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THE INVISCID LIMIT AND STABILITY OF
CHARACTERISTIC BOUNDARY LAYERS FOR THE

COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH
NAVIER-FRICTION BOUNDARY CONDITIONS

by Ya-Guang WANG & Mark WILLIAMS

Abstract. — We study boundary layer solutions of the isentropic, compress-
ible Navier-Stokes equations with Navier-friction boundary conditions when the
viscosity constants appearing in the momentum equation are proportional to a
small parameter ε. These boundary conditions are characteristic for the underly-
ing inviscid problem, the compressible Euler equations.

The boundary condition implies that the velocity on the boundary is propor-
tional to the tangential component of the stress. The normal component of velocity
is zero on the boundary. We first construct a high-order approximate solution that
exhibits a boundary layer. The main contribution to the layer appears in the tan-
gential velocity and is of width

√
ε and amplitude O(

√
ε). Next we prove that

the approximate solution stays close to the exact Navier-Stokes solution on a fixed
time interval independent of ε. As an immediate corollary we show that the Navier-
Stokes solution converges in L∞ in the small viscosity limit to the solution of the
compressible Euler equations with normal velocity equal to zero on the boundary.
Résumé. — Nous étudions des solutions avec couches limites des équations de

Navier-Stokes compressibles isentropiques avec des conditions de frottement de
Navier au bord, lorsque la constante de viscosité figurant dans l’équation sur la
quantité de mouvement est proportionnelle à un petit paramètre ε. Ces conditions
aux limites sont caractéristiques pour le problème non visqueux sous-jacent, le
système d’ équations d’Euler compressibles.

Les conditions aux limites impliquent que la vitesse au bord est proportionnelle
à la composante tangentielle des contraintes. La composante normale de la vitesse
est nulle au bord. Nous construisons tout d’abord une solution approchée à un
ordre élevé de la solution, décrivant la présence d’une couche limite. La contribution
principale de la couche limite apparait dans la composante tangentielle de la vitesse,
est de taille

√
ε et d’amplitude O(

√
ε). Nous prouvons ensuite que cette solution

approchée est effectivement asymptotique à la solution exacte, sur un intervalle de
temps indépendant de ε. Un corollaire immédiat est que la solution des équations
de Navier-Stokes converge dans L∞, lorsque la viscosité tend vers 0, vers la solution
du système d’Euler compressible avec composante normale de la vitesse nulle au
bord.

Keywords: characteristic boundary layers, compressible Navier-Stokes equations, Navier
boundary conditions, inviscid limit.
Math. classification: 76N20, 76N17.
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1. Introduction

We consider the vanishing viscosity limit and stability of boundary layers
for the compressible Navier-Stokes equations with the Navier boundary
condition on the half-space {(t, x, y) ∈ R1+d : y > 0}, d = 2, 3. When d = 2
we write these simply as

∂tρ
ε +∇ · (ρεuε) = 0

∂t(ρεuε) +∇ · (ρεuε ⊗ uε) +∇p(ρε)− ε
(
λ∆uε + µ

(
div∂xuε
div∂yuε

))
= 0

uε1 − α
∂uε1
∂y

= 0, uε2 = 0 on y = 0.

(1.1)

Here ρε, uε = (uε1, uε2)T and p(ρε) for ε > 0 denote, respectively, the density,
velocity and pressure of a compressible fluid, λ, µ are constant viscosity
coefficients with λ > 0 and λ + µ > 0, and the slip length α > 0. We
assume that p(ρ) is Ck for k large and satisfies

p(ρ) > 0, p′(ρ) > 0 for ρ > 0.(1.2)

The boundary condition was introduced by Navier in [16] and expresses
the condition that the velocity on the boundary is proportional to the
tangential component of the stress. An elementary derivation of the Navier
boundary condition for general regions Ω is given in the introduction of [9].
Observe that in the singular limit when α→ 0 the boundary conditions in
(1.1) formally tend to the no-slip case, uε|y=0 = 0, while when α → +∞
the boundary conditions in (1.1) tend to the complete slip case, uε2|y=0 = 0
and ∂yuε1|y=0 = 0.

The boundary layer problem for incompressible flow with the no-slip
boundary condition was studied formally by Prandtl [15], who showed that
the leading profile of the boundary layer could be described by the solution
of an initial boundary value problem for a nonlinear degenerate parabolic-
elliptic coupled system now called the Prandtl equations. Under a certain
monotonicity restriction on the initial velocity, Oleinik established the short
time existence of smooth solutions of the Prandtl equations in the 1960s
[17]. The long-standing questions of the well-posedness of the Prandtl equa-
tions and of the closeness (for ε small) of approximate Navier-Stokes solu-
tions constructed from Prandtl solutions to exact solutions of the Navier-
Stokes equations with no-slip boundary conditions are still not thoroughly
understood, although there are some important negative results bearing on
this question. In [4] Grenier exhibited Prandtl layers that failed to describe
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CHARACTERISTIC BOUNDARY LAYERS 2259

Navier-Stokes solutions by taking initial data constructed from a smooth
Euler shear flow uE(y) with an inflection point that is linearly unstable for
the Euler equations (a Raleigh instability). More recently, in [3] Gerard-
Varet and Dormy proved linearized instability in a class of Sobolev-type
spaces for the Prandtl equations linearized about an exact solution of the
form (u1(t, η), 0), where u1(t, η) is a solution of the heat equation such that
u1(0, η) has a nondegenerate critical point. The only work we know of that
answers both of the above questions positively is the work of Sammartino
and Caflisch [19], who restrict their analysis to a space of functions analytic
in x and η.(1)

In two space dimensions the inviscid limit for the incompressible Navier-
Stokes equations with Navier boundary conditions, assuming slip length
is independent of viscosity, has been studied by several authors. Assuming
bounded vorticity, Clopeau, Mikelić and Robert [1] prove convergence to the
Euler solutions. This result was extended to Lp vorticities, p > 2, by Lopes
Filho et. al. [13]. In [11] Kelliher proves convergence in L∞([0, T ], L2(Ω)) of
Navier-Stokes solutions with Navier boundary conditions to Navier-Stokes
solutions with no-slip boundary conditions as α → 0 uniformly on the
boundary (assuming H3 initial velocity and C3 boundary). These works
do not attempt to construct or give a precise description of the boundary
layer.
Again for the incompressible Navier-Stokes equations, Iftimie and Sueur

[10] give a careful construction of the boundary layer as well as a rigorous
error analysis and discussion of the small viscosity limit for Navier bound-
ary conditions (assuming α independent of ε) valid in two and three space
dimensions. The error analysis of [10], which uses the tools associated with
the divergence free condition (e.g., Leray projectors), is naturally quite
different from the arguments given in this paper.
The Prandtl boundary layer is of amplitude O(1) and width O(

√
ε) when

the viscosity is proportional to ε. The width O(
√
ε) is typical of the bound-

ary layers that arise in problems where the boundary conditions are charac-
teristic for the underlying inviscid problem. Since the velocity normal to the
boundary vanishes under Navier boundary conditions, the Navier bound-
ary layer is also a characteristic boundary layer. The layers constructed in
[10] and the layers constructed here in the compressible case are of width
O(
√
ε) like the Prandtl boundary layer, but in both cases are of amplitude

O(
√
ε) when α is independent of viscosity.

(1)See also [12], where the convergence as ε → 0 of incompressible Navier-Stokes solu-
tions with no-slip boundary conditions to Euler solutions is proved for circularly sym-
metric 2D flows by a method that does not involve constructing a Prandtl layer.
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In contrast noncharacteristic boundary layers such as those associated
with inflow or outflow through the boundary are typically of width O(ε).
The stability of noncharacteristic layers of amplitude O(1) and the asso-
ciated small viscosity limits were studied for incompressible Navier-Stokes
in [20] and for compressible Navier-Stokes (and viscous MHD) in [6, 7].
Our main result deals with the system (1.1) when the slip length α > 0

is independent of ε. We first construct a high-order approximate solution
of (1.1) that exhibits a boundary layer. Next we prove that the boundary
layer is stable; that is, the approximate solution stays close to the exact
Navier-Stokes solution on a fixed time interval independent of ε (Theorem
1.3). As an immediate corollary of the stability result, we show that the
Navier-Stokes solution converges in L∞ in the small viscosity limit to the
solution of the compressible Euler equations with normal velocity equal to
zero on the boundary (Corollary 1.4).

1.1. Symmetric forms of the equations

The error estimates will take advantage of the fact that the equations
can be put into a symmetric form where pressure and velocity are the
unknowns instead of density and velocity. Since we are now assuming that
α is a positive constant independent of ε, it has no further effect on the
analysis to take α = 1.

The interior and boundary equations in (1.1) can be written, where w =
(ρ, u) and we suppress some epsilons, as

D0(w)wt +D1(w)wx +D2(w)wy − ε[B11wxx +B12wxy +B22wyy] = 0
u1 − u1y = 0, u2 = 0 on y = 0,

(1.3)

where

D0(w) =

 1 0 0
u1 ρ 0
u2 0 ρ

 , D1(w) =

 u1 ρ 0
u2

1 + p′ 2ρu1 0
u1u2 ρu2 ρu1

 ,

D2(w) =

 u2 0 ρ

u1u2 ρu2 ρu1
u2

2 + p′ 0 2ρu2


B11 =

0 0 0
0 λ+ µ 0
0 0 λ

 , B12 =

0 0 0
0 0 µ

0 µ 0

 , B22 =

0 0 0
0 λ 0
0 0 λ+ µ

 .

(1.4)
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Applying the symmetrizer

S(w) =

 p′

ρ 0 0
−u1 1 0
−u2 0 1

(1.5)

to the interior equation we obtain

C0(w)wt + C1(w)wx + C2(w)wy − ε[B11wxx +B12wxy +B22wyy] = 0,
(1.6)

where the Bij are unchanged and

C0(w) =

p′

ρ 0 0
0 ρ 0
0 0 ρ

 , C1(w) =

p′u1
ρ p′ 0
p′ ρu1 0
0 0 ρu1

 ,(1.7)

C2(w) =

p′u2
ρ 0 p′

0 ρu2 0
p′ 0 ρu2

 .

Finally, changing the dependent variable in (1.6) to v = (p, u) we obtain
the problem

(a) A0(v)vt +A1(v)vx +A2(v)vy − ε[B11vxx +B12vxy +B22vyy] = 0,
(b) u1 − u1y = 0, u2 = 0 on y = 0,

(1.8)

where again the Bij are unchanged and, with ρ = ρ(p) and ρ′ = dρ
dp now,

A0(v) =

ρ′

ρ 0 0
0 ρ 0
0 0 ρ

 , A1(v) =

ρ′u1
ρ 1 0
1 ρu1 0
0 0 ρu1

 ,(1.9)

A2(v) =

ρ′u2
ρ 0 1
0 ρu2 0
1 0 ρu2

 .

We shall work with the form of the equations given by (1.8) in the error
analysis of section 3. The fact that the off-diagonal elements are constant
in the matrix A2 makes some unwanted commutator terms vanish in the
higher derivative estimates below. For later reference we record here the
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explicit components of (1.8)(a):

ρ′

ρ
pt + ρ′

ρ
u1px + u1x + ρ′

ρ
u2py + u2y = 0 (ρ′ = dρ

dp
)

ρu1t + px + ρu1u1x + ρu2u1y − ε ((λ+ µ)u1xx + µu2xy + λu1yy) = 0
ρu2t + ρu1u2x + py + ρu2u2y − ε (λu2xx + µu1xy + (λ+ µ)u2yy) = 0.

(1.10)

1.2. Error equation, iteration scheme, and overview of the error
analysis

Let wa = (ρa, ua) be the approximate solution constructed in Proposi-
tion 2.3. This solution has the expansion (2.52) involving “slow" and “fast"
profiles, the (ρI,j , uI,j) and (ρB,j , uB,j) respectively, where the (ρB,j , uB,j)
are functions of (t, x, η) that decay rapidly to 0 as η → +∞. Observe from
(2.52) that the boundary layer makes it first appearance in the terms of
amplitude O(ε 1

2 ) of uε,M1 . Denoting the left side of (1.6) by E(w), we may
write the problem satisfied by wa as

E(wa) =
√
ε
M
RM on [−δ, T0]× {(x, y) : y > 0}

ua1 − ua1y = 0, ua2 = 0 on y = 0,
(1.11)

where ρa > C > 0 for some fixed C throughout its domain, and δ > 0.
We may, for example, take δ = T0

3 as in Proposition 2.3, where [−T0, T0] is
the interval of existence of the leading slow profiles (ρI,0, uI,0). Denote the
same solution in the (p, u) variables by va = (pa, ua), where

pa(t, x, y) := p(ρa(t, x, y)).(1.12)

Writing the left side of (1.8)(a) as E(v), we have now in place of (1.11)

E(va) =
√
ε
M
RM on [−δ, T0]× {(x, y) : y > 0}

ua1 − ua1y = 0, ua2 = 0 on y = 0.
(1.13)

We seek an exact solution v to (1.8) on [0, T0] × {(x, y) : y > 0} that is
close to va. To guarantee high-order corner compatibility conditions for v,
we introduce a C∞ cutoff function θ(t) that is ≡ 1 in t > − δ3 and ≡ 0 in
t 6 − δ2 , and look for v of the form

v = va +
√
ε
L
z(1.14)
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where 2 6 L < M − 2k (for k specified later) and z = (p, u) satisfies the
forward error problem:

(
√
ε)−L

(
E(va +

√
ε
L
z)− E(va)

)
= −
√
ε
M−L

θ(t)RM on (−∞, T0]

u1 − u1y = 0, u2 = 0 on y = 0

z = 0 in t 6 −δ2 .

(1.15)

With a small risk of confusion it is convenient to use (p, u) to denote the
components of z now. We are as usual suppressing the ε-dependence of
z = zε (and of other functions) in the notation. Our goal is to solve (1.15)
for zε on t 6 T0 for ε ∈ (0, ε0] for some sufficiently small ε0.

Remark 1.1. — To make sense of (1.15) on (−∞, T0] we take a smooth
extension of va, which is initially defined on [−T0, T0], to t 6 −T0 such that
the extension remains close in L∞ to va|t=−T0 . In particular the extended
ρa satisfies ρa > C > 0 on its domain of definition. Different choices of
extension satisfying this condition lead to the same solution z.

The problem (1.15) will be solved by the following iteration scheme:

A0(va+
√
ε
L
zn)∂tzn+1+A1(va+

√
ε
L
zn)∂xzn+1+A2(va +

√
ε
L
zn)∂yzn+1+(

zn+1 ·
∫ 1

0
∂vA0(va + s

√
ε
L
zn)ds

)
∂tv

a+(
zn+1 ·

∫ 1

0
∂vA1(va + s

√
ε
L
zn)ds

)
∂xv

a+(
zn+1 ·

∫ 1

0
∂vA2(va + s

√
ε
L
zn)ds

)
∂yv

a−

ε[B11∂xxz
n+1 +B12∂xyz

n+1 +B22∂yyz
n+1] = −

√
ε
M−L

θ(t)RM

(1.16)

with boundary and initial conditions

un+1
1 − ∂yun+1

1 = 0, un+1
2 = 0 on y = 0,

zn+1 = 0 in t 6 −δ2 ,
(1.17)

where we take the first iterate z0 = 0.

Next we give an overview of the proof of the main estimates used in
showing convergence of the iteration scheme. The numbers in boldface refer
to the numbered paragraphs in the proof of Proposition 3.14.

TOME 62 (2012), FASCICULE 6
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One of the main difficulties in the problem arises from the vanishing at
y = 0 of the coefficient of py in the first component equation of (1.8)(a), the
pressure equation. This is connected to the fact that the boundary is char-
acteristic for the hyperbolic problem (Euler equations); that is, the matrix
A2(v) is singular on y = 0, since u2 = 0 on y = 0. Of course, the same ap-
plies to the error equation (1.15). An important consequence of this for the
iteration scheme is that we are unable to control

√
ε
L|∂ypn|L∞ (or equiv-

alently,
√
ε
L|∂yρn|L∞). Fortunately, we are able to control

√
ε
L|y∂ypn|L∞ ,

and this turns out to be enough to eventually close the estimates.
The first step is to get an L2 estimate for (1.16), (1.17) and to estimate

tangential (∂t, ∂x, y∂y) derivatives. The L2 estimate, Proposition 3.2, is
unusual in that it does not require boundedness of the Lipschitz norm
of
√
ε
L
zn, even though the matrix coefficients in (1.16) are functions of√

ε
L
zn. Instead, the estimate assumes only

|zn,
√
ε
L(∂tzn, ∂xzn, y∂ypn, ∂yun)|L∞ 6 1.(1.18)

An argument that recurs often in section 3 is illustrated by the proof of
L∞ boundedness of

∂yA2 = (∂pA2)∂y(pa +
√
ε
L
pn) + (∂u2A2)∂y(ua2 +

√
ε
L
un2 )(1.19)

in the proof of the L2 estimate. For the second term on the right bound-
edness is clear from (1.18). For the first term we use the fact that ∂pA2 is
a diagonal matrix with entries that vanish when y = 0 as a consequence
of the Navier boundary conditions. Thus we can extract a factor of y from
∂pA2 to multiply ∂ypn and thereby make use of (1.18). The advantage of
using (p, u) coordinates is clearly seen here; the use of w = (ρ, u) coordi-
nates would have led to ∂ρC2 (see (1.7)), which has off-diagonal elements
that do not vanish on y = 0, instead of ∂pA2.

The estimate of higher tangential derivatives in Proposition 3.10 works
in any number of space dimensions, and relies on Moser estimates, Lemma
3.6, to estimate the L2 norm of products like

(Mα1zni1) . . . (Mαrznir )(M
αr+1zn+1

ir+1
)(1.20)

that arise from commuting tangential derivatives Mα through the equa-
tions. Here we have set M = (M0,M1,M2) := (∂t, ∂x, y∂y).
To control the L∞ norm of zn+1 it suffices to control the L2 norm of

sufficiently many tangential derivatives (roughly d
2 ) and of at least one

normal derivative ∂yzn+1 as well. The presence of viscosity in the second
and third component equations of (1.16) gives better control over un+1

than over pn+1; for example,
√
ε|∇un+1|L2 appears on the left in the L2

ANNALES DE L’INSTITUT FOURIER
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estimate (3.7). If we could solve for pn+1
y in the first equation, we could use

the better control over un+1 to estimate |pn+1
y |L2 by a sum of appropriate

norms of the other terms appearing in the pressure equation. This strategy
works well in noncharacteristic boundary problems for the Navier-Stokes
equations (see e.g., [6] (6.87)-(6.88)).
That strategy does not work here, and in order to estimate |pn+1

y |L2 we
must do a separate L2 estimate for ∂yzn+1. If one simply differentiates
(1.16) with respect to y and takes an inner product with ∂yz

n+1, the es-
timate fails because differentiation with respect to y destroys the Navier
boundary conditions, and one obtains boundary terms from integration by
parts that cannot be controlled. Instead, we shall first add a viscosity term
η∆pn+1 to the pressure equation as in (3.1) and impose an extra boundary
condition, namely pn+1

y = 0 on y = 0(2) . This has several helpful effects,
including that of making some undesirable boundary terms arising from
integration by parts vanish.
Denoting the unknown in the modified problem (3.1) by zn+1,η, in Propo-

sition 3.14 we obtain estimates on |M j∂yz
n+1,η|L2 that are uniform in both

ε and η. We do this by differentiating the equation (3.1) with M j∂y, and
then taking the L2 pairing with

(ηM j∂yp
n+1,η,M j∂yu

n+1,η).(1.21)

One of the challenges here is that we do not have any useful version of the
Moser estimates that applies to products (again arising from commutators)
of the form

(Mα1zni1) . . . (Mαr∂yz
n
ir )(M

αr+1zn+1
ir+1

),(1.22)

for example, where a normal derivative appears on one of the factors. It
turns out that by restricting the space dimension to d = 2 or d = 3 we are
able to use the Sobolev estimates of Corollary 3.8 to control the L∞ norms
of all but one of the factors occurring in such products. This is carried out
in steps 4, 5, 6 of the proof of Proposition 3.14. The reason for introducing
the factor η in (1.21) is seen, for example, in the estimate (3.55), where
the presence of η allows us bypass a problem with estimating ∂2

yp
n+1,η by

taking advantage of the equation to estimate |η∂2
yp
n+1,η|L∞ ! Similar use

of the extra factor of η in (1.21) is made in the estimate of (3.61).

(2)This is a familiar maneuver in the study of compressible flow, used for example in
[2].

TOME 62 (2012), FASCICULE 6
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As a consequence of the extra boundary condition ∂yp
n+1,η|y=0 in the

modified problem (3.1), the boundary terms arising from the integrations
by parts involving theA2∂y and−η∆ terms vanish (see the discussion below
(3.45) in 2). The boundary terms arising from the integration involving
εB22∂

2
y depend only on un+1,η and are estimated in 10 using the Navier

boundary conditions and trace estimates like (3.77), in some cases after
using the interior equations to rewrite ε∂2

yu|y=0.
A helpful device in this argument is to first settle for an intermedi-

ate estimate, namely (3.86), which gives a control on √η|M j∂yp
n+1,η|L2

that clearly degenerates as η → 0, but which gives good control on
|M j∂yu

n+1,η|L2 . The unwanted factor √η appears here because we chose
to pair the differentiated equation with (1.21). In the final step of the proof
of Proposition 3.14 we use the third scalar component equation of (1.16),
together with the good control on un+1,η from the intermediate estimate,
to estimate |M j∂yp

n+1,η|L2 without the unwanted factor of √η.
The estimates (3.42) of Proposition 3.14 allow us to construct the (n+1)-

st iterate zn+1 satisfying (1.16) by taking a limit of zn+1,η as η ↓ 0. That
limit is shown in Proposition 3.15 to inherit the same estimates uniform in
ε that are satisfied by zn+1,η. The final paragraphs of section 3.3 show that
these estimates are strong enough to deduce convergence as n→∞ of the
iteration scheme (1.16)-(1.17) for t 6 T0, where T0 > 0 is independent of
ε. In fact, T0 can be taken to be the same constant as the one in (1.11),
which specified the time interval of existence of the approximate solution.

1.3. Main results

We introduce some notation before stating the main result.(3)

For T > 0 let ΩT = {(t, x, y) : y > 0,−∞ < t 6 T} and set bΩT =
ΩT ∩ {y = 0}.

Notation 1.2. — 1.) Denote the tangential operators ∂t, ∂x, and y∂y by
Mj , j = 0, 1, 2 respectively, and for k ∈ N = {0, 1, 2, . . . , } let Mk denote
the collection of operators Mα0

0 Mα1
1 Mα2

2 such that α0 + α1 + α2 = k.
Sometimes Mk is used to denote a particular member of this collection of
operators. Set ∇f = (∂xf, ∂yf).

(3)At this point some readers may wish to skip Notation 1.2 and focus on part 2 of
Theorem 1.3 and Corollary 1.4.
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2.) Let µ = γ
ε , where we always suppose 0 < ε 6 1 6 γ. On ΩT with

z = (p, u) set

|z|k,µ,γ =
k∑
j=0

µk−j |e−γtM jz|L2(ΩT ),

〈z〉k,µ,γ =
k∑
j=0

µk−j |e−γtM jz|L2(bΩT ).

(1.23)

3.) Set ‖z‖′k,µ,γ = |√γz,
√
ε∇u|k,µ,γ + 〈

√
εu1〉k,µ,γ + 〈

√
εu1y〉k,µ,γ .

4.) Set ‖z‖k,µ,γ = ‖z‖′k,µ,γ + |√γ∂yz|k−2,µ,γ + |∂y
√
ε∇u|k−2,µ,γ .

5.) When there are d space dimensions, define ΩT and the norms ‖z‖′k,µ,γ
and ‖z‖k,µ,γ with the obvious changes: let x ∈ Rd−1, α1 ∈ Nd−1, and take
k = α0 + |α1|+ α2.
6.) Set ‖z‖∗∗ := |z,Mz,M2z,

√
ε∂yu,

√
εM∂yu|L∞(ΩT ).

The main result of the paper is the following theorem.

Theorem 1.3. — Let va be the approximate boundary layer solution
of order M described in Proposition 2.3, but written in (p, u) coordinates,
which satisfies (1.13) on [−δ, T0] × {(x, y) : y > 0}. Assume the space
dimension d = 2 or 3 and assume L > 2, k > 5, and M − L − 2k > 0.
Suppose that s0, the index measuring regularity of the leading slow profile
(ρI,0, uI,0), satisfies

s0 > k + 4 + 5M + d+ 1
2 .(1.24)

Then there exists a positive constant γ0 and a positive decreasing function
ε0(γ) such that for γ > γ0 and 0 < ε 6 ε0(γ), the nonlinear forward error
problem (1.15) has a unique solution z on ΩT0 satisfying the estimates

(a)‖z‖∗∗ 6 1,

(b)‖z‖k,µ,γ 6 2C(γ)
√
ε
M−L−2k

6 1,
(1.25)

with norms as defined in Notation 3.4 and C(γ) as in (3.90).
2. If we take

vε = va +
√
ε
L
z,(1.26)

then v is an exact boundary layer solution of the nonlinear problem (1.8)
on ΩT0 , the latter problem being equivalent to the original problem (1.1).

As an immediate corollary of this theorem and the expansions (2.52), we
can describe the small viscosity limit.
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Corollary 1.4 (Inviscid limit). — On OT0 := [0, T0]×{(x, y) : y > 0}
the exact solution vε given by (1.26) is related to the approximate bound-
ary layer solution va (2.52) and to the inviscid solution v0 := (ρI,0, uI,0)
(satisfying (2.3),(2.11)) as follows:

(a) |vε − va|L∞(OT0 ) 6 Cε
L
2

(b) |vε − v0|L∞(OT0 ) 6 Cε
1
2 ,

(1.27)

for some C > 0 independent of ε. The estimate (a) also holds with the L∞
norm replaced by the ‖ · ‖∗∗ norm (recall Notation 3.13).

The body of the paper is organized as follows. In section 2.1 we give
a formal description of the profile equations in a few representative cases
where the slip length is taken to be a power of the viscosity, αε = εδ, δ > 0.
The results of [18] indicate that in many physical situations the slip length
should depend on viscosity. This formal analysis indicates that, depending
on the size of δ, the main contribution to the boundary layer will either
appear in the leading term of the expansion (of amplitude O(1)) and satisfy
nonlinear Prandtl-type equations (δ > 1

2 ), or will appear in a subsequent
term (of amplitude O(ε 1

2−δ)) and satisfy linearized Prandtl equations. The
formal analysis helps to clarify the sense in which the problems obtained
by taking slip length αε = εδ for different choices of δ > 0 “interpolate"
between our problem and the classical no slip problem (α = 0).
In section 2.2 we return to our main focus, the case where α is a constant

independent of viscosity, and give a rigorous solution of the profile equations
thereby producing the high-order approximate solutions of (1.1) described
in Proposition 2.3. In section 3 we prove the stability of the boundary layer
(Theorem 1.3) and show that the approximate solution is O(ε) close in L∞
to an exact solution of (1.1) on the fixed time interval [0, T0]×{(x, y) : y >
0} for 0 < ε 6 ε0, where ε0 is sufficiently small. The small viscosity limit
can then simply be read off from the expansion that gives the approximate
solution (Corollary 1.4). Section 3.4 shows how a boundary layer can form
as time evolves in an exact solution that does not initially possess a layer.
In section 4.1 of the Appendix we explain how a proof of the short-time

existence of smooth solutions of the compressible Navier-Stokes equations
with Navier boundary conditions and fixed viscosity (ε = 1) can easily be
extracted from the estimates of section 3. Here, as in the proof of Propo-
sition 3.14, we are unable to estimate L2 norms of higher (k > 2) normal
derivatives of the pressure in the iteration scheme. The difficulties arise from
unmanageable boundary terms that appear after integration by parts, and
an associated loss of derivatives in the estimates (see Remark 4.3). Such a
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loss prevents closure of the iteration scheme for higher normal derivatives,
but one can close the scheme to obtain a solution with C0 bounds on p and
C1 bounds on u. Starting with a solution (p, u) having this regularity, one
can use a bootstrapping argument to show that for sufficiently smooth and
corner-compatible initial data, (ρ, u) ∈ Cm−1 × Cm for any given m. This
argument (see (4.29)) uses integration along characteristics of the velocity
field, and takes advantage of the fact that the combination

p′(ρ)∂yρ− (λ+ µ)∂2
yu2(1.28)

is more regular than the individual terms. We note that in several of his
papers (e.g., [8, 9]), David Hoff has used the better regularity of a similar
combination, the “effective viscous flux" p(ρ)− (λ+ µ)divu, to solve other
types of compressible flow problems.
Section 4.2 proves a result on linear, scalar Prandtl-type equations with

Neumann boundary conditions needed for the construction of the fast pro-
files uB,j1 in section 2.2. Finally, in section 4.3 we formulate a few of the
open questions that arise when attempting to solve the profile equations in
the cases αε = ε and αε = ε

1
2 .

Remark 1.5. — The results of section 2.2 on approximate solutions hold
for space dimensions d > 2, while the main stability results, Theorem 1.3
and Corollary 1.4, hold only for d = 2 and d = 3. Throughout the paper we
consider d = 2 for convenience, but identical proofs with only the obvious
notational changes (e.g., replace x by (x1, . . . , xd−1), replace the scalar u1
in (1.1) by (u1j)|j=1,...,d−1, etc.) work in section 2.2 and in Proposition 3.10
for d > 2 and in Proposition 3.14 for d = 2 and d = 3.

2. Approximate boundary layer solutions

The main results of this paper are for the case when the slip length is a
positive constant α > 0. We take that constant to be one, since this choice
has no effect on the analysis. It will be clear from the proofs that with only
minor changes in the analysis, we could just as well take α to be a smooth
function α(t, x) satisfying 0 < m 6 α(t, x) 6M for all (t, x).
First, we shall write down the profile equations that arise in the cases

αε = εδ, where δ = 1, 1
2 , or 0.(2.1)

This requires little extra work and will also help to clarify how the profile
equations are affected by the slip length. A rigorous solution of the profile
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equations in the case δ = 0 is given in section 2.2. Further discussion of the
cases δ = 1, 1

2 appears in section 4.3.

2.1. Profile equations.

We take the following ansatz:

(2.2)
ρε(t, x, y) =

∑
j>0 ε

j
2 (ρI,j(t, x, y) + ρB,j(t, x, y√

ε
))

uε(t, x, y) =
∑
j>0 ε

j
2 (uI,j(t, x, y) + uB,j(t, x, y√

ε
))

for the solutions of (1.1) with αε as in (2.1), where ρB,j(t, x, η) and
uB,j(t, x, η) are assumed to decay rapidly to 0 as η → +∞. Plugging (2.2)
into the equations in (1.1), setting terms of order ε0 equal to zero, and
letting η → +∞, one finds that the leading profiles (ρI,0, uI,0) of outer flow
should satisfy the compressible Euler equations in y > 0

(2.3)
∂tρ

I,0 +∇ · (ρI,0uI,0) = 0

∂t(ρI,0uI,0) +∇ · (ρI,0uI,0 ⊗ uI,0) +∇p(ρI,0) = 0.

Similarly, for j > 1 one obtains that (ρI,j , uI,j) should satisfy the following
linearized Euler equations:
(2.4)
∂tρ

I,j +∇ · (ρI,juI,0 + ρI,0uI,j) = −
∑

16k6j−1
∇ · (ρI,kuI,j−k)

∂tu
I,j+(uI,0 ·∇)uI,j+(uI,j ·∇)uI,0 + 1

ρI,0
∇(p′(ρI,0)ρI,j)− ρI,j

(ρI,0)2∇p(ρI,0)

= −
∑

16k6j−1
(uI,k · ∇)uI,j−k + fj({ρI,k,∇ρI,k,∇2uI,k−2}k6j−1)+

1
ρI,0

(
λ∆uI,j−2 + µdiv(∇uI,j−2)

)
,

where terms with negative superscipts are zero. For the moment we ignore
initial conditions and the issue of corner compatibility. We treat those mat-
ters carefully in section (2.2) where we solve the profile equations in the
case α = 1.
In the discussion below we shall denote by u(t, x) the trace of a function

u(t, x, y) on the boundary {y = 0}. Setting terms of order O(ε− 1
2 ) equal to

zero, we get

(2.5)

 uI,02 + uB,02 ρI,0 + ρB,0

p′(ρI,0+ρB,0)
ρI,0+ρB,0

uI,02 + uB,02

( ∂ηρ
B,0

∂ηu
B,0
2

)
= 0

ANNALES DE L’INSTITUT FOURIER



CHARACTERISTIC BOUNDARY LAYERS 2271

and

(2.6) (uI,02 + uB,02 )∂ηuB,01 = 0.

Assume for now the existence of smooth functions ρI,0, uI,02 , ρB,0, uB,02
satisfying (2.5), (2.6), and

ρI,0 + ρB,0 > 0.(2.7)

The boundary condition given in (1.1) implies

(2.8) uI,02 + uB,02 = 0 on η = 0,

so on {η = 0} the determinant of the coefficient matrix in (2.5) equals
−p′(ρI,0 + ρB,0) 6= 0. By continuity there is an η0 > 0 such that for 0 6
η 6 η0 the coefficient matrix is nonsingular. Thus, from (2.5) we have

∂ηρ
B,0 = 0, ∂ηu

B,0
2 = 0

for 0 6 η 6 η0, which implies

(2.9) (ρB,0, uB,02 )(t, x, η) ≡ (ρB,0, uB,02 )(t, x, 0)

for 0 6 η 6 η0. Thus, the coefficient matrix in (2.5) at η = η0 is the same
as at η = 0. By continuous induction one deduces that the identity (2.9)
holds for all η > 0. Thus, we get

(2.10) (ρB,0, uB,02 )(t, x, η) ≡ 0.

From (2.8) we observe that

uI,02 (t, x, 0) = 0,(2.11)

so the leading slow profiles (ρI,0, uI,0) satisfy the compressible Euler equa-
tions (2.3) with the impermeability boundary condition (2.11) and initial
conditions to be described later. The validity of the identity (2.6) for any
uB,01 follows immediately from (2.10) and (2.11).

Setting equal to zero the terms of order O(ε0) in the equations (1.1), we
find

(2.12) ρI,0∂ηu
B,1
2 + ∂x(ρI,0uB,01 ) = 0

(2.13) ∂tu
B,0
1 + (uI,01 + uB,01 )∂xuB,01

+ (uI,12 + uB,12 + η∂yu
I,0
2 )∂ηuB,01 + ∂xu

I,0
1 uB,01 = λ

ρI,0
∂2
ηu

B,0
1

and

(2.14) uB,01 ∂xu
I,0
2 + uI,02 ∂ηu

B,1
2 + p′(ρI,0)

ρI,0
∂ηρ

B,1 = 0
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From (2.14) and (2.11) we immediately get

(2.15) ρB,1(t, x, η) ≡ 0.

The system (2.12), (2.13) can be viewed as a nonlinear system of Prandtl-
type equations for the unknowns (uB,01 , ũB,12 ), where

ũB,12 (t, x, η) = uI,12 (t, x, 0) + uB,12 (t, x, η).(2.16)

Provided these equations can be solved (after adding appropriate initial
and boundary conditions), one can obtain uI,12 as a limit

uI,12 := lim
η→∞

ũB,12 (t, x, η)(2.17)

and then

uB,12 (t, x, η) = ũB,12 (t, x, η)− uI,12 (t, x).(2.18)

This gives the boundary condition

uI,12 |y=0 = uI,12(2.19)

for the linearized Euler system (2.4) for (ρI,1, uI,1).
Similarly, vanishing of the terms of order O(ε 1

2 ) in the equations (1.1) im-
plies that (uB,11 , ũB,22 )(t, x, η) satisfy the following linearized Prandtl equa-
tions:
(2.20)
∂tu

B,1
1 + [(uI,01 + uB,01 )∂x + (uI,12 + uB,12 + η∂yu

I,0
2 )∂η

+∂xuI,01 ]uB,11 + ũB,22 ∂ηu
B,0
1 − λ

ρI,0
∂2
ηu

B,1
1

= −(η∂yuI,12 + η2

2 ∂
2
yu

I,0
2 )∂ηuB,01 − ∂yuI,01 uB,12 − λρI,1

(ρI,0)2
∂2
ηu

B,0
1

∂x(ρI,0uB,11 ) + ∂η(ρI,0ũB,22 ) = −ρI,1∂ηuB,12 − ∂yρI,0uB,12 − ∂x(ρI,1uB,01 ),

where ũB,22 (t, x, η) = uI,22 (t, x, 0) + uB,22 (t, x, η), and
(2.21)
p′(ρI,0)
ρI,0

∂ηρ
B,2 = −[∂t + (uI,01 + uB,01 )∂x + (uI,12 + uB,12 + η∂yu

I,0
2 )∂η

+∂yuI,02 − λ+µ
ρI,0

∂2
η ]uB,12 − uB,01 ∂xu

I,1
2

Once (uB,01 , uB,12 , uI,12 ) is determined, the equation (2.21) together with the
fast decay condition on ρB,2(t, x, η) determines ρB,2 uniquely.
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This concludes the part of the discussion that is common to the cases
γ = 1, 1

2 , and 0. To a large extent it parallels the description of profile equa-
tions in the incompressible case given in Wang-Wang-Xin [21]. To proceed
further we must look more closely at the boundary conditions that must
be imposed on the systems (2.12)-(2.13) and (2.20). From the boundary
conditions in (1.1) we have

(2.22) uI,j2 + uB,j2 = 0 on {y = η = 0}

for all j > 1, and

(2.23)
∑
j>0

ε
j
2 (uI,j1 + uB,j1 )

= αε{ε− 1
2 ∂ηu

B,0
1 +

∑
j>0

ε
j
2 (∂yuI,j1 + ∂ηu

B,j+1
1 )} on {y = η = 0}.

2.2. Construction of an approximate solution when α = 1.

1. Determination of (ρB,0, uB,02 , uI,02 ). From (2.10) and (2.11)we
have

ρB,0 = 0, ρB,1 = 0, uB,02 = 0, uI,02 = 0.(2.24)

2. Determination of (ρI,0, uI,0). The leading slow profiles ρI,0, uI,0 are
determined by solving the following mixed problem for the Euler equations
(2.3) on [−T0, T0]× {(x, y) : y > 0} for some T0 > 0:

E(ρI,0, uI,0) = 0

uI,02 |y=0 = 0

(ρI,0, uI,0)|t=−T0 = (ρI,00 , uI,00 ),

(2.25)

where E is defined by (2.3) and the initial data (ρI,00 , uI,00 ) are chosen to
satisfy compatibility conditions at the corner {t = −T0, y = 0} of order
s0 + 1 for s0 sufficiently large to be specified later. In addition we require
that there exist positive constants ρ1 6 ρ2 such that

ρI,00 (x, y) > ρ1 on y > 0

(ρI,00 − ρ2, u
I,0
0 ) ∈ Hs0+2(y > 0).

(2.26)

Corner compatibility conditions of order s0 +1 can be simply characterized
by the property that if v = (ρI,0, uI,0) is the solution on some finite time
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interval to the pure initial value problem

E(v) = 0

v|t=−T0 = (ρI,00 , uI,00 )e,
(2.27)

where (ρI,00 , uI,00 )e denotes an Hs0+2 extension of (ρI,00 − ρ2, u
I,0
0 ) to y 6 0,

then the function defined by

g(t, x) =
{
uI,02 |y=0, t > −T0

0, t 6 −T0
(2.28)

belongs to Hs0+1(y = 0).
In order to state an existence result for the system (2.25), we first intro-

duce the following conormal spaces with respect to y = 0:

Notation 2.1. — 1. For T > 0 let OT = {(t, x, y) : −T 6 t 6 T, y > 0}.
2. For m ∈ {0, 1, 2, ...} and multi-indices β = (β0, β1, β2) define H0,m =

{u ∈ L2(OT ) : ∂β0
t ∂β1

x (y∂y)β2u ∈ L2(OT ) for |β| 6 m}.
3. For m∈{2, 3, 4, ...} set Em(OT )={u∈H0,m(OT ) :∂kyu∈H0,m−2k(OT )

for 0 6 2k 6 m}.

Assuming s0 > d
2 + 5, s0 is even, and that the initial data satisfies

compatibility conditions of order s0 + 1, by a result of Guès ([5], Theorem
2) the problem (2.25) has a unique solution

(ρI,0 − ρ2, u
I,0) ∈ Es0(OT0), for some T0 > 0.(2.29)

Here we have used the readily verifiable fact that the initial-boundary value
problem for the Euler system (2.25) satisfies the symmetrizability, constant
multiplicity, maximal dissipativity, and involutivity hypothesesH1, . . . ,H4,
of [5], Theorem 2.
3. Determination of ρB,1. From (2.15) we have ρB,1 = 0.
4. Determination of (uB,01 , uB,12 , uI,12 ). From the boundary condition

(2.23) with αε = 1, we obtain

(2.30)
∂ηu

B,0
1 |η=0 = 0

∂ηu
B,j
1 = (uI,j−1

1 + uB,j−1
1 )− ∂yuI,j−1

1 on η = y = 0, ∀j > 1.

Set ũB,12 (t, x, η) = uI,12 (t, x, 0) + uB,12 (t, x, η). Then from (2.12), (2.13),
(2.22) and (2.30) we know that (uB,01 , ũB,12 ) satisfy the following problem
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on {(t, x, η) : t ∈ [−T0, T0], η > 0}.
(2.31)
∂tu

B,0
1 + (uI,01 + uB,01 )∂xuB,01 + (ũB,12 + η∂yu

I,0
2 )∂ηuB,01

+∂xuI,01 uB,01 = λ

ρI,0
∂2
ηu

B,0
1

∂x(ρI,0uB,01 ) + ∂η(ρI,0ũB,12 ) = 0

∂ηu
B,0
1 = 0, ũB,12 = 0 on η = 0.

Adding the initial condition that

uB,01 = 0 on t = −T0,(2.32)

we obtain a solution by inspection, namely, by taking

uB,01 = 0, uB,12 = 0, and uI,12 = 0.(2.33)

5. Determination of (ρI,1, uI,1). These functions are chosen to satisfy
a forward mixed problem for the linearized Euler equations on OT0 :

EL(ρI,1, uI,1) = χ(t)F

uI,12 |y=0 = 0

(ρI,1, uI,1) = 0 in t 6 −T0

2 ,

(2.34)

where EL is the linearized Euler operator defined by the left sides of (2.4)
when j = 1, F ∈ Es0−2(OT ) is the known forcing term given by the right
side of (2.4) when j = 1, and χ(t) is a smooth cutoff function such that

χ(t) =
{

1, t ∈ [−T0
3 , T0]

0, t 6 −T0
2

.(2.35)

We can now apply another theorem of Guès ([5], Theorem III.2.1) to con-
clude that (2.34) has a unique solution

(ρI,1, uI,1) ∈ Es0−2(OT0).(2.36)

Observe that (ρI,1, uI,1) is an exact solution of

EL(ρI,1, uI,1) = F

uI,12 |y=0 = 0
(2.37)

on [−T0
3 , T0]× {(x, y) : y > 0}.

6. Determination of ρB,2. From (2.33) and (2.21) we deduce

(2.38) ∂ηρ
B,2(t, x, η) = 0,
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so the fast decay requirement implies

(2.39) ρB,2(t, x, η) = 0.

7. Determination of (uB,11 , uB,22 , uI,22 ). From (2.20) we see that
(uB,11 , uB,22 ) satisfy the linearized Prandtl equations:
(2.40)
(a) ∂tuB,11 + uI,01 ∂xu

B,1
1 + (η∂yuI,02 )∂ηuB,11 + ∂xu

I,0
1 uB,11 − λ

ρI,0
∂2
ηu

B,1
1 = 0

(b) ∂x(ρI,0uB,11 ) + ∂η(ρI,0uB,22 ) = 0.

The boundary conditions for (2.40) coming from (2.30) are:

(2.41) ∂ηu
B,1
1 |η=0 = (uI,01 − ∂yuI,01 )(t, x, 0)

Observe that the problem for uB,I1 is, as a consequence of our taking α =
1, decoupled from the problem for uB,22 . Since we seek solutions rapidly
decaying to 0, once uB,I1 is determined we can simply take

(2.42) uB,22 (t, x, η) = 1
ρI,0

∫ +∞

η

∂x(ρI,0uB,11 )(t, x, s)ds

and, as required by (2.22),

uI,22 := −uB,22 (t, x, 0).(2.43)

In the initial boundary value problem for uB,11 we arrange compatibility
conditions by again using the cutoff χ (2.35). Letting PL denote the op-
erator defined by the left side of (2.40)(a), we obtain uB,11 as the solution
of

PL(uB,11 ) = 0

∂ηu
B,1
1 |η=0 = χ(t)(uI,01 − ∂yuI,01 )(t, x, 0)

uB,1 = 0 in t 6 −T0

2

(2.44)

on [−T0, T0]×{(x, η) : η > 0}. For this we employ Proposition 4.7 of section
4.2, which is a slightly modified version of a result of Xin-Yanagisawa [22].
To describe the regularity of solutions we need some notation:

Notation 2.2. — 1. Let OT := {(t, x, η) : t ∈ [−T, T ], η > 0}.
2. For m ∈ {0, 1, 2, . . .} we say that u(t, x, η) ∈ Pm(OT ) provided

〈η〉lu ∈ Ck([−T, T ];Hm−k(R2
+)) for k = 0, . . . ,m and for all l ∈ N,

(2.45)

where 〈η〉 = (1 + η2) 1
2 .
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Since uI,01 ∈ Es0(OT0) we have

χ(t)(uI,01 − ∂yuI,01 )(t, x, 0) ∈ Hs0−4(y = 0).(2.46)

Hence, it follows from Proposition 4.7 that the solution uB,11 of (2.44)
satisfies

uB,11 ∈ P s0−7(OT0),(2.47)

provided s0 is large enough (as specified later). From (2.42) we obtain
uB,22 ∈ P s0−8(OT0). We note finally that (uB,11 , uB,22 ) satisfies the equations
(2.40) and the boundary condition (2.41) exactly on [−T0

3 , T0] × {(x, η) :
η > 0}.
8. Determination of (ρI,2, uI,2). From (2.47), (2.42), and (2.43) we

determine that

uI,22 ∈ Hs0−8(y = 0).(2.48)

The slow profiles (ρI,2, uI,2) are chosen to satisfy a problem like (2.34)
arising from (2.4) with j = 2, but now with boundary data

uI,22 |y=0 = χ(t)uI,22 ∈ Hs0−8(y = 0).(2.49)

Applying Theorem III.2.1 of Guès [5] again, we obtain

(ρI,2, uI,2) ∈ Es0−10(OT0).(2.50)

Here some regularity is lost in reducing to the case of zero boundary data
to which Guès’s theorem applies.
9. Regularity of subsequent profiles. Using (2.21) and the results

of paragraphs 7,8 we find ρB,3 ∈ P s0−9(OT0). Subsequent slow and fast
profiles satisfy linearized Euler and Prandtl systems just like (2.34) and
(2.44) with interior and boundary data depending on previously determined
profiles. Continuing according to the above pattern we obtain successive
profiles whose regularity we now summarize:
(2.51)
(ρI,j , uI,j) ∈ Es0−10( j2 )(OT0), j ∈ {0, 2, . . .}

(ρI,j , uI,j) ∈ Es0−2−10( j−1
2 )(OT0), j ∈ {1, 3, 5, . . .}

uB,j1 ∈ P s0−7−10( j−1
2 )(OT0), j ∈ {1, 3, . . .}; uB,j1 ∈ P s0−9−10( j−2

2 )(OT0), j ∈ {2, 4, . . .}

uB,j2 ∈ P s0−8−10( j−2
2 )(OT0), j ∈ {2, 4, . . .}; uB,j2 ∈ P s0−10−10( j−3

2 )(OT0), j ∈ {3, 5, . . .}

ρB,j ∈ P s0−9−10( j−3
2 )(OT0), j ∈ {3, 5, . . .}; ρB,j ∈ P s0−11−10( j−4

2 )(OT0), j ∈ {4, 6, . . .}.
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10. The approximate solution. For a fixed integer M > 1, let wa =
(ρε,M , uε,M ), where

(2.52)

ρε,M (t, x, y) =
∑M
k=0 ε

k
2 ρI,k(t, x, y) +

∑M
k=3 ε

k
2 ρB,k(t, x, y√

ε
)

uε,M1 (t, x, y) =
∑M
k=0 ε

k
2 uI,k1 (t, x, y) +

∑M
k=1 ε

k
2 uB,k1 (t, x, y√

ε
)

uε,M2 (t, x, y) =
∑M
k=0 ε

k
2 uI,k2 (t, x, y) +

∑M
k=2 ε

k
2 uB,k2 (t, x, y√

ε
).

Then by the above construction (ρε,M , uε,M ) satisfy
(2.53)
∂tρ

ε,M +∇ · (ρε,Muε,M ) = f ε,Mρ

∂tu
ε,M + (uε,M · ∇)uε,M + 1

ρε,M
∇p(ρε,M )
− ε
ρε,M

(
λ∆uε,M + µdiv(∇uε,M )

)
= f ε,Mu

uε,M2 = 0, uε,M1 − ∂uε,M1
∂y = gε,M , on y = 0

on [−T0
3 , T0]× {(x, y) : y > 0} with errors

(f ε,Mρ , f ε,Mu ) = ε
M
2 (RMρ , RMu ) = ε

M
2 RM , gε,M = ε

M
2 hε,M(2.54)

described below. It is convenient to remove the boundary forcing term gε,M

in (2.53). This can be done with minimal effect on the approximate solution
by adding to uε,M1 (t, x, y) a term of the form

uε1,c(t, x, y) := ε
M
2 φ(y)hε,M (t, x),(2.55)

where φ ∈ C∞(y > 0) with compact support, φ(0) = 0, φ′(0) = 1. So
henceforth we take our approximate solution to satisfy the boundary con-
dition

uε,M2 = 0, uε,M1 − ∂uε,M1
∂y

= 0 on y = 0.(2.56)

With this change we relabel wa = (ρa, ua) and summarize the properties
of wa as follows:

Proposition 2.3 (Approximate solutions). — Let d > 2 be the space
dimension. For given integers k > 2, M > 1 let

s0 > k + 4 + 5M + d+ 1
2 ,(2.57)
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where s0, taken even for convenience, determines the regularity of the initial
data at t = −T0 for (ρI,0, uI,0):

(ρI,00 − ρ2, u
I,0
0 ) ∈ Hs0+2 ({(x, y) : y > 0)}) and satisfies compatibility

conditions of order s0 + 1;

ρI,00 (x, y) > ρ1 on y > 0 for some 0 < ρ1 6 ρ2.

(2.58)

Then the approximate solution wa defined by the expansion (2.52) satisfies
(2.53) on [−T0

3 , T0]× {(x, y) : y > 0} with gε,M = 0, where [−T0, T0] is the
interval of existence of (ρI,0, uI,0). The errors εM2 RM (2.54) satisfy

|∂α0
t ∂α1

x (y∂y)α2RM |L2(OT0 ) <∞ for |α| 6 k

|∂α0
t ∂α1

x (y∂y)α2∂yR
M |L2(OT0 ) <∞ for |α| 6 k − 2.

(2.59)

The profiles appearing in the expansion have the regularity summarized in
(2.51). Moreover we have

|∂α0
t ∂α1

x (y∂y)α2wa|L∞(OT0 ) <∞ for |α| 6 k
|∂α0
t ∂α1

x (y∂y)α2∂yw
a|L∞(OT0 ) <∞ for |α| 6 k − 2.

(2.60)

The estimates (2.59), (2.60) are a direct consequence of (2.51) and
Sobolev embedding.

3. Exact boundary layer solutions when the slip length
α = 1

This section is devoted to the proof of the main stability result, Theorem
1.3. Let us denote the left side of equation (1.16) by L(zn)zn+1. For later
use in estimating ∂yzn+1 and its tangential derivatives, we introduce the
modified problem for zn+1,η = (pn+1,η, un+1,η

1 , un+1,η
2 ):

(a) L(zn)zn+1,η −

η∆pn+1,η

0
0

 = −
√
ε
M−L

RM in y > 0, where η ∈ (0, 1],

(b) ∂ypn+1,η = 0, un+1,η
1 − ∂yun+1,η

1 = 0, un+1,η
2 = 0 on y = 0,

(c) zn+1,η = 0 in t 6 −δ2 .

(3.1)

Here the zn appearing in the coefficients satisfies the scheme (1.16) and
Navier boundary conditions (1.17).
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3.1. L2 and tangential derivative estimates.

We begin by proving L2 a priori estimates for smooth solutions z = (p, u)
of

L(zn)z = f

u1 − u1y = g, u2 = 0 on y = 0

z = 0, g = 0, and f = 0 in t 6 −δ2 .
(3.2)

and for smooth solutions zη = (pη, uη) of

L(zn)zη −

η∆pη
0
0

 = f

pηy = 0, uη1 − u
η
1y = g, uη2 = 0 on y = 0

zη = 0, g = 0, and f = 0 in t 6 −δ2 .

(3.3)

The estimates are somewhat unusual in that they do not require bound-
edness of the Lipschitz norm of

√
ε
L
zn, even though the matrix coefficients

in L(zn) are functions of va +
√
ε
L
zn. The estimate makes use of the van-

ishing of ua2 and un2 at y = 0.

Notation 3.1. — 1. For T > 0 let ΩT = {(t, x, y) : y > 0,−∞ < t 6 T}
and set bΩT = ΩT ∩ {y = 0}.

2. Let (f, g) denote the L2 pairing on ΩT and 〈f, g〉 the L2 pairing on
bΩT .

3. Set |f | = |f |L2(ΩT ), 〈g〉 = |g|L2(bΩT ), |f |∗ = |f |L∞(ΩT ).
4. Let ∇f = (∂xf, ∂yf).
5. For γ > 0 let Lγ(zn) = e−γtL(zn)eγt and zγ = e−γtz.

Observe that since

Lγ(zn)zγ = e−γtL(zn)z = L(zn)zγ + γA0(va +
√
ε
L
zn)zγ ,(3.4)

z satisfies (3.2) if and only if zγ satisfies

(a) Lγ(zn)zγ = fγ

(b) uγ1 − u
γ
1y = gγ , uγ2 = 0 on y = 0

(c) zγ = 0, gγ = 0, and fγ = 0 in t 6 −δ2 .

(3.5)
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Proposition 3.2 (L2 estimate). — (a) Suppose there exists ε0 > 0
such that for ε ∈ (0, ε0]:

|zn,
√
ε
L(∂tzn, ∂xzn, y∂ypn, ∂yun)|∗ 6 1.(3.6)

Then there exist positive constants C, γ0 and ε1 such that for γ > γ0 and
ε ∈ (0, ε1] smooth solutions of (3.2) satisfy

(3.7) √
γ|e−γtz|+ |e−γt

√
ε∇u|+

√
ε〈e−γtu1〉+

√
ε〈e−γtu1y〉

6 C|(e−γtf, e−γtz)| 12 + C
√
ε〈e−γtg〉

6 δ
√
γ|e−γtz|+ Cδ

(
|e−γtf |
√
γ

+
√
ε〈e−γtg〉

)
.

(b) Smooth solutions zη of (3.3) satisfy the same estimate with the extra
term |e−γt√η∇pη| on the left.

Proof. — 1. Take the L2 inner product of (3.5) with zγ and integrate
by parts. The first term on the left in (3.7) appears due to (3.4) and the
positive definiteness of A0. The second term arises in an obvious way from
the viscosity terms, while the third and fourth terms (which are equal to
each other mod

√
ε〈e−γtg〉) arise from the boundary terms after integrating

−ε(B22z
γ
yy, z

γ) by parts in y and using the boundary conditions.
2. Since

|∂tva, ∂xva, ∂yva|∗ 6 C,(3.8)

for C independent of ε, the zero order terms in L(zn) contribute errors that
can be absorbed by the first term of (3.7). Using (3.6) and the symmetry
of A0, A1, we similarly absorb the contributions from (A0∂tz

γ , zγ) and
(A1∂xz

γ , zγ).
3. The term (A2z

γ
y , z

γ) requires more care. Since the boundary term
vanishes, we have

(A2z
γ
y , z

γ) = −1
2(zγ , (∂yA2)zγ),(3.9)

where

∂yA2 = (∂pA2)∂y(pa +
√
ε
L
pn) + (∂u2A2)∂y(ua2 +

√
ε
L
un2 ).(3.10)

The second term is bounded uniformly with respect to ε by (3.6). To treat
the first term we note that ∂pA2 is a diagonal matrix with factors of ua2 +
√
ε
L
un2 appearing on the diagonal. The Navier boundary condition implies

ua2 +
√
ε
L
un2 (t, x, y) = y

∫ 1

0
∂y(ua2 +

√
ε
L
un2 )(t, x, sy)ds := ygn(t, x, y).

(3.11)
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Since by (3.6) |
√
ε
L(y∂ypn, ∂yun2 )|∗ 6 1, we see that the first term in (3.10)

is uniformly bounded with respect to ε.
�

Remark 3.3. — We do not know how to show that iterates satisfy the
bound |

√
ε
L
∂yp

n|∗ 6 1 instead of |
√
ε
L
y∂yp

n|∗ 6 1. However, see Remark
4.3 and the proof of Theorem 4.5 for a discussion (in the case ε = 1) of
how one can estimate the C1 and higher Ck norms of the pressure for
sufficiently smooth and corner compatible initial data after one has taken
the limit n → ∞ in the iteration scheme. The latter estimates involve a
loss of derivatives that cannot be tolerated in the iteration scheme.

In the higher derivative estimates we will use weighted norms whose
definition we recall for easy reference.

Notation 3.4. — 1.) Denote the tangential operators ∂t, ∂x, and y∂y by
Mj , j = 0, 1, 2 respectively, and for k ∈ N = {0, 1, 2, . . . , } let Mk denote
the collection of operators Mα0

0 Mα1
1 Mα2

2 such that α0 + α1 + α2 = k.
Sometimes Mk is used to denote a particular member of this collection of
operators.
2.) Let µ = γ

ε , where we always suppose 0 < ε 6 1 6 γ. On ΩT with
z = (p, u) set

|z|k,µ,γ =
k∑
j=0

µk−j |e−γtM jz|L2(ΩT ),

〈z〉k,µ,γ =
k∑
j=0

µk−j |e−γtM jz|L2(bΩT ).

(3.12)

3.) Set ‖z‖′k,µ,γ = |√γz,
√
ε∇u|k,µ,γ + 〈

√
εu1〉k,µ,γ + 〈

√
εu1y〉k,µ,γ .

4.) Set ‖z‖k,µ,γ = ‖z‖′k,µ,γ + |√γ∂yz|k−2,µ,γ + |∂y
√
ε∇u|k−2,µ,γ .

5.) When there are d space dimensions, define ΩT and the norms ‖z‖′k,µ,γ
and ‖z‖k,µ,γ with the obvious changes: let x ∈ Rd−1, α1 ∈ Nd−1, and take
k = α0 + |α1|+ α2.

Remark 3.5. — Observe that

|z|k−1,µ,γ 6
1
µ
|z|k,µ,γ = ε

γ
|z|k,µ,γ ,(3.13)

and a similar estimate holds for boundary norms. This property, which we
use repeatedly in the estimates to follow (e.g., in (3.33)), is one advantage
of defining the weight µ with ε in the denominator. This definition of µ also
introduces an occasionally helpful ε-dependence in the small factor µ−(2− d2 )

(d = 2, 3) appearing in the Sobolev estimates of Corollary 3.8.
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In preparation for the higher derivative estimates we next state weighted
versions of the classical Moser and Sobolev estimates.

Lemma 3.6 (Moser estimate, [5] Lemma 2.1.2).
For k ∈ N = {0, 1, 2, . . .} let α1 + · · ·+ αr 6 j 6 k, αi ∈ N. Then

µk−j |(Mα1w1) . . . (Mαrwr)|0,µ,γ 6 C
r∑
i=1
|wi|k,µ,γ

∏
j 6=i
|wj |∗

 .(3.14)

We will use the following weighted version of the standard Sobolev esti-
mate.

Lemma 3.7 (Sobolev estimate). — Suppose k > d
2 + 1. Then

|w|∗ 6 Cµ−(k− d2−1)eγT (|w|k,µ,γ + |wy|k−2,µ,γ) 6 Cµ−(k− d2−1)eγT ‖w‖k,µ,γ .
(3.15)

Proof. — By using Seeley extensions in the t and y = xd directions and
the observation

1 = eγte−γt 6 eγ(T−t) for T > t,

we reduce to proving the following estimate without exponential weights
on Rd+1

|w|∗ 6 Cµ−(k− d2−1)(|w|k,µ + |wy|k−2,µ),(3.16)

where now we define

|w|k,µ =
k∑
j=0

µk−j |M jz|L2(Rd+1).(3.17)

Letting ξ = (ξ0, ξ1, . . . , ξd−1, ξd) = (ξ′, ξd) ∈ Rd+1 denote the dual variable
to (t, x1, . . . , xd−1, y), we have by taking Fourier transforms and using the
Cauchy-Schwartz inequality:
(3.18)

|w|∗ 6
∫
|ŵ(ξ)|dξ 6 C(|w|k,µ + |wy|k−2,µ) ·

√∫∫
[(µ+ |ξ′|)2k + ξ2

d(µ+ |ξ′|)2(k−2)]−1dξ′dξd

= C
√
π (|w|k,µ + |wy|k−2,µ)

√∫
(µ+ |ξ′|)−2(k−1)dξ′ = C ′(|w|k,µ + |wy|k−2,µ)µ−(k− d2−1).

Here we have done the ξd integral in the first line by setting s = ξd(µ +
|ξ′|)k−2 and the ξ′ integral in the second line using η′ = ξ′/µ.

�

The following corollary is immediate.
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Corollary 3.8. — Suppose d = 2 or d = 3. Then for z = (p, u), µ = γ
ε ,

and k > 3 we have

|z|∗ 6 Cµ−(2− d2 )eγT ‖z‖3,µ,γ

|Mqz|∗ 6 Cµ−(2− d2 )eγT ‖z‖k,µ,γ for 0 6 q 6 k − 3

|Mq(
√
ε∇u)|∗ 6 Cµ−(2− d2 )eγT ‖z‖k,µ,γ for 0 6 q 6 k − 3.

(3.19)

The following lemma on commutators, which is proved by direct compu-
tation, is used in the proof of the next proposition.

Lemma 3.9. — Let M j = Mα0
0 Mα1

1 Mα2
2 , where α0 + α1 + α2 = j and

α2 > 0. Then

[y,M j ]w = Mα0
0 Mα1

1 (b0yw + b1yM2w + · · ·+ bα2−1yM
α2−1
2 w)

[∂y,M j ]w = Mα0
0 Mα1

1 (c0wy + c1M2wy + · · ·+ cα2−1M
α2−1
2 wy)

[∂2
y ,M

j ]w = Mα0
0 Mα1

1 (d0wyy + d1M2wyy + · · ·+ dα2−1M
α2−1
2 wyy)

(3.20)

for some bi ∈ N, ci ∈ N, di ∈ N. If α2 = 0, then [y,M j ] = [∂y,M j ] =
[∂2
y ,M

j ] = 0.

Proposition 3.10 (Tangential higher derivative estimate). — Assume
L > 1, k > 0, M − L− 2k > 0, and suppose that

|zn,Mzn,
√
ε∂yu

n,
√
εM∂yu

n|∗ 6 1.(3.21)

For γ fixed large enough and ε ∈ (0, 1], η ∈ (0, 1], the solution zn+1,η of
(3.1) satisfies

‖zn+1,η‖′k,µ,γ +√η|∇pn+1,η|k,µ,γ 6

C

(
1
√
γ

+ |zn+1,η,Mzn+1,η|∗
)
‖zn‖′k,µ,γ + +C(γ)

√
ε
M−L−2k

.

(3.22)

Proof. —
1. In the proof we will set z = (p, u) = zn+1,η. To estimate ‖z‖′k,µ,γ

we apply the L2 estimate (3.7) to the problem satisfied by µk−jM jz. Note
that for α = (α0, α1, α2), |α| = j, the boundary conditions satisfied by
Mαz are

(3.23)

∂yM
αp = 0, (I − ∂y)Mαu1

=
{
−Mα0

0 Mα1
1 u1, α2 > 0

0, α2 = 0
, Mαu2 = 0 on y = 0.
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Commuting µk−jM jz through (3.1)(a), we obtain forcing that is a sum of
−
√
ε
M−L

µk−jM jRM and commutator terms. Thus, the L2 estimate gives

(3.24) µk−j |√γM jz,
√
ε∇M ju|0,µ,γ

+
√
εµk−j〈M ju1, ∂y(M ju1)〉+√ηµk−j |∇M jp|0,µ,γ

6
C
√
γ

(√
ε
M−L

µk−j |M jRM |0,µ,γ + µk−j |interior commutators|0,µ,γ
)

+
√
ε

k−1∑
l=0

µk−1−l〈M lu1〉0,µ,γ .

where the boundary term on the right is explained by (3.23). We treat
the interior commutators below. The RM term on the right is
6 C(γ)

√
ε
M−L−2k and the boundary term is (by an estimate like (3.13))

6 ε
γ ‖z‖

′
k,µ,γ .

Notation 3.11. — 1. For s ∈ {1, 2, 3, . . .} and a function w with compo-
nents wi, denote by M 〈s〉w any set of products of the form
(Ms1wi1) . . . (Msrwir ), where s1 + · · · + sr = s, si > 1. If s = 0, set
M 〈0〉w = 1.
2. In the estimates below the symbol for a matrix like A2 (or vector like

z) will sometimes represent a single entry (or component) of that matrix
(or vector). The correct interpretation should be clear from the context.

2. Consider the interior commutator µk−j |[A2(va+
√
ε
L
zn)∂y,M j ]z|0,µ,γ .

Observe that

[A2∂y,M
j ]z = A2∂yM

jz −M j(A2∂yz) =

(terms where A2 is differentiated) +A2[∂y,M j ]z.
(3.25)

Each of the terms where A2 is differentiated has components which are
sums of terms of the form

A(va +
√
ε
L
zn) M 〈s〉(va +

√
ε
L
zn) M t∂yz,(3.26)

whereA is (an entry in) some derivative dqvA2, q > 1, and s+t = j, t 6 j−1.
If the factor Ms′(ua2 +

√
ε
L
un2 ) appears in (3.26), we use vanishing of the

factor at y = 0 and (3.11) to place a factor of y on M t∂yz. For gn as in
(3.11) we have in view of (3.20)

Ms′(ygn) = yMs′gn + (sum of terms of the form yMs′′gn),(3.27)

where s′′ 6 s′ − 1.
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We must then estimate terms like

Cµk−j |M 〈s−s
′〉(va +

√
ε
L
zn) (M lM(gn(t, x, y)) (yM t∂yz)|0,µ,γ ,(3.28)

where l 6 s′ − 1. In turn (3.28) is 6 a sum of terms like

Cµk−j |(M 〈α〉va)(M 〈β〉
√
ε
L
zn) (M lM(gn(t, x, y)) (M t′(y∂yz))|0,µ,γ ,

(3.29)

where α + β = s − s′ and t′ 6 t. Since tangential derivatives of (va,∇va)
are bounded, the Moser estimates imply that terms of type (3.29) in which√
ε
L
M lM

∫ 1
0 ∂yu

n
2 (t, x, sy)ds := Gn appears are dominated by

C|
√
ε
L
zn)|r∗ |M(

√
ε
L
∂yu

n
2 ))|∗ |y∂yz|k−1,µ,γ+

C|
√
ε
L
zn)|r∗ |y∂yz|∗ |M(

√
ε
L
∂yu

n
2 ))|k−1,µ,γ+

C|
√
ε
L
zn)|r−1

∗ |y∂yz|∗ |M(
√
ε
L
∂yu

n
2 ))|∗ |

√
ε
L
zn)|k−1,µ,γ ,

(3.30)

where r is the number of factors appearing in M 〈β〉
√
ε
L
zn. From (3.21) it

follows that 1√
γ (3.30) is dominated by the right side of (3.22)+ C√

γ ‖z‖
′
k,µ,γ .

Terms of type (3.29) in which Gn is not present are handled similarly.
If the factor Ms′(ua2 +

√
ε
L
un2 ) does not appear in (3.26), then A = dqvA2

must be dqpA2(va+
√
εzn) (recall A2 is independent of u1). The latter matrix

is a diagonal matrix with factors of ua+
√
ε
L
un2 appearing on the diagonal,

so again we can extract a factor of y to place on M t∂yz and proceed as
above.
3. Consider now µk−jA2[∂y,M j ]z, whereM j = Mα0

0 Mα1
1 Mα2

2 with α2 >

0. Using (3.15)(b) and recalling the form (1.9) of A2, we see that the term
requiring the most care is µk−jMα0

0 Mα1
1 Mα2−1

2 py, which appears in the
third component of µk−jA2[∂y,M j ]z. To handle this term we must use the
stronger form of the L2 estimate (3.7) in which the pairing |(e−γtf, e−γtz)| 12
appears on the right. By (3.20) we have

|
(
e−γtµk−jMα0

0 Mα1
1 Mα2−1

2 py, e
−γtµk−jM ju2

)
| 12(3.31)

is 6 a sum of terms of the form

C|
(
e−γtµk−jMα0

0 Mα1
1 M

α′2−1
2 ypy, e

−γtµk−jM j−1∂yu2

)
| 12 , α′2 6 α2.

(3.32)

ANNALES DE L’INSTITUT FOURIER



CHARACTERISTIC BOUNDARY LAYERS 2287

Here we have extracted a factor of y from one of the M2 derivatives on the
right side of (3.31). Since

|µk−jM j−1∂yu2|0,µ,γ 6
1√
ε
‖z‖′k−1,µ,γ 6

1√
ε

ε

γ
‖z‖′k,µ,γ ,(3.33)

we see that terms like (3.32) are dominated by C 1√
γ ‖z‖

′
k,µ,γ .

4. The interior commutators involving A0∂t and A1∂x are handled simi-
larly but more easily, since there is no need to extract factors of y as above,
and [∂t,M j ] = [∂x,M j ] = 0.
5. The interior commutators involving

∫ 1
0 ∂vAids are still easier to treat,

since the corresponding terms in L(zn) (1.16) are of order zero and
M j(∂t,∇)va is uniformly bounded with respect to ε ∈ (0, 1].
6. Now we examine [η∆,M j ]p, where M j = Mα0

0 Mα1
1 Mα2

2 . This com-
mutator is zero unless α2 > 0, in which case by Lemma 3.9

[η∆,M j ]p = [η∂2
y ,M

j ]p = ηMα0
0 Mα1

1 [∂2
y ,M

α2
2 ]p =

ηMα0
0 Mα1

1 (d0pyy + d1M2pyy + · · ·+ dα2−1M
α2−1
2 pyy),

(3.34)

for some constants di. Next use the equation (3.1)(a) to write

ηpyy = −ηpxx + (L(zn)z +
√
ε
M−L

RM )1,(3.35)

where the subscript 1 denotes the first component, and substitute (3.35)
into (3.34). We have, for example,

1
√
γ
µk−j |Mα0

0 Mα1
1 Mα2−1

2 ηpxx|0,µ,γ 6
1
√
γ

√
ηµk−j |∇M jp|0,µ,γ (η ∈ (0, 1]),

(3.36)

which can be absorbed by the left side of (3.24). The term u2y appears on
the right in (3.35) (recall (1.10)) and

(3.37)

1
√
γ
µk−j |Mα0

0 Mα1
1 Mα2−1

2 u2y|0,µ,γ 6
1√
ε
√
γ
‖u2‖′k−1,µ,γ

6
1√
ε
√
γ

ε

γ
‖u2‖′k,µ,γ .

Corresponding to the term ρ′

ρ (pa +
√
ε
L
pn) (ua2 +

√
ε
L
un2 )py in (3.35) we

must estimate, for example,

1
√
γ
µk−j |Mα0

0 Mα1
1 Mα2−1

2

(
ρ′

ρ
(pa +

√
ε
L
pn)(ua2 +

√
ε
L
un2 )py

)
|0,µ,γ ,

(3.38)
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which is a sum of terms of the form
1
√
γ
µk−j |A (M 〈r〉va) (M 〈s〉(

√
ε
L
zn)) M t∂yp|0,µ,γ ,(3.39)

where A has the same meaning as before and r + s + t = j − 1. These
terms can now be estimated by the same arguments used for (3.26). The
remaining terms on the right in (3.35) are similar, but simpler to handle.
7. Finally we examine the commutator terms involving ε[B12∂xy,M

j ]
and ε[B22∂yy,M

j ]. Consider for example µk−j [ε∂2
y ,M

α0
0 Mα1

1 Mα2
2 ]u2, where

α2 > 0. Rewriting this term using (3.20), and substituting for ε∂2
yu2 its ex-

pression coming from the third component of equation (3.1)(a), we obtain
several terms including, for example, µk−jMα0

0 Mα1
1 Mα2−1

2 py. If we use the
strong form of the L2 estimate in which the pairing |(e−γtf, e−γtz)| 12 ap-
pears on the right, this term is paired with µk−jM ju2, and so we again
obtain the pairing (3.31). The remaining terms are also handled by argu-
ments used above.

�

Remark 3.12. — If we had used the symmetric form (1.7) of the equa-
tions, where w = (ρ, u) is the dependent variable, the argument in step
2 of the above proof involving extraction of the factor y would fail due
to the presence of off-diagonal terms in ∂qρA2 that do not vanish when
y = 0. Instead of assuming |pn,Mpn|∗ 6 1 we would need to assume
|ρn,Mρn, ∂yρ

n|∗ 6 1; yet we are not able to prove a uniform bound for
|∂yρn|∗, or even

√
ε
L|∂yρn|∗.

3.2. Normal derivative estimates.

In the estimates of normal derivatives one of the main challenges is
that we do not have any useful version of the Moser estimates that applies
to products of the form

(Mα1w1) · · · (Mαr−1wr−1)(Mαr∂ywr)(3.40)

rather than (3.14). Such products arise in the estimates of commutators
below. This forces us to control the L∞ norms of all but one of the factors
appearing in products like (3.40) and leads to the restriction to dimensions
d = 2, 3 in the next Proposition.

Notation 3.13. — 1. For z = (p, u) set

‖z‖∗∗ := |z,Mz,M2z,
√
ε∂yu,

√
εM∂yu|∗.

2. Let bij denote the lower right 2× 2 block of the viscosity matrix Bij .
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Proposition 3.14. — Suppose d = 2 or d = 3. Assume L > 2, k > 3,
M − L− 2k > 0, and suppose that

(a) ‖zn‖∗∗ 6 1
(b) ‖zn‖k,µ,γ 6 1.

(3.41)

For γ fixed large enough there exists ε0(γ) such that for 0 < ε 6 ε0(γ) and
η ∈ (0, 1], the solution zn+1,η of (3.1) satisfies

‖zn+1,η‖k,µ,γ +√η|∇pn+1,η|k,µ,γ + η|∇pn+1,η
y |k−2,µ,γ 6

C

(
1
√
γ

+ ‖zn+1,η‖∗∗
)
‖zn‖k,µ,γ + C(γ)

√
ε
M−L−2k

.
(3.42)

The constants on the right depend only on k.

Proof. — 1. As explained in the Introduction, we cannot use the L2

estimate (3.7) now. Instead we study the problem satisfied by

Zj = (P j , U j1 , U
j
2 ) := µk−2−jM j∂yz, j 6 k − 2,(3.43)

where as before z = (p, u) := zn+1,η satisfies (3.1). From (3.1)(a) we obtain

(a) L(zn)Zj −

η∆P j
0
0

 =

− µk−2−jM j∂y(
√
ε
M−L

RM ) + (sum of interior commutators) := F ,

(b) P j = 0 on y = 0.

(3.44)

The estimate will be proved by taking the L2 pairing of (3.44)(a) with
(ηP j , U j1 , U

j
2 ). The reason for the factor η on P j will be seen in steps 4, 5,

and 6 below.
2. Arguing as in the proof of the L2 estimate, Proposition 3.2, we obtain

for γ large

√
γ

∣∣∣∣(√ηP jU j

)∣∣∣∣
0,µ,γ

+
√
ε|∇U j |0,µ,γ + η|∇P j |0,µ,γ 6

C

∣∣∣∣(e−γtF , e−γt(ηP jU j

))∣∣∣∣
1
2

+ C
√
ε|〈e−γtb22∂yU

j , e−γtU j〉| 12 6

Cδ√
γ
|F|0,µ,γ + δ

√
γ

∣∣∣∣(ηP jU j

)∣∣∣∣
0,µ,γ

+ C
√
ε|〈e−γtb22∂yU

j , e−γtU j〉| 12 ,

(3.45)
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where the first pairing in the second line is an interior pairing and the
second is a boundary pairing. Note that the boundary terms arising from
integration by parts in the A2∂y and −η∆ terms both vanish. In deriving
(3.45) we have absorbed terms corresponding to the order zero terms of
L(zn) using the first term on the left. It remains to estimate the interior
commutator terms in F and the boundary terms.
The control on P j in the first term on the left of (3.45) degenerates

as η → 0, and so (3.45) is at first sight too weak to imply (3.42). We
address this problem in step 11 below, where we estimate the appropriate
derivatives of p in terms of u.
3. When M j = Mα0

0 Mα1
1 Mα2

2 with α2 > 0, for the commutator
[A2∂y,M

j∂y] we have

[A2∂y,M
j∂y]z = A2[∂y,M j ]zy + (terms where A2 is differentiated).

(3.46)

By (3.20) the first term on the right is a linear combination of terms of the
form

A2M
α0
0 Mα1

1 M j′

2 zyy, 0 6 j′ 6 α2 − 1.(3.47)

In any term of (3.47) where a diagonal entry of A2 occurs, we can extract
a y from ua2 +

√
ε
L
un2 and estimate

1
√
γ
µk−2−j |Mα0

0 Mα1
1 M j′+1

2 zy|0,µ,γ 6
1
√
γ
‖z‖k,µ,γ .(3.48)

A term of (3.47) in which the 1 from the first row of A2 occurs is readily
estimated using (3.13), since ∂2

yu2 is the component of zyy that appears.
A term in which the 1 from the third row of A2 occurs is easily estimated
using the interior pairing∣∣∣(e−γtµk−2−jMα0

0 Mα1
1 M j′

2 pyy, e
−γtµk−2−jM j∂yu2

)∣∣∣ 1
2(3.49)

by moving a factor of y from one of the M2 derivatives occurring on the
right to the left.
4. The terms of (3.46) in which A2 is differentiated are of two types:

(a) AM 〈s〉(va +
√
ε
L
zn)(M t∂2

yz), where s+ t = j 6 k − 2, t 6 j − 1

(b) AM 〈s−s
′〉(va +

√
ε
L
zn)

(
Ms′∂y(va +

√
ε
L
zn)
)

(M t∂yz),

where s+ t = j, t 6 j,

(3.50)

where as before A represents some derivative of A2.
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In case (a) either the factor Mr(ua2 +
√
ε
L
un2 ) appears or it does not.

In each case by arguing as in step 2 of the proof of Proposition 3.10, we
extract a factor of y to multiply M t∂2

yz. Using (3.20) we have

µk−2−j |yM t∂2
yz|0,µ,γ 6 C‖z‖k,µ,γ .(3.51)

If t > 0 then s 6 k − 3, and the L∞ norms of the factors remaining
in (3.50)(a) (after extraction of y from one of them) are controlled by
Corollary 3.8. So with (3.51) we obtain the estimate

(3.52) µk−2−j |AM 〈s〉(va +
√
ε
L
zn)(M t∂2

yz)|0,µ,γ

6 C
(

1 + µ−(2− d2 )eγT ‖zn‖k,µ,γ
)q
‖z‖k,µ,γ

where q is the number of factors in M 〈s〉(va +
√
ε
L
zn). By assumption

(3.41)(b) for 0 < ε < ε(γ) the right side of (3.52) is 6 C‖z‖k,µ,γ .
If t = 0 and more than one factor appears in M 〈s〉(va +

√
ε
L
zn), we can

apply Corollary 3.8 again to control L∞ norms of individual factors and
obtain the estimate (3.52).
Finally, consider the case when t = 0 and only one factor appears in

M 〈s〉(va +
√
ε
L
zn), say M j(ua2 +

√
ε
L
un2 ). After extraction of y we obtain

for example

µk−2−j |AM j(
√
ε
L
∂yu

n
2 ) (y∂2

yu)|0,µ,γ 6 C
√
ε
L−1‖zn‖k,µ,γ |

√
ε(y∂y)∂yu|∗.

(3.53)

More delicate is the case AM j(
√
ε
L
un2 ) (∂2

yp) (where we have not yet ex-
tracted a y). We use the strong form of (3.45) to estimate∣∣∣(e−γtµk−2−jAM j(

√
ε
L
un2 )∂2

yp, e
−γtηµk−2−jM j∂yp

)∣∣∣ 1
2
.(3.54)

Here we have used the fact that derivatives of A2 are diagonal matrices to
determine the entry on the right in the pairing in (3.54). After moving the
η factor from right to left, we use the first component of equation (3.35)
(where a y can be extracted from the coefficient of py) to find

|ηpyy|∗ 6 C|z,Mz,
√
ε∂yu,M(

√
ε∂yu), pxx|∗ + C

√
ε
M−L

.(3.55)

Thus, (3.54) is 6

C‖z‖∗∗‖zn‖k−2,µ,γ + C
√
γ
‖z‖k,µ,γ ,(3.56)

and this in turn is dominated by the right side of (3.42)+ C√
γ ‖z‖k,µ,γ . Other

subcases when t = 0 and only one factor appears in M 〈s〉(va +
√
ε
L
zn) are

handled similarly or more easily.
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5. Consider case (b) of (3.50) first when Ms′∂y(pa +
√
ε
L
pn) appears:

AM 〈s−s
′〉(va +

√
ε
L
zn)

(
Ms′∂y(pa +

√
ε
L
pn)
)

(M t∂yz),(3.57)

where s+ t = j, t 6 j.
We observe that either a factor Mr(ua2 +

√
ε
L
un2 ) appears in M 〈s−s′〉(va +√

ε
L
zn) or it does not. Thus, we can extract a factor of y (either from

Mr(ua2 +
√
ε
L
un2 ) or from A) to multiply Ms′∂y(pa +

√
ε
L
pn) or M t∂yz.

If t = j (resp. t = j − 1), then s = 0 (resp. s = 1), and we multiply
Ms′∂y(pa +

√
ε
L
pn) by y. We have

µk−2−j |M t∂yz|0,µ,γ 6 ‖z‖k,µ,γ(3.58)

and the L∞ norms of the remaining factors in (3.50)(b) are bounded by
assumption (3.41)(a). If 2 6 t 6 j − 2, (3.58) still holds, we multiply
Ms′∂y(pa +

√
ε
L
pn) by y, and since s − s′ 6 j − 2, s′ 6 j − 2, the L∞

norm of this product and that of the remaining factors are controlled using
Corollary 3.8. We obtain

µk−2−j |AM 〈s−s
′〉(va +

√
ε
L
zn)

(
Ms′∂y(pa +

√
ε
L
pn)
)

(M t∂yz)| 6

C
(

1 + µ−(2− d2 )eγT ‖zn‖k,µ,γ
)q
‖z‖k,µ,γ

(3.59)

for some q, and treat (3.59) as we did (3.52). If t = 1, we have |yMzy|∗ 6 C
by assumption (3.41)(a). Since s− s′ 6 j − 1, s′ 6 j − 1 6 k − 3, we have

µk−2−j |Ms′∂y(
√
ε
L
pn)|0,µ,γ 6 C‖z‖k−1,µ,γ ,(3.60)

and the L∞ norm of the remaining factors is controlled using Corollary 3.8.
Now suppose t = 0 and 1 6 s′ 6 j. We have |yzy|∗ 6 1 by assumption

(3.41)(a), and (3.60) holds with C‖z‖k,µ,γ on the right. Since 0 6 s −
s′ 6 j − 1 the L∞ norm of the remaining factors is again controlled using
Corollary 3.8. Finally, suppose t = 0 and s′ = 0. In this case (3.50) is

AM 〈j〉(va +
√
ε
L
zn) ∂y(pa +

√
ε
L
pn)zy.(3.61)

We put the extracted y on ∂y(pa +
√
ε
L
pn)zy, and use |ypny |∗ 6 1. If uy

appears we borrow
√
ε from

√
ε
L and use |

√
εuy|∗ 6 ‖z‖∗∗. The remaining

factors are estimated using Moser estimates. If py appears we write

py(t, x, y) = y

∫ 1

0
pyy(t, x, sy)ds.(3.62)

As in step 4 (see (3.54)) we use the strong form of (3.45) to borrow a factor
of η from the right member of the L2 pairing. We then control the L∞ norm
of ηpyy using the equation as in (3.55).
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6. To finish case (b) of (3.50) we must consider

AM 〈s−s
′〉(va +

√
ε
L
zn)

(
Ms′∂y(ua2 +

√
ε
L
un2 )
)

(M t∂yz),(3.63)

where s+ t = j, t 6 j.
The cases t = j, t = j−1 and 2 6 t 6 j−2 are treated as in step 5, but note
that, because of the better control on un, it is not necessary (and in fact may
not be possible) to extract a factor of y to multiply Ms′∂y(ua2 +

√
ε
L
un2 ).

When t = 1 we have

µk−2−j |Mzy|0,µ,γ 6 ‖z‖k,µ,γ .(3.64)

Since s′ 6 j − 1 and s− s′ 6 j − 1 6 k− 3, the L∞ norm of the remaining
factors can be controlled using Corollary 3.8.
Finally, suppose t = 0 and that both s′ 6 j−1 and s−s′ 6 j−1 6 k−3.

We have

µk−2−j |zy|0,µ,γ 6 ‖z‖k,µ,γ ,(3.65)

and the L∞ norm of the remaining factors can be controlled using Corollary
3.8. Two cases remain:

(a) AM 〈j〉(va + εLzn) ∂y(ua2 +
√
ε
L
un2 ) zy

(b) A (M j∂y(ua2 +
√
ε
L
un2 )) zy.

(3.66)

In case (a) if uy appears in a product where
√
ε
L is a factor, we use

|
√
εuy|∗ 6 ‖z‖∗∗, |

√
ε∂yu

n
2 |∗ 6 1, and use Moser estimates to handle the

remaining factors. (The case where
√
ε
L does not appear is handled using

(3.65).) If py appears, the only change is to use (3.62) and argue as at the
end of step 5 to control |ηpyy|∗.

In case (b) of (3.66) if uy appears in a product where
√
ε
L is a factor,

we use |
√
εuy|∗ 6 ‖z‖∗∗ and

µk−2−j |M j∂yu
n
2 |0,µ,γ 6 ‖zn‖k,µ,γ .(3.67)

If py appears, the only change is to use (3.62) and argue as at the end of
step 5 to control |ηpyy|∗.

This completes the treatment of commutators involving A2∂y.
7. The commutators involving A0∂t, A1∂x, and the order zero terms

in L(zn) are handled similarly but more easily, since at most one purely
normal derivative ∂y appears in all terms except commutator terms like

AM 〈r〉(va +
√
ε
L
zn)Ms(∂2

yva)M tz, r + s+ t = j 6 k − 2,(3.68)
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which arise from the third line of (1.16). Although |Ms(∂2
yva)|∗ 6 C√

ε
, this

is not a problem since Moser estimates imply

(3.69) µk−2−j |AM 〈r〉(va +
√
ε
L
zn)Ms(∂2

yv
a)M tz|0,µ,γ

6
C√
ε

(|z|∗|zn|k−2,µ,γ + |z|k−2,µ,γ) ,

and |z|k−2,µ,γ 6 ( εγ )2|z|k,µ,γ .
8. Consider the commutators ε[B12∂xy,M

j∂y]z and ε[B22∂yy,M
j∂y]z,

j 6 k− 2, which are nonzero when M j = Mα0
0 Mα1

1 Mα2
2 with α2 > 0. Care

is needed for terms like

ε[∂2
y ,M

j∂y]u2 = ε[∂2
y ,M

j ]∂yu2,(3.70)

which by (3.20) is a linear combination of terms of the form
εMα0

0 Mα1
1 M t

2∂
3
yu2, where t 6 α2 − 1. Rewriting this term by substitut-

ing for ε∂2
yu2 its expression coming from the third component of equation

(3.1)(a), we obtain several terms including, for example, Mα0
0 Mα1

1 M tpyy.
In the strong form of (3.45) this term gives rise to∣∣(µk−2−jMα0

0 Mα1
1 M tpyy, µ

k−2−jM j∂yu2
)∣∣ 1

2 .(3.71)

We extract a factor of y from one of the M2 derivatives on the right side of
the pairing, and move it to the left. Using (3.20) we estimate the left side
of the pairing

|µk−2−jyMα0
0 Mα1

1 M tpyy|0,µ,γ 6 C‖p‖k,µ,γ .(3.72)

On the right for s 6 α2 − 1 we must estimate terms like

|µk−2−jMα0
0 Mα1

1 Ms∂2
yu2|0,µ,γ 6

1√
ε
‖z‖k−1,µ,γ 6

1√
ε

ε

γ
‖z‖k,µ,γ .(3.73)

The other estimates involving B22 and B12 use earlier arguments.
9. Next consider [η∆,M j∂y]p, j 6 k− 2. Parallel to (3.70) [η∂2

y ,M
j∂y]p

is a linear combination of terms of the form ηMα0
0 Mα1

1 M t
2∂

3
yp, where t 6

α2 − 1. Rewriting ηpyy using equation (3.35), we obtain, for example,

µk−2−jη
∣∣(Mα0

0 Mα1
1 M tpxxy

)∣∣
0,µ,γ 6 Cη|py|k−1,µ,γ ,(3.74)

since the total order of tangential derivatives on py is 6 j + 1 6 k − 1 and
k − 2− j = (k − 1)− (j + 1). The right side of (3.74) is dominated by the
left side of the tangential estimate (3.22). The other terms arising from this
commutator are handled by earlier arguments.
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10. Now we estimate the boundary term appearing in the right side of
(3.45):

√
ε|〈e−γtb22∂yU

j , e−γtU j〉| 12 .(3.75)

Writing M j = Mα0
0 Mα1

1 Mα2
2 and using (3.20) and the fact that M2w = 0

on y = 0, we see that it suffices to estimate for j 6 k − 2:
√
ε
∣∣〈e−γtµk−2−jMα0

0 Mα1
1 ∂2

yu, e
−γtµk−2−jM j∂yu

〉∣∣ 1
2 6

√
ε〈e−γtµk−2−jMα0

0 Mα1
1 ∂2

yu〉+
√
ε〈e−γtµk−2−jM j∂yu〉

(3.76)

When u in (3.76) is replaced by u2, we have by a standard trace estimate
√
ε〈e−γtµk−2−jM j∂yu2〉 6

√
|∂yu2|k−2,µ,γ

√
ε|∂2

yu2|k−2,µ,γ 6

Cδ|∂yu2|k−2,µ,γ + δε|∂2
yu2|k−2,µ,γ ,

(3.77)

and each of these terms can be absorbed by the left side of (3.45), after
summing over j.
To estimate the first term on the right in (3.76), we use the third com-

ponent of equation (3.1)(a) and the Navier boundary conditions satisfied
by u to write

ε(λ+ µ)∂2
yu2 = −εµ∂xyu1 + L.O.T. = −εµ∂xu1 + L.O.T. on y = 0,

(3.78)

where L.O.T. represents the contribution from the zero order terms of L(zn)
(recall (1.16)). Thus,

√
ε〈e−γtµk−2−jMα0

0 Mα1
1 ∂2

yu2〉 6
√
ε〈∂2

yu2〉k−2,µ,γ 6

C
√
ε〈∂xu1〉k−2,µ,γ + C√

ε
〈L.O.T.〉k−2,µ,λ.

(3.79)

The first term on the right can be absorbed by the boundary norms in
‖z‖′k,µ,γ . The second term is dominated by a sum of terms of the form

C√
ε
µk−2−j〈M j

(
B(va, ∂tva,∇va,

√
ε
L
zn)z

)
〉0,µ,γ(3.80)

where B is a smooth function of its arguments. By Moser estimates (3.80)
is 6

C√
ε

(
|z|∗〈
√
ε
L
zn〉k−2,µ,γ + 〈z〉k−2,µ,γ

)
.(3.81)

Since

〈z〉k−2,µ,γ 6
√
|z|k−2,µ,γ

√
|∂yz|k−2,µ,γ 6

|z|k−2,µ,γ√
ε

+
√
ε|∂yz|k−2,µ,γ ,

(3.82)
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(3.81) is dominated by the right side of (3.42)+ C√
γ ‖z‖k,µ,γ .

To estimate (3.76) when u is replaced by u1, we use the second component
of equation (3.1)(a) and the Navier boundary conditions satisfied by u to
write

ελ∂2
yu1 = −ε(λ+ µ)∂xxu1 − εµ∂xyu2 + ρ(pa +

√
ε
l
pn)∂tu1 + px+

ρ(pa +
√
ε
l
pn)(ua1 +

√
ε
L
un1 )∂xu1 + L.O.T. .

(3.83)

Using the Navier boundary condition to write the pairing in (3.76) now as∣∣〈e−γtµk−2−jMα0
0 Mα1

1 ε∂2
yu1, e

−γtµk−2−jM ju1
〉∣∣ 1

2 ,(3.84)

and substituting for ε∂2
yu1 using (3.83), we estimate for example

(3.85)
∣∣〈e−γtµk−2−jMα0

0 Mα1
1 px, e

−γtµk−2−jM ju1
〉∣∣ 1

2

=
∣∣〈e−γtµk−2−jMα0

0 Mα1
1 p, e−γtµk−2−jM j∂xu1

〉∣∣ 1
2

6 〈p〉k−2,µ,γ + 〈u1〉k−1,µ,γ

6 |p|k−2,µ,γ + |py|k−2,µ,γ + ε

γ
〈u1〉k,µ,γ .

The u1 term can be absorbed by the boundary norms in ‖z‖′k,µ,γ and the
p term is dominated by the right side of (3.42)+ C√

γ ‖z‖k,µ,γ .
Similarly, the term where ε∂xyu2 appears in place of px in (3.85) is treated

by integrating by parts in x and using (3.77). The term where ρ(pa +√
ε
L
pn)∂tu1 appears in place of px in (3.85) is easily estimated by applying

Moser estimates to the left entry of the pairing. The remaining terms arising
from (3.84) require no new arguments, so this completes the estimates of
boundary terms.
11. Combining the tangential estimate (3.22) with what we have proved

in steps 1-10 above, we conclude

(3.86) ‖z‖′k,µ,γ +√η|∇p|k,µ,γ + η|∇py|k−2,µ,γ

+
k−2∑
j=0

√
γ

∣∣∣∣(√ηP jU j

)∣∣∣∣
0,µ,γ

+ |∂y
√
ε∇u|k−2,µ,γ

6 C

(
1
√
γ

+ ‖z‖∗∗
)
‖zn‖k,µ,γ + C

√
γ
‖z‖k,µ,γ + C(γ)

√
ε
M−L−2k

.

for γ, ε, and η as described in the statement of Proposition 3.14. This does
not immediately imply the desired estimate (3.42) because of the factor√
η appearing in the sum on the left side of (3.86). To finish we show for
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j 6 k − 2 that
√
γµk−2−j |M jpy|0,µ,γ 6 (right side of (3.86)).(3.87)

Rewriting py using the third component of equation (1.16), we must esti-
mate several terms including for example

√
γµk−2−j |M j(ε∂2

yu2)|0,µ,γ 6 |∂y
√
ε∇u|k−2,µ,γ for ε < ε(γ).(3.88)

Another term is

(3.89) √
γµk−2−j

∣∣∣M j
(
ρ(pa +

√
ε
L
pn)(ua2 +

√
ε
L
un2 )∂yu2

)∣∣∣
0,µ,γ

6 C
√
γ
(
|z|k−1,µ,γ + |z|∗‖zn‖′k−1,µ,γ

)
.

Here we have extracted a factor of y from (ua2 +
√
ε
L
un2 ) to multiply ∂yu2

and applied Moser estimates. Now (3.13) yields the required estimate. The
remaining terms require no new arguments. This completes the proof of
Proposition 3.14.

�

3.3. Convergence of the iteration scheme.

The next step is to construct the (n + 1)-st iterate zn+1 solving (1.16)-
(1.17) by taking a suitable limit as η → 0 of the functions zn+1,η estimated
in Proposition 3.14.

Proposition 3.15 (Induction step). — Consider the iteration scheme
(1.16)-(1.17) and suppose d = 2 or d = 3. Assume L > 2, k > 5, and
M − L− 2k > 0. For C(γ) as in (3.42) assume

(a) ‖zn‖∗∗ 6 1

(b) ‖zn‖k,µ,γ 6 2C(γ)
√
ε
M−L−2k

6 1
(3.90)

for γ > γ1 large enough and 0 < ε 6 ε1(γ) sufficiently small. There exists
γ0 and a positive decreasing function ε0(γ) such that for γ > γ0 and 0 <
ε 6 ε0(γ), we have:
(i) zn+1,η as in (3.1) satisfies the estimates (3.90);
(ii) the (n+ 1)-st iterate zn+1 as in (1.16)-(1.17) exists and satisfies the

estimates (3.90). The choices of γ0 and ε0(γ) can be made independently
of η ∈ (0, 1] and n ∈ N.
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Proof. —
1. First we show that (i) holds. Choose ε0(γ) 6 ε1(γ) so that 0 < ε 6

ε0(γ) implies 2C(γ)
√
ε
M−L−2k

6 1. Since k > 5, Corollary 3.8 implies

‖zn+1,η‖∗∗ 6 Cµ−(2− d2 )eγT ‖zn+1,η‖k,µ,γ .(3.91)

The estimate (3.42) implies

‖zn+1,η‖k,µ,γ 6 C1

(
1
√
γ

+ C2µ
−(2− d2 )eγT ‖zn+1,η‖k,µ,γ

)
2C(γ)

√
ε
M−L−2k

(3.92)

+C(γ)
√
ε
M−L−2k

.(3.93)

Choose γ0 > γ1 and decrease ε0(γ) if necessary so that for γ > γ0 and
0 < ε 6 ε0(γ)

2C1√
γ
6

1
3 and 2C1C(γ)

√
ε
M−L−2k

C2µ
−(2− d2 )eγT 6

1
3 (recall µ = γ

ε
).

(3.94)

For such γ and ε (3.92) now implies

‖zn+1,η‖k,µ,γ 6 2C(γ)
√
ε
M−L−2k for η ∈ (0, 1].(3.95)

2. For ε and n fixed we consider a sequence zn+1,ηk , where ηk → 0. The
uniform estimates in (i) imply that a subsequence has a weak limit which
satisfies the same estimates. We will show that there exists Z such that
‖Z‖′0,µ,γ is finite and

lim
ηk→0

‖zn+1,ηk − Z‖′0,µ,γ = 0.(3.96)

Thus, the weak limit must equal Z, it satisfies the linear problem (1.16)-
(1.17), and zn+1 := Z satisfies the estimates (3.90).
3. To prove (3.96) we first need to improve the estimate on |∇pn+1,η

y |0,µ,γ
over what is given by (3.86). We will show

|√η∇pn+1,η
y |0,µ,γ 6 C(3.97)

for C independent of n and of ε, η, and γ as described (after enlarging γ0
and shrinking ε0(γ) if necessary. Setting z = (p, u) = zn+1,η as before and
differentiating (3.1)(a) with respect to y, we obtain

L(zn)zy −

η∆py
0
0

 = −
√
ε
M−L

∂yR
M + (interior commutators) := G

py = 0, u1 − ∂yu1 = 0, u2 = 0 on y = 0.

(3.98)
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Pairing with zy and arguing as in the proof of the L2 estimate, Proposition
3.2, we obtain

(3.99) √
γ|zy|0,µ,γ +√η|∇py|0,µ,γ +

√
ε|∇uy|0,µ,γ

6
C
√
γ
|G|0,µ,γ + C

√
ε|〈e−γtuyy, e−γtuy〉|

1
2 .

Here we have used the fact that the boundary terms associated to A2∂y
and η∆ are both zero. The argument in step 10 of the proof of Proposition
3.14 shows that the boundary term on the right side of (3.99) is bounded.
Consider the interior commutator

|[A2∂y, ∂y]z|0,µ,γ = |(∂yA2)zy|0,µ,γ .(3.100)

After extracting a factor of y from ∂pA2 to multiply ∂y(pa +
√
ε
L
pn) in

the expression for ∂yA2 given by (3.10), we see that |∂yA2|∗ 6 C, so the
contribution from this commutator can be absorbed by the left side of
(3.99). The other interior commutators are treated similarly. This gives
(3.97).
Set ζki,kj = (P,U) := zn+1,ηki − zn+1,ηkj . From (3.1) we find

L(zn)ζki,kj =

ηki∆P0
0

+

(ηki − ηkj )∆p
n+1,ηkj

0
0


Py = 0, U1 − ∂yU1 = 0, U2 = 0 on y = 0

ζki,kj = 0 in t 6 −δ2 .

(3.101)

Applying the L2 estimate of Proposition 3.2(b) to solutions of (3.101) we
have, provided ηki 6 ηkj ,

(3.102)
‖ζki,kj‖′0,µ,γ 6

C
√
γ

∣∣∣(ηki − ηkj )∆pn+1,ηkj
∣∣∣
0,µ,γ

6
C
√
γ

√
ηkj

(√
ηkj |∆p

n+1,ηkj |0,µ,γ
)
.

With (3.97) and (i) this implies that the sequence zn+1,ηk (indexed by ηk)
is Cauchy in the ‖ · ‖′0,µ,γ norm and hence there exists Z as in (3.96). �

End of the proof of Theorem 1.3. It remains to show that the se-
quence of iterates zn just constructed converges to a solution of the non-
linear error problem (1.15).
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Set ζn+1 = (Pn+1, Un+1) := zn+1 − zn. From (1.16)-(1.17) we see that
ζn+1 satisfies

L(zn)ζn+1 = −
(
L(zn)− L(zn−1)

)
zn := Hn

Un+1
1 − ∂yUn+1

1 = 0, Un+1
2 = 0 on y = 0

ζn+1 = 0 in t 6 −δ2 .

(3.103)

Applying the L2 estimate of Proposition 3.2(a) to solutions of (3.103) we
have

‖ζn+1‖′0,µ,γ 6
C
√
γ
|Hn|0,µ,γ 6

C
√
γ

√
ε
L−1‖ζn‖′0,µ,γ .(3.104)

In deriving the second inequality we consider, for example,

|
(
A2(va +

√
ε
L
zn)−A2(va +

√
ε
L
zn−1)

)
∂yz

n|0,µ,γ =

|
√
ε
L
ζn ·

(∫ 1

0
dvA2(va +

√
ε
L
zn−1 + s

√
ε
L(zn − zn−1))ds

)
∂yz

n|0,µ,γ

(3.105)

In the case of the term involving ∂pA2 we extract a factor of y from this
term and use the uniform estimate ‖zn‖∗∗ 6 1, (3.90)(a). In the case of the
term involving ∂u2A2 we extract a factor of y from

√
ε
L(Un2 − Un−1

2 ) and
use (3.90)(a) and

√
ε
L−1|(

√
ε∂y(Un2 − Un−1

2 )|0,µ,γ 6
√
ε
L−1‖ζn‖′0,µ,γ .(3.106)

The terms like (3.105) associated to A0∂t, A1∂x as well as those coming
from the zero order terms of L(zn) are handled similarly but more easily.

Increasing γ0 if necessary, we conclude from (3.104) that for γ > γ0 and
0 < ε 6 ε0(γ) the sequence zn converges in the ‖ · ‖′0 norm to some z.
On the other hand the uniform estimates (3.90)(a) and (b) imply that the
sequence zn has a subsequence converging weakly to some limit z′ that
also satisfies (3.90)(a) and (b). Necessarily, we have z = z′. Moreover, by
interpolating between the low norm ‖ · ‖′0,µ,γ and the high norm ‖ · ‖k,µ,γ
we conclude that the convergence zn → z is strong enough to imply that z
is a solution of the nonlinear error problem (1.15). This finishes the proof
of Theorem 1.3.

3.4. Layer formation as an exact solution evolves.

In Theorem 1.3 we have proved the existence of an exact solution to
(1.1) close to a given approximate solution whose expansion exhibits a
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boundary layer. We can modify this result slightly to rigorously conclude
under certain circumstances that a boundary layer will form as time evolves
in an exact solution that does not initially possess a layer. Consider for
example the problem

∂tρ
ε +∇ · (ρεuε) = 0

∂t(ρεuε) +∇ · (ρεuε ⊗ uε) +∇p(ρε)− ε
(
λ∆uε + µ

(
div∂xuε
div∂yuε

))
= F

uε1 −
∂uε1
∂y

= 0, uε2 = 0 on y = 0

(ρε, uε)|t60 = (ρ, 0),

(3.107)

where the forcing term F (t, x, y) is (say) a C∞ compactly supported func-
tion on {(t, x, y) : y > 0} that is supported in t > 0, and ρ is a positive
constant. Observe that compatibility conditions hold to all orders at the
corner {t = 0, y = 0}, and that (ρ, 0) is an exact solution in t 6 0. An ap-
proximate high-order boundary layer solution wa can be constructed just
as before, except that now the inviscid solution w0 := (ρI,0, uI,0) should be
constructed to satisfy

∂tρ
I,0 +∇ · (ρI,0uI,0) = 0

∂t(ρI,0uI,0) +∇ · (ρI,0uI,0 ⊗ uI,0) +∇p(ρI,0) = F

uI,02 = 0 on y = 0

(ρI,0, uI,0) = (ρ, 0) in t 6 0.

(3.108)

Since uB,11 satisfies (2.40), (2.41) and the boundary data

∂ηu
B,1
1 |η=0 = (uI,01 − ∂yuI,01 )(t, x, 0)(3.109)

in (2.41) is generally nonzero, a boundary layer of amplitude O(
√
ε) and

width
√
ε will form in u1 as before. The proof that the exact solution wε =

(ρε, uε) of (3.107) is close in the sense of Corollary 1.4 to the approximate
solution wa and to the inviscid solution w0 goes through exactly as before.
In fact now we obtain an exact solution on (−∞, T0]× {(x, y) : y > 0} for
a fixed T0 independent of ε small.
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4. Appendix

4.1. Existence of smooth solutions for fixed viscosity

In this section we take ε = 1 and prove the short-time existence of smooth
solutions to (1.1) assuming that initial data is given at t = 0 satisfying
corner compatibility conditions. The first part of the argument parallels
closely, but is simpler than, the arguments given in the proof of Theorem
1.3. This part provides a good estimate of |(∂my ρ, ∂ny u)|L2 for m 6 1, n 6 2,
and similar estimates when ρ and u are replaced by arbitrarily high order
tangential derivatives Mrρ, Mru. By Sobolev this is enough to conclude
that ρ is continuous and u is C1 (see Theorem 4.2).
The second part of the argument takes advantage of the fact that the

combination

p′(ρ)∂yρ− (λ+ µ)∂2
yu2(4.1)

is more regular than the individual terms to show that for sufficiently
smooth (and corner-compatible) initial data, (ρ, u) ∈ Cm−1 × Cm for any
given m. We note that in several of his papers (e.g., [8, 9]), David Hoff has
used the better regularity of a similar combination, the “effective viscous
flux" p(ρ)− (λ+ µ)divu, in other compressible flow problems.

Estimates without loss of derivatives. We work with the symmetric
form of the equations given by (1.8), where v = (p, u):
(4.2)
(a) E(v) := A0(v)vt +A1(v)vx +A2(v)vy − (B11vxx +B12vxy +B22vyy) = 0,
(b) u1 − u1y = 0, u2 = 0 on y = 0,

(c) v|t=0 = (p0, u0),

where (p0, u0) ∈ Hs for s large, satisfies corner compatibility conditions
(defined below) to integral order r 6 s, and p0 > C > 0 on its domain.
We will focus on the changes that are needed in the proof of Theorem 1.3
to obtain estimates like those just described. For the moment we assume s
and r are large; precise restrictions are given later.

The first step is to take an Hs extension of the initial data to y 6 0 and
obtain a smooth solution ṽ (see [14]) to the pure initial value problem on
[0, T0]× R2 for some T0 > 0.

E(ṽ) = 0

ṽ|t=0 = (p0, u0).
(4.3)
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Let us write the boundary conditions in (4.2) as Γv|y=0 = 0. Corner com-
patibility to order r of the initial data in (4.2) is characterized by the
property that g ∈ Hr({y = 0}), where

g = (g1, g2) :=
{

Γṽ|y=0, in t > 0
0 in t < 0

.(4.4)

After taking anHs extension of ṽ into t 6 0 that remains close in L∞(t 6 0)
to ṽ|t=0, we look for a solution to (4.2) of the form

v = ṽ + V(4.5)

where for some T1 > 0 V is a solution of the forward problem on ΩT1 :=
(−∞, T1]× {(x, y) : y > 0},

E(ṽ + V )− E(ṽ) = 0
ΓV = −(g1, g2) on y = 0
V = 0 in t 6 0.

(4.6)

The nonvanishing of g2 would lead to an unmanageable boundary term (as-
sociated to (B22Vyy, V ) in the L2 estimate. So we lift g2(t, x) to a function
G2(t, x, y) ∈ Hr(ΩT0) satisfying

G2|y=0 = g2, G2 = 0 in t 6 0,(4.7)

set G := (0, 0,−G2) and V = G + z, and reduce to solving the following
problem for z = (p′, u′1, u′2):

E(ṽ +G+ z)− E(ṽ) = 0
u′1 − ∂yu′1 = −g1, u′2 = 0 on y = 0
z = 0 in t 6 0.

(4.8)

Since ṽ+G plays a role below similar to that of va in the proof of Theorem
1.3, we set

va := ṽ +G(4.9)

and find after a short computation that (4.8) has the form

(a) A0(va + z)∂tz +A1(va + z)∂xz +A2(va + z)∂yz
+ C1(ṽ, ∂tṽ,∇ṽ, G+ z)z − (B11zxx +B12zxy +B22zyy)

= −C1(ṽ, ∂tṽ,∇ṽ, G+ z)G+ C2(va + z)(∂tG,∇G) + F

(b) u′1 − ∂yu′1 = −g1, u′2 = 0 on y = 0
(c) z = 0 in t 6 0.

(4.10)
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Here the zero-order terms C1, C2 are smooth functions of their arguments
and

F = B11Gxx +B12Gxy +B22Gyy ∈ Hr−2(ΩT0).(4.11)

Henceforth we drop the primes and write z = (p, u).
The problem (4.10) can be solved by an obvious iteration scheme similar

to (1.16), (1.17). Again one considers a modified problem like (3.3) with a
term η∆pη in the mass equation and the extra boundary condition pηy = 0,
and proves L2 estimates like those in Proposition 3.2 for the linearized
problems (3.2) and (3.3). The L2 estimate has the same form as (3.7) with
ε set equal to 1. We are no longer free to take ε small, of course, but we
are free to take T small. Thus, for example, the hypothesis of Proposition
3.2: “Suppose there exists ε0 > 0 such that for ε ∈ (0, ε0]:

|zn,
√
ε
L(∂tzn, ∂xzn, y∂ypn, ∂yun)|∗ 6 1"(4.12)

should now be replaced by: Suppose there exists T > 0 such that

|zn, ∂tzn, ∂xzn, y∂ypn, ∂yun)|L∞(ΩT ) 6 1.(4.13)

The norms ‖z‖′k,µ,λ, ‖z‖k,µ,λ, and ‖z‖∗∗ are defined just as before, but
now with ε = 1 and hence µ = λ. Similarly, the Moser (Lemma 3.6) and
Sobolev (Lemma 3.7 and Corollary 3.8) estimates have the same form as
before, but with µ = λ. The present analogue of (3.1) is

(a) L(zn)zn+1,η −

η∆pn+1,η

0
0

 = F in y > 0, where η ∈ (0, 1],

(b) ∂ypn+1,η = 0, un+1,η
1 − ∂yun+1,η

1 = −g1, u
n+1,η
2 = 0 on y = 0,

(c) zn+1,η = 0 in t 6 0,

(4.14)

where L(zn) is defined in the obvious way using the left side of (4.10)(a).
Setting ‖z‖k,γ,γ := ‖z‖k,γ , |z|k,γ,γ = |z|k,γ , etc., we now have in place of

Proposition 3.14

Proposition 4.1. — Suppose d = 2 or d = 3 and k > 3 and suppose
that for some T1 > 0

(a) ‖zn‖∗∗ 6 1
(b) ‖zn‖k,γ 6 1

(4.15)

on (−∞, T1] × {(x, y) : y > 0}. There exist positive constants γ0 and C0
such that for γ > γ0, η ∈ (0, 1], and T0(γ) := 1

γ , the solution zn+1,η of
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(4.14) satisfies
(4.16)
‖zn+1,η‖k,γ +√η|∇pn+1,η|k,γ + η|∇pn+1,η

y |k−2,γ

6 C

(
1
√
γ

+ ‖zn+1,η‖∗∗
)
‖zn‖k,γ + C0√

γ
(|F|k,γ + |∂yF|k−2,γ) + C0〈g1〉k,γ

on (−∞, T0(γ)]× {(x, y) : y > 0}.

This Proposition is proved by repeating the arguments using in proving
Proposition 3.14 with the small changes already noted. In particular, note
that a factor like

1 + µ−(2− d2 )eγT ‖zn‖k,µ,γ(4.17)

appearing on the right in (3.52) is now 6 2 for µ = γ large and T = 1
γ . In

place of Theorem 1.3 we now obtain

Theorem 4.2. — Suppose d = 2 or d = 3 and that the initial data
(p0, u0) in (4.2) belongs to Hs and satisfies corner compatibility conditions
to integral order r, where

s > r and r − 2 > k > 5.(4.18)

There exists γ0 > 0 and a positive decreasing function T1(γ) 6 1
γ such

that for γ > γ0, the nonlinear forward error problem (4.10) has a unique
solution z = (p, u) satisfying the estimates

(a)‖z‖∗∗ 6 1

(b)‖z‖k,γ 6 2
(
C0√
γ

(|F |k,γ + |∂yF |k−2,γ) + C0〈g1〉k,γ
)
6 1

(4.19)

on (−∞, T1(γ)]× {(x, y) : y > 0}, where F and g1 are as in (4.10) and C0
is as in (4.16).
2. In particular if we take γ = γ0 and v = va + z for va as in (4.9),

then v is an exact solution of the original initial boundary value problem
(4.2) on [0, T1(γ0)] × {(x, y) : y > 0}. The solution v = (p, u) has ‖v‖∗∗ 6
C‖v‖k,γ0 <∞, so p is C0 and u is C1.

The theorem is proved by the arguments of section 3.3 with the changes
indicated above. Observe also that, where before we decreased ε0(γ) if
necessary to arrange (3.94) and (3.95), now we use the fact that F and g1
are 0 in t 6 0 to choose T1(γ) so that

C0√
γ

(|F |k,γ + |∂yF |k−2,γ) + C0〈g1〉k,γ(4.20)
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is as small as necessary on (−∞, T1(γ)]× {(x, y) : y > 0} to carry out the
induction step.

Remark 4.3. — The estimate (4.19) (b) is an estimate without loss of
derivatives for the nonlinear forward error problem (4.10). The norm ‖z‖k,γ
for k = 5 is strong enough when the space dimension d = 2 or 3 to dominate

‖z‖∗∗ = |z,Mz,M2z, ∂yu,M∂yu|L∞(4.21)

and to construct a solution of (4.10) by a simple iteration scheme. This
implies p ∈ C0 and u ∈ C1 along with some higher tangential regularity.
Since k 6 r−2 the estimate (4.19) does involve a loss of derivatives relative
to the second component g2 ∈ Hr(y = 0) of the boundary data (g1, g2) of
the earlier problem (4.6), and thus also with respect to the initial data of
the original problem (4.2). It would be interesting to determine whether
and by how much this loss can be reduced.
We do not know how to prove an estimate without loss of derivatives

analogous to (4.19) with terms |∂kyp|L2 for k > 2 on the left. Unmanageable
boundary terms appear when higher normal derivatives are taken. This
difficulty does not arise, of course, for the pure initial value problem [14].
However, in the next section we show that one can still deduce higher
regularity of the solution constructed above when the initial data in (4.2)
is corner-compatible and regular to high order.

Higher regularity. We introduce the following notation.

Notation 4.4. — Let f be a function defined on [0, T ]× {(x, y) : y > 0}
for some T > 0. We write f ∈ Cj whenever f and its partial derivatives up
to order j are continuous and uniformly bounded on [0, T ]×{(x, y) : y > 0}.

Consider now the solution v = (p, u) = va + z of (4.2) constructed in
Theorem 4.2 for k > 5. The Sobolev estimates (3.19) with ε = 1 imply

Mmv ∈ C0 and Mm∂yu ∈ C0 for m 6 k − 3.(4.22)

The same regularity therefore holds for the solution in the original variables
w = (ρ, u). Using (4.22) and provided k is large enough, we will show
consecutively that ∂yρ ∈ C0, ∂2

yu ∈ C0, ∂2
yρ ∈ C0, ∂3

yu ∈ C0, etc.. With
(4.22) this in turn will imply ρ ∈ C1, u ∈ C2, ρ ∈ C2, u ∈ C3, etc..

Ignoring the boundary conditions, we obtain from (1.3) that on y > 0 w
satisfies

(a) D0(w)wt +D1(w)wx +D2(w)wy − (B11wxx +B12wxy +B22wyy) = 0

(b) w|t=0 = (ρ0, u0).

(4.23)
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The first component of (4.23)(a) in y > 0 has the form

Muρ := (∂t + u · ∇)ρ = −ρdivu,(4.24)

We now solve the pure initial value problem for ρ∗:

Muρ
∗ = −ρdivu

ρ∗|t=0 = ρ0(4.25)

by integrating along characteristics of the tangential vector field Mu. Set
X = (x, y) and X0 = (x0, y0) for y0 > 0. The characteristics are the curves
t→ (t,X(t,X0)) where

Ẋ = u(t,X)
X(0, X0) = X0.

(4.26)

For y0 > 0 these curves remain in y > 0 since Mu is a tangential vector
field. The solution ρ∗ is C1 in t, but even though u is C1, ρ∗ is not obviously
better than C0 in (x, y) since the right side of (4.25) is just continuous in
(x, y). On the other hand ρ = ρ0 at t = 0 so (4.24) implies ρ∗ = ρ.
Next apply ∂y to (4.24) to obtain

Muρy + (divu+ ∂yu2)ρy = −ρ(∂2
xyu1 + ∂2

yyu2)− ρx∂yu1.(4.27)

The term ∂2
yyu2 on the right is not known to be C0, but from the third

component of (4.23)(a) we see that the combination

p′(ρ)
λ+ µ

ρy − ∂2
yyu2(4.28)

is continuous. So we rewrite (4.27) as

(4.29) Muρy +
(

divu+ ∂yu2 + p′(ρ)ρ
λ+ µ

)
ρy

= −ρ∂2
xyu1 − ρx∂yu1 +

(
p′(ρ)ρ
λ+ µ

ρy − ρ∂2
yyu2

)
.

The right side of (4.29) and the coefficient of ρy are C0, and we can again
solve an initial value problem by integrating along characteristics, this time
with initial data ∂y(ρ0, u0), to conclude ρy ∈ C0, and hence ρ ∈ C1. Conti-
nuity of (4.28) then implies ∂2

yu2 ∈ C0, so u ∈ C2. As long as k in Theorem
4.2 is large enough, one can apply ∂y to (4.29) (and to the third component
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of (4.23)(a)) and repeat the argument to deduce ρ ∈ C2, u ∈ C3, etc.. More
precisely, we have shown:

Theorem 4.5. — Let k > 5 be as in Theorem 4.2. The solution v =
(p, u) to the initial boundary value problem (4.2) obtained there satisfies
p ∈ Ck−5, u ∈ Ck−4. The solution (ρ, u) to the problem in the original
variables has the same regularity.

4.2. A linear Prandtl-type equation with Neumann boundary
conditions.

Here we state and prove Proposition 4.7, which was used to solve (2.44)
for uB,11 . We first consider the case of nonzero forcing and zero boundary
data. The next Proposition is a small modification of Theorem 4.1 of [22].
The main difference is that here we have Neumann boundary conditions,
whereas [22] treated Dirichlet boundary conditions.
Consider the problem on OT0 (see Notation (2.2)):

∂tf + b(t, x)∂xf + c(t, x)η∂ηf + d(t, x)f − e(t, x)∂2
ηf = F (t, x, η)

∂ηf |η=0 = 0

f = 0 in t 6 −T0

2 ,

(4.30)

Proposition 4.6. — Suppose that the coefficients b(t, x), . . . , e(t, x) in
(4.30) are continuous and bounded along with their derivatives up to order
m > 1. Suppose also that e(t, x) > Ce > 0 for all (t, x). Then if F ∈
Pm(OT0), there is a unique solution f ∈ Pm−1(OT0) to (4.30).

Proof. — 1. We follow the proof of Theorem 4.1 of [22]. The idea is
to replace the degenerate parabolic problem (4.30) by the fully parabolic
problem on OT0 :

(a) ∂tf+b(t, x)∂xf+c(t, x)η∂ηf+d(t, x)f−e(t, x)∂2
ηf−δ∂2

xf =F (t, x, η)
(b) ∂ηf |η=0 = 0

(c) f = 0 in t 6 −T0

2 ,

(4.31)

and obtain weighted estimates on the solution fδ of (4.31) that are uniform
in δ > 0 small. We now drop the δ on f .
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2. Set Ω := {(x, η) : η > 0}. After multiplying (4.31)(a) by 〈η〉2lf ,
l ∈ {0, 1, 2, ...}, and integrating by parts one finds

(4.32)
1
2
d

dt

∫
Ω
〈η〉2l|f |2dxdη − 1

2

∫
Ω
〈η〉2l∂xb|f |2dxdη −

1
2∂η

(
η〈η〉2l

)
c|f |2dxdη

+
∫

Ω
〈η〉2ld|f |2dxdη +

∫
Ω
e∂η

(
〈η〉2lf

)
∂ηfdxdη + δ

∫
Ω
〈η〉2l|∂xf |2dxdη

=
∫

Ω
〈η〉2lFfdxdη.

Here we have used the fact that the boundary terms in the integrals in-
volving c and e vanish because, respectively, η = 0 and ∂ηf = 0 on the
boundary. From (4.32) we obtain

1
2
d

dt

∫
Ω
〈η〉2l|f |2dxdη + Ce

2

∫
Ω
〈η〉2l|∂ηf |2dxdη + δ

∫
Ω
〈η〉2l|∂xf |2dxdη 6

C0

∫
Ω
〈η〉2l|f |2dxdη +

∫
Ω
〈η〉2l|F |2dxdη,

(4.33)

where C0 depends on l and the sup norms of ∂xb, c, d, and e. Integrating
in t and applying Gronwall we obtain

sup
t∈[−T0,T0]

‖〈η〉2lf(t)‖2 +
∫ T0

−T0

‖〈η〉2l∂ηf(s)‖2ds 6 C1

∫ T0

−T0

‖〈η〉2lF (s)‖2ds,

(4.34)

where ‖ · ‖ has the obvious meaning and C1 depends just on T0 and the
sup norms of ∂xb, c, d, and e.
3. Tangential higher derivatives may now be estimated after differentiat-

ing the equation using the fact that the boundary condition is preserved.
Normal derivative estimates then follow readily by induction since the co-
efficient of ∂2

ηf in (4.31) satisfies e(t, x) > Ce > 0 for all (t, x). For this and
the details on the passage to the limit as δ → 0, we refer to [22], p. 529-537.

�

Proposition 4.7. — Suppose m > 3 and consider the problem (4.31)
on OT0 , but now with the inhomogeneous Neumann condition

∂ηf |η=0 = g(t, x) ∈ Hm(η = 0).(4.35)

Suppose that the coefficients b(t, x), . . . , e(t, x) in (4.30) are continuous and
bounded along with their derivatives up to order m− 2. Suppose also that
e(t, x) > Ce > 0 for all (t, x). Then if F ∈ Pm−2(OT0), there is a unique
solution f ∈ Pm−3(OT0).
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Proof. — Denote the left side of (4.30)(a) by PLf . We reduce to a prob-
lem with zero Neumann data by looking for f of the form

f = f∗ + ηe−η
2
g ∈ Pm(OT0),(4.36)

which yields the following problem for f∗:

(a) PLf∗ = F (t, x, η)− PL(ηe−η
2
g) := g∗ ∈ Pm−2(OT0)

(b) ∂ηf∗|η=0 = 0

(c) f∗ = 0 in t 6 −T0

2 .

(4.37)

Applying Proposition 4.6 we obtain that f∗ ∈ Pm−3(OT0) and hence f ∈
Pm−3(OT0). �

4.3. Profile equations in the cases αε = ε, αε = ε
1
2 , and some open

questions.

Case 1: αε = ε. One can try to solve for profiles following the same
pattern as in the case α = 1. As in that case one obtains

ρB,0 = 0, ρB,1 = 0, uB,02 = 0, and uI,02 = 0,(4.38)

and again one solves the Euler system (2.25) to get (ρI,0, uI,0). A crucial
difference appears as one tries to solve the nonlinear Prandtl system (2.12)-
(2.13) for (uB,01 , ũB,12 ). From (2.22) and the order ε0 terms in (2.23) we
obtain the boundary conditions

uB,01 |η=0 = −uI,01

ũB,12 |η=0 = 0.
(4.39)

This problem is similar to the one that arises in the case of no-slip (α = 0)
boundary conditions studied by Oleinik [17] in the incompressible setting.
When d = 2 and a monotonicity assumption, ∂ηuB,01 |t=0 > 0, is imposed
as in Oleinik’s work, it may be possible to adapt her methods to our case -
in particular to use Crocco’s transformation to change the Prandtl system
into a scalar degenerate parabolic equation in the half-plane to which one
can apply the maximum principle. Her results do not apply directly to our
problem: for example, she works with divergence free solutions and solves
the problem on a spatial domain {0 6 x 6 X, η > 0} instead of the domain
{−∞ 6 x 6∞, η > 0} considered here. If a solution exists, it is clear that
uB,01 6= 0, so a layer should appear now in the leading term of amplitude
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O(1) of the approximate solution. The functions uI,12 and uB,12 could then
be recovered in the usual way from ũB,12 .

Next the profiles (ρI,1, uI,1) would be determined by solving the lin-
earized Euler system (2.4) with j = 1 with boundary data

uI,12 |y=0 = lim
η→∞

ũB,12 .(4.40)

As explained in section 2.1, the profiles (uB,11 , ũB,22 ) should satisfy the
linearized Prandtl equations (2.20). From the O(ε 1

2 ) terms in (2.23) we
find

∂ηu
B,0
1 = uI,11 + uB,11 on η = 0.(4.41)

From this and (2.22) we obtain the boundary conditions for (uB,11 , ũB,22 ):

(a) uB,11 |η=0 = ∂ηu
B,0
1 |η=0 − uI,11

(b) ũB,22 |η=0 = 0.
(4.42)

In the initial boundary value problem for the linearized Prandtl system
(2.20), (4.42) the unknowns are now coupled, unlike the system (2.40) ob-
tained when α = 1, and the solution (uB,01 , ũB,12 ) of the nonlinear Prandtl
system appears in the coefficients. The expected form of the approximate
solution in the case αε = ε is:
(4.43)

ρε(t, x, y) = ρI,0(t, x, y) + ε
1
2 ρI,1(t, x, y) + o(ε 1

2 )

uε1(t, x, y) = uI,01 (t, x, y) + uB,01 (t, x, y√
ε
) + o(1)

uε2(t, x, y) = uI,02 (t, x, y) + ε
1
2 (uI,12 (t, x, y) + uB,12 (t, x, y√

ε
)) + o(ε 1

2 ).

Note that a layer appears in the leading term of the expansion for uε1, just
as in the no-slip case.
Case 2: αε = ε

1
2 . Again one follows the same pattern as in section 2.1. In

particular (4.38) holds and slow profiles are determined as before. The pro-
files (uB,01 , ũB,12 ) should satisfy the nonlinear Prandtl system (2.12)-(2.13).
From (2.22) and the O(ε0) terms in (2.23), we determine the boundary
conditions:

(∂ηuB,01 − uB,01 )|η=0 = uI,01

ũB,12 |η=0 = 0
(4.44)
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Beyond the reasons mentioned above, the Robin boundary condition on
uB,01 is another difference that calls into question the applicability of
Oleinik’s results to this setting.
The profiles (uB,11 , ũB,22 ) should satisfy the linearized Prandtl system

(2.20) with boundary conditions:

(∂ηuB,11 − uB,11 )|η=0 = uI,11 − ∂yuI,01 |y=0.

ũB,22 |η=0 = 0
(4.45)

As with the linearized problem (2.20), (4.42), work remains to be done
to understand the solvability of (2.20), (4.45). The expected form of the
approximate solution is again an expansion like (4.43).

Remark 4.8. — In general when the slip length αε = εδ for a fixed
δ > 1

2 , the boundary layer is expected to appear in the leading term of the
expansion of uε, and the leading profiles are required to satisfy the same
Prandtl boundary problems as in the no-slip case αε = 0. On the other
hand in the case δ = 1

2 one obtains a Robin boundary condition on uB,01 .
Similar observations were made for the incompressible case in Wang-Wang-
Xin [21], which includes a description of the profile equations that arise for
various choices of δ.

We conclude by stating two open problems suggested by the above discus-
sion for compressible Navier-Stokes boundary layers with Navier boundary
conditions. Under an appropriate monotonicity hypothesis similar to the
one made by Oleinik, solve the nonlinear Prandtl system (2.12)-(2.13) with
Dirichlet boundary conditions (4.39) (for the case α = ε) and with Robin-
Dirichlet boundary conditions (4.44) (for the case α = ε1/2), along with the
subsequent linearized Prandtl problems for higher fast profiles. We would
then have approximate solutions valid to all orders, and the remaining dif-
ficult problem would be to rigorously determine whether the approximate
solutions are close (for ε small) to exact Navier-Stokes solutions in suitable
spaces.
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