|σ| > 2.
Now let |τ |s = 2. Then the saturation principle and the table leaves the

following possibilities (recall #|τ | > 3):
(5.5)
|τ | σ τ (σ, τ)

B4 α2 + 2α3 + 3α4 = ε2 + ε3 + ε4 α1 + α2 + α3 + α4 = ε1 = 0
Cn, n > 2 α1 = ε1 − ε2 α1 + 2α2 + . . .+ αn = ε1+ε2 = 0
Additionally for p = 2:

B3 α2 + 2α3 = ε2 + ε3 α1 + α2 + α3 = ε1 = 0
Bn, n > 2 α1 = ε1 − ε2 α1 + 2α2 + . . .+ 2αn = ε1+ε2 = 0
Bn, n > 2 α2 + . . .+ αn = ε2 α1 + 2α2 + . . .+ 2αn = ε1+ε2 > 0
Cn, n > 2 2α2 + . . .+ αn = 2ε2 α1 + 2α2 + . . .+ αn = ε1+ε2 > 0
C3 α2 + α3 = ε2 + ε3 2α1 + 2α2 + α3 = 2ε1 = 0
C4 2α2+4α3+3α4=2ε2+2ε3+2ε4 2α1 + 2α2 + 2α3 + α4 = 2ε1 = 0
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Thus, we obtain exactly the two series in the statement.
Finally, assume that #|σ|s = #|τ |s = 2. Then |σ|s = |τ |s would imply,

as above, that |σ| = |τ |, hence σ = τ . This leaves the case |σ|s = {α, β},
|τ |s = {β, γ}. We have

(5.6) 0 < (σ, τ) = nα(α, τ) + nβ(β, τ)

which shows that (β, τ) > 0 and, by symmetry, (β, σ) > 0. If one goes
through all possible pairs β, σ, the saturation principle shows that |σ| =
{α} ∪ T and, by symmetry, |τ | = {γ} ∪ T where T = |σ| ∩ |τ |. Thus, we
arrive at the following possibilities:
(5.7)
|σ| ∪ |τ | σ τ

Dn, n > 3 α1 + . . .+ αn−2 + αn−1 = ε1 − εn α1 + . . .+ αn−2 + αn = ε1 + εn
B3 α1 + α2 = ε1 − ε3 α2 + α3 = ε2

Additionally for p = 2:
C3 α1 + α2 = ε1 − ε3 2α2 + α3 = 2ε2

In all these cases, we have (σ, τ) = 0. �

Proof of Theorem 4.5. — We treat first the case when the support of σ
is not connected. Then σ = α1 + qα2 with α1, α2 ∈ S orthogonal. Equation
[13, (5.2)] implies that τ is orthogonal to λ := α∨1 − q−1α∨2 . It follows
that (α2, τ) = x(α1, τ) for some x > 0. Thus, 0 < (σ, τ) = y(α1, τ) with
y = 1 + qx > 0 which implies α1 ∈ |τ |s. By symmetry, also α2 ∈ |τ |s, hence
{α1, α2} = |τ |s. Now one can use the table of spherical roots in §7 to show
that this is only possible if τ = α1 + q′α2. But then (λ, τ) = 0 implies
q′ = q, in contradiction to σ 6= τ .
So, up to factors of 2, the pair σ, τ is contained in Table (5.3). Looking

at S(p), observe that τ is necessarily reduced. Moreover, if p 6= 2 then σ is
reduced as well because of the parity condition [13, Corollary 2.4].
To exclude other cases in (5.3) we use some results from [13] which require

that σ and τ are neighbors in Σ(X). This means that Q>0σ + Q>0τ is a
two-dimensional face of the cone Q>0Σ(X). Fortunately, this holds in all
cases of interest:

5.3. Lemma. — Let σ, τ ∈ Σ(X) be distinct spherical roots with |σ| ⊆ |τ |.
Then σ and τ are neighbors in Σ(X).
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Proof. — Otherwise there is an equation

(5.8) uσ + vτ = t1η1 + . . .+ tsηs

with u, v, t1, . . . , ts > 0 and η1, . . . , ηs ∈ Σ(X) \ {σ, τ}. Clearly s > 1 and
|η1| ⊆ |σ| ∪ |τ | = |τ |. Because η1 is compatible to |τ |p and #|τ |s 6 2 we
infer that η1 is a linear combination of σ and τ . But then one of σ, τ or η1
could not be extremal in Q>0Σ(X). �

Next, we show that the three cases

(5.9) (A2, α1, α1 + α2), (B2, α1, α1 + α2), (G2, α2, α1 + α2)

don’t occur when p 6= 2. For this we use heavily the machinery of [13]. See
especially [13, §2] for unexplained notation.
In all three cases, we have σ ∈ S(a) and let D1 and D2 be the two colors

moved by σ. Because of δ(σ)
D1

+ δ
(σ)
D2

= σr, we have δDi(τ) > 0 for i = 1 or
2 in contradiction to [13, Proposition 6.5].

For p 6= 2, 3 we are done. For p = 3 only one more case has to be checked.
But, using the exceptional self-isogeny of G2, that case can be reduced to
the last case of (5.9) which has been ruled out before.
Also for p = 2 only one more case remains to be checked, namely (B2, α1+

α2, α1 + 2α2). So assume X = G/H where H is a connected subgroup of
G = SO(5) with Σ(X) = {α1 + α2, α1 + 2α2}. Then both simple roots are
of type (b). Thus there are two colors such that δD is proportional to α∨1
and α∨2 , respectively. Since V(X) and the two colors can be separated by a
hyperplane, the space X is affine, [11, Thm. 6.7], and H is reductive. Since
there are only two colors, H is even semisimple ([13, Proposition 2.1]).
Moreover, dimH = 4 (see [11, Thm. 6.6]). But such a group does not
exist. �

Remark. — Let α ∈ S∩ 1
2Σ(X). Then Luna’s axiom (Σ1) for a spherical

system stipulates that 〈σ, α∨〉 is a nonpositive even integer for all σ ∈
Σ(X) \ {2α} (see [16, 2.1] or [5, 1.2.1]). The discussion above shows that
the nonpositivity part is in fact superfluous since it follows from the other
axioms (more precisely from (S), the parity part of (Σ1), and (Σ2)).

In passing, we proved most parts of the following statement which we
state for future reference:
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5.4. Proposition. — Let σ 6= τ ∈ Σ(X) with |σ| ⊆ |τ |. Then (|τ |, σ, τ)
is contained in the following table:

(5.10)

|τ | σ τ

B4 α2 + 2α3 + 3α4 α1 + α2 + α3 + α4

Cn, n > 2 α1 α1 + 2α2 + . . .+ αn

Cn, n > 2 2α1 (p 6= 2) α1 + 2α2 + . . .+ αn

G2 α1 α1 + α2

Additionally for p = 2:

A2 α1 α1 + α2

Bn, n > 2 α1 α1 + 2α2 + . . .+ 2αn
Bn, n > 2 α2 + . . .+ αn α1 + 2α2 + . . .+ 2αn
Cn, n > 2 2α2 + . . .+ αn α1 + 2α2 + . . .+ αn

C4 2α2 + 4α3 + 3α4 2α1 + 2α2 + 2α3 + α4

G2 α2 α1 + α2

Additionally for p = 3:

G2 α2 3α1 + α2

Proof. — Most cases are already contained in table (5.5). Missing from
that table are those cases with #|τ | = 2 which can be easily dealt with
by hand. So it remains to be shown that the case (|τ |, τ, σ) = (C3, 2α1 +
2α2 + α3, α2 + α3) (and the isogenous case (B3, α1 + α2 + α3, α2 + 2α3))
with p = 2 does not occur.
By Lemma 5.3 we may localize at Σ (see [13, 6.1]). Thus, it suffices

to exclude the existence of a connected subgroup H ⊆ G = Sp(6) with
Σ(X) = {σ, τ}. There are two colors D1 and D2 which are both of type (b).
Hence δDi

is a positive multiple of αri . The affinity criterion in [11] shows
that H is reductive. Then [13, 2.1] implies that H is even semisimple.
Moreover, from S(p) = {α2} one computes dimH = 11. Hence, H must be
of type A1 × A2. Since rkH = rkG = 3 the root system of H would be a
subroot system of G which is not the case. �

Remark. — All cases occur. For the first four see, e.g., [19]. The others
are treated in the remark after Theorem 4.5 or are isogenous to one of the
previous cases.
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6. Invariant valuations of arbitrary G-varieties

For char k = 0, Brion’s Theorem on the valuation cone of spherical
varieties has been used in [12] to obtain generalizations for arbitrary G-
varieties. Now that we have similar results at our disposal we can do the
same in arbitrary characteristic.
The idea is to consider everything “relative” to B-invariants. More pre-

cisely, let X be any G-variety and let K = k(X)B be its field of B-invariant
rational functions. Clearly, K = k means that X is spherical. In general,
the transcendence degree of K over k is called the complexity of X so that
spherical means complexity 0.
Let V(X) be the set of G-invariant (Q-valued) valuations of the filed

k(X). This set plays the same rôle in determining equivariant compactifi-
cations of X as in the spherical case (see [17]). Because it is, in general,
too big to control, we partition it into manageable pieces by fixing the
restriction to K. More precisely, for a valuation v0 of K put

(6.1) Vv0(X) := {v ∈ V(X) | v|K = v0}.

It turns out (see below) that these sets are quite easy to understand. So
if it is possible to control all valuations of K then it is possible to under-
stand V(X) as a whole. This is trivially the case for K = k (i.e., spherical
varieties) but also if K is of transcendence degree 1 over k (the case of
complexity 1).
Of particular importance are central valuations, i.e., valuations whose

restriction to K is trivial. These are precisely the elements of V0(X). Now
consider the group k(X)(B) of B-semiinvariant rational functions on X

and let Ξ(X) ⊆ Ξ(T ) be the group of ensuing characters. Then we obtain
a short exact sequence

(6.2) 1→ K∗ → k(X)(B) → Ξ(X)→ 0.

A central valuation v is by definition trivial on K∗. Hence it defines a
homomorphism on Ξ(X). This way we get a map

(6.3) V0(X)→ N0
Q(X) := Hom(Ξ(X),Q)

which turns out to be injective ([12, 3.6]). It identifies V0(X) with a finitely
generated convex cone ([12, 6.5]). The generalization of Corollary 4.7 is:

6.1. Theorem. — Let X be a G-variety defined over a field of charac-
teristic p 6= 2. Then the set V0(X) of central valuations is the fundamental
domain for a finite reflection group WX acting on Ξp(X).
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Proof. — Follows from the spherical case in the same way as in charac-
teristic zero ([12, 9.2]). See also the slightly overoptimistic remark after the
theorem. �

Surprisingly, this determines also the structure of non-central valuations.
They have to satisfy a mild technical condition, though: a valuation v

of k(X) is called geometric if there exists a normal model X of X and
an irreducible divisor D in X such that v is a rational multiple of the
induced valuation vD. It is known that an invariant valuation is geometric
if and only if its restriction to K is geometric ([12, 4.4]). Since valuations
of fields of transcendence degree 6 1 are always geometric, geometricity is
no restriction for varieties of complexity 6 1.

Now fix a geometric valuation v0 and let Nv0
Q (X) be the set of homo-

morphisms v : k(X)(B) → Q such that v|K∗ = v0. Any two elements differ
by an element of N0

Q(X). This means that Nv0
Q (X) has the structure of

an affine space with N0
Q(X) as group of translations. As before, the map

Vv0(X) → Nv0
Q (X) is injective, thereby identifying Vv0(X) with a locally

polyhedral convex set.

Theorem 6.1. — Let X be a G-variety defined over a field of charac-
teristic p 6= 2 and let v0 be a geometric valuation of K = k(X)B . Then
Vv0(X) = ṽ+ V0(X) for some ṽ ∈ Vv0(X). In particular, there is an action
of WX on Nv0

Q (X) generated by affine linear reflections such that Vv0(X)
is a fundamental domain for this action.

Proof. — Again, the same proof ([12, 9.2]) as in characteristic zero works.
The WX -action is defined by w(ṽ + v) = ṽ + wv where v ∈ Nv0

Q (X). �

Remark. — Observe that this action does not depend on the choice of
ṽ because any two choices differ by a WX -fixed vector.

Now we glue everything together. For this let

(6.4) Vgeom(X) = {v ∈ V(X) | v geometric}

Moreover, it can be shown ([12, 4.3]) that
⋃

v0 geom.
Nv0

Q (X) equals the set

Vgeom(k(X)U ;T ) of T -invariant geometric valuations of the field of U -
invariant rational functions on X (with U = (B,B)).

6.2. Corollary. — Let p 6= 2. Then there is a WX -action on
Vgeom(k(X)U ;T ), acting as an affine linear reflection group on each piece
Nv0

Q (X), such that Vgeom(X) is a fundamental domain for this action.
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7. Table of cuspidal spherical varieties of rank 1 for
groups of adjoint type

S↪σHG (p)

PGL(2) 〈sa1〉 ·GL(1)
1
[×2]p�=2

PGL(n) GL(n− 1) n ≥ 3
1 1 1 1 1

PGL(4) PSp(4)
1 2 1

SO(2n+ 1) 〈sαn〉 · SO(2n) n ≥ 2
1 1 1 1 1

[×2]p�=2

SO(2n+ 1) Pn(SO(2n)) n ≥ 2
1 1 1 1 1

SO(7) G2
1 2 3

PSp(2n) Sp(2) · Sp(2n− 2) n ≥ 3
1 2 2 2 1

PSp(2n) P1(Sp(2)) · Sp(2n− 2) n ≥ 3
1 2 2 2 1

PSO(2n) SO(2n− 1) n ≥ 4

2 2 2 2
1

1

F4 Spin(9)
1 2 3 2

G2 〈sα1〉 · SL(3)
2 1

[×2]p�=2

G2 GL(2)longU2α1+α2U3α1+α2U3α1+2α2

1 1

PGL(2)× PGL(2) (id×Fq)PGL(2)
q 1

Fq=Frobenius morphism, q = pl ≥ 1

Additionally for p = 2:

SO(2n+ 1) SO(3)× SO(2n− 1) n ≥ 3
1 2 2 2 2

SO(2n+ 1) P1(SO(3))× SO(2n− 1) n ≥ 3
1 2 2 2 2

PSp(2n) 〈sαn〉 · PSO(2n) n ≥ 2
2 2 2 2 1

PSp(2n) Pn(PSO(2n)) n ≥ 2
2 2 2 2 1

PSp(6) G2
2 4 3

F4 Sp(8)
2 3 4 2

Additionally for p = 3:

G2 〈sα2〉 · SL(3)short
3 2

[×2]

G2 GL(2)shortUα1+α2U2α1+α2U3α1+2α2

3 1
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