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EXPONENTIELLES ASSOCIEES A UN ENSEMBLE
TRANSFORMEES DE FOURIER GENERALISEES

par Szolem MANDELBROJT

1. Introduction et notations.

Soit E un ensemble parfait sur la droite réelle, de mesure harmonique
positive, sans points irréguliers. Nous appellerons un tel ensemble « ensem-
ble p.m.h.p. ». Désignons par G le complémentaire de E par rapport au
plan complexe (z = x + iy), si E 3« R, et le demi-plan supérieur (y > 0),

Nous dirons, avec Achieser et Lévin [1, 2], qu’'un domaine dans le
plan § = £ + in est de type A, B, ou C, s’il est respectivement un demi
plan v > 0, un quadrant >0, £ > 0, ou une demi-bande 7 > 0,
a < E < b, chacun de ces domaines muni d’un nombre fini ou infini de
coupures, perpendiculaires a I’axe réel, partant de cet axe et admettant
éventuellement des segments limites seulement sur la frontiere du quadrant
(si le domaine et de type B) ou de la demi-bande (si le domaine est de
type C).

E étant un p.m.h.p., Achieser et Lévin démontrent [2] qu’on peut
toujours représenter conformément le demi-plan supérieur (y > 0) sur un
domaine @ de I'un des types A, B ou C de telle manitre que I'’ensemble
E soit représenté par la base de @, c’est-a-dire par la partie de la fronticre
de M composée des points de I'axe réel.

Soit ¢ = ¢ (z2) = u (2) + iv(z) une fonction qui réalise une telle
représentation. Nous appellerons une telle fonction « fonction A-L atta-
chée a E » (). Désignons par I le complémentaire de E par rapport a R.

(1) Dans [5] nous avons appelé «fonction A-L associée 2 E» la fonction
w (z) = exp (— ip (2)) que nous appelons dans le travail actuel « exponentielle A-L
attachée a E ».
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La fonction ¢ (z) peut étre prolongée analytiquement, par symétrie, a tra-
vers les intervalles composant 1, dans tout le domaine G. ¢ (2) est ainsi une
fonction multiforme, mais v (z) est une fonction uniforme, positive dans
G et égale a zéro sur la frontitre E de G. On peut aussi prolonger ¢ (z)
a travers les intervalles de E par le principe de symétrie de Schwarz.

Si I est composé d’un nombre fini d’intervalles il existe une seule
fonction ¢ (z) dont le développement soit de la forme

az

a
P@=z24+—+—-+.-
Z e

Par contre, lorsque I est composé d’'un nombre infini d’intervalles
contigus 4 E, une simple normalisation ne suffit pas pour pouvoir affirmer
que la fonction ¢ qu’on vient de définir est unique. Ce fait jouera un réle
essentiel dans une des applications que nous avons en vue.

La fonction w (z) = e~*'*) sera appelée « '’exponentielle A-L atta-
chée a E »; son prolongement analytique a travers I n’est donc pas une

fonction uniforme, mais son module l'est. On a lim |w (& +iy) | =1
y=0
pour x € E, quelle que soit la branche de w. Y

Soit f (z) une fonction analytique dans G (le complémentaire de E
par rapport au plan complexe), non nécessairement uniforme, on écrira
f*(z) = sup | f (2) |, le sup. étant pris pour toutes les déterminations de f
au point z € G. Supposons que

. log f* (2)
lim sup

= "z

< 0 ; 1

et, g étant un nombre non négatif, supposons qu’a tout ¢ > 0 correspond
un & > 0 tel que
* @)

im ——— =0 2)
lsl== [e ()] °+¢

pour | arg z = n/2 | < 8. Nous dirons alors que f est de type o par rap-
port 3 E. Achieser et Lévin démontrent le théoréme suivant [2]: Si E
est un p.m.h.p., si f est de type exponentiel ¢ par rapport a E, et si f (2)
tend vers une limite, de module non supérieur a un, lorsque z tend vers
un point de E, on a dans G :

1@< |w@ ] 3)
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Ceci est une généralisation d’un fait classique : si f (z) est de type expo-
nentiel ¢ sur le demi-plan supérieur et si |f(x) [ 1, on a:

| f O+ iy) | S e

Pour o = 0 on désignera par Ko la classe de toutes les fonctions f (z)
analytiques dans G, tendant vers une limite lorsque z tend vers un point
de E (quelle que soit la branche de f), cette limite étant de module non
supérieur & un; ces fonctions possédant, en plus, la propriété suivante :
f est une combinaison linéaire de deux fonctions de type exponentiel o
par rapport a E, chacune de ces fonctions tendant vers une limite réelle
lorsque z tend vers un point de E.

Voici le théoréme essentiel démontré dans [2] :

Si f € Ko avec 0 > 0, si le domaine & (voir page 1) est de type A
ou B, ou de type C, avec o > m/A, A étant la largeur de ce domaine
(voir page 1,A =b—a),on a:

[f@)|So0|w ()| (4)
en tout point de E ou f et w’ existent.

Lorsque E = R on obtient le théoréme de S. Bernstein : Si f (z) est
une fonction entiére de type exponentiel o, et si |f(x) | 1. on a:

[f @ |so

Dans un Mémoire paru récemment [5], nous avons généralisé les
théoremes d’Achieser et Lévin, au cas ol l'on suppose que sur E:
| f | £ €°U9, ]a fonction C (x), supposée paire, non-décroissante (pour
x > 0), ne croissant pas trop rapidement. Nous supposons effectivement

que
» C(x
f ) dx < .
1 x2

Nous en tirons des conclusions sur le comportement de f(z) dans G
(lorsque f € Ko), et une évaluation de | /' (x) | lorsque x € E. Comme nous
n’utilisons pas ce théoréme dans les pages qui suivent nous le mentionrons
seulement.

Le but de ce Mémoire est de faire jouer a la fonction ¢ (z), attachée
a un E, p.m.h.p., et & I’« exponentielle » correspondante  (z) = e~*®,
un rdle qui nous parait important dans d’autres branches d’Analyse.
Ainsi, par exemple, nous allons généraliser le probleme de Watson —



328 SZOLEM MANDELBROJT

probleéme essentiel dans la théorie de la quasi-analyticité, et nous en
fournirons une solution.

D’autre part, le rdle joué par les exponentielles A-L associées aux
ensembles p.m.h.p., suggére une généralisation de la notion méme de la
transformée de Fourier, ainsi d’ailleurs qu’une généralisation de la trans-
formée de Fourier-Carleman d’un couple de fonctions définies dans les
demi-plans opposés — généralisation appropriée a un ensemble p.m.h.p.
donné.

2. Un probléme d’unicité.

Une fonction f(z), non identiquement nulle, holomorphe dans le
demi-plan y > 0, continue et bornée sur le demi-plan y = 0, satisfait a

I'inégalité :
log | f (%)
[l
14 x2
Si donc C (x) est une fonction non négative, vérifiant la condition

C ()
f1+x2dx=oo, %)

la seule fonction f (z), holomorphe dans y > 0, continue et bornée sur
y 2 0, et satisfaisant a I'inégalité

log|f(x) |€£—C) (6)
est la fonction identiquement nulle.

La conclusion reste valable lorsqu’on suppose que la fonction f (2),
holomorphe pour y > 0, continue pour y = 0, est de type exponentiel
dans y > O et satisfait a (6), C satisfaisant a (5).

On est ramené au cas précédent en substituant a f(z) la fonction
f1 (2) = f (2)ei, o o est le type de f.

Par contre, si C (x) est une fonction paire, non décroissante pour

x=0, avec
© C(x)
f dx < 0, @)
1

x2
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on peut construire une fonction entiére, non identiquement nulle de type
exponentiel, telle que (6) ait lieu.

I1 est clair que si f (z) est holomorphe et de type exponentiel pour
y > 0, continue pour y = 0, bornée sur R, et si f (x) satisfait & (6) sur un

ensemble E C R avec
C+ (x
f ) dr = ®
E 1 “+ x2

(C+ (x) désignant C (x) si C(x) = 0, et 0si C (x) < 0),

on a encore f(z)=0.

Ceci n’est qu'un corollaire bien trivial de ce qui précéde. Il est pour-
tant concevable qu’a chaque E « convenablement riche », au point de vue
de la théorie des fonctions, par exemple & chaque p.m.h.p., corresponde
une croissance de la fonction C (x) (avec | x |, x € E) exprimée par un
critére moins trivial que (8) — trivial par rapport aux résultats classiques
— et une limitation de la croissance de f (z) dans le plan (si f (z) est une
fonction entiere), exprimée par une notion généralisée de type, notion
liée a ’ensemble E, pour que, de ces conditions et de (6), satisfait sur E,
résulte que f (z) est identiquement nulle.

Les notions introduites dans les pages précédentes permettent d’éta-
blir des théorémes dans cet ordre d’idées.

Il nous faut toutefois, avant d’énoncer les résultats correspondants,
donner quelques précisions supplémentaires sur les notions mentionnées
dans I'introduction, en les modifiant d’ailleurs quelque peu.

Soit donc E un p.m.h.p., et soit I son complémentaire par rapport
a R. Si I n’est composé que d’'un nombre fini d’intervalles disjoints
I, = (a1, by), ... I = (@n, by), ¢ (z) (la fonction A-L, attachée a E), est
définie par la formule de Cristoffel-Schwarz.

2 g—ca)(—c2)...([E—cw
% () = /' g 1) (§ 2 g
Yo VE—a)—Db)..—Dbw
avec les ¢ (ar < cx < by) vérifiant les équations

b, — ~— Cp,
/‘ e o) dx=0 (k=1,..n)
0w VE—a) (x—D>by)...(x—Db,)

g + v

22
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la constante y étant choisie de sorte que ¢ (z) — z tende vers zéro lorsque
z tend vers linfini.

.Si I comporte une infinité d’intervalles contigus & E, tous compris
dans un intervalle (— R, R) (R > 0), on énumere ces intervalles: I,
Iy, ..., I, ..., on forme, de la manitre qu’on vient d’indiquer, la fonction
¢n (z) attachée 3 E, = R— U I;; on démontre, quen posant

k<n

@n (@) =uUn+ vy (2), ona v,(2)—vn(2) >0

lorsque n > m, dans le complémentaire G,, de E,, ; et, comme

Va () £ | Im\/2Z2—R?|,

on conclut que v, (z) tend vers une fonction harmonique v (z) dans G
lorsque n tend vers l'infini; et, du fait que E est un p.m.h.p., il résulte que
v (2) tend vers zéro lorsque z tend vers un point de E. Il suffit alors de
choisir, en composant ¢, (z), une constante additionnelle convenable pour
que la limite de ¢, (z) fournisse la fonction ¢ (z) qui est la fonction A-L
attachée a E.

Si I n’est pas borné, les intervalles I, étant, chacun, de longueur finie,
on op¢re de la manitre suivante. En posant pour R > 0 assez grand

EB =EU(_ °°9_R]U[R, OC),

et, en désignant par ¢g (z) = ux (z) + ivs (z) la fonction attachée a Eg
(construite avec le procédé qu’on vient d’indiquer), on distingue deux
cas [2] :

1) vg (i) est borné (lorsque R > 0 varie); comme Vg () croit dans G
avec R, tout en étant borné dans chaque compact de G, vg (z) tend vers

une fonction harmonique v (z) qui est la partie imaginaire de la fonction
¢ (z) attachée a E.

2) vy (i) croit vers l'infini avec R.

La famille de fonctions harmoniques

Ve (2)

ve ()
est normale et bornée dans G ; il existe donc une suite {Ryx} (Ryt o)
telle que vg, (z) tende vers une limite harmonique v (z) quon démontre

ne pas étre une constante (v (z) = 1). Cette fonction constitue encore la
partie imaginaire de la fonction A-L, ¢ (z), attachée a E.

vk (2) =
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Mais il est clair que toute fonction limite de la famille v (z) constitue
la partie imaginaire d’une fonction A-L attachée a E.

Un ensemble E, p.m.h.p. dont le complémentaire I ne contient que
des intervalles de longueur finie étant donné, nous fixons, une fois pour
toutes la fonction ¢, (A-L) qui lui est attachée, par le procédé qu’on vient
de préciser. Et, lorsque I n’est pas borné, 2) ayant lieu, nous fixons, en
méme temps que la fonction ¢, la suite { Rk'} qui la fournit.

Soit alors E° C E, E° étant lui-méme un p.m.h.p., chacun des inter-
vales de son complémentaire, par rapport a R étant de longueur finie.
Soit G° le complémentaire de E° par rapport au plan complexe.

Nous allons faire correspondre a E° une fonction v (z; E° E), qui
dépend aussi (comme l'indique sa notation) de E.

Posons Er = E°U (— «,—RJUI[R, «©) (R > 0),

et soit ¢ (z) = u% (z) + ivg (z) la fonction attachée a E% . Si 1) a lieu,
nous définissons v (z; E°, E) comme une des fonctions, limites dans G°
de la famille v§ (z) (qui est normale dans G°). v (z; E°, E) est alors, soit
une fonction harmonique dans G° avec lim v (z; E° E) = O lorsque z
tend vers un point de E, soit identiquement égale & 4 « dans G°. Dans
les deux cas nous posons v (x; E% E) = 0 pour x €E. Si 2) a lieu, et si
{Rx} est la suite qui fournit la fonction ¢ attachée a E, nous posons

v, (@
VR, @

(on remarquera que nous divisons ici par vg, (i), et non pas par v§, (i) ).
Cette famille est encore normale dans G (sans y étre nécessairement bor-
née); v (z; E°, E) est une fonction limite de cette famille — fonction har-
monique dans G°, ou identiquement égale & 4+ o dans G°.

vi (z; E%, E) =

Dans le premier cas lim v (z; E°, E) = 0 lorsque z tend vers un point
de E°. On posera, de toute fagon v (x; E°, E) = 0 pour x € E°.

Nous allons démontrer le lemme suivant :

LEMME 1. — Soit 0 < & < w/2, on a dans le domaine

|argz = n/2 | 9,
linégalité
v(z; E% E) 2 v (2).
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Soit {R,} la suite ayant servi pour la formation de ¢ (z) si 2) a lieu,
ou une suite quelconque tendant vers infini, si 1) a lieu. Soit I, I, ...,I,...,
la suite d’intervalles contigus a Eg, (pour k donné), et soit I, I3, ..., IS, ...,
la suite d’intervalles contigus a E%,. Désignons par Ej,, le complémentaire
de J, = U I, par rapport a R, et par E{ , le complémentaire par rap-

PN
port 2 R de I'’ensemble qui est la réunion de tous les intervalles IJ qui
contiennent un I, avec g n et de J? = U Ij. Soient ¢, (2) et
. . . . RSn .
@i n (z) respectivement les fonctions attachées & E, . et E . ; et soient
Vi,n (2), V. (2) respectivement leurs parties imaginaires. Gy,. étant le

complémentaire de E, , par rapport au plan complexe, on a, dans
Gi,n : Vi,n (2) 2 Vin (2).

Pour le démontrer on emploie le raisonnement utilisé dans [2] pour
démontrer un fait qui n’est autre que laffirmation que dans Gy . on a
pour n > m: vy 4 (2) > Vi,m (2) (voir page 118 dans [2], ol on démontre
Pinégalité : v, (z) > vm (z) pour n > m).

On a, de méme, v, (2) =Vvim (z), pour n > m, dans le complé-
mentaire G%, ,, de E ,, par rapport au plan complexe.

Lorsque n tend vers linfini, les fonctions v . (z), Vi . (z) tendent,
_dans le demi-plan supérieur (o elles sont bornées par | Im \/z> —R?))
respectivement vers vg, (z) et v{, (z). On a donc, dans le domaine angu-
laire |argz = n/2 | < &:

v%k (z) Z ka (2)9
et, en particulier :
Vi, () = ve, ).
Or vg, (z) ou vg, (z)/vg, (9) tend, selon le cas
or, () <M < o0, lim gy, () = o, vers v (2);

la fonction v (z; E°, E) étant une fonction limite soit de la famille v}, (2)
soit de la famille v}, (z)/vr, (i) (selon que 1) ou 2) ait lieu), la conclusion
est évidente.

Faisons encore la convention suivante : si E* C E, E° n’étant pas un
p.m.h.p., ou E° étant borné a gauche ou a droite, on définira v (x; E°, E)
par v (x; E°, E) = + oo, pour tout point x de R.

Soit maintenant C (x) une fonction réelle défine sur E. A tout ¢ > 0
faisons correspondre un sous-ensemble E. de E sur lequel C (x) = c.
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La famille d’ensembles E,., correspondant a toutes les valeurs ¢ > 0
étant fixée, ¢ étant une constante positive, posons

Cx;C,0 =Sup(c—ov(x;E, E)).

c>0

11 est clair qu’a chaque choix particulier de la famille d’ensembles E,,
correspond une fonction € qui dépend de ce choix.

Nous sommes maintenant en mesure d’énoncer le théoréme suivant :

THEOREME 1. — Soit E un ensemble p.m.h.p. sur R dont le complé-
mentaire (par rapport @ R) ne contient que des intervalles de longueur
finie. Soit f (z) une fonction entiére de type exponentiel g > 0 relatif a E.

Supposons que |f(x)| est borné sur R et que pour x EE on ait :

log [f(x)| < —C (®). (10)
Si, pour un choix d’ensembles E. (c > 0), on a
Ct(x;C, 0
————dx = o0, (11)
1 4+ x2

la fonction f (z) est identiquement nulle.

L’énoncé du théoréme se simplifie si 'on suppose, d’une part, que E
est un ensemble symétrique par rapport a Porigine et que, d’autre part,
C (x) étant une fonction non décroissante lorsque x varie sur la partie
positive de E (x €E, x > 0), l'inégalité (10) est remplacée par

log |f ()] € — C(|x).

Ces conditions étant remplies, désignons par v (x, y) la valeur de
v (x; E (), E), E (y) étant le sous-ensemble de E sur lequel |x | > |y |
Désignons aussi par x* le plus petit élément de E non inférieur a |x|.

Le théoréme suivant est un cas particulier du théoréme I.

THEOREME II. — Soit E un ensemble p.m.h.p. sur R, non borné,
symétrique par rapport a Porigine, et soit C (x) une fonction non décrois-
sante sur la partie positive de E (x > 0). Soit f(z) une fonction de type
exponentiel g > 0 relatif a E. Si | f(x) | est borné sur R, si

log |fM)|s—C(x]), *€BE), (12)
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et si

@ C *) *) )+
f C&*)—ov(x,x¥)) = o, 13)
1 22

la fonction f (z) est identiquement nulle.

Remarque 1. — Comme sur E,, v (x; E;, E) = 0, on voit, en posant
¢ = C(x), que
C(xC a=zCH (x€E)

Il en résulte que

erxG o) o) c+ (x) Ct (x;,C, 0)
x = ——dx (14)
1+ x2 1+ x2 1 1 4+ x2
De la méme fagon, C (x) étant une fonction non négative, non dé-

croissante pour x = 0, I* désignant I'ensemble I N (x = 1), on a

e (C(x*)—ov (x, x*))t
‘/ dx

x2

dx. (15)

x2 x2

? C) T CE*)—ov(xxh))t
Z»jEr'](:l;>1) dx +-/p

Les inégalités (14) et (15) montrent 'avantage des théoremes I et II
sur le corollaire trivial du théoréme classique (mentionné au début de ce
chapitre) qui consiste & affirmer qu’une fonction enti¢re de type exponen-
tiel, bornée sur R est satisfaisant & (10) est identiquement nulle, si (8) a
lieu.

En effet, I'intégrale (11) peut diverger pour une certaine valeur de o
sans que l'intégrale (8) diverge.

Remarque 2. — Toutefois, lorsque E = R, C (x) étant une fonction
paire non décroissante pour x = 0, la condition (13) pour une valeur de g,
implique la condition (8).

En effet, supposons que (13) ait lieu ; si I'intégrale dans (8) conver-
geait il existerait, comme nous I’avons vu plus haut (voir [6]), une fonc-
tion entiére de type exponentiel g, bornée sur R, non identiquement nulle
satisfaisant & (12), ce qui serait en coritradiction, d’aprés le théoréme II,
avec la condition (13).

Passons maintenant a la démonstration du théoréme I.
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Soit donc ¢ > 0, E, étant un sous-ensemble p.m.h.p. de E. Désignons
par G, le complémentaire de E. par rapport au plan complexe. ¢ (z) étant
la fonction A-L correspondant & E, a tout ¢ > 0 correspond un & > 0 tel
qu'en posant ¢ (z) = u (z) + iv(z), on a:

lim f(z)e—0+tov@ =0 (16)
|z2|==

dans |argz + nn/2 | £ 8.

On voit maintenant facilement que dans ce méme domaine angulaire
ona:

lim f(2) e=(@tavEELE) — (, 17

|2|=w

11 suffit, en effet, d’appliquer le lemme I. Ainsi f (z) est aussi une
fonction de type exponentiel par rapport & E, (si E, est un p.m.h.p.).

D’apres le théoréme cité d’Achieser et Lévin, on voit, par conséquent
que dans le domaine G,, complémentaire de E,, par rapport au plan, on a

|f(z) | Se e B B,
Il en résulte que sur R
log [f(®)| < —€ (x;C, 0). 19)

Il suffit maintenant d’appliquer le théoreéme cité au début de ce
chapitre, ot I'inégalité (6) est remplacée par I'inégalité (19) pour tirer la
conclusion du théoréme 1.

Pour la démonstration du théoréme II il suffit de remarquer que si
C (x) (x = 0) est une fonction non décroissante, on a
CEH)—oav(xx*) £ Cx Gy, 0),

ot C, désigne la fonction C (| x|), pour voir que ce théoréme est un corol-
laire du théoréme 1.

3. Intégrale de Poisson et transformée de Fourier généralisées.

Les ensembles E dont il sera question dans une grande partie de ce
chapitre sont des ensembles p.m.h.p. possédant en plus la propriété sui-
vante :

p@=u@+iv(
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étant la fonction A-L attachée a E, il existe une constante M < « telle
que :

v(x) SM. x €R). (20)

Le complémentaire I de E, par rapport a R, ne posséde alors aucun
intervalle de longueur infinie, le domaine @ sur lequel ¢ (z) représente
conformément le demi-plan supérieur (y > 0) est de type A et la relation
suivante est vérifiée pour tout y > 0 :

@) = f » @ dt + @n
vV (Z —_— .
(x—0% 4+ »? g

On peut, par conséquent, écrire pour tout y > 0:
0sv@—ysM 22)
Un E, p.m.h.p., sera appelé « ensemble (as) » (asymptotique) si
v(y) ~y (> «). (23)
Un p.m.h.p. possédant la propriété (20) est évidemment un (as).

Des exemples intéressants et importants de p.m.h.p. possédant la
propriété (20) sont fournis par les ensembles que nous appellerons « en-
sembles de Schaeffer », ou « ensembles S ». Ce sont des p.m.h.p. possé-
dant la propriété suivante : Il existe deux constantes positives L et « telles
que l’intersection de E avec tout intervalle de longueur L est de mesure
non inférieure a o [9]. On démontre précisément [9, 2] qu’un ensemble S
possede la propriété (20), avec M = M (L, a).

La fonction ¢ (z), que, jusqu’a maintenant, nous n’avons utilisée que
dans le semi-plan supérieur, peut, comme nous I’avons dit dans I'intro-
duction, étre prolongée a travers les intervalles de I par symétrie ; la
partie imaginaire v (z) de ¢ (z) reste donc positive, si ’on interdit le pro-
longement de ¢ a travers les intervalles que peut contenir E.

Si E admet des points intérieurs, donc des intervalles, nous effec-
tuerons le prolongement analytique de ¢ a travers ces intervalles par le
principe de symétrie de Schwarz (rappelons que v (x) = O pour x € E).
Pour éviter toute confusion, nous interdisons dans tout ce qui suit le
prolongement de la fonction ¢ (définie primitivement pour y > 0) a tra-
vers les intervalles de I.

Nous utilisons donc la lettre ¢ pour la fonction définie dans le demi-
plan supérieur avec Im ¢ (z) = v (z) > 0 (y > 0) et, dans le demi-plan
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inférieur avec Im ¢ (z) = — v (2) (» < 0). w (2) étant I'exponentielle A-L
attachée a E, il est clair que [w(z)| > 1 pour y > 0, et {w(z)} < 1 pour
y < 0. 11y a lieu de distinguer la limite de ¢ (z), ainsi que celle de w(z),
lorsque z tend vers un point de I, selon que y — O par valeurs positives
ou par valeurs négatives. Dans le cas y | 0 on désignera ces limites respec-
tivement par ¢ (x), w(x), et, dans le cas y{0 par §(x) et ©(x)
(= exp (—ig ())).

Posons pour tout x réel et pour §{ = £ + iy:

g(x, Q) = f wx+ 5w (x+ a)da, (24)
L2

h(x,§) = [ w4+ a)o(x + a)da, 25)
[ L2

w étant I’exponentielle A-L attachée a E, L, étant une demi-droite issue
de lorigine, située dans le demi-plan supérieur. L, est une demi-droite
issue de lorigine, située dans le demi-plan inférieur.

LeEMME 2. — Soit E un ensemble (as) (*), g (x,) représente une
fonction holomorphe dans le plan ¢ découpé suivant la demi-droite £ = 0,
et h(x, ) représente une fonction holomorphe dans le plan g découpé
suivant la demi-droite £ < 1.

En écrivant
QMg a)=wkx+ a)w 1 (x + a), (26)
on constate que, pour Im ({a) < 0, on a
loglQx, g |S—vix+fa)—vix + @),
si a €L, ; et

loglQ(r ) S— v +T0)+ v+ ),
si ocGLz.

Il résulte de (23) (voir [2]) que I’ensemble E posséde aussi la pro-
priété suivante : quel que soit &, avec 0 < & < n/2, on a dans 'angle

E<argz<n—¢& (V)]
la relation asymptotique
v (2) ~y (jz| > «).

(1) Dans ce lemme, nous ne supposons donc pas (20) vérifié.
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v 11 suffit alors d’appliquer (27) pour voir que les intégrales (24) et (25)
convergent uniformément par rapport & ¢, { appartenant & un compact
fixe, quelconque, A, du demi-plan Im («¢) < Im «, o variant, selon le cas,
sur L, ou sur L, les fonctions Q (x, ¢, ) étant holomorphes dans A pour
tout o sur L; ou sur L,.

On voit de méme par un raisonnement classique (application de
I'intégrale de Cauchy) que l'intégrale (24) prise suivant deux demi-droites
L, et Lj, toutes deux issues de I'origine et situées dans le demi-plan
supérieur, fournit pour ¢ qui se trouve dans la partie commune des deux
demi-plans correspondants

Im (@) < Ima, a€L;, et Im(xf) <Ima, a €L}

la méme valeur. Un raisonnement semblable s’applique, bien entendu,
pour lintégrale (25). Le lemme en résulte immédiatement, en faisant
pivoter L; et L, autour de I'origine dans leur demi-plan correspondant
(demi-plan supérieur et demi-plan inférieur).

Posons pour y réel :
R (X, Y) =& (X, ZY) + h (X, - IY)’ (28)

et, pour x, y, t réels, avec (x — )2 + y2 > 0

P(x,1y) = — % R (x, (x — 1)/y). 29)

La fonction P (x, ¢, y) sera appelée « noyau de Poisson associé¢ a E ».

Il est essentiel pour les pages qui suivent d’indiquer des conditions
pour que le noyau P, considéré comme fonction de ¢, appartienne, quel
que soity > 0, a L.

On peut indiquer de telles conditions portant sur E, pourvu que x
appartienne lui-méme a E.

Commengons donc par le lemme suivant :

LEMME 2. — Soit E un p.m.h.p. satisfaisant a la condition (20). S’il
existe une constante 3§ < 1 telle que

f &1 (§) dg +/ w @ dE = W) (Ju|> )  (30)

(2) Nous rappelons que, pour & réel: & (§) = e—#(¢) (voir page 337).
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P (x,t,y) €L (en tant que fonction de t), quel que soit y > 0, pour tout
point intérieur x de E.

I1 est évident que, si la fonction ¢ (z) est attachée a un E possédant
la propriété (20), la fonction ¢ (u + z) (quel que soit u réel fixe), consi-
dérée comme fonction de z, est une fonction attachée a

E.=E—u(= {x|x + u€E)}),
Iensemble E, possédant également la propriété (20).

I suffit donc de démontrer que P (0, ¢, 1) €L si le point x = O est
un point intérieur de E. Supposons donc que 0 € E, et posons

P(,12 1) = A Q).
On a, pour t 20

2iA(t):f w(—tie) ™" () do +f o (tia) w™ ! (&) do 31)

7 Ly

oll, en posant 0 < 6 < /2 sit> O,et t/2 <0< msit<O, la droite
L, est définie par o« = re®®, et Lupara = —re® r 2 0) 0 7 < ).

Ecrivons

2iA () = € [f i w (—-ie® tr) w=' (e r) dr —
0
—f ) w(—ie%tr)yw- ! (—er) dr] ,
0

Ot = f ) w (— ie® tr) dr (32)
;

et, en posant

(cette intégrale converge, en vertu de (20) ), on obtient, en intégrant par
parties :

2iIA () = e [— D@0 w0 — ie“’/< O, (er) w-1(e®r)dr
oo

+ D@00 — ie—“’fwd) @ (—e’rw-'(—e’r) dr]
' 33)
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On apourrz0:

» 0 eM—|cosb.t|§
0GB |ger [ etemardr = — (34)
Je ‘ |tcos |
I (!)_1 (reie) I § eM—rsino (35)
l w1 (— re') I K eM+rsing, (36)

M étant la constante intervenant dans (20).

Et, du fait que O €E, on a aussi I'égalité essentielle :
w1 (0) = o (0). 37

On peut affirmer que les fonctions (de r) | ¢’ (e 1) |, | ¢" (— € r) |
(les dérivées étant prises par rapport a e?r et — e®r, respectivement)
sont bornées pour r = 0. En effet, la famille de fonctions

(V. @}={¢"(r+5)}@rz=0),

¢ variant dans un disque de rayon g, assez petit, autour de l'origine, est
bornée, la famille de fonctions { @, (§) } = {p (e®r + ) — e (er) }
holomorphes dans | § | < & (du fait que O est un point intérieur de E) étant
normale (| v (e + §) —v(e®r) | £2M + ¢) et bornée (0, (0) = 0).
Soit [ ¢’ (e®r) | N, | ¢’ (—e®r) | SN

On peut donc écrire, d’aprés (33), en tenant compte de (34), (35),
(36), (37) et de la borne pour | ¢ | sur L, et L, pour ¢ assez grand :
Ne2M ©

l A (Z) l < e—ticosdIr (erslno + e—rﬂina) dr
= |tcos® |
0

Ne™¥ ( 1 1 )
= - +
|[tcos6 | \|tcos® | + sin@ | tcos® | —sin®

1
-0 (?> (] . (38)

Donc, quel que soit ¢ > 0, on voit, d’aprés (38) (en choisissant 0 suffi-
samment voisin de 0 ou de «), que | A () | €L sur [c, ).

Nous avons pris pour former A(¥):0 <0< /2, si t>0, et:
n/2 <8< 7, sit<0. Or, dans (31), la fonction qu'on intégre sur L,
est continue (pour ¢ > 0, fixe) par rapport & o« sur tout angle
0 arga <8 < n/2; on peut donc poser, d’aprés (38) (en utilisant
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convenablement le théoréme de Cauchy), arg & = 0. On peut de méme
poser dans L,, arga = =.

On obtient ainsi, pour z > 0 (on fera un raisonnement semblable
pour ¢t < 0):

*

2iIA(® _—:f i w(—ir)w @) dr— / w(—itr)w= ! (—r)dr,
0

“ 0

et, en posant
cr r
¥ () =j wl@du, ¥.() = [ 0~ (—u) du,
0 Jo
on obtient, en intégrant par parties :

2iA () = t[f i ¢ (—itr) w (—itr) ¥, (r) dr

0
___j cp’ ~itr) w (—itr) ¥y (— 1) dr] .

On constate encore que |<p (—itr) | < N < =; la condition (30)
permet alors d’écrire :

|AO|SK]t] [ e W@+ V=D dr
0
K f ey, (39)
—— e_
s 1717/ P ae _
ou K et K; sont des constantes.

Ainsi A () €L, aussi dans le voisinage de l’origine. Par conséquent
A (t) €L sur R.

LEMME 3. — Soit E un p.m.h.p. satisfaisant a la condition (20).
Désignons, pour tout r > 0, par m (r) la mesure de 1N (—r,r) (I est le
complémentaire de E par rapport @ R), et, pour 0 < a < r, par n,(r)
le nombre d’intervalles de 1 contigus a E, situés dans (— r, — a) U (a, 1).

S’il existe una > 0 et un § < 1 tels que
m() 4+ n, () = QO (%) (40)

la condition (30) est satisfaite.
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¢ (2) = u(2) + iv (z) étant la fonction A-L attachée a E, on a,
en vertu de (21), pour tout point intérieur x de E (v (x 4 iy) étant, sur E,
une fonction paire de y, avec v (x) = 0) :

, 99 (2) ou (2) v (2)
L T —o
On a donc:
1 v
¢ (x) = ;j: (x_-———t)—“_dt + 1. 41

I en résulte que dans E: ¢’ (x) = 1.

Soit alors (c, d) un intervalle appartenant 2 E. En écrivant

*d ~»d ~»d 1
/ w ') du = j e dy —= /
Joe o A ()]

ou, encore, en posant ¢ (¥) = w, (42) devient

et do (u), (42)

]
f Pw)edw (y=¢(@©), &=2¢(@)

avec 0 < P (w) < 1. En appliquant le théoréme de la moyenne, on obtient

d
f w™! (u) du

La méme inégalité est valable lorsqu'on remplace w="' (¥) par ®—! (u).

<4

D’autre part la relation (20) donne immédiatement

‘f w0~ (u) du
In

pour tout I, CI = CE (par rapport a2 R); une inégalit¢ semblable a lieu
pour ®—! (4). La conclusion du lemme 3 est alors immédiate.

£ e - longueur de I,

11 est évident que P (x, 7, 1) €L entraine pour tout ¢ > 0

lim |P @1, |dt=0 43)
V0 J —ai>e

li{% P(x,t,y)dt = f P (x,¢ 1)dt. 44)
v

It—zi<e
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On peut donc tirer des lemmes 2 et 3 le lemme évident que voici :

LEMME 4. — Si la condition (30) est satisfaite pour un E, p.m.h.p.
satisfaisant a (20), alors (43) et (44) ont lieu pour tout point intérieur x
de E.

Si la condition (40) est satisfaite pour un E, p.m.h.p., satisfaisant a
(20), alors (43) et (44) ont lieu pour tout point intérieur x de E.

On a, en définitive, les théorémes généraux suivants :

THEOREME 3. — Soit E un p.m.h.p. satisfaisant a la condition (20),
et soit f (x) € L, sur R.

Si la condition (30) est satisfaite, on a

f(x)fP (x,1,1) 1t = }/if% ff O P (x,t,y)dt (45)

en tout point intérieur x de E ou f (x) est continue.

THEOREME 4. — E étant un p.m.h.p. satisfaisant a la condition (20),
f(x) €L, si la condition (40) est satisfaite, (45) a lieu en tout point
intérieur x de E, ou f (x) est continue.

A partir des lemmes démontrés, la démonstration du théoréme est
immeédiate. On conclut, en effet, & partir des lemmes 3 et 4 que, les condi-
tions correspondantes du théoréme étant satisfaites, les intégrales interve-
nant dans (45) ont un sens.

Si maintenant, ¢ > 0 étant donné, on choisit ¢ > 0 tel que pour
|x—xo| <c:|f@)—Ff(xo) ]| <e, il suffit d’utiliser le lemme 4 et
un raisonnement bien élémentaire pour voir que

<o [ 1PGnr |4

(s

L—‘:ln—% ‘ff (t) P (X(), t }’) dt_f(xo) P (x(u Z, 1) dt
ce qui permet d’achever la démonstration.

Remarques. — Lorsque E = R, les fonctions g, A, P se réduisent aux
fonctions élémentaires bien familicres, les deux premieres indépendantes
de x; ce sont les noyaux de Cauchy et de Poisson :
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g(x,§)=h(x,c)=—l—
1 —g

Yy
(x— 02 452
Le facteur de f (xo) dans le théoréme 4 devient la constante .

P, t,y) =

Mais, ’hypothese essentielle dans I'énoncé du théoréme 4 — le fait
que x, est supposé étre un point de E (point intérieur de E) — fait
penser que la « formule de Poisson » généralisée ainsi définie (formule
(43)) est bien adaptée a ’ensemble E donné. Nous allons montrer que
si x, n’appartient pas & E les formules qui figurent dans (45) peuvent
étre dépourvues de sens, les intégrales qui y sont décrites n’étant pas
convergentes. 11 suffit pour cela de construire un exemple avec E satis-
faisant a toutes les conditions du théoréme 4, P (x,, 7, 1) n’appartenant
pas a L pour un point x, n’appartenant pas a E.

Soit E = (— o, —1]UI[l, ).
On a alors
@ =VZ—1.

La fonction @ (1, £), définie par (32), peut aussi €tre écrite sous
la forme (en prenant § = O pour ¢ > 0 et 6 = « pour ¢ < 0, ce qui est
légitime, comme on le voit facilement) :

(N3] =f e~ Vol gy
ce qui donne : ‘

1

Etant donné que OE, on a:
®=1(0) —w=1(0) 0,

ce qui donne, d’apres (33) et le raisonnement ayant servi pour (38),

1
|PO,8,1)]| ~—— (]| ),

|

et P(0,1,1)¢L.

Les démonstrations qui précédent, surtout I'introduction des fonctions
g et h et les opérations que nous effectuons sur ces fonctions, font penser
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au « théoreme de Fourier » — théoréme qui affirme que, dans des condi-
tions appropriées, la transformée de Fourier (inverse) de la transformée
de Fourier d’'une fonction rétablit la fonction elle-méme; ces considérations
font surtout penser au théoréme de Carleman affirmant que la trans-
formée (inverse) de Fourier-Carleman du couple (F, ®) (de fonctions
définies dans les deux demi-plans, y > 0, y < 0) qui est la transformée
de Fourier-Carleman d’un couple (f, ¢) rétablit ce couple (f, ¢). Ces théo-
rémes de Fourier et Carleman se rapportant, bien entendu, au cas ou
E = R, cas qui correspond a ¢ (z) = z.

Il semble naturel d’introduire une transformation fonctionnelle liée
4 un ensemble donné E, pourvu que celui-ci soit assez riche au point de
vue fonctionnel, par exemple, lorsqu’il est p.m.h.p.; cette transformation
se réduisant a la transformée de Fourier lorsque E = R.

Notre transformation, que nous désignons par &, semble bien
adaptée a I'ensemble E auquel elle se rattache. Elle fait correspondre a
une fonction f la fonction (pour £ réel)

\ 1 1
fu ® = —\/—_2___;‘/‘1‘ (x) ® (xB) dx = Vor ff(x) e— (=6 gy, -
ou la fonction

, 1 1
fe@® = _\/——7—?/} ) 0wt (xB) dx = —'\/_2:7:—ff (x) e*=® dx (3),

. (CY))
ol ¢ (z) est la fonction attachée a E.

Nous préférons les transformées définies par (46) et (47), plutot que
celle définie par

s 1 1
fe@® = —\/?'__n—ff (x) w (xf) dx = TT;ff (x) e—iotxd) dx, .

car les expressions (46) et (47) ont un sens quel que soit le p.m.h.p.
envisagé pourvu que f € L; en effet

[ (B | =|w@D| ="Kl (v(2)=Im(p@).

(3) Dans la Note [8] (ol nous avons désigné w—1(xE) par ® (x€)) c’est la for-
me (47) qui a été adoptée.

23
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Et, bien que pour E = R les expressions (46) et (48) fournissent
la méme transformée

1
1® = Vox f f (x) e—o¢ dx,

I'intégrale (48) peut, a priori, ne pas converger dans le cas d'un E
général, méme si fE€L, car | w (xE) | > 1 sur L.

La transformée (47) correspond a la transformée de Fourier inver-
sée : elle se réduit, en effet, pour E =R, a

\ 1
1@ = / f (x) e* dx.
V2w

Notre but est, en réalité, de généraliser un opérateur plus étendu que la
transformée de Fourier d’une fonction. Nous désirons étendre la notion de
la transformée de Fourier-Caleman portant sur un couple de fonctions.
Et, c’est dans ce domaine que nous fournirons le théoréme qui, exprimé
rapidement, s’énonce : « la transformée de Fourier de la transformée de
Fourier d’une fonction est la fonction elle-méme ».

Jusqu’a la fin de cet article nous supposons que E est un p.m.h.p.,
vérifiant la condition (20), ¢ (z) = u (z) + iv (z) étant la fonction A-L
qui lui est attachée.

Soient f; (2) et f2 (z) deux fonctions respectivement holomorphes dans
les demi-plans y > 0, y < 0, continues et bornées sur les demi-plans
y=20, ysO.

La lettre L, munie d’un indice ou non, désignera une demi-droite
issue de l’origine.

Posons
1 1 ‘
G® = _ﬁﬁfl (@) w (zg) dz = TR /; f1 (2) e—#@0 dz
(49)
HE® = ——l——ffz () v (zg) dz = —l——f fa (2) e—*G0 dz,
V2nJy V2r Jy 0

avec L dans y > 0 et L’ dans y < 0.

On voit facilement que G () est une fonction holomorphe dans le
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plan §{ = £ + in, découpé suivant la demi-droite £ > 0, et H ({) est
holomorphe dans le plan découpé suivant la demi-droite £ < O.

En rabattant L sur la demi-droite réelle positive et sur la demi-droite
réelle négative, ce qui est, comme on le voit facilement, permis, on obtient
I'inégalité

c
G |s— (51)
7|
ol ¢ est une constante; la méme inégalité est valable pour H:
(4
HQ) |s—- (52)
| |
On a de méme, quel que soit 0 < d < =/2:
D
IG(§)|§Ig pour |argg{ —=n | d (53)
D
IH(§)I§m pour |argg | <4, (54)

(la constante D dépendant de d).

Posons maintenant

s @ =HE—GE®, >0
£@=H@K—G®, n<0).

Nous écrirons

(gb g2) s g‘E (f]a f2)9

et nous appellerons cette transformation : « transformation de Fourier-
Carleman correspondant 2 E ». Pour E = R, cette transformation n’est
autre que la transformation de Fourier-Carleman. Carleman [3] a consi-
déré sa transformation pour des couples admettant une certaine croissance
(comme une puissance de z) a linfini, et autour de 'origine. Nos résultats
s’étendent aussi a de telles fonctions; toutefois, pour simplifier I’écriture
nous nous bornerons aux couples (f;, f2) borrés.

La classe des couples (fi, fs) étant ainsi délimitée, introduisons la
« transformée inverse » de la transformée Fy. La transformée inverse,
que nous désignerons par F#, portera sur des couples de fonctions ¢f (2),
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%% (2), holomorphes respectivement dans les demi-plans y > 0, y < 0 et
vérifiant dans ces demi-plans les inégalités

Cc
l¢2 @ | S +—— ¥>0 (55)

1Y

C
lef@) | € — »<O0. (56)

1|

Posons

H* () = \/% . o1 (@) zw~ (g2) dz (57
G* Q) = — (@) 20~ (c2) dz (58)

V2ndy
L, et L{, étant respectivement dans y > 0 et y < 0.
En posant
g =G*@Q—H*®, >0, (59)
8@ =G*@—H*EK), <0, (60)

nous définissons F§ par :
(gt &%) = Fx (CP;k’ CPZ*) (61)

Les fonctions g¥, g% sont holomorphes dans les demi-plans respec-
tifs v > 0,  <O0.

Nous allons maintenant introduire deux fonctions g* et h* qui,
comme les fonctions g et h, définies par (24) et (25), dépendent unique-
ment de E.

g* () = — r fo zw (§2) w1 (2) dz, (62)
LY
1
h* (¢) = — — fg zw (€2) w1 (2) dz, (63)
L.

L? étant dans y > 0 et LY dans y < 0. Ces fonctions nous permettent
d’introduire deux opérateurs qui jouent un réle fondamental dans le
théoréme 5.

L étant situé dans le deuxicme quadrant, L. étant la demi-droite



EXPONENTIELLES ASSOCIEES A UN ENSEMBLE 349

symétrique de L par rapport a 'axe imaginaire, la fonction f, étant holo-
morphe dans le demi-plan supérieur, bornée sur le demi-plan fermé,
posons pour 1t > 0:

v

Ti (f)r = /

[ 5 L.

7272 f (2) g* (iriz~ ) dz — / 272, (2) g* (irz7Y) dz.
L

La fonction f, possédant des propriétés semblables dans le demi-plan
inférieur, L. et L’ étant les symétriques respectivement de L. et L par
rapport a I’axe réel, posons pour 1 < 0:

»

T_ (fa)r = / 22> (2) h* (itz—l)dz—/ 221, (2) h* (nz-") dz.

Li

Nous pouvons maintenant énoncer le théoréme suivant :

THEOREME 5. — Soit E un p.m.h.p. satisfaisant a (20). Soient f, (z)
et f5 (z) des fonctions holomorphes dans les demi-plans respectifs y > 0,
y < 0, continues et bornées sur les demi-plans y = 0, y £ 0. Soit

(g1, &2) = Fx (f1, f2),

et soit
(CPl, sz) = F% (81, 82).
On a
o1 (1) = Ty (f)r (>0
@2 (1) = T_ (fa)+ (t<0).
Remarque. — Si E =R on a
g =1 = :
2ni (1—Y7?
T, (e = [ ho—" k@ >0
ni Jp, L (z —it)?
T_ (f2)r = i f f2 (2) —-—L = f2 (iv) (1 <0).
2ni Vi (z —it)?

Le théoréme contient donc comme cas particulier le théoréme de
Carleman (pour le cas ou les fonctions f; et f, sont bornées).
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11 suffit de suivre quelques passages de la démonstration de Carleman
concernant le cas classique E = R pour aboutir rapidement a la conclu-
sion du théoreme.

Posons

T =— w ' (Zg)zH () —G () ) dz.

i
V2n Jr -1

Il résulte de (54) (en appliquant le théoreme de Cauchy), qu’en choisis-
sant L, dans le premier quadrant, on a

*

w™ ! (z5) zH (2) dz = 0 (¥).

¢ Ly—Lj

Il reste

T @) =

01 (z¢) zG (2) dz

\/ v Ly

w1 (z%) zG @dz=1,+ 1.

—\/‘z?

Remplagons G par son expression (49) et choisissons la demi-droite
L, de sorte qu'elle fasse avec ’axe imaginaire un angle plus petit que
celui que fait L avec cet axe. On obtient pour J, :

1
; f w (g2 z f f1 (o) w (zex) deedz,
2 1R Ly L

et une expression semblable pour J,.

I (§) =

On a, en définitive, pour { = 1i z>0:

J () = Ji (xd) + Jo ()

= f fi (o) ———f zw (ftoe~ ) w?! (2) dz,
2 19 i L

f1 (&) —f zw (it~ w1 (2) dz,

+ .
2Ttl < L.

(4) désigne f — f .
L—L; L L;
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ou L{ est dans le demi-plan supérieur. Ainsi

J@) =@ @) =T+ () (>0

On obtient de la méme facon

2 (t)) = T_ (f2)+ (t <0).
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