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BOUNDS ON THE DENOMINATORS IN THE
CANONICAL BUNDLE FORMULA

by Enrica FLORIS (*)

Abstract. — In this work we study the moduli part in the canonical bundle
formula of an lc-trivial fibration whose general fibre is a rational curve. If r is the
Cartier index of the fibre, it was expected that 12r would provide a bound on the
denominators of the moduli part. Here we prove that such a bound cannot even
be polynomial in r, we provide a bound N(r) and an example where the smallest
integer that clears the denominators of the moduli part is N(r)/r. Moreover we
prove that even locally the denominators depend quadratically on r.

Résumé. — Dans cet article on considère la partie modulaire dans la formule du
fibré canonique pour une fibration lc-triviale dont la fibre générique est une courbe
rationnelle. Soit r l’indice de Cartier de la fibre. Il avait été conjecturé que 12r est
une borne sur les dénominateurs de la partie modulaire. Nous démontrons qu’une
telle borne ne peut même pas être polynômiale en r, nous calculons une borne
N(r) et nous fournissons un exemple où la borne optimale sur les dénominateurs est
N(r)/r. De plus nous montrons que même localement les dénominateurs dépendent
quadratiquement de r.

1. Introduction

The canonical bundle formula is an important tool in classification theory
to reduce the study of varieties of intermediate Kodaira dimension, that is
0 < kod(X) < dimX, to the study of varieties, more precisely pairs, having
Kodaira dimension 0 or equal to their dimension.

Keywords: lc-trivial fibration, moduli part, denominators.
Math. classification: 14J10 14J26.
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To be precise, let (X,B) be a log canonical pair, where X is a normal
variety of dimension n over the field C and B a Q-divisor. We consider the
canonical ring of (X,B)

R(X,B) = ⊕Γ(X,m(KX +B))

where the sum runs over the m sufficiently divisible. If R(X,B) is not the
ring 0, then for m sufficiently large and divisible |m(KX + B)| defines a
morphism

φ : X ′ → Z

where X ′ is some birational model of X. There are three cases.
(1) If dimZ = 0 then KX′ +B′ is torsion.
(2) If 0 < dimZ < n then φ is a fibration with general fibre F such

that KF +B′|F is torsion.
(3) If dimZ = n then (X,B) is of log general type.

If X is a smooth surface and B = 0 the three cases become the following.
(1) The canonical divisor KX is torsion and more precisely mKX

∼=
OX for some m ∈ {1, 2, 3, 4, 6}. Smooth surfaces of this type are
classified up to isomorphism.

(2) The morphism φ is a fibration with generic fibre an elliptic curve.
(3) If dimZ = 2 then X is of general type.

In the second case we have Kodaira’s canonical bundle formula for a mini-
mal elliptic surface (see for instance [3, Chapter V, Theorem 12.1])

KX = φ∗(KZ +
∑
p∈Z

(1− 1
mp

)p+ L)(1.1)

where L is of the form R + j∗OP1(1), with R is supported on the singular
locus of φ and j : Z → P1 is the j-function. The sum in the formula is over
the p ∈ Z such that φ∗p is a multiple fibre and mp is such that φ∗p = mpSp
where Sp is the support of the fibre. Kawamata in [7, 8] pointed out that
the divisor R+

∑
(1−1/mp)p can be computed in terms of the pair (X,B).

More precisely, if R +
∑

(1 − 1/mp)p =
∑
bpp then 1 − bp is the largest

real number t such that the pair (X,B+ tf∗p) is log canonical. In the case
where X has dimension n, the current generalization of the formula is due
to Ambro [2] and reads as follows:

KX +B + 1
r

(ϕ) = φ∗(KZ +BZ +MZ)(1.2)

where r ∈ N is the Cartier index of the fibre, ϕ is a rational function, the
divisor BZ is called the discriminant and corresponds to

∑
(1− 1

mp
)p+R

in Kodaira’s formula, while MZ , called the moduli part, corresponds to
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j∗OP1(1) and measures the (birational) variation of the fibres. All the the-
ory about the canonical bundle formula is developed for lc-trivial fibrations.
The definition of this class of fibrations is quite technical and for it we refer
to the second section. The following result is shown in [2] by Ambro, for
(X,B) generically klt on the base, and in [4] by Kollár in the lc case.

Theorem 1.1 (Ambro, [2] Theorem 0.2, Kollár, [4]). — Let f : (X,B)→
Z be an lc-trivial fibration. Then there exists a proper birational morphism
Z ′ → Z with the following properties:

(1) KZ′ +BZ′ is a Q-Cartier divisor, and ν∗(KZ′ +BZ′) = KZ′′ +BZ′′

for every proper birational morphism ν : Z ′ → Z ′′.
(2) the divisorMZ′ is Q-Cartier and nef and ν∗(MZ′) = MZ′′ for every

proper birational morphism ν : Z ′ → Z ′′.

The regularity of the pair (Z,BZ) depends on the regularity of (X,B),
more precisely (Z,BZ) is klt (resp. lc) if and only if (X,B) is (see [1,
Proposition 3.4]).
Furthermore the following properties are conjectured for MZ .

Conjecture 1.2 (Prokhorov-Shokurov, [10] Conjecture 7.13). — Let
f : (X,B)→ Z be an lc-trivial fibration.

(1) (Log Canonical Adjunction) There exists a proper birational mor-
phism Z ′ → Z such that MZ′ is semiample.

(2) (Particular Case of Effective Log Abundance Conjecture) Let Xη

be the generic fibre of f . Then I0(KXη +Bη) ∼ 0, where I0 depends
only on dimXη and the multiplicities of the horizontal part of B.

(3) (Effective Adjunction) The divisorMZ is effectively semiample, that
is, there exists a positive integer I depending only on the dimension
of X and the horizontal multiplicities of B (a finite set of rational
numbers) such that IMZ is the pullback of M , where M is a base
point free divisor on some model Z ′/Z.

The relevance of the above conjecture is well illustrated for instance by
a remark due to X. Jiang, who observed recently [6, Remark 7.3] that
Conjecture 1.2(3) implies a uniformity statement for the Iitaka fibration
of any variety of positive Iitaka dimension under the assumption that the
fibres have a good minimal model.

These conjectures are proved in the case where the fibres have dimension
one.

Theorem 1.3 (Prokhorov-Shokurov, [10]). — Conjecture 1.2 holds in
the case dimX = dimZ + 1.

TOME 63 (2013), FASCICULE 5
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It is important to remark that the proof of Theorem 1.3 strongly uses
the existence of the moduli space M0,n. Moreover the constant I that
appears in Theorem 1.3 is not explicitely determined. In [10, Remark 8.2]
the authors expect that a sharp result might be I = 12r where r is as in
Formula (1.2). In particular this would imply that the denominators of the
Q-divisorM are bounded by r. In the case of one-dimensional fibre, if B = 0
the general fibre is an elliptic curve and the result follows from Kodaira’s
Formula (1.1). If B 6= 0 then the generic fibre F is a rational curve and B
is effective and such that degB|F = 2. In this case the situation is more
complicated.
In this work we prove that in the case where the generic fibre is a rational

curve the expectation of Prokhorov and Shokurov cannot be true. Indeed
we can prove that there are examples in which 12rM has not even integer
coefficients.

Counterexample 1.4. — There exists an lc-trivial fibration
f : (X,B) → Z whose generic fibre is a rational curve such that 12rBZ
has not integer coefficients. More precisely for any positive and odd r ∈ N
there exists an lc-trivial fibration f : (X,B)→ Z such that (1.2) holds and
with moduli divisor BZ =

∑
βpp and there exists a point o ∈ Z such that

the minimal integer m such that mβo ∈ Z is greater or equal to 2r2 − r.

Neverthless we can show the following local result, which is not far from
being sharp by the previous example:

Theorem 1.5. — Let f : (X,B) → Z be an lc-trivial fibration whose
generic fibre is a rational curve. Let BZ =

∑
βipi be the discriminant.

Then for every i there exists li 6 2r such that rliβi ∈ Z.

An important remark is that for an lc-trivial fibration whose general
fibre is a rational curve, for every I ∈ Z, IrMZ has integer coefficients if
and only if IrBZ has integer coefficients. To prove Theorem 1.5 we give an
expression of the log canonical threshold of a fibre with respect to (X,B)
in terms of the pull back of the canonical divisor of X, the pull back of the
fibre and the pull back of B.

An interesting question is to determine the best possible global bound
on the denominators of MZ . Theorem 1.5 implies that (2r)!MZ has integer
coefficients, but it is certainly not the best bound. Using techniques from
Theorem 1.5 we can prove that a polynomial global bound cannot exist
and determine a bound.

Theorem 1.6. — (1) A polynomial global bound on the denomina-
tors ofMZ cannot exist. Precisely for all N there exists an lc-trivial
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fibration
f : (X,B)→ Z

such that if V is the smallest integer such that VMZ has integer
coefficients then

V > rN+1.

(2) Let f : (X,B) → Z be an lc-trivial fibration whose generic fibre is
a rational curve. Then there exists an integer N(r) that depends
only on r such that N(r)MZ has integer coefficients. More precisely
if we set s(q) = max{s | qs 6 2r} then

N(r) = r
∏
q62r
q prime

qs(q).

(3) For all r odd there exists an lc-trivial fibration

f : (X,B)→ Z

such that if V is the smallest integer such that V BZ has integer
coefficients then V = N(r)/r.

In [11] G. T. Todorov proves, in the case where the pair (X,B) is klt over
the generic point of Z, the existence of an explicitely computable integer
I(r) such that I(r)MZ has integer coefficients using techniques from [5]
where the existence of such an integer is proved in the case B = 0. Todorov’s
bound is considerably greater than the bound provided by Theorem 1.6:

r I(r) N(r)
3 120 60
4 5040 420
5 1441440 2520
6 160626866400 27720
7 288807105787200 360360
8 6198089008491993412800 360360
9 7093601304616933605068169600 12252240
10 194603155528763897469736633833782400 232792560

An explicit global bound on the denominators of MZ is important in or-
der to obtain effective results for the pluri-log-canonical maps of pairs with
positive Kodaira dimension. For instance the bounds in [5, Theorem 6.1]
and [11, Theorem 4.2] can be immediately improved by using Theorem 1.6.
One of the difficulties of studying the moduli part of lc-trivial fibrations
with fibres of dimension greater than one is the lack of a moduli space for

TOME 63 (2013), FASCICULE 5
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the fibres. It is therefore worth noticing that our arguments make no use of
M0,n. We hope that our more elementary approach could lead to a better
understanding of the moduli divisor for fibrations with higher dimensional
fibres.

2. Notations and preliminaries

2.1. Notations, definitions and known results

We will work over C. In the following ≡, ∼ and ∼Q will respectively in-
dicate numerical, linear and Q-linear equivalence of divisors. The following
definitions are taken from [9].

Definition 2.1. — Let (X,B) be a pair, B =
∑
biBi with bi ∈ Q.

Suppose thatKX+B isQ-Cartier. Let ν : Y → X be a birational morphism,
Y normal. We can write

KY ≡ ν∗(KX +B) +
∑

a(Ei, X,B)Ei.

where Ei ⊆ Y are distinct prime divisors and a(Ei, X,B) ∈ R. Furthermore
we adopt the convention that a nonexceptional divisor E appears in the sum
if and only if E = ν−1

∗ Bi for some i and then with coefficient a(E,X,B) =
−bi.
The a(Ei, X,B) are called discrepancies.

Definition 2.2. — Let (X,B) be a pair and f : X → Z be a morphism.
Let o ∈ Z be a point (possibly of positive dimension). A log resolution
of (X,B) over o is a birational morphism ν : X ′ → X such that for all
x ∈ f−1o the divisor ν∗(KX +B) is simple normal crossing at x.

Definition 2.3. — We set

discrep(X,B) = inf{a(E,X,B) | E exceptional divisor over X}.

A pair (X,B) is defined to be
• klt (kawamata log terminal) if discrep(X,B) > −1,
• lc (log canonical) if discrep(X,B) > −1.

Definition 2.4. — Let f : (X,B) → Z be a morphism and o ∈ Z a
point. For an exceptional divisor E over X we set c(E) its image in X. We
set

discrepo(X,B) = inf{a(E,X,B) | E exceptional divisor over X, f(c(E)) = o}.

A pair (X,B) is defined to be
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• klt over o (kawamata log terminal) if discrepo(X,B) > −1,
• lc over o (log canonical) if discrepo(X,B) > −1.

Definition 2.5. — Let (X,B) be an lc pair, D an effective Q-Cartier
Q-divisor. The log canonical threshold of D for (X,B) is

γ = sup{t ∈ R+| (X,B + tD) is lc}.

Definition 2.6. — Let (X,B) be a lc pair, ν : X ′ → X a log resolution.
Let E ⊆ X ′ be a divisor on X ′ of discrepancy −1. Such a divisor is called
a log canonical place. The image ν(E) is called center of log canonicity of
the pair. If we write

KX′ ≡ ν∗(KX +B) + E,

we can equivalently define a place as an irreducible component of b−Ec.

Definition 2.7. — Let (X,B) be a pair and ν : X ′ → X a log resolution
of the pair. We set

A(X,B) = KX′ − ν∗(KX +B)

and
A(X,B)∗ = A(X,B) +

∑
E place

E.

Definition 2.8. — A lc-trivial fibration f : (X,B) → Z consists of a
contraction of normal varieties f : X → Z and of a log pair (X,B) satisfying
the following properties:

(1) (X,B) has log canonical singularities over a big open subset U ⊆ Z;
(2) rank f ′∗OX(dA∗(X,B)e) = 1 where f ′ = f ◦ ν and ν is a given log

resolution of the pair (X,B);
(3) there exists a positive integer r, a rational function ϕ ∈ k(X) and

a Q-Cartier divisor D on Z such that

KX +B + 1
r

(ϕ) = f∗D.

Remark 2.9. — The smallest possible r is the minimum of the set

{m ∈ N|m(KX +B)|F ∼ 0}

that is the Cartier index of the fibre. We will always assume that the r that
appears in the formula is the smallest.

Definition 2.10. — Let p ⊆ Z be a codimension one point. The log
canonical threshold of f∗(p) with respect to the pair (X,B) is

γp = sup{t ∈ R| (X,B + tf∗(p)) is lc over p}.

TOME 63 (2013), FASCICULE 5
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We define the discriminant of f : (X,B)→ Z as

(2.1) BZ =
∑
p

(1− γp)p.

We remark that, since the above sum is finite, BZ is a Q-Weil divisor.

Remark 2.11. — In what follows we will treat the case where f : X → Z

is a P1-bundle over a smooth curve. We write B as the sum of its vertical
part and its horizontal part, B = Bh + Bv. Since every fibre of f is irre-
ducible there exists a Q-divisor ∆ on Z such that Bv = f∗∆. This implies
that also f : (X,Bh) → Z is an lc-trivial fibration and let B′Z and M ′Z be
its discriminant and moduli part. Then by [2, Remark 3.3] BZ = B′Z + ∆
and MZ = M ′Z . Thus we can suppose B = Bh. In this case, if we write
B =

∑
biBi, the smallest possible r is the least common multiple of the

denominators of the bi’s and for all i

bi ∈
1
r
Z.

Remark 2.12. — Let f : (X,B) → Z be an lc-trivial fibration on a
smooth curve and let o ∈ Z be a point. Let F = f∗o be its fibre. Let
δ : X̂ → X be a log resolution of (X,B + f∗o) over o, that is, if E is an
exceptional curve of δ then f(δ(E)) = o. Then we have

δ∗KX = KX̂ −
∑

eiEi

δ∗F = F̃ +
∑

aiEi

δ∗B = B̃ +
∑

αiEi

The resolution δ is a log-resolution over o also for the pair (X,B + tF ) for
all t. If (X,B + tF ) is lc then by definition for all i

−ei + tai + αi 6 1.

Since the coefficient of F has to be less or equal than one, we also have
t 6 1. Therefore

t 6 min
{

1,min
i

{
1
ai

(1 + ei − αi)
}}

.

Definition 2.13. — Fix ϕ ∈ C(X) such that KX + B + 1
r (ϕ) = f∗D.

Then there exists a unique divisor MZ such that we have

(2.2) KX +B + 1
r

(ϕ) = f∗(KZ +BZ +MZ)

where BZ is as in (2.1). The Q-Weil divisor MZ is called the moduli part.

We have the two following results.
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Theorem 2.14. — [2, Theorem 2.5], [4] Let f : (X,B) → Z be a lc-
trivial fibration. Then there exists a proper birational morphism Z ′ → Z

with the following properties:
(i): KZ′+BZ′ is a Q-Cartier divisor, and ν∗(KZ′+BZ′) = KZ′′+BZ′′

for every proper birational morphism ν : Z ′′ → Z ′.
(ii): MZ′ is a nef Q-Cartier divisor and ν∗(MZ′) = MZ′′ for every

proper birational morphism ν : Z ′′ → Z ′.
Theorem 2.15 (Inverse of adjunction). — [1, Proposition 3.4] Let

f : (X,B) → Z be a lc-trivial fibration. Then (Z,BZ) has klt (lc) sin-
gularities in a neighborhood of a point p ∈ Z if and only if (X,B) has klt
(lc) singularities in a neighborhood of f−1p.

The Formula (2.2), with the properties stated in Theorem 2.14 and The-
orem 2.15 is called canonical bundle formula.

2.2. A useful result on blow-ups on surfaces

Let X be a smooth surface. Let δ : X̂ → X be a sequence of blow-ups,
δ = εh ◦ . . . ◦ ε1 and denote pi the point blown-up by εi. In what follows
by abuse of notation we will denote with Ei the exceptional curve of εi
as well as its birational transform in further blow-ups. In what follows
we will suppose that in Exc(δ) there is just one (−1)-curve. Since
the exceptional curve Eh of εh is a (−1)-curve it is the only exceptional
curve of Exc(δ). Suppose that the first point p1 that is blown-up belongs
to a smooth curve F . We will denote by F̃ the strict transform of F by
εi ◦ . . . ◦ ε1 for all i.

Lemma 2.16. — Let f : (X,B)→ Z be a P1-bundle on a smooth curve
Z and suppose that B = (2/d)D where D is a reduced divisor such that
DF = d. Suppose moreover that there is a point o ∈ Z such that D is
tangent to F = f∗o at a smooth point of D with multiplicity d/2 6 l < d.
Then the log canonical threshold

γ := γo = sup{t ∈ R| ((X,B), tf∗o) is lc over o}

has the following expression

γ = 1 + 1
l
− 2
d
.

TOME 63 (2013), FASCICULE 5
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Proof. — A log resolution for the pair (X, 2/dD + γoF ) over o is a se-
quence of blow-ups δ = εl ◦ . . .◦ ε1 such that a picture of the (l−1)-th step
is

F̃

D̃

El−1

'

&
r r E1

Then

δ∗D = D̃ +
l∑

j=1
jEj

and we have

δ∗(2
d
D) = 2

d
D̃ + 2

d

l∑
j=1

jEj .

By definition αl is the coefficient of δ∗(2/dD) at El, and by our computation
it is 2l/d. Since

γ = min{1, min
i=1...l

{1 + 1
i
− 2
d
}}

= min{1, 1 + 1
l
− 2
d
}

we obtain
γ = 1 + 1

l
− 2
d
.

�

3. Local results

In this section we will be always in the situation where the fibres have
dimension 1. In this case, if B = 0 the condition that KF is torsion implies
the generic fibre is an elliptic curve. If B 6= 0 then F has to be a rational
curve and the second condition in the definition of the lc-trivial fibration
implies that the horizontal part of B is effective.
Thanks to the following lemma, studying the denominators of MZ is the

same thing as studying the denominators of BZ .

Lemma 3.1. — Let f : (X,B)→ Z be an lc-trivial fibration whose gen-
eral fibre is a rational curve. Then for all I ∈ N IrBZ has integer coefficients
if and only if IrMZ has integer coefficients.
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Proof. — By cutting with sufficiently general hyperplane sections we can
assume that dimZ = 1.
We write the canonical bundle formula for f : (X,B)→ Z:

KX +B + 1
r

(ϕ) = f∗(KZ +BZ +MZ).

Let ν : X̂ → X be a desingularization of X, let B̂ be the divisor defined by

KX̂ + B̂ = ν∗(KX +B)

and f̂ = f ◦ ν. Then f̂ : (X̂, B̂)→ Z is lc-trivial and has the same discrim-
inant as f . Moreover it has the same moduli divisor, since

KX̂ + B̂ + 1
r

(ϕ) = ν∗(KX +B) + 1
r

(ϕ) = f̂∗(KZ +BZ +MZ).

The surface X̂ is smooth and X̂ → Z has generic fibre P1 then there exists
a birational morphism defined over Z

X̂

f̂

��

// X ′

f ′

~~}}
}}

}}
}}

Z

where f ′ : X ′ → Z is a P1-fibration. It follows that each fibre of f̂ has an
irreducible component with coeffient one. Then the statement follows from
the equality

r(KX̂ + B̂) + (ϕ) = rf̂∗(KZ +BZ +MZ).
�

Theorem 3.2. — Let f : X → Z be a P1-bundle with dimX = 2. Let
o ∈ Z be a point and γ be the log canonical threshold of f∗o with respect
to (X,B). Then there is a constant m 6 2r2 such that mγ is integer. Such
an m is of the form lr where l 6 2r.

Proof. — The pair (X,B + γF ) is lc and not klt, that is, it has an lc
centre. There are now two cases.
The centre has dimension one.
If the centre has dimension one, then it is the whole fibre because all the
fibres are irreducible. In this case we have

1 = multF (B + γF ) = multF (B) + γ

and since rmultF (B) ∈ Z also rγ ∈ Z.
The centre has dimension zero.
Step 1 Take ν : X ′ → X a log resolution of (X,B + γF ). Notice that the
fibre over o is a tree of P1’s.

TOME 63 (2013), FASCICULE 5
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Since (X,B + γF ) is lc and not klt there is a place appearing between the
leaves of the tree. Write ν as a composition of blow-ups, set ν = εN ◦ . . .◦ε1
and let k be the minimum of the indices such that the exceptional curve of
εk is a place for (X,B + γF ), P = Ek. Let η be the composition εk ◦ . . . ◦
ε1 : X1 → X. We have:

X ′

ν

��

!!B
BB

BB
BB

B

X1
η

}}{{
{{

{{
{{

X

If the only (−1)-curve in X1 is P then we set X̂ = X1 and δ := η. Other-
wise, if there is another (−1)-curve, by the Castelnuovo’s theorem we can
contract it in a smooth way:

X ′

ν

��

!!B
BB

BB
BB

B

X1

��
X2

}}{{
{{

{{
{{

X

This process ends because in X ′ there were finitely many ν-exceptional
curves. Then we obtain a smooth surface X̂ such that the only (−1)-curve
in X is P . We set δ : X̂ → X and write δ = εh ◦ . . . ◦ ε1.
Step 2 We have obtained X̂ smooth with a diagram

X ′

ν

��

  A
AA

AA
AA

A

X̂
δ

~~}}
}}

}}
}}

X
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where X̂ → X is minimal in order to obtain a log canonical place P which
has to be a −1-curve and δ = εh◦. . .◦ε1 is a sequence of blow ups. Let pi be
the point blown up by εi. Let B̃ji be the strict transform of the component
Bi of B at the step j and B̃j be the strict transform of B. By abuse of
notation we will denote by F̃ the strict transform of F by every εi and by
Ei the exceptional curve of εi as well as its strict transform in the further
blow-ups. Notice that P = Eh. In what follows we will adopt the following
notation:

B =
∑

biBi;

δ∗KX = KX̂ −
∑

eiEi; δ∗B = B̃ +
∑

αiEi; δ∗F = F̃ +
∑

aiEi.

Here B̃ and F̃ denote the strict transform of B and F . Remark that for all
i we have

(3.1) αi ∈
1
r
Z.

Indeed bi ∈ 1/rZ for all i by Remark 2.9. Equation (3.1) follows from the
fact that

α1 =
∑
Bi3p1

bimultp1Bi

and, for l > 1, that αl is a linear combination of the αj ’s with j < l plus∑
B̃l−1
i
3pl bimultplB̃l−1

i .
Since Eh is a place we have

1 = multEh(δ∗(KX +B + γF )−KX̂) = −eh + αh + γah.

Since eh is an integer and αh ∈ 1/rZ, if we prove that ah 6 2r we are done.
By the minimality of δ there exists a component B1 of B such that the
strict transform B̃h1 of B1 meets Eh, that is B̃h1Eh > 0. Then

2r > B1F = δ∗B1δ
∗F = B̃h1 δ

∗F = B̃h1 (F̃ +
∑

aiEi)

> ahB̃
h
1Eh > ah.

�

We can finally prove the main result.
Proof of Theorem 1.5. — The statement in dimension 2 follows from

Theorem 3.2 and [2, Lemma 2.6]. Indeed if X → Z is a fibration whose
general fibre is a P1 and X is smooth, then by the general theory of smooth
surfaces there exists a birational morphism σ : X → X ′ where X ′ is a P1-
bundle. More precisely X ′ is a minimal model of X that is unique if the
genus of Z is positive.
The general result follows from the one in dimension 2 by induction on the
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dimension of the base. Suppose now that the statement is true in dimension
n− 1 and let X → Z be a fibration of dimension n. The set

S =
{

o point of Z of codimension 1 such that the log canonical

threshold of f∗o with respect to (X,B) is different from 1

}
is a finite set.
We fix then a point o ∈ S. By the Bertini theorem, since Z is smooth, we
can find a hyperplane section H ⊆ Z such that

(1) H is smooth;
(2) H intersects o transversally;
(3) H does not contain any intersection o ∩ o′ where o′ ∈ S\{o}.

Set
XH = f−1(H); fH = f |XH ; BH = B|XH ; oH = o ∩H.

The restriction fH : (XH , BH) → H is again an lc-trivial fibration. Then
the log canonical threshold of f∗HoH with respect to (XH , BH) is equal to
the log canonical threshold of f∗o with respect to (X,B) and the theorem
follows from the inductive hypothesis. �

Notice that even if in many cases m = r is sufficient to have that mMZ

has integer coefficients there exist cases in which a greater coefficient is
needed.

Example 3.3. — Let π : X → C be a P1-bundle on a curve C. Let
X0 → U be a local trivialization, where U ⊆ C is an open subset and
X0 = π−1U . This means that there is a commutative diagram

X0

π

��

∼ // U × P1

p1
{{vv

vv
vv

vv
v

U.

We can furthermore suppose that we have a local coordinate t on U . Let
[x : y] be coordinates on P1. Set

D = {tyd − xlyd−l − xd = 0} ⊆ U × P1

and let D̄ be the Zariski closure of D in X.
Consider the pair (X, 2/dD̄). Then we have deg(KX + 2/dD̄)|F = 0 and
there exists a rational function ϕ such that we can write

KX + 2/dD̄ + 1
r

(ϕ) = f∗(KC +BC +MC)
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where r = d if d is odd and r = d/2 if d is even. We want to compute now
the coefficient of the divisor BC at the point t = 0. Its coefficient is 1 − γ
where γ is the log canonical threshold of ((X, 2/dD̄), F ). A log resolution
for the pair (X, 2/dD̄) over the point t = 0 is given by the composition of
l blow-ups. At the (l − 1)-th step the picture is as follows

F̃

D̃

El−1

'

&
r r E1

We call δ : X̂ → X this composition of blow-ups. We have

δ∗KX = KX̂ −
l∑
i=1

iEi δ∗D̄ = D̃ +
l∑
i=1

iEi δ∗F = F̃ +
l∑
i=1

iEi,

where by abuse of notation we denote by Ei the exceptional divisor of the
i-th blow-up as well as its strict transforms after the following blow-ups.
Thus

δ∗(KX + 2/dD̄ + γF ) = KX̂ + 2/dD̃ + γF̃ +
l∑
i=1

i(−1 + γ + 2/d)Ei.

By Lemma 2.16 we have

γ = 1 + 1
l
− 2
d
.

So if we chose l < d and such that 2l > d, we obtain γ = 1 − 2l−d
ld . For

l = 5 and d = 9 we have γ = 1− 1
45 /∈ 1

12rZ contrary to the Prokhorov and
Shokurov expectation.
Notice that this gives us an example also if we take l to be any prime
greater or equal to 13 and d = 2l − 1.
To prove that the bound stated in Theorem 3.2 is not far from being

sharp, we take d even such that d/2 is odd and l = d − 1. Then r = d/2
and

γ = 1− 2l − d
ld

= 1− 2(2r − 1)− 2r
2r2 − r

= 1− 2(2r − 1)− 2r
2r2 − r

= 1− 2(r − 1)
(2r − 1)r .

Since 2(r− 1) and (2r− 1)r are coprime, the smallest integer m such that
mγ is integer is m = 2r2 − r.
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4. Global results

Lemma 4.1. — Let f : X → Z be a P1-bundle on a smooth curve Z.
Let D ⊆ X be a reduced divisor such that f |D : D → Z is a ramified
covering of degree d with at least N ramification points p1 . . . pN that are
smooth points for D. Suppose that d is even. Suppose moreover that the
ramification indices l1, . . . , lN at p1, . . . , pN satisfy the following properties:

(1) 2li > d for all i;
(2) li and lj are coprime for all i 6= j;
(3) li and d are coprime for all i.

Then
(i): the fibration

f : (X, 2/dD)→ Z

is an lc-trivial fibration, in particular there exists a rational function
ϕ such that

KX + 2
d
D + 1

r
(ϕ) = f∗(KZ +MZ +BZ).

(ii): The Cartier index of the fibre is r = d/2.
(iii): Let V be the smallest integer such that VMZ has integer coef-

ficients.
Then V > rN+1.

Proof. — The first part of the statement follows easily from the fact the
degree of (KX + 2/dD)|F is 0. The Cartier index of the fibre is

r = min{m|m(KX + 2/dD)|F is a Cartier divisor}.

But since F is a smooth rational curve this is

r = min{m|m(KX + 2/dD)|F has integer coefficients} = d

2
and the second part of the statement is proved. In order to prove the third
part of the statement we remark that since D is smooth at pi and f |D
ramifies at pi the only possibility is that D is tangent to F at pi with order
of tangency exactly li.
Then we can apply Lemma 2.16 and by Equation (3.1) an expression for γ
is

γ = 1 + 1
li
− 2
d
.

Since li and d are coprime, lid divides V for all i. Again since li and lj are
coprime for all i 6= j

l1 . . . lNd | V.
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Since li > d/2 = r for all i we have

V > l1 . . . lNd > 2rN+1.

�

Proof of Theorem 1.6 (1). — Let N be a positive integer and f : X →
Z be a P1-bundle on a smooth curve. Let U ⊆ Z be an open set that
trivializes the P1-bundle and such that we have a local coordinate t on it.
Take d, l1, . . . , lN ∈ N be such that

l0 := 0 < l1 < . . . < lN < lN+1 := d

and such that they verify conditions (1)(2)(3) of Lemma 4.1. Let o1, . . . , oN
be distinct points in U . Let [u : v] be the coordinates on the fibre and
x = u/v the local coordinate on the open set {v 6= 0}. Let D be the Zariski
closure in X of

D0 =
{
N+1∑
k=1

(
(xlk−1 + . . .+ xlk−1)

N∏
i=k

(t− oi)
)}

.

The restriction of D to the fibre over oi is the zero locus of a polynomial
of the form

hi(x) = xliqi(x)
such that x does not divide qi. Notice that D is smooth at the points
pi = (0, oi) because the derivative with respect to t of the polynomial that
defines D0 is non-zero at those points. This insures that D is tangent to
the fibre F = f∗oi with multiplicity exactly li and then that

f |D : D → Z

has ramification index exactely li at pi. The fibration f : (X, 2/dD) → Z

satisfies all the hypotheses of Lemma 4.1. Therefore if V is the minimum
positive integer such that VMZ has integer coefficients we have V > rN+1.

�

Proof of Theorem 1.6 (2). — Let BZ =
∑
bioi be the discriminant

divisor. Let V be the minimum integer number such that V BZ has integer
coefficients. If we write bi = ui/vi with ui, vi ∈ N and coprime it is clear
that V = lcm{vi}. We have seen in the proof of Theorem 3.2 that vi divides
lir for some li 6 2r. Then

V = lcm{vi} | lcm{lir}.

Let us remark that if q is a prime number such that qk divides V then
there exists a point p such that qk divides lpr. Let r =

∏
q
k(qi)
i be the
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decomposition of r into prime factors and suppose that q is equal to some
prime q1. We have then that

q
k−k(q1)
1 | lp 6 2r.

Set
s(q) = max{s | qs 6 2r}. �

The bound of Theorem 1.6 is not far from being sharp thanks to the
following example.

Proof of Theorem 1.6 (3). — Let r be an odd integer number. Let s(q)
be the integer defined above. Set

h(q) = max{h | r 6 2hqs(q) 6 2r}

and set
{l1 < . . . < lN} = {2h(q)qs(q)| q < 2r, q prime},

l0 = 0, lN+1 = d = 2r.
Consider the divisor D̄ defined as the Zariski closure of

D0 =
{
N+1∑
k=1

(
(xlk−1 + . . .+ xlk−1)

N∏
i=k

(t− oi)
)}

.

Consider now B = 1/rD̄. The fibration f : (X,B)→ Z is lc-trivial. Let V
be the minimum integer such that VMZ has integer coefficients.
Then for each i = 1 . . . N by Lemma 2.16 we have the following expression

for γi:

γi = 1− 2li − d
lid

= 1 + r − li
lir

.

For every i we have li = 2h(q)qs(q) for a suitable q. Since r is odd

gcd{2h(q)qs(q), r} = qs
′(q)

for some s′(q), then

γi = 1− li − r
lir

= 1 + r/qs
′(q) − 2h(q)qs(q)−s

′(q)

2h(q)qs(q)−s′(q)r
.

Then for all q such that q 6 2r we have

2h(q)qs(q)−s
′(q)r|V

that implies that
lcm{2h(q)qs(q)−s

′(q)r}|V.
But

lcm{2h(q)qs(q)−s
′(q)r} = N(r)

r
. �
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