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A WEIERSTRASS-STONE THEOREM
FOR CHOQUET SIMPLEXES

by D. A. EDWARDS and G. VINCENT-SMITH

1. Introduction.

One formulation, due to Kakutani [12], of the classical "Weierstrass-
Stone0 theorem characterizes the elements of a linear subspace L of the
space C(ft) of all real-valued continuous functions on a compact
hausdorff space ft, given that (a) L contains the constant functions,
(b) L is a sublattice of C(R). The main theorems (2 and 6) of the
present paper extend this result to the space A(X) of continuous
real-valued affine functions on a compact convex set X. In the new
theorems condition (b) is replaced : the conditions of theorem 2 are
derived from Choquet simplex theory ; those of theorem 6 are more
general. After proving theorem 2 we show, in § 4, that it can be used
to prove a result of Effros about ideals in A(X) when X is a simplex.
In § 5 we attempt to explain the geometrical significance of the condi-
tions of theorem 2, and we deduce some results about pure-state-
preserving affine maps between compact convex sets. § 6 shows how
to reformulate our results in the terminology of Choquet boundary
theory.

In the final section we leave Choquet simplex theory and discuss
a general compact convex X ; we prove a density theorem which allows
one to characterize, among the linear subspaces of A(X) that contain
the constant functions, those that are dense.

We use many standard results of Choquet boundary theory, for
which see [3, 5, 14, 15], as well as the separation theorem for Choquet
simplexes, for which see [8].

A special case of theorem 2 was announced in [9, 10].
In writing this paper we have benefited from some comments of

Mr. E.B. Davies.
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2. Preliminaries.

We consider here a non-empty compact convex subset X of a
hausdorff locally convex real topological vector space. (In the sequel
we sometimes loosely refer to such an X merely as a compact convex
set.) We consider too the space C(X) of real continuous functions on X,
the space K(X) of convex functions in C(X), the space A(X) of all
affine functions in C(X), and the space P(X) of all probability Radon
measures on X. We consider a linear subspace L of A(X) that contains
the constant functions, and we recall in this section some standard or
near-standard elementary properties of X and its associated spaces.

For each x E X we define

R^(L) ={^€P(X) : fi(g) = g(x\ V^GL}.

It is elementary (see [3]) that for each /AEP(X) there is a unique
point c^ G X such that

^(/)=/(^), V/GA(X).

Obviously ^ G R^ (A(X)) if and only if JLI G P(X) with c^ = x. Now
consider for each x € X the set

Q(x) = {y EX : g(y) = g(x), V^e L}.

This set contains x and is closed and convex. Ifx ^ x ' then QQc), Q(x')
are either equal or disjoint.

PROPOSITION 1. - Given jn E P(X) and x E X, we have ^ G R^ (L)
if and only if c^ E Q(x).

If c^ E Q(x) then because each g in L is constant on the set Q(x)
we have

J t̂e) = g(c^) = g(x), V g G L ,

whence ^ E R^ (L). Now suppose that JLI G F(X) with c^ ^ Q(^). Then
we can find a function g E L such that g(x) < g(c^). Butg(c^) = ^(g),
and so JLI ̂  R^, (L).

Now write, for each /E C(X) and each x E X,

7(x)=inf{^) :^GL,g>/}.
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Then f : X ——> R is concave, upper semicontinuous, and constant
on each of the sets Q(x) ; moreover /= /whenever fE L. For fixed
x G X the map /——> f(x) is sublinear on C(X) ; this fact leads, via a
standard Hahn-Banach argument, to

PROPOSITION 2. - For each x E X andfe C(X),

f(x) = max ^(f).
^eR^(L)

More can be said about/in two special cases.
When L = A(X) we write / instead of f. It is known (see [3, 4])

that x is an extreme point of X if and only if R^(A(X)) = {c^}. By
proposition 2 we have therefore that f(x) = f(x) for all /E C(X)
whenever x G X^ (= the set of all extreme points of X) — compare pro-
position 6 below.

The second special case is covered by

PROPOSITION 3. ̂  If f is a concave function in C(X) then for
each x € X the function fis constant on Q(x) with value given by

70c)=max{/(j):^eQ(jc)}.

The constancy on Q(x) is obvious, as is the inequality

f(x)>m2ix{f(y):y€Q(x)}.

Since/is concave we have

^C/)</(^), v^ep(X).
By this fact and propositions 1 and 2 we now have

f(x) == max{/x(/) : ̂  E P(X) , ̂  G Q(x)}

< max{/0.) : y G QQc)} < f(x) .

In addition to what we have just proved, we shall need a number
of further concepts and standard results.

We first recall Bauer's maximum theorem [2, 3 ]: that every upper
semicontinuous real convex function on X attains its maximum in X^ .

We also recall that a subset F of X is called a face if it is non-
empty, closed, convex, and such that i f a , 6 E X , 0 < X < 1 and
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\a + (1 - X ) 6 G F

then a, & G F. (In the terminology of some writers our "face" would be
a "closed convex extreme subset of X".) An extreme point is just a
one-point face. If F is a face then F^ = F H X^ .

A linear subspace L of A(X) will be said to have the Riesz sepa-
ration property if, whenever u^ , u^ , v^ , v^ belong to L with

Mi v u^ < 1/1 A v^ ,

we can find w G L such that

MI v i^ ^ w ^ v! A i^ •
The same assertion, but with strict inequalities throughout, will be
called the weak Riesz separation property.

When X is a Choquet simplex the space A(X) has these two Riesz
separation properties. For this and other standard results about Choquet
simplexes we refer the reader to [6,8, 13]. By the separation theo-
rem for Choquet simplexes we shall mean the statement [8 ] that if
— /, g : X ——> (— °° , °°] are lower semicontinuous concave functions
on a Choquet simplex X and f < g then there is an h € A(X) such
that f < h < g.

3. First density theorem.

We continue to suppose that X is a general compact convex set.
Given a subspace L of A(X) we write L+ for the set{/G L : f> 0}.
We study in this section a linear subspace L of A(X) that satisfies the
following conditions :

1) L contains the constant functions ;
2) L has the weak Riesz separation property ;
3) given £ > 0, x € X^ , and /G L with f(x) = 0, we can find

an element g of L+ with g > / and g(x) < £.
These will be standing hypothesis for this section but we shall later
sometimes require strengthened versions of 2) and 3), namely :



A WEIERSTRASS-STONE THEOREM FOR CHOQUET SIMPLEXES 265

2y) L has the Riesz separation property ;
3,) for each x E X^ and each /E L with f(x) = 0 we can find an

element g of L+ with g > f and g(x) == 0.
All five of the above conditions are satisfied by the space A(X) when
X is a Choquet simplex (see § 2, and proposition 10 in § 5).

The first main theorem of this paper (theorem 2) characterizes
the elements of L (the closure of L), given that L satisfies the conditions
1) - 3). A trivial characterization would be the statement that a
function of A(X) lies in L if and only if it is constant on the set QQc)
for each x E X. Theorem 2 sharpens this statement significantly by
using constancy only on those sets Q(x) that are already faces (in the
sense of § 2) of the contact convex set X : such faces we refer to in
future as L-faces. All possible L-faces are provided by the following
result.

PROPOSITION 4. - // x G X^ then Q(x) is a face of X.
Choose x G X such that QQc) is not a face. Then we can find

elements a, & of X and a number X such that

0 < X < 1 , c==\a + (1 - X)6GQ(;c), a^Q(Jc).

Then there exists an / in L such that f(x) = 0, f(a) = 1. Now take
any g G L+ such that g > f Then

g(x) = g(c) = \g(a) + (1 - \)g(b)

> \g(a) > \(a) = X .

Since X > 0 this implies, by condition 3), that x ^ X^ .
Each point of Xg lies in exactly one L-face. For the L-faces we

can sharpen some of the results of § 2 concerning the sets Q(x).

PROPOSITION 5. - Let Q be an 'L-face o/X, let x G Q and let
It E P(X). Then /A E R^(L) if and only if supp JLI C Q.

This is a special case of a standard result about faces. Sup-
pose that y^Q and that JLIEP(X) with y € supp ^ Then we
can find a function g e L such that g \ Q = 0 and g ( y ) > l.Now let
G = { z e X : g ( z ) > 1}, so that fi(G) > 0. By 3) we can now choose
/€ 4 so that / > g and /1 Q < JLI (G). Then
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^(f)>ffdfJi>Ui(G)>f(x),
"G

and hence JLI^R^(L). If, conversely, ^GP(X) and supp ^zCQthen
it is trivial that ^ E R^ (L).

PROPOSITION 6,-IfxCX^ and fe C(X) //!CT /& co^^r OM
QCx:) with value given by

f(x) = max{/0) : y G Q(x)} .

This follows immediately from propositions 2 and 5.

THEOREM 1. — Let X be a compact convex set and let L be a
linear subspace of A(X) that satisfies the conditions 1)-3). Then for
each h € K(X) the family

{gCL:g>h}
%

is a decreasing filtering family. Consequently h is, for each h E K(X),
an affine upper semicontinuous function.

It is clearly enough to prove the assertion about filtering. It will be
more convenient to show that the family

&={geL:g<-h}

is an increasing filtering family. That is, that ifg^ , g^ G & then we can
find g e8 such that g > g^ v g^ .

To prove this, write u = g^ v g^ and consider the family

^ ={v^L:v>u}.

By condition 2) on L this is a decreasing filtering family. It
follows that u is upper semicontinuous finite and affine. Moreover, by
proposition 6 we have for all x E Xg that u(x) = u(x), and hence
u(x) < — h(x), for all x € X^ . But A + u is upper semicontinuous
and convex, and so attains its maximum in X^ . Therefore

u(x) < u(x) < - h(x), V x C X.

Consequently, for each ^ € X there is a function v^ E g? such that
v^ (x) < — h(x). Then for all y in a neighbourhood G^ o f x i n X we
have

M(J) <v^(y)<- h(y) .
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But we can choose finitely many points x^ , x^ , . . . , x^ in X so that
X = G U G U . . . U G

rr>i 1 2 HThen
^ < v,. A V - . A ... A v,. = w < — A .x! -̂  ^w

By condition 2) we can find a function g in L such that u < g < w.
Then

81 v ^2 < S < - A ,
and the proof is complete.

By proposition 3 we now have immediately

COROLLARY 1. - Under the conditions of theorem 1, if
h E A(X) then the function h is upper semicontinuous and a f fine.
Moreover, for each x E X, h is constant on Q(x) mth value given by

h(x)=max{h(y):yCQ(x)}.

The following result will be needed later.

COROLLARY 2. - Under the conditions of theorem 1, ifh in
K(X) is constant on each L-face of X then h = h.

It is obvious that h > h. If however g in A(X) is such that
g > h then, by proposition 6, g(x) > h(x) for all x E X^. But, by
theorem 1, h — g is affine and upper semicontinuous, so that, by the
maximum theorem, g > h. Consequently h > h and the proof is
complete.

The "Weierstrass-Stone" theorem of the title can now be stated.

THEOREM 2. — Let X be a compact convex set and let L be a
linear subspace o/A(X) that satisfies conditions 1)-3). Then

L = {/E A(X) : fis constant on each L-face ofX}.

Suppose that / in A(X) is constant on each L-face. Then, by
corollary 2 to theorem 1 , /==/. By theorem 1 and Dini's theorem we
now have /6E L. Conversely, it is trivial that every function in L is
constant on each L-face of X.

COROLLARY. - Let L be a linear subspace ofA(X) that satisfies
conditions 1)-3) together wth
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4) L separates the points o/Xg .
Then X is a Choquet simplex and L is dense in A(X).

For an L-face Q we have Q^ = Q 0 Xg . Consequently condition 4)
implies, by the Krein-Milman theorem, that QQc) = {x} for each x € X^,
and theorem 2 now supplies the desired density statement. Moreover,
by corollary 2 to theorem 1, the function h is affine for each h G K(X).
X is therefore a Choquet simplex.

We note here that theorem 2 implies one of the classical formu-
lations of the Weierstrass-Stone theorem : Suppose that Sl is a compact
hausdorff space and that M is a linear sublattice ofC(Sl) that contains
the constant functions. Then /E C(R) belongs to M if and only if, for
each a? G 0, fis constant on the set n(a?), where

n(a;) = U e n : g(?) = g(c^) v g e M} .
In order to deduce this result from theorem 2 one considers the

set X = P(?2) of all Radon probability measures on ?2, with the weak
topology induced by the natural pairing with C(X2). Then X is a
Choquet simplex and the pairing with C(S2) induces an isometric positive
linear isomorphism between C(t2) and A(X). This isomorphism maps M
onto a linear subspace L of A(X). It is immediate that L satisfies
conditions 1)-3) and easily shown that a function in A(X) is constant
on the L-faces of X if and only if it arises from a function in C(S2) that
is constant on each of the sets ?2(o;). An application of theorem 2 now
supplies the above characterization of M. The details may be left as an
exercise.

In fact theorem 2 is strictly more general than the result about
C(i2) that we have just mentioned, since it can occur that neither of the
two spaces L, L is a vector lattice. In fact we know, for instance, that
when X is a Choquet simplex the space A(X) is a vector lattice if and
only ifX^ is closed, and that X^ may fail to be closed [2, 13].

4. Approximation in ideals.

We suppose throughout this section that X is a Choquet simplex.
We recall that an order ideal of A(X) is a linear subspace J of

A(X) such that whenevex u , v e ] and /€A(X) and u<f^v it
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follows that /GJ. Following Effros [ I I ] , we define an ideal of A(X)
to be a positively generated order ideal : that is, an order ideal J such
that J = J+ - J+ .

For example, one can take a face F of X and write
J F = { / E A ( X ) : / | F = = O } .

Then Jp is obviously an order ideal, and by the separation theorem for
simplexes it is easy to see that it is actually an ideal.

We note that if J is an ideal and u, v G J then there is a function
w EJ such that w > u v v. For suppose u^ , v^ GJ^ with u^ > u,
v^> v. Then it is enough to take w = u^ 4- v^ . Another simple obser-
vation is that J satisfies condition 2,) of § 3, because A(X) does and J is
an order ideal.

PROPOSITION 7. - IfS is a proper ideal ofA(X) and

Q = { x G X : / ( x ) = 0 , V / e j }
then Q is a face of X.

First suppose, if possible, that Q = 0. Then for each x G X we can
find .4 E J+ such that /^ (x) > 0. We then have .4 (y) > 0 for all y in a
neighbourhood of jc. By an obvious covering argument we can now

n
select x^ , x^ ,. . ., x^ so that /= ^ fy is strictly positive on X.

r=i r

Since/G J this implies, J being an order ideal, that J = A(X).
Next, since J is positively generated we have

Q = { j c E X : / ( ^ ) = 0 , V / e j ^ } .

But this, by the argument used in § 3, implies that Q is a face.

THEOREM 3 (Effros). - Let X be a Choquet simplex and let J
be a proper ideal of A(X). Then the closure of J is the set of all
functions in A(X) that vanish identically on the face

Q=^eX:/ (x)= 0, V/CJ}.

(Consequently J is also an ideal).
For Effros' own proof see [11]. Our main object here is to give a

new proof of this result by use of theorem 2. We in fact prove slightly
more than we need for this purpose.
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Form the direct sum J ® R, consisting of all functions in A(X) of
the form / + a, where /E J and a is a real constant. The sum is direct
by proposition 7.

PROPOSITION 8. - The linear subspace J © R of A(X) satisfies
the conditions 1), 2,), 3,) of § 3.

We write L for J ® R. We have to prove 2,) and 3^).
To prove 2^) suppose that u^ , u^ , v^ , v^ € L with

^i v ^2 ̂  v! A ^2 •

The difference v^ — v^ is constant on Q and we can take this constant
to be a > 0. Now let 1/3 = v^ — a, so that i^ and 1/3 agree on Q with
common value j8, say. By a remark preceding proposition 7 we can find
^3 in L such that

But now
^3 <Vl A V 3 , ^3lQ = j 3 .

MI V M^ V ^3 < 1^ A V^

and hence, by the Riesz property for A(X), we can find w in A(X) such
that

MI v u^ v u^ < w < i^ A i^ •

Since 1^3 and i^ agree on Q we have w|Q == j3 and

M 3 - j 3 < w - j 8 < V i - ( 3 .

The two end terms are in J, so w E L, and so L does have property 2,).
To prove property 3,) note first that for an x € Q H X^ the sta-

tement is immediate, from J = J+ - J+ . Now take x G X^\Q and let
/E J with f(x) = a, and write /i = / - a. Choose g G J^. with ^ > /
and distinguish the two cases (i) a > 0, (ii) a < 0.

In case (i) we have /i < / and hence /i v 0 < g. By the sepa-
ration theorem we can choose h G A(X) so that

/i v 0 < h < g, h(x) = 0 .

But now h € JL, C L+ , h > /\ and h(x) = 0.
In case (ii) we have / v a < g. By the separation theorem we can

fmd h C A(X) such that

/ v a < h < g, h(x) = a .
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Then A €J. Writing AI = h - a w e h a v e A i E L + , A i >/i , h ^ ( x ) = 0.
This completes the proof of property 3,) for L.

To apply theorem 2 usefully we now need to describe the L-faces
of X. Obviously Q is one of these. To find the others consider Q(jc)
when x € X^\Q. This is an L-face disjoint from Q and is the closed
convex hull of

QOc),==QOc)nX,.

Suppose y G X^\Q, y ^= x. We show that y ^ QOc). For we can find
/€ J^ such that f(x) > 0. If f(y) ̂  f(x) then it is obvious that
y ^ QQc). If f(y) = f(x) we can find, by the separation theorem, a
function g E A(X) such that

-/< ̂  </, ^) = -/m ^o) = /OQ.
Then ^ E J with g(x) ̂  ̂ (y), so again y ^ Q(;c). Thus Q(x\ = {^}, and
hence Q(x) = {;c}, whenever x e X^\Q. Thus the L-faces comprise the
face Q together with all sets of the form {x}, where x G X^\Q.

By theorem 2, L therefore consists of all the functions in A(X)
that are constant on the face Q. Consequently J consists of all the
functions in A(X) that vanish identically on Q. This concludes the
proof of theorem 3.

It may be useful to note here that once the closed ideals of A(X)
are known it is easy to study the quotient of A(X) by such an ideal.
This has been done by Effros [II] , but a more substantial use of the
separation theorem simplifies the argument a good deal.

In fact we know [7] that if Q is a face of the simplex X then Q is
a simplex. Given a proper face Q we form the ideal Jp and also the
restriction map

/——^/IQ-PQ/

from A(X) into A(Q). This map has Jp as kernel and, by the separation
theorem, it maps A(X)+ onto A(Q)+ . Again by the separation theorem
one shows easily that

||pQ/||= inf ||/-g||.
^Q

Thus there is a natural isomorphism between A(X)/Jp and A(Q) which
is positive in both directions, and isometric.
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5. The dual map.

Given a compact convex set X and a linear subspace L of A(X),
one can form the Banach spaces L* and A(X)* and the map A(X)* —> L*
dual to the natural injection L ——> A(X). We shall suppose that L
satisfies condition 1), and seek to elucidate conditions 2) and 3) by
study of L* and the dual map.

Note first that if <^€ L* and ^ > 0 then <^(1) = ||(^||. For when
- 1< /<1 we have - <^(1) < ^p(f) < <p(l) and so |(p(/)K<^(l),
with equality when / = 1. Now consider the state-space of L :

Y = { < ^ E L * :^> 0,^(1)= 1}.

Then Y is a convex subset of L* that is compact for the topology
a(L* , L). The pairing between L and L* induces by restriction a linear
map L ——> A(Y) that is onto a dense subspace, isometric and positive.
The only perhaps delicate point here is the isometry, and for this one
may proceed as in [7]. The density statement is proved by use of the
Hahn-Banach theorem. We can accordingly identify the partially ordered
Banach spaces L and A(Y). It is therefore clear, from the statements of
§ 2, that conditions 2) and 2y) are equivalent for L, and hold good if
and only if Y is a Choquet simplex.

PROPOSITION 9. - The space L has the property 2) if and only
if Y is a Choquet simplex.

Since L* coincides with the order dual of L, L* is a vector lattice
whenever L has the weak Riesz separation property : this requires an
obvious adaptation of an argument in [16]. Conversely, if Y is a
simplex then, by a result ofAndo [1] and Lindenstrauss [13] (see [8]
for a simple proof), L has the Riesz property and hence L has the
weak Riesz property.

We next seek to elucidate condition 3).

PROPOSITION 10. - Let Y be a Choquet simplex, let M be a
dense linear subspace of A(Y) that contains the constant functions,
and let y E Y. Then the following statements are equivalent :

(i) y ^ Ye ;
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(ii) for each /G A(Y) with f(y) = 0 we can find a function
g E A(Y)+ with g > f and g(y) == 0 ;

(iii) for each e> 0 and each /€ M with f(y) == 0 we can find
a function g G M+ with g> f and g(y) < e.

If y €. Y^ then {y} is a face of Y and the remarks at the beginning
of § 4 supply a proof of (ii). Thus (i) > (ii).

Next (ii) implies (iii). For let/satisfy the conditions of (iii). Then
by (ii) we can find h E A(Y)+ such that h > /, h(y) = 0. Since M is
dense in A(Y) we can now find g € M such that h < g < h + e. Clearly
g G M + ,g>fsindg(y) <£.

Finally to show that (iii) implies (i) note that M must separate the
points of Y. Take y in Y to be not an extreme point. Then we can find
a, b E Y with a ̂  b and y = (a + &)/2, and then fE M such that
- f(a) = f(b) = 1. Then f(y) = 0, but for each g G M+ with g > f
we have g(y) > 1/2. This concludes the proof.

Further light is now thrown on condition 3) by the following
considerations. Given that L satisfies the condition 1) we can construct
Y and the natural map A(Xyls ——> L*, as already explained. Since
L* = A(Y)*, it is clear from the construction of Y that the map
A(X)* ——> A(Y)*, restricted to those functional that are eva-
luations at the points ofX, induces an onto continuous map TT : X——> Y.
We shall denote by Tr the map P(X) ——> P(Y) induced by TT.

THEOREM 4. — Let X be a compact convex set and let L be a
linear subspace of A(X) that satisfies the conditions 1) and 2). Then
the following assertions are equivalent :

(i) L satisfies condition 3) ;
(ii) 7r(X,) C Y, ;

(iii) for each x G X^ the set Q(x) is a face of X ;
(iv) y : P(X) ——> P(Y) maps maximal measures onto maximal

measures.
Condition (ii) is often expressed by saying that TT is pure-state-

preserving.
For the proof note first that the implication (i) > (iii) is the

content of proposition 4 and that (iv) > (ii) is trivial. Moreover we
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have, by propositions 9 and 10, that A(Y) o TT satisfies 1)-3) whenever
(ii) is true. But L is dense in A(Y) o TT and L contains the constants.
Consequently (ii) implies (i).

Now denote by M the image of L in A(Y) under the natural map
L ——> A(Y), so that

L =={g o TT :^EM}.

We shall prove the implication (i) ——> (iv). Choose a maximal
^GP(X). To show that Trp. is maximal in P(Y) we prove that

(̂ ) (f) = (̂ Li) (f)

for all /€ K(Y). Now because M is dense in A(Y) we have, for all
;^Y,

f(y)-in{{g(y):geM,g>f}.

Note now that / o TT e K(X) and that g E M satisfies g > f if and only
if g o TT > / o TT. This remark, with the fact that L satisfies conditions
1)-3) shows, by theorem 1, that

{g^M:g>f}

is a decreasing filtering family.
Therefore

(7^) (/) = inf{(7r^) (^) : g E M, ̂  > /}
= inf {^ o TT) : ̂  G M, g > f}
= inf {^00 : y E L , y > / o 7r}
= (̂f o 7T) .

Thus it is enough to show that

^(f o TT) = ̂ (f o 7r).

But ^ is maximal in P(X) and by corollary 2 to theorem 1 we have
fo v = /o TT, so the result is clear. I.e. (i) implies (iv).

Finally we show that (iii) implies (ii). For let x e X^ and suppose

TT(JC) = \u + (1 - \)v

with 0 < X < 1, and M, v € Y. Since TT is onto Y we can find a, b G X
such that v(a) = u, TT(&) = v. Then
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TrOc) = 7r(Xa + (1 -X)6)
and hence

Xa + (1 - X)6 G 7T-1TrOc) = QOc).

By (iii) this implies that a, b G Q(;c), whence ?r(a) = ir(b) = 7r(;c),
which shows that 7r(;c) € Yg .

We have now obtained the implications

(i) => (iii) ===> (ii) ==> (i) => (iv) => (ii) ,

so the proof is complete.

COROLLARY 1. - // the linear subspace L of A(X) satisfies the
conditions 1)-3) ^ACT to closure satisfies 1), 2^), 3,).

This follows immediately from the preceding discussion.

COROLLARY 2. - Let X be a compact convex set, let Y be a
Choquet simplex, and let v : X ——> Y be a continuous a f fine map.
Then the following statements are equivalent :

(i) 7r(X,) C Y, ;
(ii) TT maps faces of X onto faces of Y ;
(iii) y : P(X) ——> P(Y) maps maximal measures onto maximal

measures,
Here (iii) implies (i) trivially, and (ii) implies (iii) by the argument

of theorem 4, with TT(X) playing the role of Y and A(TT(X)) o TT the role
of L in that theorem.

The only new point is that (i) ——> (ii). This is a result of
E.B. Davies and the second author, and will appear in a forthcoming
paper. We omit the proof, remarking only that it can be made to rest
on the following statement : if K is a non-empty compact convex
subset of the Choquet simplex Y and Kg C Yg then K is a face o/Y.

COROLLARY 3. - Let X, Y, TT meet the conditions of the
preceding corollary and let L = A(Y) o TT. Then L consists of those
functions in A(X) that are constant on each set of the form 7r~1 TrQc),
where x E Xg . Consequently, the following statements are equivalent :

(i) TT is one-one ;
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(ii) TT is one-one on X^ ;
(iii) A(X) = A(Y) o TT.
By corollary 2 and the separation theorem it is enough to prove

this for the special case when TT is onto Y. In that case the map
/——> f° ^ from A(Y) into A(X) is a positive isometry, and the
result follows from theorems 4 and 2. The conditions (i)-(iii) of course
here imply that X is a simplex.

6. A Choquet boundary formulation.

In the classical Weierstrass-Stone theorem one characterizes the
elements of N, given that N is a certain type of subspace of C(ft), ft
being a compact hausdorff space. That characterization is in terms of
behaviour on i2, and makes no explicit use of the state-space (see § 5)
of N. The purpose of this section is to find an analogous formulation
of theorem 2.

Consider a linear subspace H of C(ft) that contains the constant
functions. For each a} G ft we write

S^ = {^ E P(ft) : ̂ ) = g(^), \fg G H} ,

n(^)={?en:^)=^(o;),v^eH}.
We recall that co G ft is a Choquet boundary point for H if

^ e S^ ===> supp ^ C n(o;).

The Choquet boundary Q^Sl is the set of all such co. We call a subset
F of S2 a quasi-face for H if it is a closed non-empty subset such that
whenever a; G ft and p. € S^ we have a; E F if and only if supp JLI C p.
If F is a quasi-face and o;GF then S2(o;) C p. Also a? en is in
BH S2 if and only if Sl(o}) is a quasi-face : thus the Choquet boundary
points are those that lie in minimal quasi-faces.

Now consider the state-space

X = { ^ G H * : ^ > 0 , < ^ ( 1 ) = 1}

of H, again with the relative topology from a(H* , H). By a straight-
forward adaptation of an argument of Bishop and de Leeuw [4] one
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can show that, for the special case in which ft = X, the quasi-facesjust
defined coincide with the faces of X, as defined in § 2. In general the
connection between the quasi-faces of ft and the faces of X is given by
the following considerations.

By the Hahn-Banach theorem and the Riesz representation theorem
each state (i.e. point of the state-space) of H has a representation
f——$> ^(f) for some ju E P(ft) ; and, conversely, every such map is a
state. It follows that there is a natural map e : P(ft) ——> X (onto),
and this is easily shown to be continuous and affine. Writing ̂ (o;) = e(e^)
we obtain a continuous map ?: ft ——> X. The connection between
quasi-faces in ft and faces in the compact convex sets P(ft) and X is
given by

PROPOSITION 11. - Let Q be a face in X. Then e~1 (Q) is a face
in P(ft), ^~1 (Q) is a quasi-face in ft, and

e~1 (Q) == {^ e P(ft): ̂ (supp /x) C Q}.

Here it is immediate that e~1 (Q) is a face of P(Q). On the other
hand we know that for each non-empty compact set K C ft the set

E = {^ E P(ft) : supp /A C K}

is a face of P(ft), that all faces of P(ft) are of this form, and that

E , = { E ^ :o;EK}.

It now follows that, for all ^ E P(ft),

supp ^ C ̂  (Q) <==> IJL e e-1 (Q),

which makes the rest of proposition 11 obvious.

COROLLARY 1. - ? 'maps Q^Sl onto X^ .
Now recall from § 5 that there is a natural positive isometry

/ : H ——> A(X) (onto).

COROLLARY 2. - / / /EH and Q is a face of X then f(f) is
constant on Q if and only iffis constant on ?"1 (Q).

A computation to show that e '. P(ft) ——> X is the map
between state-spaces dual to/"1 : A(X) ——> H makes this clear.
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We now introduce a second subspace N of C(ft). But H will
remain in play as a fixed subspace of C(ft), and everything will be
relative to it.

We take N to be a linear subspace of H and consider the following
conditions :

A) N contains the constant functions ;
B) N has the weak Riesz separation property ;
C) given E > 0, a? € 3p, St and /EN such that /(c*;) = 0, we can

find g e N+ with g > / and ^(co) < e.
The map j : H ——> A(X) induces an identification of N as a partially
ordered normed vector space with a linear subspace of A(X). It is
clear that the conditions A), B), C) correspond respectively to the
conditions 1), 2), 3) on the subspace ;(N). By proposition 11 we can
reformulate part of theorem 4 as follows.

PROPOSITION 12. -// N has the properties A), B) then the
following statements are equivalent

(i) N satisfies condition C) ;
(ii) BH ft C 3^ ft.

Given that N satisfies A)-C) we can by theorem 2 characterize the
elements of ;(N). We want now to characterize the elements of N in
terms of behaviour on n. By propositions 4 and 11 we see that

Uen:g(?)=^(o;),vgeN}
is a quasi-face (for H) of Sl whenever a? G 3^ Sl. Such quasi-faces we
shall call N-quasi-faces. By corollary 2 to proposition 11 we can now
reformulate theorem 2 as follows.

THEOREM 5. - Let N be a linear subspace o/H that satisfies the
conditions A)-C). Then

N = {/G H : /is constant on each N-quasi-face of Sl}

COROLLARY. - //, under the conditions of theorem 5, N sepa-
rates every two points of 3p, ft that are separated by H then N is dense
in H.
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Many of the other statements of §§ 2-5 have reformulations of
this type, but it is now merely an exercise to find such.

Examples of subspaces of C(Sl) that possess the Riesz separation
property have been given for instance by Lindenstrauss [13].

7. A general density theorem.

The conditions 1)-3) of § 3 are intimately related, as we saw
m §§3-5, to Choquet simplex theory. We show now that a recent
unpublished result of Mr F. Jellett makes it possible to replace condi-
tions 2) and 3) in theorem 2 by a single more general condition not
directly related to simplex theory or to vector lattices. The proof of
the resulting density theorem (theorem 6, below) is similar to that of
theorem 2, with some short-circuiting.

For the rest of this paper X will be a general compact convex set.
Jellett's result is

PROPOSITION 13. - Let L be a linear subspace of A(X) that
contains the constant functions and suppose that, for each /€ A(X),
the set

{g€L:g>f}

is a decreasing filtering family. Then L satisfies condition 3), and hence
Q(x) is a face of X whenever x €E X^ .

Since proposition 4 depends only on conditions 1) and 3) it is
enough here to prove 3).

Choose x E X^ and let /€ L with f(x) = 0. Let u = / v 0. Then
u G C(X) and u(x) = 0, and so, by the remarks following proposition 2,
u(x) = 0. Therefore, given e > 0, we can find a function h G A(X)
such that u < h and h(x) < e. By the filtering condition we can now
choose g G L so that u < g < h. Then / v 0 < g and g(x) < c, so the
proof is complete.

Given the conditions of proposition 13 we can introduce, as in § 3,
the L-faces of X. Propositions 5 and 6 remain good, since they depend
only on 1) and 3).
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THEOREM 6. - Let L be a linear subspace o/A(X) that contains
the constant functions, and suppose that, for each /€ A(X), the set

{g^L:g>f}

is a decreasing filtering family. Then

L == {/G A(X) : fis constant on each L-face of X} .

By theorem 1 this result is more general than theorem 2 (on this
point see corollary 1 below). It is also closer to the classical Weierstrass-
Stone theorem. Theorem 6 however states conditions directly involving
all the elements of A(X), whereas the conditions of theorem 2 involved
only the functions in L ; theorem 2 may accordingly have some advan-
tages. Theorem 6 makes it possible to give a shorter proof of theorem 3
than that in § 4.

To prove theorem 6 consider a function /EA(X) that is cons-
tant on each L-face. Obviously / > / = /. By proposition 6 we have
f(x) = f(x) for all x E X^ . By the filtering condition f-fis upper
semicontinuous and affine. Therefore, by the maximum theorem,
/ == /. Invoking the filtering condition once more we have, by Dints
theorem, /€ L. The converse half of theorem 6 is trivial.

That the filtering condition is natural in this connection is made
clear by

COROLLARY 1. - Let L be a linear subspace of A(X) that
contains the constant functions. Then L is dense in A(X) if and only if
the following two conditions hold :

(i) L separates the points of X^ ;
(ii) L satisfies the filtering condition of theorem 6.
This result is now in fact quite obvious.
The foregoing discussion can be translated into Choquet boundary

language, by use of the argument of § 6. We state one result in this
form.

COROLLARY 2. - Let ft be a compact hausdorff space, let M,
N be linear subspaces ofC(Sl) that contain the constant functions and
let M C N. Then M is dense in N if and only if
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(i) M separates each pair of points of Q^Sl that are separated by
N ,and

(ii) for each /G N the set

{gGM:g>f)

is a decreasing filtering family.
This is hardly more than a translation of corollary 1, and the proof

may be left to the reader. Note the consequence that M is dense in
C(Sl) if and only if (a) M separates the points of ft and (b) for each
/€ C(ft) the set {gE M : g > f} is a decreasing filtering family. This
last statement can also be proved by adapting the usual proof of the
Weierstrass-Stone theorem.

Further work, by MrJellett, on the filtering condition of theorem 6
will appear elsewhere.

BIBLIOGRAPHIE

[1] T. ANDO, On fundamental properties of a Banach space with a
cone, Pacific Journ. Math., 12 (1962), 1163-1169.

[2] H. BAUER, Minimalstellen von Funktionen und Extremalpunkte II,
Arch. Math. 11 (1960), 200-205.

[3] H. BAUER, Konvexitat in topologischen Vektorraumen, Xerogra-
phed lecture notes, Hamburg 1963/64.

[4] E. BISHOP and K. DE LEEUW, The representation of linear func-
tionals by measures on sets of extreme points, Ann. Inst.
Fourier, Grenoble, 11 (1961), 89-136.

[5] N. BOURBAKI, Integration (Chapitres 1-4), 2ieme edition, Hermann,
Paris 1965.

[6] G. CHOQUET and P.-A. MEYER, Existence et unicite des repre-
sentations integrales dans les convexes compacts quclconques,
Ann. Inst. Fourier, Grenoble, 13 (1963), 139-154.

[7] D.A. EDWARDS, The homeomorphic affine embedding of a
locally compact cone into a Banach dual space endowed



282 D.A. EDWARDS AND G. VINCENT-SMITH

with the vague topology, Proc. Lond. Math. Soc. 14 (1964),
399-414.

[8] D.A. EDWARDS, Separation des fonctions reelles definies sur un
simplexe de Choquet, C.R. Acad. Sci. Paris 261 (1965),
2798-2800.

[9] D.A. EDWARDS, On separation and approximation of real func-
tions defined on a Choquet simplex, Proc. Second Prague
Topological Symposium (1966), 122-128.

[10] D.A. EDWARDS, The affine continuous functions on a Choquet
simplex, Proc. Bruges Summer School on Topological Algebra
Theory (1966), Brussels 1967.

[11] E.G.EFFROS, Structure in simplexes, Acta Math. 117 (1967),
103-121.

[12] S. KAKUTANI, Concrete representation of abstract (M)-spaces,
Ann. of Math. 42 (1941), 994-1024.

[13] J. LINDENSTRAUSS, Extension of compact operators, Mem.
Amer. Math. Soc. 48, Providence, R.I., (1964).

[14] P.-A. MEYER, Probability et potentiel, Hermann, Paris, (1966).
[15] R.R. PHELPS, Lectures on Choquefs theorem, van Nostrand,

Princeton N.J., 1966.
[16] F. RIESZ, Sur quelques notions fondamentales dans la theorie

generale des operations lineaires, Ann. of Math. 41 (1940),
174-206.

Manuscrit re<?u Ie 5 aout 1967.
D.A. EDWARDS,

Mathematical Institute,
24-29 St Giles

Oxford (England)


