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DYNAMICS ON CHARACTER VARIETIES AND
MALGRANGE IRREDUCIBILITY OF PAINLEVÉ VI

EQUATION

by Serge CANTAT & Frank LORAY

Abstract. — We consider representations of the fundamental group of the four
punctured sphere into SL(2,C). The moduli space of representations modulo con-
jugacy is the character variety. The Mapping Class Group of the punctured sphere
acts on this space by symplectic polynomial automorphisms. This dynamical sys-
tem can be interpreted as the monodromy of the Painlevé VI equation. Infinite
bounded orbits are characterized: they come from SU(2)-representations. We prove
the absence of invariant affine structure (and invariant foliation) for this dynami-
cal system except for special explicit parameters. Following results of Casale, this
implies that Malgrange’s groupoid of the Painlevé VI foliation coincides with the
symplectic one. This provides a new proof of the transcendence of Painlevé solu-
tions.

Résumé. — Nous étudions l’action du groupe modulaire sur l’espace des re-
présentations du groupe fondamental de la sphère privée de quatre points dans
SL(2,C). Ce système dynamique peut être interprété comme la monodromie de
l’équation de Painlevé VI. Nous caractérisons les orbites infinies bornées : elles
proviennent des représentations dans SU(2). Nous démontrons l’absence de stru-
ture affine invariante (excepté pour des paramètres spéciaux) puis déduisons, en
nous appuyant sur des travaux de Casale, que le groupoïde de Malgrange associé
est le groupoïde symplectique. Ceci permet de donner une preuve de l’irréducti-
bilité de l’équation de Painlevé VI, c’est-à-dire de la forte transcendance de ses
solutions, par une approche galoisienne, dans l’esprit de la tentative de Drach et
Painlevé.

1. Introduction

This is the first part of a series of two papers (see [6]), the aim of which
is to describe the dynamics of a polynomial action of the group

(1.1) Γ±2 = {M ∈ PGL(2,Z) | M = Id mod(2)}

Keywords: Painlevé equations, holomorphic foliations, character varieties, geometric
structures.
Math. classification: 34M55, 37F75, 20C15, 57M50.



2928 Serge CANTAT & Frank LORAY

on the family of affine cubic surfaces

(1.2) x2 + y2 + z2 + xyz = Ax+By + Cz +D,

where A, B, C, and D are complex parameters. This dynamical system
appears in several different mathematical areas, like the monodromy of the
sixth Painlevé differential equation, the geometry of hyperbolic threefolds,
and the spectral properties of certain discrete Schrödinger operators. One
of our main goals here is to classify parameters (A,B,C,D) for which Γ±2
preserves a holomorphic geometric structure, and to apply this classifica-
tion to provide a galoisian proof of the irreducibility of the sixth Painlevé
equation.

1.1. Character variety

Let S2
4 be the four punctured sphere. Its fundamental group is isomorphic

to a free group of rank 3; if α, β, γ and δ are the four loops which are
depicted on figure 1.1, then

π1(S2
4) = 〈α, β, γ, δ |αβγδ = 1〉.

pδ

γ

pγ

pβ

pα

α

β

δ

1

Figure 1.1. The four punctured sphere.

Let Rep(S2
4) be the set of representations of π1(S2

4) into SL(2,C). Such
a representation ρ is uniquely determined by the 3 matrices ρ(α), ρ(β),
and ρ(γ), so that Rep(S2

4) can be identified with the affine algebraic variety
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(SL(2,C))3. Let us associate the 7 following traces to any element ρ of
Rep(S2

4):

a = tr(ρ(α)) ; b = tr(ρ(β)) ; c = tr(ρ(γ)) ; d = tr(ρ(δ))
x = tr(ρ(αβ)) ; y = tr(ρ(βγ)) ; z = tr(ρ(γα)).

The polynomial map χ : Rep(S2
4)→ C7 defined by

(1.3) χ(ρ) = (a, b, c, d, x, y, z)

is invariant under conjugation, by which we mean that χ(ρ′) = χ(ρ) if ρ′
is conjugate to ρ by an element of SL(2,C). Moreover,

(1) the algebra of polynomial functions on Rep(S2
4) which are invariant

under conjugation is generated by the components of χ;
(2) the components of χ satisfy the quartic equation

(1.4) x2 + y2 + z2 + xyz = Ax+By + Cz +D,

in which the variables A, B, C, and D are given by

(1.5) A = ab+ cd, B = bc+ ad, C = ac+ bd,
and D = 4− a2 − b2 − c2 − d2 − abcd.

(3) the algebraic quotient Rep(S2
4)//SL(2,C) of Rep(S2

4) by the action of
SL(2,C) by conjugation is isomorphic to the six-dimensional quartic
hypersurface of C7 defined by equation (1.4).

The affine algebraic variety Rep(S2
4)//SL(2,C) will be denoted χ(S2

4) and
called the character variety of S2

4. For each choice of four complex param-
eters A, B, C, and D, we will denote by S(A,B,C,D) (or S if there is no
obvious possible confusion) the cubic surface of C3 defined by the equa-
tion (1.4). The family of these surfaces S(A,B,C,D) will be denoted Fam.
Viewed as a family of cubic surfaces of P3, it is universal in the sense that
Fam contains all smooth projective cubics of P3 up to linear tranformation.

Singular points of the surface S(A,B,C,D) arise from semi-stable points of
Rep(S2

4), that is to say either from reducible representations, or from those
representations for which one of the matrices ρ(α), ρ(β), ρ(γ) or ρ(δ) is
in the center ±I of SL(2,C). The smooth part of the surface S(A,B,C,D) is
equipped with the holomorphic volume form

(1.6) Ω = dx ∧ dy
2z + xy − C

= dy ∧ dz
2x+ yz −A

= dz ∧ dx
2y + zx−B

After minimal resolution of the singular points by blowing-up, the 2-form
extends as a global holomorphic volume form on the smooth surface
(see [19]).

TOME 59 (2009), FASCICULE 7
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1.2. Automorphisms and modular groups

The extended mapping class group Mod±(S2
4) is the group of isotopy

classes of self-homeomorphisms of the four punctured sphere S2
4; the usual

mapping class group Mod+(S2
4) is the index 2 subgroup consisting only in

orientation preserving homeomorphisms. Given such a homeomorphism h,
one can check that the induced action on the character variety

(1.7) χ(S2
4) → χ(S2

4)
χ(ρ) 7→ χ(ρ ◦ h−1)

is well-defined and depends only on the isotopy class of h. By the way, we
get a polynomial action induced by the representation

(1.8) Mod±(S2
4) → Aut[χ(S2

4)]

of the mapping class group on the character variety χ(S2
4). This action is not

faithfull: it factors through an index 4 subgroup isomorphic to PGL(2,Z),
the stabilizer of pδ (see section 2.2).

Let Γ±2 be the subgroup of PGL(2,Z) whose elements coincide with the
identity modulo 2. This group has index 6 and coincides with the stabilizer
of the fixed points of the four punctures. Consequently, Γ±2 acts polynomi-
ally on χ(S2

4) and preserves the fibers of the projection

(a, b, c, d, x, y, z) 7→ (a, b, c, d).

The group Γ±2 is the free product of 3 involutions, sx, sy, and sz, acting on
each member S(A,B,C,D) as follows.

(1.9) sx =
(
−1 2
0 1

)
:


x 7→ −x− yz +A
y 7→ y
z 7→ z

(1.10) sy =
(

1 0
2 −1

)
:


x 7→ x
y 7→ −y − xz +B
z 7→ z

(1.11) sz =
(

1 0
0 −1

)
:


x 7→ x
y 7→ y
z 7→ −z − xy + C

The following result is essentially due to Èl’-Huti (see [12], and §3.1).

ANNALES DE L’INSTITUT FOURIER
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Theorem A. — For any choice of the parameters A, B, C, and D, the
morphism

Γ±2 → Aut[S(A,B,C,D)]
is injective and the index of its image is bounded by 24. For a generic choice
of the parameters, this morphism is an isomorphism.

As a consequence of this result, it suffices to understand the action of
Γ±2 on the surfaces S(A,B,C,D) in order to get a full understanding of the
action of Mod±(S2

4) on χ(S2
4).

The volume form Ω defined in (1.6) is almost invariant under the action
of Aut[S(A,B,C,D)], by which we mean that f∗Ω = ±Ω for any automor-
phism f . The action of the standard modular group Γ2 = Γ±2 ∩ PSL(2,Z)
is volume preserving.

1.3. Painlevé VI equation

The dynamics of Γ±2 on the varieties S(A,B,C,D) is also related to the
monodromy of a famous ordinary differential equation. The sixth Painlevé
equation PV I = PV I(θα, θβ , θγ , θδ) is the second order non linear ordinary
differential equation

PV I


d2q
dt2 = 1

2

(
1
q + 1

q−1 + 1
q−t

)(
dq
dt

)2
−
(

1
t + 1

t−1 + 1
q−t

)(
dq
dt

)
+ q(q−1)(q−t)
t2(t−1)2

(
(θδ−1)2

2 − θ
2
α

2
t
q2 + θ2

β

2
t−1

(q−1)2 + 1−θ2
γ

2
t(t−1)
(q−t)2

)
.

the coefficients of which depend on complex parameters

θ = (θα, θβ , θγ , θδ).

The main property of this equation is the absence of movable singular
points, the so-called Painlevé property: all essential singularities of all so-
lutions q(t) of the equation only appear when t ∈ {0, 1,∞}; in other words,
any solution q(t) extends analytically as a meromorphic function on the
universal cover of P1(C) \ {0, 1,∞}.

Another important property, expected by Painlevé himself, is the irre-
ducibility. Roughly speaking, the general solution is more transcendental
than solutions of linear, or first order non linear, ordinary differential equa-
tions with rational coefficients. Painlevé proved that any irreducible second
order polynomial differential equation without movable singular point falls
after reduction into the 4-parameters family PV I or one of its degenera-
tions PV , . . . , PI . The fact that Painlevé equations are indeed irreducible
was actually proved by Nishioka and Umemura for PI (see [28, 36]) and

TOME 59 (2009), FASCICULE 7
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by Watanabe in [37] for PV I . Another notion of irreducibility, related with
transcendence of first integrals, was developped by Malgrange and Casale
in [25, 8] and then applied to the first of Painlevé equation (see §6 for more
details).

A third important property, discovered by R. Fuchs, is that solutions
of PV I parametrize isomonodromic deformations of rank 2 meromorphic
connections over the Riemann sphere having simple poles at {0, t, 1,∞},
with respective set of local exponents (± θα2 ,±

θβ
2 ,±

θγ
2 ,±

θδ
2 ). From this

point of view, the good space of initial conditions at, say, t0, is the mod-
uli space Mt0(θ) of those connections for t = t0 (see [19])(1) ; it turns to
be a convenient semi-compactification of the naive space of initial condi-
tions C2 = {(q(t0), q′(t0))} (compare [30]). The Riemann-Hilbert corre-
spondance

RH : Mt0(θ)→ S(A,B,C,D)

which to a connection associates its monodromy representation, provides
an analytic diffeomorphism of the moduli space of connections onto the
cubic surface with parameters

(1.12) a = 2 cos(πθα), b = 2 cos(πθβ), c = 2 cos(πθγ), d = 2 cos(πθδ)

as far as S(A,B,C,D) is smooth. In the singular case, the analytic map RH
is a minimal resolution of singularities. Along irreducible components of
the exceptional divisor, PV I equation restricts to a Riccati equation: this
is the locus of Riccati-type solutions. The (non linear) monodromy of PV I ,
obtained after analytic continuation around 0 and 1 of local PV I solutions
at t = t0, induces a representation

π1(P1(C) \ {0, 1,∞}, t0)→ Aut[S(A,B,C,D)]

whose image coincides with the action of Γ2 ⊂ PSL(2,Z) (see [11, 19]).

1.4. Symmetries, Okamoto correspondance and coverings

There is an order 24 group of symmetries acting on the character variety
χ(S2

4), preserving our family Fam, that can be used to relate dynamical
properties of Γ±2 on different surfaces S(A,B,C,D). This group comes from
the combination of two natural actions: one of them is the symmetric group
Sym4, acting by homeomorphisms on S2

4, freely permuting the punctures;
the other one is the group Z/2Z×Z/2Z×Z/2Z acting by even sign changes

(1) In the resonant case, i.e. when one θω ∈ Z, Mt0 (θ) is the moduli space of parabolic
connections.

ANNALES DE L’INSTITUT FOURIER
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on the generators (see section 2.4), relating those SL(2,C)-representations
that induce the same PSL(2,C)-representation. This yields an order 192
group acting on variables (a, b, c, d, x, y, z) (compare [2]) but the induced
action on variables (A,B,C,D, x, y, z) has a kernel Q of order 8.

In fact, the map

(1.13) Π : C4 → C4 ;
(a, b, c, d) 7→ (A,B,C,D)

defined by (1.5) is a non Galois ramified cover of degree 24 and Q is the
Galois group. This finite correspondance arise from well known Okamoto
symmetries between Painlevé VI equations (compare [18]). In this paper,
we pay a particular attention to the study of fibers Π−1(A,B,C,D). The
reason is that certain point m ∈ S(A,B,C,D) give rise to representations
of very different nature depending on the choice of (a, b, c, d) in the fiber.
The image of the representation can be reducible or irreducible, finite or
infinite, discrete or dense, in SU(2) or SL(2,R), depending on this choice.
For instance, when (a, b, c, d) are real parameters, then so are (A,B,C,D)
and the real part S(A,B,C,D)(R) of the surface has at most one bounded
component and at most four unbounded ones (see [2]); unbounded compo-
nents always stand for SL(2,R)-representations. For bounded components,
we prove

Theorem B. — Let (A,B,C,D) be real parameters. If the smooth part
of S(A,B,C,D)(R) has a bounded component, then all parameters (a, b, c, d)
in the fiber Π−1(A,B,C,D) are real. Moreover, the bounded component
stands for either SU(2) or SL(2,R)-representations depending on the choice
of (a, b, c, d) in the fiber: both cases occur for a given surface S(A,B,C,D)(R).

Finally, there are also some natural endomorphisms between certain sur-
faces S(A,B,C,D) semi-conjugating the Γ±2 -action. Precisely, one can con-
struct a two-fold ramified cover from the cubic surface with parameter
(a, b, c, d) = (a, b, 0, 0) onto the cubic surface with parameter (a, a, b, b):
this is done by considering the two-fold cover of the sphere ramified over pγ
and pδ and pulling-back representations having order 4 “local monodromy”
around those two points. We skip this construction in this paper (see [7],
Appendix B). Combining this with the “Okamoto correspondance” above,
one can relate dynamics on cubic surfaces associated to

(a, b, c, d) = (d, d, d, d) and (2, 2, 2, 4d− d2 − 2);

this has been used in [11].
In the same spirit, for special parameters A = B = C = 0, the one

parameter family S(0,0,0,D) also stands for the character variety of the once

TOME 59 (2009), FASCICULE 7



2934 Serge CANTAT & Frank LORAY

punctured torus (see [14]). This can be naturally deduced from the elliptic
cover of the four punctured sphere (see [7], section 2.4).

1.5. The Cayley cubic

One very specific choice of the parameters will play a central role in
this paper, namely (A,B,C,D) = (0, 0, 0, 4). The surface S(0,0,0,4) is the
unique surface in our family having four singularities, the maximal possi-
ble number of isolated singularities for a cubic surface: we shall call it the
Cayley cubic. From the point of view of character varieties, this surface
appears in the very special case (a, b, c, d) = (0, 0, 0, 0) consisting only of
solvable representations, most of them being dihedral. They lift to diag-
onal representations on the torus cover T2 → S2, that can be viewed as
representations π1(T2)→ C∗. This yields a natural degree 2 orbifold cover

(1.14) C∗ ×C∗ → S(0,0,0,4) ; (u, v) 7→
(
−u− 1

u
,−v − 1

v
,−uv − 1

uv

)
that semi-conjugates the action of PGL(2,Z) on the character surface
S(0,0,0,4) to the monomial action of GL(2,Z) on C∗ ×C∗ defined by

(1.15) M

(
u

v

)
=
(
um11vm12

um21vm22

)
,

for any element M = (mi,j) of GL(2,Z). On the universal cover C×C→
C∗ × C∗, the lifted dynamics is the standart action of the affine group
GL(2,Z) n Z2 on the complex plane C2.

From the Painlevé point of view, the Cayley cubic S(0,0,0,4) corresponds to
the Picard parameter (θ1, θ2, θ3, θ4) = (0, 0, 0, 1). The singular foliation de-
fined by the corresponding Painlevé equation PV I(0, 0, 0, 1) is transversely
affine (see [8]); as was shown by Picard himself, it admits explicit first inte-
grals by means of elliptic functions (see §6). Moreover, this specific equation
has countably many agebraic solutions, that are given by finite order points
on the Legendre family of elliptic curves (see §6). They correspond to those
finite orbits given by those (u, v) whose entries are roots of the unity.

The Cayley cubic has also the “maximal number of automorphisms”: the
order 24 symmetric group (see §1.4) stabilizes the Cayley cubic, so that the
maximal index of theorem A is obtained in this case.

ANNALES DE L’INSTITUT FOURIER
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1.6. Dynamics

Dynamics on character varieties have been popularized by W. Goldman
and studied by many authors (see [15] and references therein). For exam-
ple, in [13], Goldman proves that the mapping class group of a compact
orientable surface M acts ergodically on the character variety correspond-
ing to representations of π1(M) into the compact Lie group SU(2) (see
§1.7 and [14] for similar results in the case of the four-punctured sphere).
On the other hand, one can use properties such as discreteness, finite-
ness, or the presence of parabolic elements in the image of representations
ρ : π1(S2

4)→ SL(2,C) to construct invariant sets through the action of the
mapping class group Mod±(S2

4) (see [14, 27]).
One can also study the action of automorphisms on a fixed surface
S(A,B,C,D). They can be classified into three types: elliptic, parabolic and
hyperbolic. This classification is compatible with the description of map-
ping classes, Dehn twists corresponding to parabolic transformations, and
pseudo-Anosov mappings to hyperbolic automorphisms. The most striking
result in that direction is summarized in the following theorem (see [23, 7]).

Theorem. — Let A, B, C, and D be four complex numbers. Let M
be an element of Γ±2 , and fM be the automorphism of S(A,B,C,D) which
is determined by M. The topological entropy of fM : S(A,B,C,D)(C) →
S(A,B,C,D)(C) is equal to the logarithm of the spectral radius of M.

This statement is obtained in [7] by a deformation argument: the topo-
logical entropy does not depend on the parameters (A,B,C,D); it suffices
to compute it in the case of the Cayley cubic by looking at the birational
action at infinity. This improves the previous work [23] where the authors
provided an algorithm to compute the topological entropy for smooth cu-
bics.

1.7. Bounded orbits

Section 4 is devoted to the study of parabolic elements (or Dehn twists),
and bounded orbits of Γ±2 . For instance, given a representation ρ : S2

4 →
SU(2) ⊂ SL(2,C), the Γ±2 -orbit of the correponding point χ(ρ) will be
bounded, contained in the cube [−2, 2]3. A converse is given by the following
result.

Theorem C. — Let m be a point of S(A,B,C,D) with a bounded infinite
Γ±2 -orbit. Then, the parameters (A,B,C,D) are real numbers and the orbit

TOME 59 (2009), FASCICULE 7
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is contained and dense in the unique bounded connected component of the
smooth part of S(A,B,C,D)(R).

Following Theorem B, infinite bounded orbit always arise from SU(2)-
representations, after conveniently choosing parameters (a, b, c, d). Theo-
rem C should be compared with results of Goldman [13], Previte and
Xia [33], concerning the dynamics on the character variety for SU(2)-
representations(2) . We note that an infinite bounded orbit may also cor-
respond to SL(2,R)-representations for an alternate choice of parameters
(a, b, c, d) (see Theorem B).

This theorem stresses the particular role played by the real case, when all
the parameters A, B, C, and D are real numbers; in that case, Γ±2 preserves
the real part of the surface and we have two different, but closely related,
dynamical systems: the action on the complex surface S(A,B,C,D)(C) and
the action on the real surface S(A,B,C,D)(R). The link between those two
dynamical systems will be studied in [6].

The classification of finite orbits has been closed only recently by O.
Lisovyy and Yu. Tykhyy in [24]: the list of known orbits given in [4] is
actually complete. Fixed points of Γ±2 are precisely the singular points of
S(A,B,C,D) (see [19]); they correspond to one-parameter Riccati solutions for
PV I equation. Finite orbits of length > 2 correspond to algebraic solutions
of PV I equation (see also [22]). Up to symmetries, there are 3 continuous
families of finite orbits, of respective length 2, 3 and 4; the other finite
orbits have length > 4 and the corresponding (A,B,C,D, x, y, z)-entries
are real algebraic numbers (see [7]); they are rigid. Apart from the infinite
discrete family of finite orbits on the Cayley cubic, there are 45 sporadic
finite orbits up to symmetries, the larger one having length 72 (see [4, 24]).
All but one correspond to representations into finite subgroups of SU(2)
(maybe conveniently choosing parameter (a, b, c, d)).

For instance, when A = B = 0, a length 2 orbit is given by (x, y, z) =
(0, 0, z) where z runs over the roots of z2 = Cz+D. The corresponding PV I -
solution is q(t) = 1 +

√
1− t. In this case, the trace parameters are either

of the form (a, 0, c, 0), or of the form (a, b, a,−b) (see [7], example 5.5). The
representation is dihedral in the first case; in general, it is Zariski dense in
the later case(3) .

(2) After reading the first version [7] of our paper, professor Iwasaki informed us that
theorem C was already announced in [21].
(3) This representation was already considered in [32]: for convenient choice of parameters
a and b, the image of the representation is a dense subgroup of SU(2).

ANNALES DE L’INSTITUT FOURIER
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1.8. Dynamics, affine structures, and the irreducibility of PV I

The main result that we shall prove concerns the classification of param-
eters (A,B,C,D) for which S(A,B,C,D) admits a Γ±2 -invariant holomorphic
geometric structure.

Theorem D. — The group Γ±2 does not preserve any holomorphic curve
of finite type, any (singular) holomorphic foliation, or any (singular) holo-
morphic web. The group Γ±2 does not preserve any meromorphic affine
structure, except in the case of the Cayley cubic, i.e. when (A,B,C,D) =
(0, 0, 0, 4), or equivalently when

(a, b, c, d) = (0, 0, 0, 0) or (2, 2, 2,−2),

up to multiplication by −1 and permutation of the parameters.

Following [9], the same strategy shows that the Galois groupoid of Pain-
levé VI equation is the whole symplectic pseudo-group except in the Cayley
case (see section 6), and we get

Theorem E. — The sixth Painlevé equation is irreducible in the sense
of Malgrange and Casale except when (A,B,C,D) = (0, 0, 0, 4), i.e. except
in one of the following cases:

• θω ∈ 1
2 + Z, ∀ω = α, β, γ, δ,

• θω ∈ Z, ∀ω = α, β, γ, δ, and
∑
ω θω is even.

Following [10], Malgrange-Casale irreducibility also implies Nishioka-
Umemura irreducibility, so that theorem 1.8 indeed provides a galoisian
proof of the irreducibility in the spirit of Drach and Painlevé.
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2. The family of surfaces

As explained in 1.1, we shall consider the family Fam of complex affine
surfaces which are defined by the following type of cubic equations

x2 + y2 + z2 + xyz = Ax+By + Cz +D,

in which A, B, C, and D are four complex parameters. Each choice of
(A,B,C,D) gives rise to one surface S in our family; if necessary, S will
also be denoted S(A,B,C,D). When the parameters are real numbers, S(R)
will denote the real part of S.

This section contains preliminary results on the geometry of the sur-
faces S(A,B,C,D), and the automorphisms of these surfaces. Most of these
results are well known to algebraic geometers and specialists of Painlevé VI
equations.

2.1. The Cayley cubic

In 1869, Cayley proved that, up to projective transformations, there is a
unique cubic surface in P3(C) with four isolated singularities. One of the
nicest models of the Cayley cubic is the surface S(0,0,0,4), whose equation is

x2 + y2 + z2 + xyz = 4.

The four singular points of SC are rational nodes located at

(−2,−2,−2), (−2, 2, 2), (2,−2, 2) and (2, 2,−2).

This specific member of our family of surfaces will be called the Cayley
cubic and denoted SC . This is justified by the following corollary of Cayley’s
Theorem (see [7], Appendix A).

Theorem 2.1 (Cayley). — If S is a member of the family Fam with
four singular points, then S coincides with the Cayley cubic SC .
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The Cayley cubic is isomorphic to the quotient of C∗ ×C∗ by the invo-
lution η(u, v) = (u−1, v−1). The map

πC(u, v) =
(
−u− 1

u
,−v − 1

v
,−uv − 1

uv

)
gives an explicit isomorphism between (C∗×C∗)/η and SC . The four fixed
points

(1, 1), (1,−1), (−1, 1) and (−1,−1)
of η respectively correspond to the singular points of SC above.

The real surface SC(R) contains the four singularities of SC , and the
smooth locus SC(R) \ Sing(SC) is made of five components : a bounded
one, the closure of which coincides with the image of T2 = S1×S1 ⊂ C∗×C∗
by πC , and four unbounded ones, corresponding to images of R+ × R+,

R+ ×R−, R− ×R+, and R− ×R−.
As explained in section 1.5, the group GL(2,Z) acts on C∗ × C∗ by

monomial transformations, and this action commutes with the involution η,
permuting its fixed points. As a consequence, PGL(2,Z) acts on the quo-
tient SC . Precisely, the generators(

1 0
−1 1

)
,

(
1 1
0 1

)
and

(
1 0
0 −1

)
of PGL(2,Z) respectively send the triple (x, y, z) to

(x,−z − xy, y), (z, y,−x− yz) and (x, y,−z − xy).

As we shall see, the induced action of PGL(2,Z) on SC coincides with the
action of the extended mapping class group of S2

4 considered in §1.2.
The group PGL(2,Z) preserves the real part of SC ; for example, the

product C∗×C∗ retracts by deformation on the real 2-torus T2 = S1×S1,

and the monomial action of GL(2,Z) preserves this torus (it is the standard
one under the parametrization (s, t) 7→ (e2iπs, e2iπt)).

2.2. Mapping class group action

The group of automorphisms Aut(π1(S2
4)) acts on Rep(S2

4) by composi-
tion: (Φ, ρ) 7→ ρ ◦ Φ−1. Since inner automorphisms act trivially on χ(S2

4),
we get a morphism from the group of outer automorphisms Out(π1(S2

4))
into the group of polynomial diffeomorphisms of χ(S2

4):

(2.1)

{
Out(π1(S2

4)) → Aut[χ(S2
4)]

Φ 7→ fΦ
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such that fΦ(χ(ρ)) = χ(ρ ◦ Φ−1) for any representation ρ.
The extended mapping class group Mod±(S2

4) embeds in the group of
outer automorphisms of π1(S2

4) in the following way. Fix a base point
p0 ∈ S2

4. In any isotopy class, one can find a homeomorphism h fixing p0
and thus inducing an automorphism of the fundamental group

h∗ : π1(S2
4, p0)→ π1(S2

4, p0) ; γ 7→ h ◦ γ.

The class of h∗ modulo inner automorphisms does not depend on the choice
of the representative h in the homotopy class and we get a morphism

(2.2) Mod±(S2
4)→ Out(π1(S2

4))

which turns out to be injective. Its image coincides with the subgroup of
those outer automorphisms that preserve the peripheral structure of the
fundamental group (see [20]).

Now, the action of Out(π1(S2
4)) on χ(S2

4) gives rise to a morphism

(2.3)

{
Mod±(S2

4) → Aut[χ(S2
4)]

[h] 7→
{
χ(ρ) 7→ χ(ρ ◦ h−1)

}
into the group of polynomial diffeomorphisms of χ(S2

4). (here, we use that
ρ ◦ (h∗)−1 = ρ ◦ h∗ = ρ ◦ h−1). Our goal in this section is to give explicit
formulae for this action of Mod±(S2

4) on χ(S2
4), and to describe the subgroup

of Mod+(S2
4) which stabilizes each surface S(A,B,C,D).

Consider the two-fold ramified cover

(2.4) πT : T2 = R2/Z2 → S2

with Galois involution σ : (x, y) 7→ (−x,−y) sending its ramification points

(0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2)

respectively to the four punctures

pα, pβ , pγ and pδ

(see figure 3 in [7]). The mapping class group of the torus, and also of
the once punctured torus T2

1 = T2 \ {(0, 0)}, is isomorphic to GL(2,Z).
This group acts by linear homeomorphisms on the torus, fixing (0, 0), and
permuting the other three ramification points of πT . This action provides a
section of the projection Diff(T2)→ Mod±(T2). Since this action commutes
with the involution σ (which generates the center of GL(2,Z)), we get a
morphism from PGL(2,Z) to Mod±(S2

4). This morphism is one to one and
its image is contained in the stabilizer of pδ in Mod±(S2

4).
The subset H ⊂ T2 of ramification points of π coincides with the 2-

torsion subgroup of (T2,+); H acts by translation on T2 and commutes
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with the involution σ as well. This provides an isomorphism (see section 4.4
in [3])

(2.5) PGL(2,Z) nH → Mod±(S2
4).

The proof of the following Lemma is straightforward (see [7], pages 15-16
for details).

Lemma 2.2. — The subgroup of Aut(χ(S2
4)) obtained by the action of

the subgroup PGL(2,Z) of Mod±(S2
4) is generated by the three polynomial

automorphisms B1, B2 and T3 of equations 2.8, 2.9, and 2.10 below. The 4-
order translation group H acts trivially on parameters (A,B,C,D, x, y, z),
permuting parameters (a, b, c, d) as follows

P1 = (1/2, 0) : (a, b, c, d) 7→ (d, c, b, a)(2.6)
P2 = (0, 1/2) : (a, b, c, d) 7→ (b, a, d, c)(2.7)

The PSL(2,Z)-action on χ(S2
4) is given by the generators B1 and B2:

(2.8) B1 =
(

1 0
−1 1

)
:


a 7→ b
b 7→ a
c 7→ c
d 7→ d

and


x 7→ x
y 7→ −z − xy + ac+ bd
z 7→ y

(2.9) B2 =
(

1 1
0 1

)
:


a 7→ a
b 7→ c
c 7→ b
d 7→ d

and


x 7→ z
y 7→ y
z 7→ −x− yz + ab+ cd

In order to generate PGL(2,Z), we have to add the involution:

(2.10) T3 =
(

0 1
1 0

)
:


a 7→ c
b 7→ b
c 7→ a
d 7→ d

and


x 7→ y
y 7→ x
z 7→ z

Remark 2.3. — The formulae 2.8, 2.9, and 2.10 for B1, B2 and T3 spe-
cialize to the formulae of section 2.1 when (A,B,C,D) = (0, 0, 0, 4).

Remark 2.4. — The Artin Braid Group B3 = 〈β1, β2 | β1β2β1 = β2β1β2〉
is isomorphic to the group of isotopy classes of the thrice punctured disk
fixing its boundary. There is therefore a morphism from B into the subgroup
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of Mod+(S2
4) that stabilizes pδ. This morphism gives rise to the following

well known exact sequence

I → 〈(β1β2)3〉 → B3 → PSL(2,Z)→ 1,

where generators β1 and β2 are respectively sent to B1 and B2, and the
group 〈(β1β2)3〉 coincides with the center of B3. In particular, the action of
B3 on χ(S2

4) coincides with the action of PSL(2,Z).We note that PSL(2,Z)
is the free product of the trivolution B1B2 and the involution B1B2B1. In
PGL(2,Z), we also have relations

T 2
3 = I, T3B1T3 = B−1

2 and T3B2T3 = B−1
1 .

2.3. The modular groups Γ±2 and Γ2

Since the action of M ∈ GL(2,Z) on the set H of points of order 2
depends only on the equivalence class of M modulo 2, we get an exact
sequence

I → Γ±2 → PGL(2,Z) nH → Sym4 → 1

where Γ±2 ⊂ PGL(2,Z) is the subgroup defined by those matrices M ≡ I
modulo 2. This group acts on the character variety, and since it preserves
the punctures, it fixes a, b, c, and d. The group Γ±2 is the free product
of the 3 involutions, sx, sy, and sz, given in §1.2: (1.9), (1.10) and (1.11)
respectively. We note that sx = B2B

−1
1 B

−1
2 T3, sy = B2B1B

−1
2 T3 and sz =

B2B1B2T3. The standard modular group Γ2 ⊂ PSL(2,Z) is generated by

gx = szsy = B2
1 =

(
1 0
−2 1

)

gy = sxsz = B2
2 =

(
1 2
0 1

)

gz = sysx = B−2
1 B

−2
2 =

(
1 −2
2 −3

)
(we have gzgygx = I); as we shall see, this corresponds to Painlevé VI
monodromy (see [19] and section 6). The following proposition is now a
direct consequence of lemma 2.2.

Proposition 2.5. — Let Mod±0 (S2
4) (resp. Mod+

0 (S2
4)) be the subgroup

of Mod±(S2
4) (resp. Mod+(S2

4)) which stabilizes the four punctures of S2
4.
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This group coincides with the stabilizer of the projection π : χ(S2
4) → C4

which is defined by

π(a, b, c, d, x, y, z) = (a, b, c, d).

Its image in Aut(χ(S2
4)) coincides with the image of Γ±2 (resp. Γ2) and is

therefore generated by the three involutions sx, sy and sz (resp. the three
automorphisms gx, gy, gz).

As we shall see in sections 3.1 and 3.2, this group is of finite index in
Aut(χ(S2

4).

Remark 2.6. — Let us consider the exact sequence

I → Γ±2 → PGL(2,Z)→ Sym3 → 1,

where Sym3 ⊂ Sym4 is the stabilizer of pδ, or equivalently of d, or D.
A splitting Sym3 ↪→ PGL(2,Z) is generated by the transpositions T1 =
T3B1B2 and T2 = B1B2T3. They act as follows on the character variety.

T1 =
(
−1 0
1 1

)
:


a 7→ b
b 7→ a
c 7→ c
d 7→ d

and


x 7→ &x
y 7→ &z
z 7→ &y

T2 =
(

1 1
0 −1

)
:


a 7→ a
b 7→ c
c 7→ b
d 7→ d

and


x 7→ z
y 7→ y
z 7→ x

2.4. Symmetries

There are other symmetries between surfaces S(A,B,C,D) that do not arise
from the action of the mapping class group. Indeed, given any 4-uple ε =
(ε1, ε2, ε3, ε4) ∈ {±1}4 with

∏4
i=1 εi = 1, the ε-twist of a representation

ρ ∈ Rep(S2
4) is the new representation ⊗ερ generated by

ρ̃(α) = ε1ρ(α)
ρ̃(β) = ε2ρ(β)
ρ̃(γ) = ε3ρ(γ)
ρ̃(δ) = ε4ρ(δ)
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This provides an action of Z/2Z× Z/2Z× Z/2Z on the character variety
given by

⊗ε :


a 7→ ε1a
b 7→ ε2c
c 7→ ε3b
d 7→ ε4d


A 7→ ε1ε2A
B 7→ ε2ε3B
C 7→ ε1ε3C
D 7→ D

and


x 7→ ε1ε2x
y 7→ ε2ε3y
z 7→ ε1ε3z

The action on (A,B,C,D, x, y, z) is trivial iff ε = ±(1, 1, 1, 1). The “Bene-
detto-Goldman symmetry group” of order 192 acting on (a, b, c, d, x, y, z)
which is described in [2] (§3C) is precisely the group generated by ε-twists
and the symmetric group Sym4 = 〈T1, T2, P1, P2〉. The subgroup Q acting
trivially on (A,B,C,D, x, y, z) is of order 8 generated by

(2.11) Q = 〈P1, P2,⊗(−1,−1,−1,−1)〉.

2.5. Okamoto correspondances

Many kinds of conjugacy classes of representations ρ with

χ(ρ) = (a, b, c, d, x, y, z)

give rise to the same (A,B,C,D, x, y, z)-point ; in order to underline this
phenomenon, we would like to understand the ramified cover

Π :
{

C4 → C4

(a, b, c, d) 7→ (A,B,C,D)

defined by equation (1.5).

Lemma 2.7. — The degree of the covering map Π, that is the number
of points (a, b, c, d) giving rise to a given generic (A,B,C,D)-point, is 24.

Proof. — We firstly assume B 6= ±C so that a 6= ±b. Then, solving
B = bc+ ad and C = ac+ bd in c and d yields

c = aC − bB
a2 − b2

and d = aB − bC
a2 − b2

.

Subsituting in A = ab + cd and D = 4 − a2 − b2 − c2 − d2 − abcd gives
{P = Q = 0} with

P = −ab(a2 − b2)2 +A(a2 − b2)2 + (B2 + C2)ab−BC(a2 + b2)
and Q = (a2 + b2)(a2 − b2)2 + (D − 4)(a2 − b2)2

+(B2 + C2)(a2 − a2b2 + b2) +BCab(a2 + b2 − 4).
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These two polynomials have both degree 6 in (a, b) and the corresponding
curves must intersect in 36 points. However, one easily check that they
intersect along the line at infinity with multiplicity 4 at each of the two
points (a : b) = (1 : 1) and (1 : −1); moreover, they also intersect along the
forbidden lines a = ±b at (a, b) = (0, 0) with multiplicity 4 as well, provided
that BC 6= 0. As a consequence, the number of preimages of (A,B,C,D)
is 36− 4− 4− 4 = 24 (counted with multiplicity). �

Remark 2.8. — Π is not a Galois cover: the group of deck transforma-
tions is the order 8 group Q = 〈P1, P2,⊗(−1,−1,−1,−1)〉 (see §2.4).

To understand the previous remark, it is convenient to introduce the
Painlevé VI parameters, which are related to (a, b, c, d) by the map

C4 → C4

(θα, θβ , θγ , θδ) 7→ (a, b, c, d) with


a = 2 cos(πθα)
b = 2 cos(πθβ)
c = 2 cos(πθγ)
d = 2 cos(πθδ)

The composite map (θα, θβ , θγ , θδ) 7→ (A,B,C,D) has been studied in [18]:
It is an infinite Galois ramified cover whose deck transformations coincide
with the group G of so called Okamoto symmetries. Those symmetries
are “birational transformations” of Painlevé VI equation; they have been
computed directly on the equation by Okamoto in [31] (see [29] for a modern
presentation). Let Bir(PV I) be the group of all birational symmetries of
Painlevé sixth equation. The Galois group G is the subgroup of Bir(PV I)
generated by the following four kind of affine transformations.

(1) Even translations by integers

⊕n :


θα 7→ θα + n1

θβ 7→ θβ + n2

θγ 7→ θγ + n3

θδ 7→ θδ + n4

with

{
n = (n1, n2, n3, n4) ∈ Z4,

n1 + n2 + n3 + n4 ∈ 2Z.

Those symmetries also act on the space of initial conditions of PV I
in a non trivial way, but the corresponding action on (x, y, z) is
very simple: we recover the twist symmetries ⊗ε of section 2.4 by
considering n modulo 2Z4.

(2) An action of Sym4 permuting (θα, θβ , θγ , θδ). This corresponds to
the action of Sym4 on (a, b, c, d, x, y, z) permuting (a, b, c, d) in the
same way. This group is generated by the four permutations T1, T2,
P1 and P2 (see lemma 2.2 and remark 2.6).
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(3) Twist symmetries on Painlevé parameters

⊗ε :


θα 7→ ε1θα
θβ 7→ ε2θβ
θγ 7→ ε3θγ
θδ 7→ ε4θδ

with ε = (ε1, ε2, ε3, ε4) ∈ {±1}4.

The corresponding action on (a, b, c, d, x, y, z) is trivial.
(4) The special Okamoto symmetry (called s2 in [29])

Ok :


θα 7→ θα−θβ−θγ−θδ

2 + 1
θβ 7→ −θα+θβ−θγ−θδ

2 + 1
θγ 7→ −θα−θβ+θγ−θδ

2 + 1
θδ 7→ −θα−θβ−θγ+θδ

2 + 1

The corresponding action on (A,B,C,D, x, y, z) is trivial (see [18]),
but the action on (a, b, c, d) is rather subbtle, as we shall see.

The ramified cover (θα, θβ , θγ , θδ) 7→ (a, b, c, d) is also a Galois cover: its
Galois group K is the subgroup of G generated by those translations ⊕n
with n ∈ (2Z)4 and the twists ⊗ε. One can check that [G : K] = 24
but K is not a normal subgroup of G: it is not Ok-invariant. In fact, K is
normal in the subgroup G′ ⊂ G where we omit the generator Ok and Q =
G′/K coincides with the order 8 group of symmetries fixing (A,B,C,D).
Therefore, G/K may be viewed as the disjoint union of left cosets

G/K = Q ∪Ok ·Q ∪ Õk ·Q

where Õk is the following symmetry (called s1s2s1 in [29])

Õk :


θα 7→ θα−θβ−θγ+θδ

2

θβ 7→ −θα+θβ−θγ+θδ
2

θγ 7→ −θα−θβ+θγ+θδ
2

θδ 7→ θα+θβ+θγ+θδ
2

Let us now go back to the description of the fiber Π−1(A,B,C,D). Given
a (a, b, c, d)-point, we would like to describe explicitly all other parameters
(a′, b′, c′, d′) in the same Π-fibre, i.e. giving rise to the same parameter
(A,B,C,D). We already know that the Q-orbit{

(a, b, c, d) (−a,−b,−c,−d) (d, c, b, a) (−d,−c,−b,−a)
(b, a, d, c) (−b,−a,−d,−c) (c, d, a, b) (−c,−d,−a,−b)
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which generically is of length 8, is contained in the fibre. In order to describe
the remaining part of the fibre, let us choose (aε, bε, cε, dε) ∈ C4, ε = 0, 1,
such that 

a0 =
√

2+a
2

b0 =
√

2+b
2

c0 =
√

2+c
2

d0 =
√

2+d
2

and


a1 =

√
2−a
2

b1 =
√

2−b
2

c1 =
√

2−c
2

d1 =
√

2−d
2

If θα is such that (a0, a1) = (cos(π θα2 ), sin(π θα2 )), then a = 2 cos(πθα);
therefore, the choice of (a0, a1) is equivalent to the choice of a PV I -parame-
ter θα modulo 2Z, i.e. of θα2 modulo Z. Then, looking at the action of the
special Okamoto symmetry Ok on Painlevé parameters (θα, θβ , θγ , θδ), we
derive the following new point (a′, b′, c′, d′) in the Π-fibre

a′ = −2
∑

(−1)
−ε1+ε2+ε3+ε4

2 aε1bε2cε3dε4

b′ = −2
∑

(−1)
ε1−ε2+ε3+ε4

2 aε1bε2cε3dε4

c′ = −2
∑

(−1)
ε1+ε2−ε3+ε4

2 aε1bε2cε3dε4

d′ = −2
∑

(−1)
ε1+ε2+ε3−ε4

2 aε1bε2cε3dε4

where sums
∑

are taken over all ε = (ε1, ε2, ε3, ε4) ∈ ({0, 1})4 for which ε1+
ε2+ε3+ε4 is even. One can check that the different choices for (a0, b0, c0, d0)
and (a1, b1, c1, d1) lead to 16 distinct possible (a′, b′, c′, d′), namely 2 distinct
Q-orbits, which together with the Q-orbit of (a, b, c, d) above provide the
whole Π-fibre.

Example 2.9. — When (a, b, c, d) = (0, 0, 0, d), we have (A,B,C,D) =
(0, 0, 0, D) with D = 4 − d2. The Π-fibre is given by the Q-orbits of the 3
points

(0, 0, 0, d) and (d̃, d̃, d̃,−d̃) where d̃ =
√

2±
√

4− d2

(only the sign of the square root inside is relevant up to Q). The fibre has
length 24 except in the Cayley case d = 0 where it has length 9, consisting
of the two Q-orbits of

(0, 0, 0, 0) and (2, 2, 2,−2)

(note that (0, 0, 0, 0) is Q-invariant) and in the Markov case d = 2 where it
has length 16, consisting of the two Q-orbits of

(0, 0, 0, 2) and (
√

2,
√

2,
√

2,−
√

2).
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3. Geometry and Automorphisms

This section is devoted to a geometric study of the family of surfaces
S(A,B,C,D), and to the description of the groups of polynomial automor-
phisms Aut[S(A,B,C,D)]. Section 3.3 introduces the concept of elliptic, par-
abolic, and hyperbolic automorphisms of S(A,B,C,D).

3.1. The triangle at infinity and automorphisms

Let S be any member of the family Fam. The closure S of S in P3(C) is
given by a cubic homogeneous equation

w(x2 + y2 + z2) + xyz = w2(Ax+By + Cz) +Dw3.

The intersection of S with the plane at infinity does not depend on the
parameters and coincides with the triangle ∆ given by the equation

∆ : xyz = 0;

moreover, one easily checks that the surface S is smooth in a neighborhood
of ∆ (all the singularities of S are contained in S).

The three involutions sx, sy and sz generating the Γ±2 -action (see §1.2)
now admit the following geometric description. Since the equation defin-
ing S is of degree 2 with respect to the x variable, each point (x, y, z)
of S gives rise to a unique second point (x′, y, z). This procedure deter-
mines a holomorphic involution of S, namely the involution sx defined by
formula (1.9). Geometrically, the involution sx corresponds to the follow-
ing: if m is a point of S, the projective line which joins m and the vertex
vx = [1; 0; 0; 0] of the triangle ∆ intersects S on a third point; this point
is sx(m). The two other involutions sy and sz are obtained similarly, by
changing y and z root respectively.

From section 2.3, we deduce that, for any member S of the family
Fam, the group A = 〈sx, sy, sz〉 generated by the three involutions above
coincides with the image of Γ±2 into Aut[S], which is obtained by the action
of Γ±2 ⊂ Mod±(S2

4) on χ(S2
4) (see §1.2).

Theorem 3.1. — Let S = S(A,B,C,D) be any member of the family of
surfaces Fam. Then

• there is no non-trivial relation between the three involutions sx, sy
and sz, and A is therefore isomorphic to the free product (Z/2Z) ?
(Z/2Z) ? (Z/2Z) ;
• the index of A in Aut[S] is bounded by 24.
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Moreover, for a generic choice of the parameters (A,B,C,D), A coincides
with Aut[S].

This result is almost contained in Èl’-Huti’s article [12] and is more
precise than Horowitz’s main theorem (see [16], [17]).

Proof. — Since S is smooth in a neighborhood of the triangle at infinity
and the three involutions are the reflexions with respect to the vertices of
that triangle, we can apply the main theorems of Èl’-Huti’s article:

• A is isomorphic to the free product

(Z/2Z) ? (Z/2Z) ? (Z/2Z) = 〈sx〉 ? 〈sy〉 ? 〈sz〉;

• A is of finite index in Aut[S] ;
• Aut[S] is generated by A and the group of projective transforma-

tions of P3(C) which preserve S and ∆ (i.e., by affine transforma-
tions of C3 that preserve S).

We already know that A and the image of Γ±2 in Aut[S] coincide. We now
need to study the index of A in Aut[S]. Let f be an affine invertible trans-
formation of C3, that we decompose as the composition of a linear part M
and a translation of vector T. Let S be any member of Fam. If f preserves S,
then the equation of S is multiplied by a non zero complex number when
we apply f. Looking at the cubic terms, this means that M is a diagonal
matrix composed with a permutation of the coordinates. Looking at the
quadratic terms, this implies that T is the nul vector, so that f = M is
linear. Coming back to the equation of S, we now see that M is one of
the 24 linear transformations of the type σ ◦ ε where ε either is the identity
or changes the sign of two coordinates, and σ permutes the coordinates.
If (A,B,C,D) are generic, S(A,B,C,D) is not invariant by any of these lin-
ear maps. Moreover, one easily verifies that the subgroup A is a normal
subgroup of Aut[S]: if such a linear transformation M = σ ◦ ε preserves S,
then it normalizes A. This shows that A is a normal subgroup of Aut[S],
the index of which is bounded by 24. �

3.2. Consequences and notations

As a corollary of theorem 3.1 and proposition 2.5, we get the following
result: The mapping class group Mod±0 (S2

4) acts on the character variety
χ(S2

4), preserving each surface S(A,B,C,D), and its image in Aut[S(A,B,C,D)]
coincides with the image of Γ±2 , and therefore with the finite index sub-
group A of Aut[S(A,B,C,D)]. In other words, up to finite index subgroups,
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describing the dynamics of Mod±(S2
4) on the character variety χ(S2

4) or of
the group Aut[S] on S for any member S of the family Fam is one and the
same problem.

In the following, we shall identify the subgroup Γ±2 of PGL(2,Z) and the
subgroup A of Aut[S(A,B,C,D)] : if f is an element of A, Mf will denote
the associated element of Γ±2 (either viewed as a matrix or an isometry
of H), and if M is an element of Γ±2 , fM will denote the automorphism
associated to M (for any surface S of the family Fam). Recall that, as a
subgroup of PGL(2,R), the group Γ±2 acts by (anti-)conformal isometries
on the Poincaré half plane H.

3.3. Elliptic, Parabolic, Hyperbolic

Non trivial isometries of H are classified into three different species.
Let M be an element of PGL(2,R) \ {Id}, viewed as an isometry of H.
Then,

• M is elliptic if M has a fixed point in the interior of H. Ellipticity
is equivalent to det(M) = 1 and |tr(M)| < 2 (in which case M
is a rotation around a unique fixed point) or det(M) = −1 and
tr(M) = 0 (in which case M is a reflexion around a geodesic of
fixed points).
• M is parabolic if M has a unique fixed point, which is located on

the boundary of H; M is parabolic if and only if det(M) = 1 and
tr(M) = 2 or −2;
• M is hyperbolic if it has exactly two fixed points which are on

the boundary of H; this occurs if and only if det(M) = 1 and
|tr(M)| > 2, or det(M) = −1 and tr(M) 6= 0.

An element f of A\{Id} will be termed elliptic, parabolic, or hyperbolic,
according to the type ofMf . Examples of elliptic elements are given by the
three involutions sx, sy and sz. Examples of parabolic elements are given by
the three automorphisms gx, gy and gz (see section 2.3). The dynamics of
these automorphisms will be described in details in §4.1. Let us just mention
the fact that gx (resp. gy, gz) preserves the conic fibration {x = cste} (resp.
{y = cste}, {z = cste}) of any member S of Fam. The following Proposition
is standart; we skip the proof.

Proposition 3.2. — Let S be one of the surfaces in the family Fam (S
may be singular). An element f of A is
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• elliptic if and only if f is conjugate to one of the involutions sx, sy
or sz, if and only if f is periodic;
• parabolic if and only if f is conjugate to a non trivial power of one

of the automorphisms gx, gy or gz;
• hyperbolic if and only if f is conjugate to a cyclically reduced com-

position which involves the three involutions sx, sy, and sz.

3.4. Singularities, fixed points, and orbifold structure

The singularities of the elements of Fam will play an important role in this
article. In this section, we collect a few results regarding these singularities.

Lemma 3.3. — Let S be a member of Fam. A point m of S is singular
if and only if m is a fixed point of the group A.

Proof. — This is a direct consequence of the fact that m is a fixed point
of sx if and only if 2x+ yz = Ax, if and only if the partial derivative of the
equation of S with respect to the x-variable vanishes. �

Example 3.4. — The family of surfaces with parameters

(4 + 2d, 4 + 2d, 4 + 2d,−(8 + 8d+ d2)) with ∈ C

is a deformation of the Cayley cubic, that corresponds to d = −2, and any
of these surfaces has 3 singular points (counted with multiplicity).

Lemma 3.5. — Ifm is a singular point of S, there exists a neighborhood
of m which is isomorphic to the quotient of the unit ball in C2 by a finite
subgroup of SU(2).

Proof. — Any singularity of a cubic surface is a quotient singularity,
except when the singularity is isomorphic to x3 + y3 + z3 + λxyz = 0,
for at least one parameter λ (see [5]). Since the second jet of the equation
of S never vanishes when S is a member of Fam, the singularities of S are
quotient singularities. Since S admits a global volume form Ω, the finite
group is conjugate to a subgroup of SU(2,C). �

As a consequence, any member S of Fam is endowed with a well defined
orbifold structure. If S is singular, the group A fixes each of the singular
points and preserves the orbifold structure. We shall consider this action
in the orbifold category, but we could as well extend the action of A to a
smooth desingularization of S.
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Lemma 3.6. — The complex affine surface S is simply connected. When
S is singular, the fundamental group of the complex surface S \ Sing(S)
is normally generated by the local finite fundamental groups around the
singular points.

Proof. — Recall that a smooth cubic surface in P3(C) may be viewed
as the blow-up of P2(C) at 6-points in general position. To construct our
family Fam by this way, we consider the triangle XY Z = 0 of P2(C) and
blow-up twice each line. The resulting surface S̃ embeds in P3(C) as a
smooth member of our family by sending the strict transform of the triangle
at infinity. Singular cubics arise when 3 of the 6 points lie on a line, or all of
them lie on a conic. In this case, the corresponding line(s) and/or conic have
negative self-intersection in S̃; after blow them down to singular points, one
obtain the embedding in our family Fam.

Our claim is that the quasi-projective surface S̃′ obtained by deleting
the strict transform of the triangle XY Z = 0 from S̃ is simply connected.
Indeed, the fundamental group of P2 − {XY Z = 0} is isomorphic to Z2,
generated by two loops, say one turning around X = 0, and the other one
around Y = 0. After blowing-up one point lying on X = 0, and adding the
exceptional divisor (minus X = 0), the first loop becomes homotopic to 0;
after blowing-up the 6 points and adding all exceptional divisors, the two
generators become trivial and the resulting surface S̃′ is simply connected.
The affine surface S is obtained after blowing-down some rational curves
in S̃ and is therefore simply connected as well.

The second assertion of the lemma directly follows from Van Kampen
Theorem. �

3.5. Reducible representations versus singularities.

Theorem 3.7 ([2, 19]). — The surface S(A,B,C,D) is singular if, and
only if, we are in one of the following cases

• ∆(a, b, c, d) = 0 where

∆ = (2(a2 + b2 + c2 + d2)− abcd− 16)2 − (4− a2)(4− b2)(4− c2)(4− d2),

• at least one of the parameters a, b, c or d equals ±2.
More precisely, a representation ρ is sent to a singular point if, and only if,
we are in one of the following cases :

• the representation ρ is reducible and then ∆ = 0,
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• one of the generators ρ(α), ρ(β), ρ(γ) or ρ(δ) equals ±I (the corre-
sponding trace parameter is then equal to ±2).

In fact, it is proved in [2] that the set Z of parameters (A,B,C,D) for
which S(A,B,C,D) is singular is defined by δ = 0 where δ is the discriminant
of the polynomial

Pz = z4 − Cz3 − (D + 4)z2 + (4C −AB)z + 4D +A2 +B2

defined in section 4.1: Pz has a multiple root at each singular point. Now,
consider the ramified cover

Π : C4 → C4; (a, b, c, d) 7→ (A,B,C,D)

defined by (1.5). One can check by direct computation that

δ ◦Π = 1
16

(a2 − 4)(b2 − 4)(c2 − 4)(d2 − 4)∆2.

One also easily verifies that the locus of reducible representations is also
the ramification locus of Π:

Jac(Π) = −1
2

∆.

It is a well known fact (see [19]) that Okamoto symmetries permute the
two kinds of degenerate representations given by Theorem 3.7. For instance,
a singular point is defined by the following equations:

A = 2x+ yz, B = 2y + xz, C = 2z + xy

and x2 + y2 + z2 + xyz = Ax+By + Cz +D.
Now, a compatible choice of parameters (a, b, c, d) is provided by

(a, b, c, d) = (y, z, x, 2)

and one easily check that the corresponding representations satisfy ρ(δ)= I.

3.6. SU(2)-representations versus bounded components.

When a, b, c, and d are real numbers, A, B, C, and D are real as well.
In that case, the real part S(A,B,C,D)(R) stands for SU(2) and SL(2,R)-
representations; precisely, each connected component of the smooth part
of S(A,B,C,D)(R) is either purely SU(2), or purely SL(2,R), depending on
the choice of (a, b, c, d) fitting to (A,B,C,D).

Moving into the parameter space {(a, b, c, d)}, when we pass from SU(2)
to SL(2,R)-representations, we must go through a representation of the
group SU(2) ∩ SL(2,R) = SO(2,R). Since representations into SO(2,R)
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are reducible, they correspond to singular points of the cubic surface (see
§3.5). In other words, any bifurcation between SU(2) and SL(2,R)-repre-
sentations creates a real singular point of S(A,B,C,D).

Since SU(2)-representations are contained in the cube [−2, 2]3, they al-
ways form a bounded component of the smooth part of S(A,B,C,D)(R): Un-
bounded components always correspond to SL(2,R)-representations, what-
ever the choice of parameters (a, b, c, d) is.

The topology of S(A,B,C,D)(R) is studied in [2] when (a, b, c, d) are real
numbers. There are at most four singular points, and the smooth part has
at most one bounded and at most four unbounded components. On the
other hand, if A, B, C, and D are real numbers, then a, b, c, and d are not
necessarily real.

Example 3.8. — If a, b, c, and d are purely imaginary numbers, then
A, B, C, and D are real numbers. In this specific example, there are rep-
resentations ρ : π1(S2

4)→ SL(2,C) with trace parameters

(a, b, c, d, x, y, z) ∈ (iR)4 × (R)3,

the image of which are Zariski dense in the (real) Lie group SL(2,C). Such
a representation correspond to a point (x, y, z) on S(A,B,C,D)(R) which is
not realized by a representation into SL(2,R).

The goal of this section is to prove Theorem B which partly extends the
above mentionned results of Benedetto and Goldman [2].

Denote by Z ⊂ R4 the subset of those parameters (A,B,C,D) for which
the corresponding surface S(A,B,C,D)(R) is singular (see section 3.5). Over
each connected component of R4 \Z, the surface S(A,B,C,D)(R) is smooth
and has constant topological type. Let B be the union of connected compo-
nents of R4 \Z over which the smooth surface has a bounded component.

The ramified cover Π : C4 → C4; (a, b, c, d) 7→ (A,B,C,D) has de-
gree 24; Okamoto correspondences, defined in section 2.5, “act” transitively
on fibers (recall that Π is not Galois). Because of their real nature, these
correspondences permute real parameters (a, b, c, d): therefore, Π restricts
to a degree 24 ramified cover Π|R4 : R4 → Π(R4). Following [2], we have

Π−1(B) ∩ R4 = (−2, 2)4 \ {∆ = 0}.

Using again that SU(2)∩ SL(2,R) = SO(2) is abelian, and therefore corre-
sponds to reducible representations, we promptly deduce that, along each
connected component of (−2, 2)4 \{∆ = 0}, the bounded component of the
corresponding surface S(A,B,C,D)(R) constantly stands either for SU(2)-
representations, or for SL(2,R)-representations. We shall denote by BSU(2)
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and BSL(2,R) the corresponding components of B. Theorem B may now be
rephrased as the following equalities:

B = BSU(2) = BSL(2,R).

To prove these equalities, we first note that BSU(2) ∪BSL(2,R) ⊂ Π([−2, 2]4)
is obviously bounded by −8 6 A,B,C 6 8 and −20 6 D 6 28 (this bound
is not sharp !).

Lemma 3.9. — The set B is bounded, contained into −8 6 A,B,C 6 8
and −56 6 D 6 68.

Proof. — The orbit of any point p belonging to a bounded component of
S(A,B,C,D)(R) is bounded. Applying the tools involved in section 4, we de-
duce that the bounded component is contained into [−2, 2]3. Therefore, for
any p = (x, y, z) and sx(p) = (x′, y, z) belonging to the bounded compo-
nent, we get A = x + x′ + yz and then −8 6 A 6 8. Using sy and sz, we
get the same bounds for B and C. Since p is in the surface, we also get
D = x2 + y2 + z2 + xyz −Ax−By − Cz. �

The order 24 group of Benedetto-Goldman symmetries act on the pa-
rameters (A,B,C,D) by freely permutting the triple (A,B,C), and freely
changing sign for two of them. This group acts on the set of connected
components of R4 \ Z, B, BSU(2) and BSL(2,R). The crucial Lemma is

Lemma 3.10. — Up to Benedetto-Goldman symmetries, R4\Z has only
one bounded component.

Sketch of proof. — Up to Benedetto-Goldman symmetries, one can al-
ways assume 0 6 A 6 B 6 C. This fact is easily checked by looking at the
action of symmetries on the projective coordinates [A : B : C] = [X : Y : 1]:
the triangle T = {0 6 X 6 Y 6 1} happens to be a fundamental domain
for this group action. One can show by standart computation (see [7], proof
of Lemma 9.8) that R4 \ Z has exactly one bounded component over the
cone

C = {(A,B,C) ; 0 6 A 6 B 6 C}
with respect to the projection (A,B,C,D) 7→ (A,B,C).

�

We thus conclude that B = BSU(2) = BSL(2,R) and Theorem B is proved in
the case the real surface S(A,B,C,D)(R) is smooth. The general case follows
from the following lemma, the proof of which is left to the reader.

Lemma 3.11. — Let (A,B,C,D) be real parameters such that the
smooth part of the surface S(A,B,C,D)(R) has a bounded component. Then,
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there exist an arbitrary small real perturbation of (A,B,C,D) such that
the corresponding surface is smooth and has a bounded component.

We would like now to show that there is actually only one bounded
component in R4 \ Z (up to nothing).

Inside [−2, 2]4, the equation ∆ splits into the following two equations

2(a2 + b2 + c2 + d2)− abcd− 16 = ±
√

(4− a2)(4− b2)(4− c2)(4− d2).

Those two equations cut-off the parameter space [−2, 2]4 into many con-
nected components and we have(4)

Theorem 3.12 (Benedetto-Goldman [2]). — When a, b, c and d are
real and S(A,B,C,D)(R) is smooth, then S(A,B,C,D)(R) has a bounded com-
ponent if, and only if, a, b, c and d both lie in (−2, 2). In this case, the
bounded component corresponds to SL(2,R)-representations if, and only if,

2(a2 + b2 + c2 + d2)− abcd− 16 >
√

(4− a2)(4− b2)(4− c2)(4− d2).

When we cross the boundary

2(a2 + b2 + c2 + d2)− abcd− 16 =
√

(4− a2)(4− b2)(4− c2)(4− d2)

inside (−2, 2)4, we pass from SL(2,R) to SU(2)-representations: at the
boundary, the bounded component must degenerate down to a singular
point.

We now prove the

Proposition 3.13. — The set (−2, 2)4\{∆ = 0} has 24 connected com-
ponents, 8 of them corresponding to SL(2,R)-representations, the other 16
to SU(2)-representations. Okamoto correspondances permute transitively
those components.

Recall that the group of cover transformations Q has order 8 and does
not change the nature of the representation: the image ρ(π1(S2

4)) remains
unchanged in PGL(2,C). Therefore, up to this tame action, Okamoto cor-
respondence provides, to any smooth point (A,B,C,D, x, y, z) of the char-
acter variety, exactly 3 essentially distinct representations, two of them in
SU(2), and the third one in SL(2,R). It may happens (see [32]) that one of
the two SU(2)-representations is dihedral, while the other one is dense!

Proof. — We shall prove that the SL(2,R)-locus, i.e. the real semi-algebraic
set X of [−2, 2]4 defined by

2(a2 + b2 + c2 + d2)− abcd− 16 >
√

(4− a2)(4− b2)(4− c2)(4− d2),

(4) In [2], the connected components of [−2, 2]4 standing for SL(2,R)-representations are
equivalently defined by ∆ > 0 and 2(a2 + b2 + c2 + d2)− abcd− 16 > 0.

ANNALES DE L’INSTITUT FOURIER



DYNAMICS AND IRREDUCIBILITY OF PAINLEVÉ VI EQUATION 2957

consist in connected neighborhoods of those 8 vertices corresponding to the
Cayley surface

(a, b, c, d) = (ε1 · 2, ε2 · 2, ε3 · 2, ε4 · 2), εi = ±1, ε1ε2ε3ε4 = 1.

Benedetto-Goldman symmetries act transitively on those components. On
the other hand, the Cayley surface also arise for (a, b, c, d) = (0, 0, 0, 0),
which is in the SU(2)-locus: the Okamoto correspondence therefore sends
any of the 8 components above into the SU(2)-locus, thus proving the the-
orem.

By abuse of notation, still denote by Z the discriminant locus defined by
{∆ = 0} ⊂ (−2, 2)4. The restriction Za,b of Z to the slice

Πa,b = {(a, b, c, d) ; c, d ∈ (−2, 2)}, (a, b) ∈ (−2, 2)2,

is the union of two ellipses, namely those defined by

c2 + d2 − δcd+ δ2 − 4 = 0, where δ = 1
2

(
ab±

√
(4− a2)(4− b2)

)
.

2a2 + 2b2 + 2c2 + 2d2 − abcd− 16 = 0

(−2,−2)

(−2, 2)

(2,−2)

(2, 2)

Πa,b Za,b = {∆ =0 }

Xa,b

1

Figure 3.1. Z restricted to the slice Πa,b.

Those two ellipses are circumscribed into the square Πa,b (see figure 3.1)
and, for generic parameters a and b, cut the square into 13 connected
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components. One easily verify that SL(2,R)-components (namely those
connected components of Xa,b = X ∩Πa,b defined by the inequality of the
previous theorem) are those 4 neighborhoods of the vertices of the square.

This picture degenerates precisely when a = ±2, b = ±2 or a = ±b. We
do not need to consider the first two cases, since they are on the boudary of
(−2, 2)4. Anyway, in these cases, the two ellipses coincide; they moreover
degenerate to a double line when a = ±b.

In the last case a = ±b, the picture bifurcates. When a = b, one of
the ellipses degenerates to the double line c = d, and the two components
of Xa,b near the vertices (2, 2) and (−2,−2) collapse. When a = −b, the
components of Xa,b near the two other vertices collapse as well. This means
that each component of Xa,b stands for exactly two components of X: we
finally obtain 8 connected components for the SL(2,R)-locus X ⊂ (−2, 2)4.
One easily verify that there are sixteen SU(2)-components in (−2, 2)4 \ Z.

�

4. Bounded Orbits

4.1. Dynamics of parabolic elements

Parabolic elements will play an important role in the proof of theo-
rem 1.8. In this section, we describe the dynamics of these automorphisms,
on any member S of our family of cubic surfaces. Since any parabolic ele-
ment is conjugate to a power of gx, gy or gz, we just need to study one of
these examples.

Once the parameters A, B, C, and D have been fixed, the automor-
phism gz is given by

gz

xy
z

 =

 A− x− zy
B −Az + zx+ (z2 − 1)y

z

 .
This defines a global polynomial diffeomorphism of C3, that preserves
each horizontal plane Πz0 = {(x, y, z0), x ∈ C, y ∈ C}. On each of these
planes, gz induces an affine transformation(

x

y

)
7→

(
−1 −z0
z0 z20 − 1

) (
x

y

)
+
(
A

B −Az0

)
,

which preserves the conic Sz0 = S ∩ Πz0 . The trace of the linear part of
this affine transformation is z20 − 2 while the determinant is 1.
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Proposition 4.1. — Let S be any member of the family of cubic sur-
faces Fam. Let gz be the automorphism of S defined by the composition
sy ◦ sx. On each fiber Sz0 of the fibration

πz : S → C, πz(x, y, z) = z,

gz induces a homographic transformation gz0 , and
• gz0 is an elliptic homography if and only if z0 ∈ (−2, 2); this ho-

mography is periodic if and only if z0 is of type ±2 cos(πθ) with θ
rational;
• gz0 is parabolic (or the identity) if and only if z0 = ±2;
• gz0 is loxodromic if and only if z0 is not in the interval [−2, 2].

If z0 is different from 2 and −2, gz has a unique fixed point inside Πz0 ,
the coordinate of which are (x0, y0, z0) where

x0 = Bz0 − 2A
z02 − 4

, y0 = Az0 − 2B
z02 − 4

.

This fixed point is contained in the surface S if and only if z0 satisfies the
quartic equation Pz(z0) = 0 where

(4.1) Pz = z4 − Cz3 − (D + 4)z2 + (4C −AB)z + 4D +A2 +B2.

In that case, the union of the two gz-invariant lines of Πz0 which go through
the fixed point coincides with Sz0 ; moreover, the involutions sx and sy per-
mute those two lines. If the fixed point is not contained in S, the conic Sz0

is smooth, and the two fixed points of the (elliptic or loxodromic) homog-
raphy gz0 are at infinity.

If z0 = 2, the affine transformation induced by gz on Πz0 is

gz0

(
x

y

)
=
(
−1 −2
2 3

)(
x

y

)(
A

B − 2A

)
.

Either gz0 has no fixed point, or A = B and there is a line of fixed points,
given by x+y = A/2. This line of fixed points intersects the surface S if and
only if Sz0 coincides with this (double) line. In that case the involutions sx
and sy also fix the line pointwise. When the line does not intersect S,
the conic Sz0 is smooth, with a unique point at infinity; this point is the
unique fixed point of the parabolic transformation gz0 . In particular, any
point of Sz0 goes to infinity under the action of gz.

If z0 = −2, then

gz0

(
x

y

)
=
(
−1 2
−2 3

)(
x

y

)(
A

B + 2A

)
.
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Either gz does not have any fixed point in Πz0 , or A = −B and gz0 has
a line of fixed points given by x − y = A/2. This line intersects S if and
only if Sz0 coincides with this (double) line. In that case the involutions sx
and sy fixe the line pointwise.

Lemma 4.2. — With the notation that have just been introduced, the
homographic transformation gz0 induced by gz on Sz0 has a fixed point
in Sz0 if and only if z0 satisfies equation (4.1). Moreover

• when z0 6= 2,−2, Sz0 is a singular conic, namely a union of two
lines that are permuted by sx and sy, and the unique fixed point of
gz0 is the point of intersection of these two lines, with coordinates

x0 = Bz0 − 2A
z02 − 4

, y0 = Az0 − 2B
z02 − 4

;

• when z0 = 2, then A = B, Sz0 is the double line x+ y = A/2, and
this line is pointwise fixed by gz0 , sx and sy;
• when z0 = −2, then A = −B, Sz0 is the double line x − y = A/2,

and this line is pointwise fixed by gz0 , sx and sy;

The dynamics of gz on S is now easily described. Let p0 = (x0, y0, z0)
be a point of S. If z0 is in the interval (−2, 2), the orbit of p0 under gz is
bounded, and it is periodic if, and only if, either p0 is a fixed point, or z0
is of type ±2 cos(πθ), where θ is a rational number. If z0 = ±2, and if p0
is not a fixed point, gn(p0) goes to infinity when n goes to +∞ and −∞.
If z0 is not contained in the interval [−2, 2], for instance if the imaginary
part of z0 is not 0, either p0 is fixed or gn(p0) goes to infinity when n goes
to −∞ or +∞. Of course, the same kind of results are valid for gx and gy,
with the appropriate permutation of variables and parameters.

4.2. Bounded Orbits

The goal of this setion is to prove Theorem C. We fix a point p in one of
the surfaces S and denote its Γ±2 -orbit by Orb(p).

Lemma 4.3. — If Orb(p) is bounded and #Orb(p) > 4, then A, B, C,
and D are real and p ∈ S(R).

Proof. — Let p0 = (x0, y0, z0) be a point of the orbit. If the third co-
ordinate z0 6∈ (−2, 2), the homography induced by gz on the conic Sz0

is parabolic or hyperbolic. Since the orbit of p0 is bounded, this implies
that p0 is a fixed point of gz, sx and sy (see lemma 4.2). Since Orb(p0)
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has length > 4, sz(p0) is different from p0, so that p0 is not fixed by gx,
nor by gy either ; this implies that x0, y0 ∈ (−2, 2). Moreover, the point
p1 := sz(p0) = (x0, y0, z1) is not fixed by gz, otherwise the orbit would have
length 2, so that z1 ∈ (−2, 2) and p1 ∈ (−2, 2)3. This argument shows the
following: if one of the coordinates of p0 is not contained in (−2, 2), then p0
is fixed by two of the involutions sx, sy and sz while the third one maps p0
into (−2, 2)3.

Let now p be a point of the orbit with coordinates in (−2, 2)3; if the
three points sx(p), sy(p) and sz(p) either escape from (−2, 2)3 or coincide
with p, then the orbit reduces to {p, sx(p), sy(p), sz(p)}, and has length
6 4. From this we deduce that the orbit contains at least two distinct
points p1, p2 ∈ (−2, 2)3, which are, say, permuted by sx. Let (xi, y1, z1) be
the coordinates of pi, i = 1, 2. Then, A = x1 + x2 + y1z1 ∈ R. If B and C
are also real, then p1 is real and satisfies the equation of S, so that D is
real as well and Orb(m) = Orb(p1) ⊂ S(R).

Now, assume by contradiction that B 6∈ R. Then,

qi := sy(pi) = (xi, B − y1 − xiz1, z1) 6∈ (−2, 2)

and is therefore fixed by sx (otherwise the orbit would not be bounded):
we thus have

2xi + (B − y1 − xiz1)z1 = A.
Since B is the unique imaginary number of this equation, z1 must vanish,
and we get x1 = x2(= A

2 ), a contradiction. A similar argument shows
that C must be real as well. �

Remark 4.4. — By the same way, replacing (−2, 2) and R respectively
by (−2, 2) ∩ 2 cos(πQ) and R ∩Q in the previous proof shows that finite
orbits of length > 4 occur only for real algebraic (A,B,C,D, x, y, z). This
was noticed in [7], but now follows from the complete classification of finite
orbits in [24].

Lemma 4.5. — Let S be an element of the family Fam and p a point
of S. There exists a positive integer N such that, if p′ is a point of the orbit
of p with a coordinate of the form

2 cos(π k
n

), k ∧ n = 1,

then n divides N .

Proof. — The point p is an element of the character variety χ(S2
4). Let

us choose a representation ρ : π1(S2
4) → SL(2,C) in the conjugacy class

that is determined by p. Since π1(S2
4) is finitely generated, Selberg’s lemma
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(see [1]) implies the existence of a torsion free, finite index subgroup G of
ρ(π1(S2

4)). If we define N to be the cardinal of the quotient ρ(π1(S2
4))/G,

then the order of any torsion element in ρ(π1(S2
4)) divides N .

If p′ is a point of the orbit of p, the coordinates of p′ are traces of elements
of ρ(π1(S2

4)). Assume that the trace of an elementM in ρ(π1(S2
4)) is of type

2 cos(πθ). If θ = k
n and k and n are relatively prime integers, then M is a

cyclic element of ρ(π1(S2
4)) of order n, so that n divides N . �

Proof of Theorem C. — Let Orb(p) be an infinite and bounded Γ±2 -
orbit in S = S(A,B,C,D). Following Lemma 4.3, A, B, C and D are real
and Orb(p) ⊂ S(R). We want to prove that the closure Orb(p) is open in
S(R) \ {Sing(S(R))}; since Orb(p) is closed, it will therefore coincide with
the (unique) bounded connected component of S \ {Sing(S)}, thus proving
the theorem.

We first claim that there exists an element (actually infinitely many)
p0 = (x0, y0, z0) of the orbit which is contained in (−2, 2)3 and for which
at least one of the Möbius transformations gx0 , gy0 or gz0 is (elliptic) non
periodic. Indeed, if a point p0 of the orbit is such that gz0 is not of the form
above, then we are in one of the following cases

• Pz(z0) = 0 and p0 is a fixed point of gz0 ,
• z0 = 2 cos(π kn ) with k ∧ n = 1, n|N and gz0 is periodic of period n

(where N is given by Lemma 4.5). This gives us finitely many possibilities
for z0; we also get finitely many possibilities for x0 and y0 and the claim
follows.

Let p0 be a point of Orb(p), with, say, gx0 elliptic and non periodic,
so that the closure Orb(p) contains the "circle" Orbgx(p0) = Sx0(R). Let
us first prove that Orb(p) contains an open neighborhood of p0 in S(R) \
{Sing(S(R))}.

Since the point p0 is not fixed by gx = sz ◦ sy, then either sy or sz does
not fix p0, say sz; this means that the point p0 is not a critical point of the
projection

πx × πy : S(R)→ R2 ; (x, y, z) 7→ (x, y).

Therefore, there exists some ε > 0 and a neighborhood Vε of p0 in S(R)
such that πx × πy maps Vε diffeomorphically onto the square

(x0 − ε, x0 + ε)× (y0 − ε, y0 + ε).

By construction, we have

πx × πy(Orb(p)) ⊃ πx × πy(Orbgx(p0)) ⊃ {x0} × (y0 − ε, y0 + ε).
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For each y1 ∈ (y0−ε, y0 +ε) of irrational type, that is to say not of the form
2 cos(πθ) with θ rational, there exists p1 = (x0, y1, z1) ∈ Orb(p) (namely,
the preimage of (x0, y1) by πx × πy) and

Orb(p) ⊃ Orbgy (p1) = Sy1(R);

in other words, for each y1 ∈ (y0 − ε, y0 + ε) of irrational type, we have

πx × πy(Orb(p)) ⊃ πx × πy(Orbgy (p1)) ⊃ (x0 − ε, x0 + ε)× {y0}.

Since those coordinates y1 of irrational type are dense in (y0 − ε, y0 + ε),
we deduce that Vε ⊂ Orb(p), and Orb(p) is open at p0.

It remains to prove that Orb(p) is open at any point q ∈ Orb(p) which
is not a singular point of S(R). Let q = (x0, y0, z0) be such a point and
assume that q 6∈ Orb(p) (otherwise we have already proved the assertion).

Since q is not a singular point of S(R), one of the projections, say πx ×
πy : S(R) → R2, is regular at q and we consider a neighborhood Vε like
above, πx×πy(Vε) = (x0−ε, x0+ε)×(y0−ε, y0+ε). By assumption, Orb(p)∩
Vε is infinite (accumulating q) and, applying once again Lemma 4.5, one
can find one such point p1 = (x1, y1, z1) ∈ Orb(p)∩Vε such that either x1 or
y1 has irrational type, say x1. Now, reasonning with p1 like we did above
with p0, we eventually conclude that Vε ⊃ Orb(p), and Orb(p) is open
at q. �

5. Invariant geometric structures

In this section, we study the existence ofA-invariant geometric structures
on surfaces S of the family Fam. An example of such an invariant structure
is given by the area form Ω, defined by (1.6) in section 1.1. Another example
occurs for the Cayley cubic: SC is covered by C∗×C∗ and the action of A
on SC is covered by the monomial action of GL(2,Z), that is also covered
by the linear action of GL(2,Z) on C×C if we use the covering mapping

π : C×C→ C∗ ×C∗, π(θ, φ) = (exp(θ), exp(φ));

as a consequence, there is an obvious A-invariant affine structure on SC .

Remark 5.1. — The surface SC is endowed with a natural orbifold struc-
ture, the analytic structure near its singular points being locally isomorphic
to the quotient of C2 near the origin by the involution σ(x, y) = (−x,−y).
The affine structure can be understood either in the orbifold language, or
as an affine structure defined only outside the singularities (see below).
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5.1. Invariant curves, foliations and webs

We start with

Lemma 5.2. — Whatever the choice of S in the family Fam, the group A
does not preserve any (affine) algebraic curve on S.

Of course, invariant curves appear if we blow up singularities. This is im-
portant for the study of special (Riccati) solutions of Painlevé VI equation
(see section 6).

Proof. — Let C be an algebraic curve on S. Either C is contained in a
fiber of πz, or the projection πz(C) covers C minus at most finitely many
points. If C is not contained in a fiber, we can choose m0 = (x0, y0, z0)
in C and a neighborhood U of m0 such that z0 is contained in (0, 2) and,
in U, C intersects each fiber Sz of the projection πz in exactly one point.
Let m′ = (x′, y′, z′) be any element of C ∩ U such that z′ is an element
of (0, 2). Then gz is an elliptic transformation of Sz′ that preserves C ∩Sz′ ;
since the intersection of C and Sz′ contains an isolated point m′, this
point is gz periodic. As a consequence, z′ is of the form 2 cos(πp/q) (see
proposition 4.1). Since any z′ ∈ (0, 2) sufficiently close to z0 should satisfy
an equation of this type, we obtain a contradiction.

Since no curve can be simultaneously contained in fibers of πx, πy and πz,
the lemma is proved. �

A (singular) web on a surface X is given by a hypersurface in the pro-
jectivized tangent bundle PTX; for each point, the web determines a finite
collection of directions tangent to X through that point. The number of
directions is constant on an open subset of X but it may vary along the
singular locus of the web. Foliations are particular cases of webs, and any
web is locally made of a finite collection of foliations in the complement of
its singular locus.

Proposition 5.3. — Whatever the choice of S in the family Fam, the
group A does not preserve any web on S.

Proof. — Let us suppose that there exists an invariant web W on one of
the surfaces S. Let k and l be coprime positive integers and m = (x, y, z)
be a periodic point of gz of period l, with

z = 2 cos(πk/l).

Let L1, . . . , Ld be the directions determined by W through the point m,
and C1, . . . , Cd the local leaves of W which are tangent to these directions.
The automorphism gsz, with s = l(d!), fixes m, preserves the web and fixes
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each of the directions Li; it therefore preserves each of the Ci. The proof of
lemma 5.2 now shows that d = 1 and that the curves Ci are contained in
the fiber of πz through m. Since the set of points m which are gz-periodic
is Zariski dense in S, this argument shows that the web is the foliation by
fibers of πz. The same argument shows that the web should also coincide
with the foliations by fibers of πx or πy, a contradiction. �

5.2. Invariant Affine Structures

A holomorphic affine structure on a complex surface M is given by an
atlas of charts Φi : Ui → C2 for which the transition functions Φi ◦Φ−1

j are
affine transformations of the plane C2. A local chart Φ : U → C2 is said to
be affine if, for all i, Φ◦Φ−1

i is the restriction of an affine transformation of
C2 to Φi(Ui)∩Φ(U). A subgroup G of Aut(M) preserves the affine structure
if elements of G are given by affine transformations in local affine charts.

Theorem 5.4. — Let S be an element of Fam. Let G be a finite index
subgroup of Aut(S). The group G preserves an affine structure on S \
Sing(S), if, and only if S is the Cayley cubic SC .

In what follows, S is a cubic of the family Fam and G will be a finite
index subgroup of A preserving an affine structure on S.

Before giving the proof of this statement, we collect a few basic results
concerning affine structures. Let X be a complex surface with a holomor-
phic affine structure. Let π : X̃ → X be the universal cover of X; the
group of deck transformations of this covering is isomorphic to the funda-
mental group π1(X). Gluing together the affine local charts of X, we get a
developping map

dev : X̃ → C2,

and a monodromy representation Mon : π1(X)→ Aff(C2) such that

dev(γ(m)) = Mon(γ)(dev(m))

for all γ in π1(X) and all m in X̃. The map dev is a local diffeomorphism
but, a priori, it is neither surjective, nor a covering onto its image.

Let f be an element of Aut(X) that preserves the affine structure of X.
Let m0 be a fixed point of f, let m̃0 be an element of the fiber π−1(m0),
and let f̃ : X̃ → X̃ be the lift of f that fixes m̃0. Since f is affine, there
exists a unique affine automorphism Aff(f) of C2 such that

dev ◦ f̃ = Aff(f) ◦ dev.
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5.3. Proof of theorem 5.4: step 1.

In this first step, we show that S \ Sing(S) cannot be simply connected,
and deduce from this fact that S is singular. Then we study the singularities
of S and the fundamental group of S \ Sing(S).

Simple connectedness. — Assume that S \Sing(S) is simply connected.
The developping map dev is therefore defined on S \Sing(S)→ C2. Let N
be a positive integer for which gNx is contained inG. Choose a fixed pointm0
of gx as a base point. Since gNx preserves the affine structure, there exists
an affine transformation Aff(gNx ) such that

dev ◦ gNx = Aff(gNx ) ◦ dev.

In particular, dev sends periodic points of gNx to periodic points of Aff(gNx ).
Let m be a nonsingular point of S with its first coordinate in the inter-
val (−2, 2), and let U be an open neighborhood of m. Section 4.1 shows
that periodic points of gNx form a Zariski-dense subset of U, by which we
mean that any holomorphic functions Ψ : U → C which vanishes on the set
of periodic points of gNx vanishes everywhere. Since dev is a local diffeo-
morphism, periodic points of Aff(gNx ) are Zariski-dense in a neighborhood
of dev(m), and therefore Aff(gNx ) = Id. This provides a contradiction, and
shows that S \ Sing(S) is not simply connected.

Consequently, lemma 3.6 implies that S is singular and that the funda-
mental group of S \ Sing(S) is generated, as a normal subgroup, by the
local fundamental groups around the singularities.

Orbifold structure. — We already explained in section 3.4 that the sin-
gularities of S are quotient singularities. If q is a singular point of S, S
is locally isomorphic to the quotient of the unit ball B in C2 by a finite
subgroup H of SU(2).

The local affine structure around q can therefore be lifted into a H-
invariant affine structure on B \ {(0, 0)}, and then extended up to the
origin by Hartogs theorem. In particular, dev lifts to a local diffeomor-
phism between B and an open subset of C2. This remark shows that the
affine structure is compatible with the orbifold structure of S defined in
section 3.4.

Let h be an element of the local fundamental group H. Let us lift the
affine structure on B and assume that the monodromy action of h is trivial,
i.e. dev ◦ h = dev. Since dev is a local diffeomorphism, the singularity
is isomorphic to a quotient of B by a proper quotient of H, namely the
quotient of H by the smallest normal subgroup containing h. This provides
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a contradiction and shows that (i) H embeds in the global fundamental
group of S \Sing(S) and (ii) the universal cover of S in the orbifold sense is
smooth (it is obtained by adding points to the universal cover of S \ Sing(S)
above singularities of S).

In what follows, we denote the orbifold universal cover by π : S̃ → S,
and the developing map by dev : S̃ → C2.

Singularities. — Let q be a singular point of S. Let q̃ be a point of the
fiber π−1(q). Since the group A fixes all the singularities of S, it fixes q and
one can lift the action of A on S to an action of A on S̃ that fixes q̃. If f is an
element of A, f̃ will denote the corresponding holomorphic diffeomorphism
of S̃. Then we compose dev by a translation of the affine plane C2 in order
to assume that

dev(q̃) = (0, 0).
By assumption, dev ◦ g̃ = Aff(g) ◦ dev for any element g in G, from
which we deduce that the affine transformation Aff(g) are in fact linear.
Since A almost preserves an area form, Aff(g) is an element of GL(2,C)
with determinant +1 or −1; passing to a subgroup of index 2 in G, we shall
assume that the determinant is 1. Since dev realizes a local conjugation
between the action of G near q̃ and the action of Aff(G) near the origin,
the morphism {

G → SL(2,C)
g 7→ Aff(g)

is injective.
Since G is a finite index subgroup of Aut(S), G contains a non abelian free

group of finite index and is not virtually solvable. Let H be the finite sub-
group of π1(S \Sing(S)) that fixes the point q̃. This group is normalized by
the action of A on S̃. Consequently, using the local affine chart determined
by dev, the group Aff(G) normalizes the monodromy group Mon(H). If
Mon(H) is not contained in the center of SL(2,C), the eigenlines of the
elements of Mon(H) determine a finite, non empty, and Aff(G)-invariant
set of lines in C2, so that Aff(G) is virtually solvable. This would contra-
dict the injectivity of g 7→ Aff(g). From this we deduce that any element
of Mon(H) is a homothety with determinant 1. Since the monodromy
representation is injective on H, we conclude that H "coincides" with the
subgroup {+Id,−Id} of SU(2).

Linear part of the monodromy. — By lemma 3.6, the fundamental
group of S \ Sing(S) is generated, as a normal subgroup, by the finite fun-
damental groups around the singularities of S. Since ±Id is in the center
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of GL(2,C), the linear part of the monodromy Mon(γ) of any element γ
in π1(S \ Sing(S)) is equal to +Id or −Id.

5.4. Proof of theorem 5.4: step 2

We now study the dynamics of the parabolic elements of G near the fixed
point q.

Linear part of automorphisms. — Let g be an element of the group G.
Let m be a fixed point of g and m̃ a point of the fiber π−1(m). Let g̃

m̃
be

the unique lift of g to S̃ fixing m̃ (with the notation used in step 1, g̃
q̃

= g̃).
Since g preserves the affine structure, there exists an affine transformation
Aff(g̃

m̃
) such that

dev ◦ g̃
m̃

= Aff(g̃
m̃

) ◦ dev.
Note that Aff(g̃

m̃
) depends on the choice of m and m̃, but that Aff(g̃

m̃
)

is uniquely determined by g up to composition by an element of the mon-
odromy group Mon(π1(S \ Sing(S)). Since the linear parts of the mon-
odromy are equal to +Id or −Id, we get a well defined morphism{

G → PSL(2,C)
g 7→ Lin(g)

that determines the linear part of Aff(g̃
m̃

) modulo ±Id for any choice of m
and m̃.

Parabolic elements. — Since the linear part Lin(g) does not depend on
the fixed point m, it turns out that Lin preserves the type of g: we now
prove and use this fact in the particular case of the parabolic elements gx, gy
and gz .

Let N be a positive integer such that gNx is contained in G. For m, we
choose a regular point of S which is periodic of period l for gNx and which
is not a critical point of the projection πx. Then gNlx fixes the fiber Sx of πx
throughm pointwise. Since gx is not periodic and preserves the fibers of πx,
this implies that the differential of gNlx atm is parabolic. Let m̃ be a point of
π−1(m) and (g̃Nlx )

m̃
the lift of gNlx fixing that point. The universal cover π

provides a local conjugation between gNlx and (g̃Nlx )
m̃

around m and m̃,
and the developping map provides a local conjugation between (g̃Nlx )

m̃
and

Lin(gNlx ). As a consequence, Lin(gNlx ) is a parabolic element of PSL(2,C).
Since a power of Lin(gNx ) is parabolic, Lin(gNx ) itself is parabolic. In par-

ticular, the dynamics of g̃Nx near q̃ is conjugate to a linear upper triangular
transformation of C2 with diagonal entries equal to 1.
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As a consequence, the lift g̃x is locally conjugate near q̃ to a linear par-
abolic transformation with eigenvalues ±1. The eigenline of this transfor-
mation corresponds to the fiber Sz through q. Since the local fundamental
group H coincides with ±Id, this eigenline is mapped to a curve a fixed
point by the covering π. In particular, the fiber Sz through q is a curve of
fixed points for gx.

Of course, a similar study holds for gy and gz.

Fixed points and coordinates of the singular point. — The study of fixed
points of gx, gy and gz (see lemma 4.2) now shows that the coordinates of
the singular point q are equal to ±2. Let εx, εy and εz be the sign of the
coordinates of q, so that

q = (2εx, 2εy, 2εz).

Recall from section 3.4 that the coefficients A, B, C, and D are uniquely
determined by the coordinates of any singular point of S. If the product
εxεyεz is positive, then, up to symmetry, q = (2, 2, 2) and S is the surface

x2 + y2 + z2 + xyz = 8x+ 8y + 8z − 28;

in this case, q is the unique singular point of S, and this singular point is
not a node: the second jet of the equation near q is (x+ y + z)2 = 0. This
contradicts the fact that q has to be a node (see section 5.3). From this we
deduce that the product εxεyεz is equal to −1, and that S is the Cayley
cubic.

6. Irreducibility of Painlevé VI Equation.

The goal of this section is to apply the previous section to the irreducibil-
ity of Painlevé VI equation.

6.1. The Riemann-Hilbert correspondance and PV I-monodromy

The naive phase space of Painlevé VI equation is parametrized by co-
ordinates (t, q(t), q′(t)) ∈ (P1 \ {0, 1,∞}) ×C2; the “good” phase space is
a convenient semi-compactification still fibering over the three punctured
sphere

M(θ)→ P1 \ {0, 1,∞}
whose fibre Mt0(θ), at any point t0 ∈ P1 \ {0, 1,∞}, is the Hirzebruch
surface F2 blown-up at 8-points minus some divisor, a union of 5 rational
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curves (see [30]). The analytic type of the fibre, namely the position of the
8 centers and the 5 rational curves, only depends on Painlevé parameters
θ = (θα, θβ , θγ , θδ) ∈ C4 and t0. This fibre bundle is analytically (but not
algebraically!) locally trivial: the local trivialization is given by the Painlevé
foliation (see [34]) which is transversal to the fibration. The monodromy of
Painlevé equation is given by a representation

π1(P1 \ {0, 1,∞}, t0)→ Diff(Mt0(θ))

into the group of analytic diffeomorphisms of the fibre.
On the other hand, the space of initial conditionsMt0(θ) may be inter-

preted as the moduli space of rank 2, trace free meromorphic connections
over P1 having simple poles at (pα, pβ , pγ , pδ) = (0, t0, 1,∞) with prescribed
residual eigenvalues ± θα2 , ± θβ2 , ± θγ2 and ± θδ2 . The Riemann-Hilbert corre-
spondance therefore provides an analytic diffeomorphism

Mt0(θ)→ Ŝ(A,B,C,D)

where Ŝ(A,B,C,D) is the minimal desingularization of S = S(A,B,C,D), the
parameters (A,B,C,D) being given by formulae (1.12) and (1.5). From this
point of view, the Painlevé VI foliation coincides with the isomonodromic
foliation: leaves correspond to universal isomonodromic deformations of
those connections. The monodromy of Painlevé VI equation correspond to
a morphism

π1(P1 \ {0, 1,∞}, t0)→ Aut(S(A,B,C,D))
and coincides with the Γ2-action described in section 2.3. For instance, gx
(resp. gy) is the Painlevé VI monodromy when t0 turns around 0 (resp. 1)
in the obvious simplest way. All this is described with much detail in [19].

6.2. Classical solutions versus periodic orbits

When S(A,B,C,D) is singular, the exceptional divisor in Ŝ(A,B,C,D) is a
finite union of rational curves in restriction to which Γ2 acts by Möbius
transformations. To each such rational curve corresponds a rational hyper-
surface H of the phase spaceM(θ) invariant by the Painlevé VI foliation.
On H, the projection M(θ) → P1 \ {0, 1,∞} restricts to a regular ratio-
nal fibration and the Painlevé equation restricts to a Riccati equation of
hypergeometric type: we get a one parameter family of Riccati solutions.
See [37, 35, 19] for a classification of singular points of S(A,B,C,D) and
their link with Riccati solutions; they occur precisely when either one of
the θ-parameter is an integer, or when the sum

∑
θi is an integer. Since
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S(A,B,C,D) is affine, there are obviously no other complete curve inMt0(θ)
(see section 5.1).

The complete list of algebraic solutions of Painlevé VI equation has been
conjectured in [4], and closed only recently by Lisovyy and Tykhyy in [24].
Apart from those solutions arising as special cases of Riccati solutions, that
are well known, they correspond to finite Γ2-orbits on the smooth part
of S(A,B,C,D) (see [22]). Following section 4.2, apart from the three well-
known families of 2, 3 and 4-sheeted algebraic solutions, other algebraic
solutions are countable and the cosines of the corresponding θ-parameters
are rational numbers. In the particular Cayley case SC = S(0,0,0,4), periodic
Γ2-orbits arise from pairs of roots of unity (u, v) on the two-fold cover
(C∗)2 (see 2.1); there are infinitely many periodic orbits in this case and
they are dense in the real bounded component of SC \ {Sing(SC)}. The
corresponding algebraic solutions were discovered by Picard in 1889 (before
Painlevé discovered the general PV I -equation !); see [26] and below.

6.3. Nishioka-Umemura and Malgrange irreducibility

In 1998, Watanabe proved in [37] the irreducibility of Painlevé VI equa-
tion in the sense of Nishioka-Umemura for any parameter θ: the generic
solution of PV I(θ) is non classical, and classical solutions are

• Riccati solutions (like above),
• algebraic solutions.

Non classical roughly means “very transcendental” with regards to the
XIXth century special functions: the general solution cannot be expressed
in an algebraic way by means of solutions of linear, or first order non linear
differential equations. A precise definition can be found in [10].

Another notion of irreducibility was introduced by Malgrange in [25]:
he defines the Galois groupoid of an algebraic foliation to be the smallest
algebraic Lie-pseudo-group that contains the tangent pseudo-group of the
foliation (hereafter referred to as the "pseudo-group"); this may be viewed as
a kind of Zariski closure for the pseudo-group of the foliation. Larger Galois
groupoids correspond to more complicated foliations. From this point of
view, it is natural to call irreducible any foliation whose Galois groupoid is
as large as possible, i.e. coincides with the basic pseudo-group.

For Painlevé equations, a small restriction has to be taken into account: it
has been known since Malmquist that Painlevé foliations may be defined as
kernels of closed meromorphic 2-forms. The pseudo-group, and the Galois
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groupoid, both preserve the closed 2-form. The irreducibility conjectured
by Malgrange is that the Galois groupoid of Painlevé equations coincide
with the algebraic Lie-pseudo-group of those transformations on the phase
space preserving ω. This was proved for Painlevé I equation by Casale in [9].

For a second order polynomial differential equation P (t, y, y′, y′′) = 0,
like Painlevé equations, Casale proved in [10] that Malgrange-irreducibility
implies Nishioka-Umemura-irreducibility; the converse is not true as we
shall see.

6.4. Invariant geometric structures

Restricting to a transversal, e.g. the space of initial conditionsMt0(θ) for
Painlevé VI equations, the Galois groupoid defines an algebraic geometric
structure which is invariant under monodromy transformations; reducibil-
ity would imply the existence of an extra geometric structure on Mt0(θ),
additional to the volume form ω, preserved by all monodromy transforma-
tions. In that case, a well known result of Cartan, adapted to our algebraic
setting by Casale in [9], asserts that monodromy transformations

• either preserve an algebraic foliation,
• or preserve an algebraic affine structure.

Here, “algebraic” means that the object is defined over an algebraic exten-
sion of the field of rational functions, or equivalently, becomes well-defined
over the field of rational functions after some finite ramified cover. For
instance, “algebraic foliation” means polynomial web. As a corollary of
proposition 5.3 and Theorem 5.4, we shall prove the following

Theorem 6.1. — The sixth Painlevé equation is irreducible in the sense
of Malgrange, except in one of the following cases:

• θω ∈ 1
2 + Z, ω = α, β, γ, δ,

• θω ∈ Z, ω = α, β, γ, δ, and
∑
ω θω is even.

All these special parameters are equivalent, modulo Okamoto symmetries,
to the case θ = (0, 0, 0, 1). The corresponding cubic surface is the Cayley
cubic.

Of course, in the Cayley case, the existence of an invariant affine structure
shows that the Painlevé foliation is Malgrange-reducible (see [8]). This will
be made more precise in section 6.6.

Before proving the theorem, we need a stronger version of Lemma 5.2
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Lemma 6.2. — Let S be an element of the family Fam. There is no
A-invariant curve of finite type in S.

By “curve of finite type” we mean a complex analytic curve in S with a
finite number of irreducible components Ci, such that the desingularization
of each Ci is a Riemann surface of finite type.

Proof. — Let C ⊂ S be a complex analytic curve of finite type. Since S
is embedded in C3, C is not compact. In particular, C is not isomorphic
to the projective line and the group of holomorphic diffeomorphisms of C
is virtually solvable. Since A contains a non abelian free subgroup, there
exists an element f in A \ {Id} which fixes C pointwise. From this we
deduce that C is contained in the algebraic curve of fixed points of f. This
shows that the Zariski closure of C is an A-invariant algebraic curve, and
we conclude by Lemma 5.2. �

6.5. Proof of theorem 6.1

In order to prove that Painlevé VI equation, for a given parameter θ ∈ C4

is irreducible, it suffices, due to [9] and the discussion above, to prove that
the space of initial conditions Mt0(θ) does not admit any monodromy-
invariant web or algebraic affine structure. Via the Riemann-Hilbert cor-
respondance, such a geometric structure will induce a similar Γ2-invariant
structure on the corresponding character variety S(A,B,C,D). But we have
to be carefull: the Riemann-Hilbert map is not algebraic but analytic.
As a consequence, the geometric structures we have now to deal with on
S(A,B,C,D) are not rational anymore, but meromorphic (on a finite ramified
cover). Anyway, the proof of proposition 5.3 is still valid in this context
and exclude the possibility of Γ2-invariant analytic web.

Multivalued affine structures. — We now explain more precisely what is
a Γ2-invariant multivalued meromorphic affine structure in the above sense.
First of all, a meromorphic affine structure is an affine structure in the sense
of section 5.2 defined on the complement of a proper analytic subset Z,
having moderate growth along Z in a sense that we do not need to consider
here. This structure is said to be Γ2-invariant if both Z, and the regular
affine structure induced on the complement of Z, are Γ2-invariant. Now, a
multivalued meromorphic affine structure is a meromorphic structure (with
polar locus Z ′) defined on a finite analytic ramified cover π′ : S′ → S; the
ramification locus X is an analytic set. This structure is said to be Γ2-
invariant if both X and Z = π′(Z ′) are invariant and, over the complement
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of X ∪Z, Γ2 permutes the various regular affine structures induced by the
various branches of π′.

Let us prove that the multivalued meromorphic affine structure induced
on S by a reduction of Painlevé VI Galois groupoid has actually no pole,
and no ramification apart from singular points of S. Indeed, let C be the
union of Z and R; then C is analytic in S but comes from an algebraic
curve in Mt0(θ) (the initial geometric structure is algebraic in Mt0(θ)),
so that the 1-dimensional part of C is a curve of finite type. Lemma 6.2
then show that C is indeed a finite set. In other words, C is contained in
Sing(S), R itself is contained in Sing(S) and Z is empty.

Singularities of S. — Since the ramification setR is contained in Sing(S),
the cover π′ is an étale cover in the orbifold sense (singularities of S′ are
also quotient singularities). Changing the cover π′ : S′ → S if necessary,
we may assume that π′ is a Galois cover.

If S is simply connected, then of course π′ is trivial, the affine structure
is univalued, and theorem 5.4 provides a contradiction. We can therefore
choose a singularity q of S, and a point q′ in the fiber (π′)−1(q). Since
π1(S; q) is finitely generated, the number of subgroups of index deg(π′) in
π1(S; q) is finite. As a consequence, there is a finite index subgroup G in Γ2
which lifts to S′ and preserves the univalued affine structure defined on S′.

We now follow the proof of theorem 5.4 for G, S′ and its affine structure.
First, we denote π : S̃ → S′ the universal cover of S′, we choose a point q̃ in
the fiber π−1(q′), and we lift the action of G to an action on the universal
cover S̃ fixing q̃. Then we fix a developping map dev : S̃ → C2 with
dev(q̃) = 0; these choices imply that Aff(g) is linear for any g in G.
Section 5.3 shows that the singularities of S and S′ are simple nodes.

Now comes the main difference with sections 5.3 and 5.4: a priori, the
fundamental group of S′ is not generated, as a normal subgroup, by the
local fundamental groups around the singularities of Sing(S′). It could be
the case that S′ is smooth, with an infinite fundamental group. So, we
need a new argument to prove that gx (resp. gy and gz) has a curve of fixed
points through the singularity q.

Parabolic dynamics. — Let g = gnx be a non trivial iterate of gx that is
contained in G. The affine transformation Aff(g) is linear, with determi-
nant 1 ; we want to show that this transformation is parabolic.

Let Ũ be an open subset of S̃ on which both dev and the universal cover
π′ ◦ π are local diffeomorphisms, and let U be the projection of Ũ on S by
π′◦π.We choose Ũ in such a way that U contains pointsm = (x, y, z) with x
in the interval [−2, 2]. The fibration of U by fibers of the projection πx is
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mapped onto a fibration F of dev(Ũ) by the local diffeomorphism dev ◦
(π′ ◦ π)−1. Let us prove, first, that F is a foliation by parallel lines.

Let m be a point of U which is g-periodic, of period l. Then, the fiber
of πx through m is a curve of fixed point for gl. If m̃ is a lift of m in S̃, one
can find a lift γ ◦ g̃l of g to S̃ (γ in π1(S, q) = Aut(π)) that fixes pointwise
the fiber through m̃. As a consequence, the fiber of F through dev(m̃)
coincides locally with the set of fixed points of the affine transformation
Aff(gl)◦Mon(γ). As such, the fiber of F through dev(m̃) is an affine line.

This argument shows that an infinite number of leaves of F are affine
lines, or more precisely coincide with the intersection of affine lines with
dev(Ũ). Since g preserves each fiber of πx, the foliation F is leafwise
(Aff(gl)◦Mon(γ))-invariant. Assume now that L is a line which coincides
with a leaf of F on dev(Ũ). If L is not parallel to the line of fixed points
of Aff(gl) ◦Mon(γ), then the affine transformation Aff(gl) ◦Mon(γ) is
a linear map (since it has a fixed point), with determinant ±1, and with
two eigenlines, one of them, the line of fixed points, corresponding to the
eigenvalue 1. This implies that Aff(gl) ◦Mon(γ) has finiter order. Since g
is not periodic, we conclude that L is parallel to the line of fixed points of
Aff(gl) ◦Mon(γ), and that the foliation F is a foliation by parallel lines.

By holomorphic continuation, we get that the image by dev of the fibra-
tion πx ◦ π is a foliation of the plane by parallel lines.

Let us now study the dynamics of g̃ near the fixed point q̃. Using the
local chart dev, g̃ is conjugate to the linear transformation Aff(g). Since g
preserves each fiber of πx, Aff(g) preserves each leaf of the foliation F .
Since g is not periodic, Aff(g) is not periodic either, and Aff(g) is a linear
parabolic transformation. As a consequence, g has a curve of fixed points
through q.

Conclusion. — We can now apply the arguments of the end of section
5.4 word by word to conclude that S is the Cayley cubic.

6.6. Picard parameters of Painlevé VI equation and the Cayley
cubic

Let us now explain in more details why the Cayley case is so special with
respect to Painlevé equations. Consider the universal cover

πt : C→ {y2 = x(x− 1)(x− t)} ; z 7→ (x(t, z), y(t, z))
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of the Legendre elliptic curve with periods Z + τZ - this makes sense at
least on a neighborhood of t0 ∈ P1 \ {0, 1,∞}. The functions τ = τ(t)
and πt are analytic in t.

The following theorem, obtained by Picard in 1889, shows that the
Painlevé equations corresponding to the Cayley cubic have (almost) classi-
cal solutions.

Theorem 6.3 (Picard, see [8] for example). — The general solution of
the Painlevé sixth differential equation PV I(0, 0, 0, 1) is given by

t 7→ x(t, c1 + c2 · τ(t)), c1, c2 ∈ C.

Moreover, the solution is algebraic if, and only if c1 and c2 are rational
numbers.

Note that c1, c2 ∈ Q exactly means that πt(c1 + c2 · τ(t)) is a torsion
point of the elliptic curve.

Finally, PV I(0, 0, 0, 1)-equation can actually be integrated by means of
elliptic functions, but in a way that is non classical with respect to Nishioka-
Umemura definition. Coming back to Malgrange’s point of view, the cor-
responding polynomial affine structure on the phase space M(0, 0, 0, 1)
has been computed by Casale in [8], thus proving the reducibility of PV I
(0, 0, 0, 1) equation (and all its birational Okamoto symmetrics) in the sense
of Malgrange.
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