
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Guillaume DUVAL & Andrzej J. MACIEJEWSKI

Jordan obstruction to the integrability of Hamiltonian systems with
homogeneous potentials
Tome 59, no 7 (2009), p. 2839-2890.

<http://aif.cedram.org/item?id=AIF_2009__59_7_2839_0>

© Association des Annales de l’institut Fourier, 2009, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2009__59_7_2839_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
59, 7 (2009) 2839-2890

JORDAN OBSTRUCTION TO THE INTEGRABILITY
OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS

POTENTIALS

by Guillaume DUVAL & Andrzej J. MACIEJEWSKI

Abstract. — In this paper, we consider the natural complex Hamiltonian sys-
tems with homogeneous potential V (q), q ∈ Cn, of degree k ∈ Z?. The known
results of Morales and Ramis give necessary conditions for the complete integra-
bility of such systems. These conditions are expressed in terms of the eigenvalues
of the Hessian matrix V ′′(c) calculated at a non-zero point c ∈ Cn, such that
V ′(c) = c. The main aim of this paper is to show that there are other obstructions
for the integrability which appear if the matrix V ′′(c) is not diagonalizable. We
prove, among other things, that if V ′′(c) contains a Jordan block of size greater
than two, then the system is not integrable in the Liouville sense. The main in-
gredient in the proof of this result consists in translating some ideas of Kronecker
about Abelian extensions of number fields into the framework of differential Galois
theory.

Résumé. — Dans cet article, nous étudions les systèmes Hamiltoniens de poten-
tiels homogènes V (q), q ∈ Cn de degré k ∈ Z∗. Morales et Ramis avaient donné des
conditions nécessaires à l’intégrabilité de ces sytèmes en termes des valeurs propres
des matrices de Hessienne V ′′(c), calculées aux points c ∈ Cn tels que V ′(c) = c.
Le thème principal de ce travail est de montrer que d’autres obstructions à l’in-
tégrabilité apparaissent quand V ′′(c) n’est pas diagonalisable. Entre autres, nous
prouvons que si V ′′(c) possède un bloc de Jordan de taille supérieure à deux, alors
le sytème n’est pas intégrable. Pour ce faire, nous avons adapté des idées de Kro-
necker sur les extensions Abeliennes de corps de nombres, dans le contexte de la
théorie de Galois différentielle.

1. Introduction

1.1. Morales and Ramis results

The Galois obstruction to the integrability of Hamiltonian systems is
formulated in the following theorem obtained by Morales and Ramis [11].

Keywords: Hamiltonian systems, integrability, differential Galois theory.
Math. classification: 37J30, 70H07, 37J35, 34M35.
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Theorem 1.1 (Morales-Ramis). — If an Hamiltonian system is com-
pletely integrable with first integrals meromorphic in a connected neigh-
bourhood of a phase curve γ, then the identity component of the differential
Galois group of the variational equation along γ is virtually Abelian.

In [10], Morales and Ramis applied this theorem to find obstructions
to the complete integrability of Hamiltonian systems with homogeneous
potentials. They considered natural systems with Hamiltonian given by

(1.1) H(q, p) = 1
2

n∑
i=1

p2
i + V (q1, . . . , qn),

where q = (q1, . . . , qn), p = (p1, . . . , pn) ∈ Cn, are the canonical coordinates
and momenta, respectively, and V (q) is a homogeneous potential of degree
k ∈ Z? := Z\{0}. To that purpose, following Yoshida [15], they studied the
variational equations (in short: VE) associated to a proper Darboux
point of V , (in short: PDP) which is a non-zero vector c ∈ Cn such that

(1.2) gradV (c) =: V ′(c) = c.

If such a Darboux point exists, then the Hamiltonian system admits a par-
ticular solution associated with this point, namely, the rectilinear trajectory

t 7→ γ(t) = (q(t), p(t)) := (ϕ(t)c, ϕ̇(t)c) ∈ C2n,

where t 7→ ϕ(t) is a complex scalar function satisfying the hyper-elliptic
differential equation

(1.3) ϕ̇(t)2 = 2
k

(1− ϕk(t)) =⇒ ϕ̈(t) = −ϕk−1(t).

The VE along the curve t 7→ γ(t) is given by

(1.4) d2η

dt2
= −ϕk−2(t)V ′′(c)η, η ∈ Cn.

The Hessian matrix V ′′(c) is a n × n complex, symmetric scalar matrix.
Assume that it is diagonalizable with eigenvalues (λ1, . . . , λn) ∈ Cn (we
called them the Yoshida coefficients). Then, up to a linear change of
unknowns, the system (1.4) splits into a direct sum of equations

(1.5) d2ηi
dt2

= −λiϕk−2(t)ηi, i = 1, . . . , n.

Morales and Ramis proved the following

Theorem 1.2 (Morales-Ramis). — Assume that the Hamiltonian sys-
tem with Hamiltonian (1.1) and deg(V ) = k ∈ Z? is completely inte-
grable by meromorphic first integrals. If c = V ′(c) is a PDP of V and
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JORDAN OBSTRUCTION TO THE INTEGRABILITY 2841

the Hessian matrix V ′′(c) is diagonalizable with the Yoshida coefficients
(λ1, . . . λn) ∈ Cn, then each pair (k, λi) belongs to Table 1.1.

Table 1.1. The Morales-Ramis table.

G(k, λ)◦ k λ Row number
k = ±2 λ is an arbitrary complex number 1

Ga |k| > 3 λ(k, p) = p+ k

2
p(p− 1) 2

Ga 1 p+ 1
2
p(p− 1), p 6= −1, 0 3

Ga -1 p− 1
2
p(p− 1), p 6= 1, 2 4

{Id} 1 0 5
{Id} -1 1 6

{Id} |k| > 3 1
2

(
k − 1
k

+ p(p+ 1)k
)

7

{Id} 3
−1
24

+ 1
6

(1 + 3p)2, −1
24

+ 3
32

(1 + 4p)2 8,9
−1
24

+ 3
50

(1 + 5p)2, −1
24

+ 3
50

(2 + 5p)2 10,11

{Id} -3
25
24
− 1

6
(1 + 3p)2, 25

24
− 3

32
(1 + 4p)2 12,13

25
24
− 3

50
(1 + 5p)2, 25

24
− 3

50
(2 + 5p)2 14,15

{Id} 4 −1
8

+ 2
9

(1 + 3p)2 16

{Id} -4 9
8
− 2

9
(1 + 3p)2 17

{Id} 5 −9
40

+ 5
18

(1 + 3p)2, −9
40

+ 1
10

(2 + 5p)2 18,19

{Id} -5 49
40
− 5

18
(1 + 3p)2, 49

40
− 1

10
(2 + 5p)2 20,21

The group G(k, λ)◦, appearing in the first column of Table 1.1, will be
defined properly later in this sections.

1.2. Jordan obstruction

In order to generalise Theorem 1.2, we are going to work without the
assumption that the Hessian matrix V ′′(c) is semi-simple. Indeed, since

TOME 59 (2009), FASCICULE 7



2842 Guillaume DUVAL & Andrzej J. MACIEJEWSKI

the Hessian matrix V ′′(c) is symmetric, it is diagonalizable if it is real.
But, even for a real potential coming from physics, PDP may be a complex
non real vector. Therefore, V ′′(c) may not be diagonalizable, see Section 6
for a discussion about this point.

Our main result is the following.

Theorem 1.3. — Let V (q) be a homogeneous potential of n variables
and degree k ∈ Z \ {−2, 0, 2}, such that H is completely integrable with
meromorphic first integrals. Then, at any proper Darboux point c = V ′(c) ∈
Cn \ {0}, the Hessian matrix V ′′(c) satisfies the following conditions:

(1) For each eigenvalue λ of V ′′(c), the pair (k, λ) belongs to Table 1.1.
(2) The matrix V ′′(c) does not have any Jordan block of size d > 3.
(3) If V ′′(c) has a Jordan block of size d = 2 with corresponding eigen-

value λ, then the row number of (k, λ) in Table 1.1 is greater or
equal to five.

For k = ±2, independently of the value of V ′′(c), the connected component
of the Galois group of the variational equation is Abelian.

In the above statement, by a Jordan block of size d with the eigen-
value λ, we mean that the Jordan form of V ′′(c) contains a block of the
form

(1.6) B(λ, d) :=


λ 0 0 . . . . . . 0
1 λ 0 . . . . . . 0
0 1 λ . . . . . . 0
. . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 λ

 ∈M(d,C),

where M(d,C) denotes the set of d× d complex matrices.

Remark 1.4. — Theorem 1.3 roughly states that Morales-Ramis The-
orem 1.2 is optimal. Indeed, up to some exceptions, if H is completely
integrable, then V ′′(c) must be diagonalizable with specific eigenvalues.

Our result is analogous to the Liapunov-Kowaleskaya Theorem, which
states that if a given system of weight-homogeneous differential equations
enjoys the Painleve property, then among other things, the linearization of
the system along a certain single-valued particular solution is diagonaliz-
able. For details, see [8]. Moreover, in the same sense, we find similarities
in the classical normal form theory of vector fields, where a complicated
dynamics appears in a neighbourhood of the equilibrium if the linearization
of the vector field is not semi-simple.

ANNALES DE L’INSTITUT FOURIER



JORDAN OBSTRUCTION TO THE INTEGRABILITY 2843

As far as we know, except for one example given in Chapter 7 in [9],
there are no explicit links between the Galois approach to the integrabil-
ity and the dynamics. Nevertheless, the above analogies were our strong
motivations for that study.

The proof of Theorem 1.3 is of another nature. It comes from arithmetic
ideas belonging to Kronecker. He observed that in Number Theory, Abelian
extensions of number fields can be characterised by simple arithmetic re-
lations. We translate this very nice observation into the framework of the
Differential Galois Theory.

1.3. VE, Yoshida transformations and Jordan blocks

The VE (1.4) is a system of differential equations with respect to the time
variable t. First, we perform the so-called Yoshida transformation, in
order to express the VE in terms of a new variable z. The great advantage of
this transformation is that it converts our original system into a new one
where the classical hypergeometric equation naturally appears. Next, we
give the canonical formulae for the subsystems of VE associated to Jordan
blocks.

The Yoshida transformation is a change of independent variable in equa-
tion (1.4) given by

(1.7) t 7−→ z = ϕk(t).

Thanks to (1.3) and the chain rule we have

d2η

dt2
=
(
dz

dt

)2
d2η

dz2 + d2z

dt2
dη

dz
,(

dz

dt

)2
= 2kz(1− z)ϕk−2(t), d2z

dt2
= [(2− 3k)z + 2(k − 1)]ϕk−2(t).

Then, after some simplifications, (1.4), becomes

(1.8) d2η

dz2 + p(z)dη
dz

= s(z)V ′′(c)η,

where

p(z) = 2(k − 1)(z − 1) + kz

2kz(z − 1)
and s(z) = 1

2kz(z − 1)
.

Next, after the classical Tchirnhauss change of dependent variable,

(1.9) η = f(z)ζ, f(z) = exp
(
− 1

2

∫
p(z)dz

)
= z−(k−1)/2k(z−1)−1/4,

TOME 59 (2009), FASCICULE 7
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equation (1.8) has the reduced form

(1.10) d2ζ

dz2 = [r0(z)Id + s(z)V ′′(c)]ζ,

where

r0(z) = ρ2 − 1
4z2 + σ2 − 1

4(z − 1)2 −
1
4
(
1− ρ2 − σ2 + τ2

0
)(1

z
+ 1

1− z

)
,

and
ρ = 1

k
, σ = 1

2
, τ0 = k − 2

2k
.

Assume that V ′′(c) contains a Jordan block B(λ, d) with d = 3, for
example. Then, the subsystem of (1.10) corresponding to this block can be
written as

d2

dz2

xy
u

 =

x′′y′′
u′′

 =

r0(z) 0 0
0 r0(z) 0
0 0 r0(z)

+ s(z)

λ 0 0
1 λ 0
0 1 λ

xy
u

 .
We rewrite it in the following form

(1.11)

x′′y′′
u′′

 =

r(z) 0 0
s(z) r(z) 0

0 s(z) r(z)

xy
u

 .
where r(z) = rλ(z) is given by

(1.12)
r(z) = r0(z) + λs(z)

= ρ2 − 1
4z2 + σ2 − 1

4(z − 1)2 −
1
4
(
1− ρ2 − σ2 + τ2)(1

z
+ 1

1− z

)
,

with

(1.13) ρ = 1
k
, σ = 1

2
, τ =

√
(k − 2)2 + 8kλ

2k
.

The above three numbers are exactly the respective exponents differences
at z = 0, z = 1 and z = ∞ of the reduced hypergeometric equation
L2 = x′′− r(z)x = 0. Thus, the solutions of L2 = 0 belong to the Riemann
scheme

(1.14) P


0 1 ∞

1
2
− 1

2k
1
4
−1− τ

2
1
2

+ 1
2k

3
4
−1 + τ

2

z

 .

Let us fix the following convention concerning the differential Galois groups
related to system (1.11) corresponding to a block of size 3. The differential
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Galois group of the first equation of this system, i.e. the differential Galois
group of the equation L2 = x′′−r(z)x = 0, with respect to the ground field
C(z), is denoted G1. This group can be determined thanks to the Kimura
theorem [5], see also [3] and [4]. In fact,

G(k, λ) := G1,

is the group appearing in the first column of Table 1. The differential Galois
group of subsystem of (1.11) consisting of first two equations is denoted
G2. Finally, the differential Galois group of whole system (1.11) is denoted
by G3.

1.4. Generalities and Galois groups of the distinct VE

In this subsection, we summarise some results about differential Galois
groups and classical Differential Algebra which we frequently use, see [6, 14].
Next, we compare the differential Galois groups of different forms of the
VE introduced in the previous subsection.

In what follows, (K, ∂) denotes an ordinary differential field with the
algebraically closed subfield of constants C. We use the standard notation,
e.g., x′ = ∂x, x′′ = ∂2x, etc., for an element x ∈ K.

• If a linear system Y ′ = AY , where A ∈ M(n1 + n2,K), splits into
a direct sum

Y ′ =
[
Y ′1
Y ′2

]
=
[
A1 0
0 A2

] [
Y1
Y2

]
where Ai ∈M(ni,K) for i = 1, 2,

then, with obvious notations, the identity component G◦ of its dif-
ferential Galois group G is a subgroup of the direct product G◦1×G◦2 .
Moreover, the two projection maps πi : G◦ → G◦i , with i = 1, 2, are
surjective. Therefore, G◦ is Abelian iff G◦1 and G◦2 are Abelian.
• If the system Y ′1 = A1Y1 is a subsystem of[

Y ′1
Y ′2

]
=
[
A1 0
B A2

] [
Y1
Y2

]
,

then the reduction morphism G◦ → G◦1 is surjective. Therefore, if
G◦ is Abelian, then G◦1 is also Abelian.

Lemma 1.5. — Let E/K be an ordinary differential field extension with
the same subfield of constants C.

TOME 59 (2009), FASCICULE 7
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(1) Let f1, . . . , fp ∈ E, and f ′i ∈ K, for i = 1, . . . , p. Then the family
{f1, . . . , fp} is algebraically dependent over K if and only if there
exists a non trivial linear relation

c1f1 + · · ·+ cpfp ∈ K with (c1, . . . , cp) ∈ Cp\{0}.

(2) Let T (E/K) be the set of elements f of E such that there exists a
non-zero linear differential equation L ∈ K[∂] such that L(f) = 0.
Then T (E/K) is a K-algebra containing the algebraic closure of
K in E. If E/K is a Picard-Vessiot extension, then T (E/K) is the
Picard-Vessiot ring of E/K, and T (E/K) = K[Zi,j ][W−1], where
W = det((Zi,j)), and (Zi,j)16i,j6n is an arbitrary fundamental ma-
trix defining the Picard-Vessiot extension.

(3) Let y′ = Ay be a differential system with A ∈M(n,K), and K ′/K

be a finite degree extension of K. Denote by G (resp. by G′) the
respective Galois groups of y′ = Ay when this system is considered
over K, (resp. over K ′). Then G′ is naturally a subgroup of G, and
(G′)◦ = G◦.

Proof. — (1) is the classical Ostrowski-Kolchin theorem about the alge-
braic independence of integrals. Its proof may be found in [6].
(2) follows directly from Exercises 1.24 on p. 17 and Corollary 1.38 on p.
30 in [14].
(3) Let F ′/K ′ be a Picard-Vessiot extension of y′ = Ay over K ′. Then
F ′ = K ′(Y ), where Y is a fundamental matrix of solutions of the system.
Set F = K(Y ). Then F/K is a Picard-Vessiot extension of y′ = Ay over
K, for which

F ′ = K ′F and F ⊂ F ′.

Since the group G′ fixes K ′ pointwise and leaves F globally invariant, i.e.,
G′ · F = F , it may be considered as a subgroup of G. Therefore, we also
have the inclusion of connected components

(G′)◦ ⊂ G◦.

From Corollary 1.30 on p. 23 in [14] and its proof, we have

dimG◦ = dimG = tr.deg(F/K).

But tr.deg(F/K) = tr.deg(K ′F/K ′) = tr.deg(F ′/K ′) = dim(G′)◦. So, the
two irreducible varieties (G′)◦ and G◦ have the same dimension, hence they
are equal. �

ANNALES DE L’INSTITUT FOURIER
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Point 3 in the above lemma is exactly Theorem 3.13 from [2] where sketch
of the proof is given. This point gives the invariance of the connected com-
ponent of the differential Galois group with respect to ramified coverings.
See also [9] for other exposition and proofs.

Let us consider the four variational equations derived in the previous
subsection, namely equations (1.4), (1.8), (1.10) and (1.11). The system
(1.4) is defined over the ground fields C(ϕ(t), ϕ̇(t)), and the other three
are defined over C(z). Let G(VEt), G(VEz), and Gblock be the differential
Galois groups of equations (1.4), (1.8), and (1.11), respectively. Then we
have the following.

Proposition 1.6. — With the notations above, we have:
(1) The Galois groups of systems (1.8) and (1.10) have common con-

nected component G(VEz)◦.
(2) The two connected components G(VEt)◦ and G(VEz)◦ are isomor-

phic.
(3) The connected component G◦block is a quotient of G(VEz)◦.

Proof. — (1) Set K = C(z) and K ′ = C(z)[f(z)], where f(z) is given by
(1.9). Then K ′/K is a finite extension. Denote by Z a fundamental matrix
of solutions of (1.10). Then f(z)Z is a fundamental matrix of solutions of
(1.8). Therefore, (1.8) and (1.10) share the same Picard-Vessiot extension
over K ′. So they have the same Galois group G′ over K ′. From point 3 of
Lemma 1.5,

(G′)◦ = G◦ : = G(VEz)◦,

is also the connected component of the Galois group of (1.10) when it is
viewed as a system over K = C(z).

(2) Consider the Yoshida map

φ : K = C(z)→ K ′ = C(ϕ(t), ϕ̇(t)),

z 7−→ ϕk(t).

This map is a morphism of fields which is not a differential morphism
for differential fields (K, ddz ) and (K ′, ddt ). But, since K ′/K is finite, the
derivation d

dz of K extends uniquely to a derivation of K ′ which is still
denoted by the same symbol. Moreover,

(1.15) d

dt
= dz

dt

d

dz
= kϕk−1ϕ̇

d

dz

Let F ′/K ′ be the Picard-Vessiot extension of (1.4) over (K ′, ddt ). Then
F ′/K ′ is a Picard-Vessiot extension of (1.8) when considered over (K ′, ddz ).

TOME 59 (2009), FASCICULE 7
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From (1.15), an automorphism of F ′/K ′ commutes with d
dt iff it commutes

with d
dz . Therefore, by point 3 of Lemma 1.5, we conclude that

G(VEt)◦ = G(VEz)◦.
(3) According to the second item given at the beginning of this subsec-

tion, the reduction map G(VEz)◦ → G◦block is surjective. Hence, G◦block is
a quotient of G(VEz)◦. �

1.5. The plan of the paper

As shown in the above section, there are several VE, but essentially we
have two connected Galois group to deal with: G(VEz)◦ and G◦block, the
latter being a quotient of the former.

In Section 2, we study differential equations of the form (1.11) for Jordan
blocks of size d = 2. We find necessary and sufficient conditions for the
connected component of the Galois group G◦block = G◦2 to be Abelian,
see Theorem 2.3. In this part the reader will find our interpretation of
Kronecker’s ideas in the framework of the Differential Galois Theory.

In Section 3, we apply this result to eliminate from Table 1.1 all the
cases corresponding to G◦1 ' Ga, where Ga denotes the additive algebraic
subgroup of SL(2,C). Here, G1 = G(k, λ) is the Galois group over C(z) of
the equation L2 = x′′ − r(z)x = 0. According to Theorem 2.3, we have to
check if certain specific primitive integrals built from special function as
Jacobi polynomials, are algebraic.

From Theorem 2.3, if G1 is finite, then G◦2 is Abelian. In those cases, the
existence of Jordan blocks with size d = 2 does not give any obstacles for
the integrability. This is why we are forced to look for such obstructions
considering Jordan blocks of size d = 3. This problem is investigated in
Section 4, where the results of Section 2 are also used. In this part of the
paper we follow the general ideas contained in Sections 2 and 3, but our
considerations are much more technical.

In Section 5, we deal with the exceptional cases of potentials of degree
k = ±2, for which we prove that G(VEt)◦ ' G(VEz)◦ is Abelian. The
strategy employed is completely different and independent of the general
frame of the paper. First, we give a direct proof of that result for k = 2.
Then, we extract and discuss a general principle of symmetry contained in
Table 1.1. Applying this principle, we deduce the following implication

G(VEt)◦ Abelian for k = 2 =⇒ G(VEt)◦ is Abelian for k = −2.

For the non-expert reader, we should recommend to read this section first,
since for k = 2, he shall see the frame of a very simple and particular VE.

ANNALES DE L’INSTITUT FOURIER



JORDAN OBSTRUCTION TO THE INTEGRABILITY 2849

In order to justify our study, in Section 6, we prove that the Hessian
matrix V ′′(c) for a homogeneous polynomial potential V of degree k, can
be an arbitrary symmetric matrix A satisfying Ac = (k− 1)c. This is made
by a dimensional arguments and study of complex symmetric matrices.

2. Theory for Jordan blocks of size two

Let (K, ∂) be an ordinary differential field with constant subfield C. We
consider the following system of two linear differential equations over K.

x′′ = rx,(2.1)
y′′ = ry + sx.(2.2)

We denote by F1 and F2 the Picard-Vessiot fields of equation (2.1), and
the system (2.1)-(2.2), respectively. The differential Galois group of exten-
sion Fi/K is denoted by Gi, for i = 1, 2.

We look for the conditions under which G◦2 is Abelian. Since F1 may
be seen as a subfield of F2, and G1 as a quotient of G2, we express these
conditions in terms of G◦1, and r, s ∈ K.

From now on, {x1, x2} denotes a basis of solutions of (2.1) normalised
in such a way that

W (x1, x2) = det(X) = 1, where X =
[
x1 x2
x′1 x′2

]
.

For each σ ∈ G2, there exists matrix A(σ) ∈ SL(2,C), such that σ(X) =
XA(σ). Moreover, we chose {x1, x2} such that

• if G◦1 ' Ga, then for all σ ∈ G◦2, the matrix A(σ) is a unipotent
upper triangular matrix;
• if G◦1 ' Gm, then for all σ ∈ G◦2, the matrix A(σ) is a diagonal

matrix.
We recall here that in the above statements Ga and Gm denote the additive
and the multiplicative subgroups of SL(2,C).

The group G◦1 is a connected subgroup of SL(2,C). It is Abelian if and
only if it is isomorphic either to Ga, Gm, or to {Id}. Moreover, in [7] Kovacic
proved the following

Lemma 2.1. —
(1) G◦1 ' Ga, iff there exists a positive integer m such that xm1 ∈ K,

and x2 is transcendental over K. In this case the algebraic closure
of K in F1 is L = K[x1].

TOME 59 (2009), FASCICULE 7
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(2) G◦1 ' Gm, iff x1 and x2 are transcendental over K but, (x1x2)2 ∈
K. In this case the algebraic closure of K in F1 is L = K[x1x2].
Moreover, L is at most quadratic over K.

(3) G1 is a finite group if and only if both x1 and x2 are algebraic
over K. Moreover, if this happens then, G1 is a finite subgroup of
SL(2,C) which is of one of the four types listed below:
(a) Dihedral type: G1 is conjugated to a finite subgroup of

D† =
{[
λ 0
0 1/λ

]
| λ ∈ C?

}
∪
{[

0 λ

−1/λ 0

]
| λ ∈ C?

}
.

(b) Tetrahedral type: G1/{±Id} ' A4.
(c) Octahedral type: G1/{±Id} ' S4.
(d) Icosahedral type: G1/{±Id} ' A5.

In the above, Sp and Ap denote the symmetric, and the alternating group
of p elements, respectively.

Definition 2.2. — Let ϕ =
∫
sx2

1 and ψ =
∫
x−2

1 . We define the fol-
lowing conditions

(α): There exists c ∈ C such that ϕ+ cψ ∈ L.
(β): ϕψ − 2

∫
ϕ · ψ′ = 2

∫
ϕ′ψ − ϕ · ψ ∈ L[ψ].

(γ): There exists φ1 ∈ L such that (φ1x
2
1)′ = sx2

1.
(δ): There exists φ2 ∈ L such that (φ2x

2
2)′ = sx2

2.

With the above notations and definitions our main result in this section
is the following.

Theorem 2.3. — The group G◦2 is Abelian if and only if one of the
following cases occur

(1) G1 is a finite group.
(2) G◦1 ' Ga and condition (β) holds.
(3) G◦1 ' Gm and conditions (γ) and (δ) hold.

When G◦1 ' Ga, then (β) ⇒ (α). Hence, (α) is a necessary condition for
G◦2 to be Abelian in this case.

The proof of the theorem will be done at the end of this section. Before,
for sake of clarity, we explain the main ideas of its proof.

A good illustration of the Kronecker observation in arithmetic is the
following example. Let

f(X) = X3 + pX + q ∈ Q[X],
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be an irreducible polynomial. Let Gal(f/Q) be its Galois group over the ra-
tionals, and ∆ = −4p3−27q2 be the discriminant of f . The group Gal(f/Q)
can be either S3, or A3. Moreover,

Gal(f/Q) ' A3 ⇐⇒ ∆ ∈ (Q)2.

In other words, Gal(f/Q) is Abelian, iff ∆ is a square of a rational number.
This is, in the considered example, the precise “arithmetical condition” that
governs the Abelianity of the Galois group.

In differential Galois theory, the analogue of the discriminant is the Wron-
skian determinant. Therefore our idea was to express the Abelianity con-
dition for G◦2 in terms of certain properties of the Wronskian determinant.

We proceed in the three following steps
(1) The very specific form of system (2.1)–(2.2), allows to express the

Abelianity of G◦2 in terms of its subgroup H = Gal∂(F2/F1).
(2) Next, we translate this group conditions into properties of certain

Wronskians.
(3) In a third step, thanks to Lemma 1.5, we express these Wronskian

properties in terms of the algebraicity of certain primitive integrals.
Later, in the applications, we shall not use the case of Theorem 2.3 where
G◦1 ' Gm. This is because those cases only happen for potentials of degree
k = ±2 for which other kind of arguments will be applied in Section 5.
Therefore, at first reading, this part of the proof of Theorem 2.3 may be
avoided.

2.1. Group formulation of the criterion

The system (2.1) and (2.2) may be written into the matrix form:

(2.3)


x′

x′′

y′

y′′

 =


0 1 0 0
r 0 0 0
0 0 0 1
s 0 r 0



x

x′

y

y′

 =
[
R 0
S R

]
x

x′

y

y′

 ,
where

(2.4) R :=
[
0 1
r 0

]
, S :=

[
0 0
s 0

]
.

For a given basis {x1, x2} of solutions of equation (2.1), we set

X =
[
x1 x2
x′1 x′2

]
and Y =

[
y1 y2
y′1 y′2

]
,
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where y1 and y2 are two particular solutions of (2.2), that is:

(2.5)

{
y′′1 = ry1 + sx1

y′′2 = ry2 + sx2

Then the following 4× 4 matrix

Ξ2 =
[
X 0
Y X

]
,

is a fundamental matrix of solutions of (2.3). For each σ ∈ G2, we have

(2.6) σ(Ξ2) =
[
σ(X) 0
σ(Y ) σ(X)

]
= Ξ2M(σ).

Performing the above multiplication we can easily notice that the 4 × 4
matrix M(σ) has the form

M(σ) =
[
A(σ) 0
B(σ) A(σ)

]
.

Therefore, G2 can be identified with a subgroup of SL(4,C):
(2.7)

G2 ⊂ Gmax =
{
M(A,B) :=

[
A 0
B A

]
| A ∈ SL(2,C), B ∈M(2,C)

}
.

For Mi = Mi(Ai, Bi) ∈ Gmax, with i = 1, 2, we have

(2.8) M1M2 =
[

A1A2 0
B1A2 +A1B2 A1A2

]
.

Definition 2.4. — We denote byH := Gal∂(F2/F1). The groupsHmax,
Ha and Hm are the subgroups of Gmax, defined by,

Hmax :=
{
N(B) :=

[
Id 0
B Id

]
| B ∈M(2,C)

}
,

Ha :=
{
N(B) ∈ Hmax | B =

[
a b

0 a

]
, a, b ∈ C

}
,

Hm :=
{
N(B) ∈ Hmax | B =

[
a 0
0 d

]
, a, d ∈ C

}
.

From (2.8), we have N(B1)N(B2) = N(B1 + B2). So, Hmax is a vector
group of dimension 4 isomorphic to (M(2,C),+).

Let us recall that a field extension E/K is regular iff for all x ∈ E we have:
x is algebraic over K implies that x ∈ K. When E/K is a Picard-Vessiot
extension, then it is regular iff its differential Galois group is connected.

Proposition 2.5. — With the notations above we have the following.

ANNALES DE L’INSTITUT FOURIER



JORDAN OBSTRUCTION TO THE INTEGRABILITY 2853

(1) The Picard Vessiot extension F2/F1 is a regular fields extension and
its Galois group H = Gal∂(F2/F1) is a vector group.

(2) The algebraic closure of K in F2 coincides with the algebraic closure
L of K in F1.

(3) The kernel of the restriction map Res◦ : G◦2 → G◦1 coincides with
H = Gal∂(F2/F1).

(4) If G1 is finite then G◦2 = H = Gal∂(F2/F1) is Abelian.

Proof. — (1) Let Res : G2 → G1, σ 7→ σ|F1 , be the restriction map. We
have

M(σ) =
[
A(σ) 0
B(σ) A(σ)

]
7−→ Res(M(σ)) = A(σ)

Since H = Gal∂(F2/F1) = Ker(Res), the algebraic subgroup H of G2 may
be viewed as an algebraic subgroup of Hmax. It is therefore a vector group,
hence connected.

(2) Let u ∈ F2 be algebraic over K. Since H is connected, Hu = {u},
and thus u ∈ F1 is algebraic over K.

(3) Since the restriction map Res : G2 → G1 is a surjective morphism of
algebraic groups, it maps G◦2 onto G◦1. Denoting by Res◦ the restriction of
Res to G◦2 and putting H ′ = Ker(Res◦), we have the following commutative
diagram of algebraic groups, whose lines are exact sequences

{Id} −−−−→ H −−−−→ G2
Res−−−−→ G1 −−−−→ {Id}x x x

{Id} −−−−→ H ′ −−−−→ G◦2
Res◦−−−−→ G◦1 −−−−→ {Id}x x x

{Id} −−−−→ {Id} −−−−→ {Id} −−−−→ {Id} −−−−→ {Id}
Applying the snake lemma to the first two lines we obtain following exact
sequence

{Id} −−−−→ H/H ′ −−−−→ G2/G
◦
2 −−−−→ G1/G

◦
1 −−−−→ {Id}

But G2/G
◦
2 is finite, so H/H ′ is also finite. Moreover, H/H ′ as a quotient

of vector group is also a vector group hence, it is the trivial vector group.
That is H ′ = H, and G2/G

◦
2 is isomorphic to G1/G

◦
1. Moreover, the second

line of the commutative diagram reduces to the exact sequence
(2.9)
{Id} −−−−→ H = Gal∂(F2/F1) −−−−→ G◦2 −−−−→ G◦1 −−−−→ {Id}.

(4) If G1 is finite, G◦1 = {Id} in (2.9), so G◦2 = H is Abelian. �
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In general, from (2.9) we have

G◦2 ⊂ {M(A,B) ∈ Gmax | A ∈ G◦1 } ,

and, if G◦2 is Abelian, then G◦1 is an Abelian algebraic subgroup of SL(2,C).
If this happens, then G◦1 is isomorphic either to {Id}, or Ga, or Gm.

If G◦1 = {Id} we have seen above that G◦2 is an Abelian vector group.
However, if G◦1 is isomorphic either to Ga or Gm, then we have to find con-
ditions under which G◦2 is Abelian. For that purpose we need the following
conjugation formula, which is obtained from (2.8) by direct computations.
Namely, for all M(A,B) ∈ Gmax and all N(C) ∈ Hmax, we have

(2.10) M(A,B)N(C)M(A,B)−1 = N(ACA−1).

Proposition 2.6. — If G◦1 is isomorphic either to Ga or Gm, then G◦2
is Abelian if and only if H = Gal∂(F2/F1) ⊂ Z(G◦2), i.e., H is contained in
the center of G◦2.

(1) If G◦1 ' Ga, then G◦2 is Abelian iff H is a subgroup of Ha.
(2) If G◦1 ' Gm, then G◦2 is Abelian iff H is a subgroup of Hm.

Here Ha and Hm are the groups defined in Definition 2.4.

Proof. — If G◦2 is Abelian, then H ⊂ Z(G◦2). Conversely, let us assume
that G◦1 is isomorphic either to Ga, or Gm, and H ⊂ Z(G◦2). For any M0 ∈
G◦2\H, the subgroup Ω generated by M0 and H, as well as its Zariski closure
Ω̄, is an Abelian subgroup of G◦2. By formula (2.9), we have dimG◦2 =
dimH + 1, but(

dimH + 1 6 dim Ω̄ 6 dimG◦2
)

=⇒ dim Ω̄ = dimG◦2.

Since G◦2 is connected, we deduce that G◦2 = Ω̄ is Abelian.
Note that H ⊂ Z(G◦2) iff for all M = M(A,B) ∈ G◦2, and all N =

N(C) ∈ H, we have, thanks to (2.10),

MNM−1 = N ⇐⇒ N(ACA−1) = N(C)⇐⇒ ACA−1 = C ⇐⇒ [A,C] = 0.

Now, we can prove the remaining points.
(1) If G◦1 ' Ga we put

A = A(t) =
[
1 t

0 1

]
and C =

[
a b

c d

]
.

We have

[C,A] =
[
−tc t(a− d)
0 −tc

]
,
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and thus
(∀ A ∈ Ga [C,A] = 0) ⇐⇒ (c = 0 and a = d)

⇐⇒ C =
[
a b

0 a

]
⇐⇒ H ⊂ Ha.

(2) If G◦1 ' Gm, we proceed in a similar way and we put

A = A(t) =
[
t 0
0 1/t

]
and C =

[
a b

c d

]
.

Then we obtain

[C,A] =
[

0 −b (t− 1/t)
c (t− 1/t) 0

]
,

and thus
(∀ A ∈ Gm [C,A] = 0)⇐⇒ (b = 0 and c = 0)

⇐⇒ C =
[
a 0
0 d

]
⇐⇒ H ⊂ Hm.

�

2.2. From group to Wronskian relations

For two elements f, g ∈ F2, we set

W (f, g) =
∣∣∣∣f g

f ′ g′

∣∣∣∣ .
Observe that for σ ∈ G2 we have

σ(W (f, g)) =
∣∣∣∣σ(f) σ(g)
σ(f)′ σ(g)′

∣∣∣∣ = W (σ(f), σ(g)).

Let x1, x2, y1, y2, X and Y be as they were defined in Section 2.1.

Definition 2.7. — We define the following three conditions
W1 : W (x1, y1) ∈ F1.
W2 : W (x2, y2) ∈ F1.
W3 : x1W (x1, y2)− y1 ∈ F1.

Proposition 2.8. — Let Ha and Hm be the groups given in Definition
2.4. We have

(1) H = Gal∂(F2/F1) ⊂ Ha iff condition W3 is fulfilled. Moreover,
W3 ⇒W1.

(2) H = Gal∂(F2/F1) ⊂ Hm iff the conditions W1 and W2 are fulfilled.
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Proof. — Let σ ∈ H. Then σ(X) = X, and σ(Y ) = Y + XB(σ) for a
certain

B(σ) =
[
a b

c d

]
∈M(2,C).

Therefore, the action of σ on Y is given by the relations{
σ(y1) = y1 + ax1 + cx2,

σ(y2) = y2 + bx1 + dx2.

From these relations, the action of σ on the Wronskians is given by the
following formulae

σ (W (x1, y1)) =
∣∣∣∣x1 y1 + ax1 + cx2
x′1 y′1 + ax′1 + cx′2

∣∣∣∣ = W (x1, y1) + c,

σ (W (x2, y2)) =
∣∣∣∣x2 y2 + bx1 + dx2
x′2 y′2 + bx′1 + dx′2

∣∣∣∣ = W (x2, y2)− b,

σ (W (x1, y2)) =
∣∣∣∣x1 y2 + bx1 + dx2
x′1 y′2 + bx′1 + dx′2

∣∣∣∣ = W (x1, y2) + d,

σ (W (x2, y1)) =
∣∣∣∣x2 y1 + ax1 + cx2
x′2 y′1 + ax′1 + cx′2

∣∣∣∣ = W (x2, y1)− a.

To obtain these formulae, we used the fact that W (x1, x2) = 1. Moreover,
we also have

σ (x1W (x1, y2)− y1) = x1σ(W (x1, y2))− σ(y1)
= x1W (x1, y2) + dx1 − (y1 + ax1 + cx2),

σ (x1W (x1, y2)− y1) = [x1W (x1, y2)− y1] + (d− a)x1 − cx2.

Therefore,

σ (W (x1, y1)) = W (x1, y1) ⇐⇒ c = 0,
σ (W (x2, y2)) = W (x2, y2) ⇐⇒ b = 0,

σ (x1W (x1, y2)− y1) = x1W (x1, y2)− y1 ⇐⇒ [d = a and c = 0].

For the last equivalence we used the fact that x1 and x2 are C-linearly
independent.

From the above equivalences we deduce that for σ ∈ H, we have

σ ∈ Hm ⇐⇒ (σ(W (x1, y1)) = W (x1, y1) and σ(W (x2, y2)) = W (x2, y2)) ,
σ ∈ Ha ⇐⇒ σ(x1W (x1, y2)− y1) = x1W (x1, y2)− y1.

and, moreover,

(σ(x1W (x1, y2)− y1)= x1W (x1, y2)− y1) =⇒ (σ(W (x1, y1))=W (x1, y1)) .
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But for f ∈ F2 we have

f ∈ F1 ⇐⇒ (∀σ ∈ H,σ(f) = f) .

So, H ⊂ Hm if and only if conditions W1 and W2 hold. Similarly, H ⊂ Ha
if and only if the conditions W3 is satisfied, moreover W3 ⇒W1. �

2.3. From Wronskian to integral relations

2.3.1. Computation of the Wronskian and resolution of equation (2.2)

From Proposition 2.5 we know that H = Gal∂(F2/F1) is a vector group,
so it is solvable. Therefore, by Liouville-Kolchin solvability theorem, equa-
tion (2.2): y′′ = ry+sx can be solved by finite integrations. In the following
lemma we give, among others things, the explicit form of its solutions. No-
tice that in this lemma we do not make any assumption about the group
G1.

Let x1 be a non-zero solution of equation (2.1). According to Defini-
tion 2.2, let us set ϕ =

∫
sx2

1 and ψ =
∫
x−2

1 . Then x2 = x1ψ is another
solution of (2.1), and W (x1, x2) = 1. Let y1 and y2 be two particular
solution of (2.2) given (2.5). Then we have the following.

Lemma 2.9. — Up to additive constants we have

W (x1, y1) =
∫
sx2

1, W (x2, y2) =
∫
sx2

2,

W (x1, y2) =
∫
sx1x2, W (x2, y1) =

∫
sx1x2,

y1 = x1

∫ (
x−2

1

∫
sx2

1

)
, y2 = x2

∫ (
x−2

2

∫
sx2

2

)
,

and

x1W (x1, y2)− y1 = x1Q, where Q = ϕψ − 2
∫
ϕψ′ = −ϕψ + 2

∫
ψϕ′.

Proof. — Identities with Wronskians can be checked by a direct differ-
entiation. Formulae for y1 and y2 are obtained by a classical variations of
constants method. �

Corollary 2.10. — Let σ ∈ H = Gal∂(F2/F1), and N(B(σ)) ∈ Hmax
be the matrix of σ. Then Tr(B(σ)) = 0.
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Proof. — As in the proof of Proposition 2.8 we set B = B(σ) =
(
a b
c d

)
.

From this proof we know also that

σ (W (x1, y2)) = W (x1, y2) + d and σ (W (x2, y1)) = W (x2, y1)− a.

But from Lemma 2.9 we know that ∆ = W (x1, y2)−W (x2, y1) is a constant
belonging to C. Therefore, for σ ∈ H,

σ(∆) = ∆ + d+ a = ∆ + Tr(B) = ∆.

So, Tr(B) = 0. �

2.3.2. Study of the conditions Wi

From now on, as in Lemma 2.1, L denotes the algebraic closure of K
in F1.

Lemma 2.11. — Let T (F1/K) ⊂ F1 be the Picard Vessiot ring of F1/K.
With the notations of Lemmas 1.5 and 2.1, we have

(1) • If G◦1 ' Ga, then T (F1/K) = L[x2] = L[ψ].
• If G◦1 ' Gm, then T (F1/K) = L[x1, x2] = L[x1, x

−1
1 ].

(2) If G◦1 ' Ga, then the condition W1 is equivalent to (α) and W3 to
(β).

(3) If G◦1 ' Gm, then the condition W1 is equivalent to (γ) and W2 to
(δ).

Proof. — (1) From the relation W (x1, x2) = 1, and Lemma 1.5, we have

T (F1/K) = K[x1, x2, x
′
1, x
′
2] = L[x1, x2, x

′
1, x
′
2].

Moreover, F1 is the field of fractions of the ring T (F1/K). Let us compute
this ring in the two particular cases.

If G◦1 ' Ga, then, by assumption, x1 ∈ L, so x′1 ∈ L. Since x2 =
x1
∫
x−2

1 = x1ψ, we have

T (F1/K) = L[x2] = L[x1ψ] = L[ψ].

If G◦1 ' Gm, then G◦1 acts on x1 by a character, so it acts on x′1 by the
same character. Therefore, the logarithmic derivative x′1/x1 is left invariant
by G◦1, hence belongs to L. Moreover, from Lemma 2.1, x1x2 ∈ L, so
similarly x′2/x2 ∈ L, and we have

T (F1/K) = L[x1, x2] = L[x1, x1
−1].

(2) Since G◦1 ' Ga,

F1 = L(x2) = L

(∫
x−2

1

)
= L(ψ).
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Therefore, from Lemma 2.9, the condition W1 may be written

W (x1, y1) =
∫
sx2

1 ∈ L
(∫

x−2
1

)
.

Thus, condition W1 implies that the two primitive integrals: ϕ =
∫
sx2

1, and
ψ =

∫
x−2

1 are algebraically dependant over L. Hence, by the Ostrowski-
Kolchin theorem (Lemma 1.5 point 1), this implies that there exists
(c1, c2) ∈ C2\{0, 0} such that

c1ϕ+ c2ψ ∈ L.

But c1 = 0 implies that ψ =
∫
x−2

1 ∈ L, and x2 = −x1ψ is algebraic over
K, however it is not true. So, dividing the linear relation by c1 we get that
W1 ⇒ (α). Conversely, if (α) holds then,

∫
sx2

1 ∈ L(
∫
x−2

1 ) = L(x2) = F1
and W1 is satisfied.

From Lemma 2.9 we have

x1Q = x1W (x1, y2)− y1,

where
Q = ϕψ − 2

∫
ϕψ′ = −ϕψ + 2

∫
ψϕ′.

From Lemma 1.5, the element x1Q = x1W (x1, y2)− y1 ∈ T (F2/K). But
here, x1 is algebraic over K so from Lemma 1.5 again, Q = 1

x1
· x1Q ∈

T (F2/K). Therefore, the condition Q ∈ F1, is equivalent to Q ∈ T (F1/K),
because T (F1/K) is the algebra containing the elements of F1 which are
solutions of a certain linear differential equation over K. So, we have the
following equivalences

W3 ⇐⇒ (x1Q ∈ F1)⇐⇒ (Q ∈ F1)⇐⇒ (Q ∈ T (F1/K))⇐⇒ (Q ∈ L[ψ]).

Thus, condition W3 is equivalent to condition (β).
(3) Since G◦1 ' Gm, the role of x1 and x2 are symmetric. We have

to prove only that the conditions W1 and (γ) are equivalent. As before,
W (x1, y1) ∈ T (F2/K) so,

W (x1, y1) ∈ F1 ⇐⇒ W (x1, y1) ∈ T (F1/K) = L[x1, x
−1
1 ].

Since W (x1, y1) =
∫
sx2

1, condition W1 is equivalent to∫
sx2

1 ∈ L[x1, x
−1
1 ].

The above condition is fulfilled iff we have a relation of the form∫
sx2

1 =
q∑
n=p

fnx
n
1 , p 6 q; p, q ∈ Z,
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with fn ∈ L. Differentiating the above equation we obtain

sx2
1 =

q∑
n=p

(f ′n + fnnθ)xn1 ,

where θ = x′1/x1 ∈ L.
But x1 is transcendental over L, so from the last formula we have f ′n +

fnnθ = 0 for n 6= 2, and s = f ′2 + 2f2θ. Thus we have

sx2
1 = (φ1x

2
1)′,

with φ1 = f2 ∈ L. This proves that condition W1 is equivalent to condi-
tion (γ). �

2.4. Proof of Theorem 2.3

Proof. — As a connected subgroup of SL(2,C), groupG◦1 is isomorphic to
one of the following groups: {Id}, Ga, Gm, the semi-direct product Ga oGm,

or SL(2,C), see, e.g. [7]. If G◦1 is Abelian, then the last two possibilities must
be excluded.

• If G◦1 = {Id}, then G◦2 is Abelian thanks to point 5 of Proposition
2.5.
• If G◦1 ' Ga, (resp. G◦1 ' Gm), then the proof follows from Proposi-

tion 2.8 and point 2, (resp. point 3) of Lemma 2.11. �

3. Elimination of the Jordan blocks with G◦1 ' Ga.

We now apply the results of the previous section to the study of the
connected component G(VEz)◦ of the Galois Galois group of the VE (1.10)

d2ζ

dz2 = [r0(z)Id + s(z)V ′′(c)]ζ.

Our main result in this section is the following.

Theorem 3.1. — Assume that V ′′(c) has a Jordan block of size d > 2,
and G◦1 ' Ga. Then G(VEz)◦ is not Abelian. This corresponds to the
elimination of rows 2,3, and 4 in Table 1.1.

Remark 3.2. — Let B(λ, d) be a Jordan block of V ′′(c) with size d > 2,
and eigenvalue λ. Since G◦1 is isomorphic to Ga and corresponds to the VE

d2η

dt2
= −λϕk−2(t)η,
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we deduce from Theorem 1.2 that necessarily, the pair (k, λ) must belong
to row 2, 3, or 4 in Table 1.1. Now, passing to the VE in the z variable, we
know that the system (1.11) with Galois group G2[

x′′

y′′

]
=
[
r 0
s r

] [
x

y

]
,

is a subsystem of VE (1.10). From Proposition 1.6, G(VEt)◦ ' G(VEz)◦
and G◦2 is a quotient of G(VEz)◦. Therefore, it is enough to prove that G◦2 is
not Abelian. To this aim we proceed as follows. According to Theorem 2.3,
we have to prove that condition (β) is not fulfilled. Since (β) ⇒ (α), and
(α) is much easier to check than (β), at first we check if (α) is fulfilled.
Since (α) is a condition concerning the primitive integrals ϕ =

∫
sx2

1 and
ψ =

∫
x−2

1 , where x1 is an algebraic solution of equation x′′ = rx, we first
have to investigate analytical properties of these integrals.

3.1. Assumptions and notations

We assume that G◦1 ' Ga. From Table 1.1, we must have

λ = p+ k

2
p(p− 1),

for a certain p ∈ Z. In this case x1 is algebraic over K = C(z) and x2 =
x1
∫
x−2

1 is transcendental.

Definition 3.3. — Let f(z) be a multivalued function of the complex
variable z, and let z0 ∈ P1. We say that e ∈ C is the exponent of f at z0,
if in a neighbourhood of z0, f can be expressed into the following form

f(z) = ζeh(ζ),

where ζ is a local parameter around z0, ζ 7→ h(ζ) is holomorphic at ζ = 0
and h(0) 6= 0.

The principal part of f at z0 is denoted fz0 , i.e, fz0 = ζeh(0).
We denote byMz0 the monodromy operator around z0.

Lemma 3.4. — If G◦1 ' Ga then,
(1) Up to a complex multiplicative constant, the algebraic solution x1

may be written in the form

x1 = za(z − 1)bJ(z) where a ∈
{
k − 1

2k
,
k + 1

2k

}
, b ∈

{
1
4
,

3
4

}
,

and J(z) ∈ R[z] does not vanish at z ∈ {0, 1}.
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(2) The function ψ =
∫
x−2

1 has the exponent 1 − 2b at z = 1 and
M1(ψ) = −ψ.

Proof. — (1) For all σ ∈ G1, σ(x1) = χ(σ)x1 + µ(σ)x2 for certain
(χ(σ), µ(σ)) ∈ C2. But σ(x1) is still algebraic, hence µ(σ) = 0, and σ(x1) =
χ(σ)x1. In particular x1 is an eigenvector of the monodromy operatorsM0
andM1. For |k| > 3, from equation (1.13), the differences of exponents at
z = 0 and z = 1 are not integers, hence we can deduce that x1 is a principal
branch of the Riemann scheme (1.14) at z = 0 and at z = 1. Therefore, x1
may be written in the form x1 = za(z − 1)bJ(z) where a, (resp. b) is an
exponent at z = 0 (resp. at z = 1), and J(z) is holomorphic on C. Since a
and b are rational numbers, J(z) = x1/z

a(z − 1)b is an algebraic function
which is holomorphic on C hence, J(z) is a polynomial. For |k| = 1, we
have {k−1

2k ,
k+1
2k } = {0, 1}, therefore x1 is regular at z = 0. At z = 1 the

difference of exponents is ∆1 = 1/2, so the previous arguments apply, and
point 1 is still true with a ∈ {0, 1}. Moreover, J(0) 6= 0 and J(1) 6= 0.
Since the exponents are real, J is a solution of a second order differential
equation over R(2). Thus, we can assume that J ∈ R[z].

(2) The function x−2
1 has the exponent −2b at z = 1. Thus, expanding

it around z = 1 and integrating, we obtain that ψ has the exponent 1− 2b
at z = 1. Therefore, M1(ψ) = exp[2πi(1 − 2b)]ψ = exp[−4πib]ψ = −ψ,
because b ∈ { 1

4 ,
3
4}. �

Now, thanks to Remark 3.2, at first we have to test conditions (α) for ϕ
and ψ. If we set

θ := za(z − 1)b,

then, using Lemma 3.4, we have the explicit formulae

ϕ =
∫
sx2

1 =
∫
sθ2J2 = 1

2k

∫
z2a−1(z − 1)2b−1J2(z)dz,

ψ =
∫
x−2

1 =
∫

1
θ2J2 .

3.2. Algebraicity of ψ and ϕ

Since G◦1 ' Ga, we know that ψ is not algebraic and we have the follow-
ing.

Lemma 3.5. — Let |k| > 3. If condition (α) holds then ϕ is algebraic.
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Proof. — Let L̃ = C(z)[θ2] where θ = za(z − 1)b, and

a ∈
{
k − 1

2k
,
k + 1

2k

}
, and b ∈

{
1
4
,

3
4

}
.

This is an algebraic extension of K = C(z) of degree

N =

{
|k| when k ∈ 2N,
2|k| when k 6∈ 2N.

Indeed, the minimal equation for θ2 is (θ2)N = z2Na(z − 1)2Nb ∈ C[z].
Therefore, a basis of L̃/K is {θ−2, 1, θ2, · · · , (θ2)N−2}, and N −2 > 2 since
|k| > 3. As ϕ′ ∈ L̃, and ψ′ ∈ L̃, from the Ostrowski-Kolchin theorem (see
point 1 of Lemma 1.5), we deduce that condition (α) holds iff there exists
c ∈ C such that, ϕ + cψ ∈ L̃. But ϕ + cψ ∈ L̃ iff there exists a family
(f−1, · · · , fN−2) ∈ C(z)N such that

ϕ+ cψ =
N−2∑
i=−1

fi(θ2)i.

Differentiating the above equality, we obtain

ϕ′ + cψ′ =
N−2∑
i=−1

(
f ′i + 2iθ

′

θ
fi

)
θ2i,

1
2kz(z − 1)

θ2J2(z) + c

θ2J2(z)
=

N−2∑
i=−1

(
f ′i + 2iθ

′

θ
fi

)
θ2i.

From this equation, we necessarily have

c

θ2J2 =
(
f ′−1 − 2θ

′

θ
f−1

)
1
θ2 ⇐⇒ cψ = f−1

θ2 ,

1
2kz(z − 1)

θ2J2 =
(
f ′1 + 2θ

′

θ
f2

)
θ2 ⇐⇒ ϕ = f2θ

2.

The first equation implies that c = 0 because ψ is not algebraic. The second
equation implies that ϕ is algebraic. Moreover, ϕ is algebraic iff there exists
f ∈ C(z) such that

(3.1) J2(z)
z(z − 1)

= f ′ + 2θ
′

θ
f.

�
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Since θ = za(z − 1)b, equation (3.1) is equivalent to J2 = T (f) :=
z(z − 1)f ′ + 2((a+ b)z − a)f . Therefore we have the equivalence

(3.2) ϕ =
∫
sx2

1 = fθ2 ⇐⇒ J2 = T (f) = z(z−1)f ′+2((a+b)z−a)f.

3.3. Algebraicity of ϕ and condition (α)

At the end of the previous subsection we showed that ϕ is algebraic iff
the equation J2 = T (f) defined by (3.2), has a rational solution f . The
next Lemma gives an answer to this problem.

Lemma 3.6. — Let J ∈ R[z] such that J(0)J(1) 6= 0. Then,
(1) If a 6= 1, then the equation J2 = T (f) does not have rational

solutions and ϕ is not algebraic.
(2) If a = 1, and the equation J2 = T (f) has a solution f ∈ C(z), then

f(z) = c(z−2 + 2bz−1) + g(z) where c 6= 0 is a constant, and g(z) is
a polynomial.

Proof. — Let f ∈ C(z) be such that J2 = T (f), in particular T (f) is a
polynomial. We separate into three steps our further reasoning.
First step. We prove that f has only few poles, precisely we claim that

(1) if a 6= 1, then f ∈ R[z];
(2) if a = 1, then f(z) = c(z−2 + 2bz−1) + g(z) with c ∈ C, and

g(z) ∈ C[z].
Indeed, if f has a pole of order n at t, setting ft = c(z− t)−n, we have the
following possibilities for the principal part of T (f):

T (f)t = −cnt(t− 1)
(z − t)n+1 for t 6∈ {0, 1},

T (f)0 = c(n− 2a)
zn

for t = 0,

T (f)1 = c(2b− n)
(z − 1)n

for t = 1.

If t 6∈ {0, 1}, then T (f)t 6= 0, so t is not a pole of f . Similarly, since
2b− n 6= 0, T (f)1 6= 0, and t = 1 cannot be a pole of f . Now, the formula
T (f)0 = c(n− 2a)z−n is valid iff n− 2a 6= 0. But n− 2a = n− 1± 1

k , thus

(n−2a = 0)⇐⇒
(
n = 1∓ 1

k

)
⇐⇒ (n = 2 and a = 1 and k = ∓1) .

Therefore, if a 6= 1, then f does not have pole at z = 0, and f must be
a polynomial. Now if f has a pole at z = 0, according to the previous
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equivalence, we must have a = 1 and n = 2. But, if a = 1, then T (f) =
z(z − 1)f ′ + 2((1 + b)z − 1)f , and we have

T

(
1
z2

)
= 2b

z
and T

(
1
z

)
= −1

z
+ 2b+ 1.

If f is a solution which is not a polynomial, it must have a pole of order two
at zero, and, for the compensation, we must have f(z) = c(z−2 + 2bz−1) +
g(z), where c ∈ C and g(z) ∈ C[z].
Second step. We now treat the particular case a = 0. If f is a rational solu-
tion of the equation J2 = T (f), then, by the first step, f is a polynomial.
Evaluating this equation at z = 0 we get

J2(0) = −2af(0).

Therefore, if a = 0, then J(0) = 0, but this is not true. Thus, in this case,
the equation does not have rational solutions.
Third step. Under the assumption that a 6= 0 we claim that the equation
T (f) = J2 does not have polynomial solutions. Since θ = za(z − 1)b,
equivalence (3.2) can be written in the following form

z2a−1(z − 1)2b−1J2(z) = d

dz
(f(z)z2a(z − 1)2b),

where

a ∈
{
k − 1

2k
,
k + 1

2k

}
, b ∈

{
1
4
,

3
4

}
.

Hence, since a 6= 0, we have 2a = 1 ± 1
k > 0, and moreover, 2b > 1

2 .
Therefore integrating between 0 and 1 we get

f(z)z2a(z − 1)2b
∣∣∣1
0

= 0 =
∫
z2a−1(z − 1)2b−1J2(z)dz > 0,

since the integrand is positive. The above contradiction proves the claim.
As a conclusion, if a 6= 1, the equation J2 = T (f) does not have rational
solution. This proves Point 1. When a = 1, and J2 = T (f) possesses a
rational solution, the latter cannot be a polynomial. and by the first step,
point 2 follows. �

In the case a = 1, which happens only for k = ±1, ϕ can be algebraic, so
condition (α) can be satisfied. For example, computations with Riemann
schemes show that for row 4 in Table 1.1, when (k, λ) = (−1,−2), we have
x1 = z(z − 1)3/4, and

ϕ =
∫
z(1−z)1/2dz = 6z2 − 2z − 4

15
√

1− z ∈L = C(z)[x1]= C(z)[(1−z)1/4],
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is therefore algebraic and condition (α) is satisfied. Nevertheless, for those
cases we have the following.

Lemma 3.7. — Let us assume that a = 1. If condition (α) holds, then
condition (β) is not satisfied.

Proof. — By Definition 2.2 and Theorem 2.3, we have to check if the
condition

Q = ϕψ − 2
∫
ϕψ′ ∈ L[ψ],

is satisfied. By assumption, ϕ+ cψ ∈ L, for a certain c ∈ C. Thus, we have

(Q ∈ L[ψ]) ⇐⇒
(
I(z) =

∫
ψ′ · ϕ ∈ L[ψ]

)
,

where
I(z) =

∫
ψ′ · ϕ =

∫
fθ2

J2θ2 =
∫

f(z)
J2(z)

dz.

As a = 1, by point 2 of Lemma 3.6, f(z) = c(z−2 + 2bz−1) + g(z) with
c 6= 0. Therefore I(z) may be expressed by a formula of the form

I(z) = γ0Log(z) +
∑

γiLog(z − zi) + h(z),

where, h(z) ∈ C(z), γ0 = −2bc/J2(0) 6= 0, γi ∈ C, and zi are roots of J(z).
In particular zi 6∈ {0, 1}. Hence, I(z) ∈ L[ψ] if and only if I(z) and ψ(z)
are algebraically dependent. But, by the the Ostrowski-Kolchin theorem,
this happen if and only if we have a non trivial linear relation with complex
coefficients

µI(z) + νψ(z) = ω(z) ∈ L.
However, M1(I(z)) = I(z) and, from Lemma 3.4, M1(ψ) = exp[−πi]ψ =
−ψ. Applying the monodromy operator to the previous equation yields

µI(z)− νψ(z) =M1(ω(z)).

So, 2µI(z) = ω(z)+M1(ω(z)) is algebraic. As I(z) is not algebraic, because
γ0 6= 0, we deduce that µ = ν = 0 and condition (β) is not satisfied. �

Proof of Theorem 3.1. — By Remark 3.2, it is enough to show that G◦2
is not Abelian. Since here G◦1 ' Ga, from Theorem 2.3, it remains to show
that conditions (α) and (β) are not simultaneously satisfied.

From Remark 3.2 again, the pair (k, λ) must belong to rows 2, 3, or 4 of
Table 1.1. In particular, either |k| > 3, or k = ±1.

• For |k| > 3, condition (α) is not satisfied. Indeed, from Lemma
3.5, condition (α) implies that ϕ is algebraic and, from point 1 of
Lemma 3.6, we know that in this case ϕ is not algebraic.
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• For k = ±1, condition (α) may be satisfied but if this happens, by
Lemma 3.7, condition (β) is not satisfied.

The above finishes the proof. �

4. Elimination of the Jordan blocks with G◦1 ' {Id}

Our main result in this section is the following.

Theorem 4.1. — Assume that V ′′(c) has a Jordan block of size d > 3,
and G1 is a finite subgroup of SL(2,C). Then G(VEz)◦ is not Abelian. This
eliminates the rows with numbers from 5 to 21 in Table 1.1.

Remark 4.2. — Let B(λ, d) be a Jordan block of V ′′(c) with size d > 3
and eigenvalue λ. Since G1 is finite and correspond to the VE

d2η

dt2
= −λϕk−2(t)η,

we deduce from Theorem 1.2, that necessarily, the pair (k, λ) must belong
to rows 5 to 21 of Table 1.1. Now, passing to the VE in the z variable, we
know that the system x′′y′′

u′′

 =

r 0 0
s r 0
0 s r

xy
u

 ,
with Galois group G3 is a subsystem of VE (1.10). From Proposition 1.6,
G(VEt)◦ ' G(VEz)◦ and G◦3 is a quotient of G(VEz)◦. Therefore it is
enough to prove that G◦3 is not Abelian.

Recall from Lemma 2.1 that if G1 is finite, then it is one of the following
types

(1) Dihedral type: G1 is conjugated to a finite subgroup of

D† =
{[
λ 0
0 1/λ

]
| λ ∈ C?

}
∪
{[

0 λ

−1/λ 0

]
| λ ∈ C?

}
(2) Tetrahedral type: G1/{±Id} ' A4
(3) Octahedral type: G1/{±Id} ' S4
(4) Icosahedral type: G1/{±Id} ' A5

From Theorem 2.3, we know that if G1 is finite, G◦2 is Abelian, where G2 is
the Galois group of the two first equations of the above system. This why
we have to consider Jordan blocks of size d > 3, in order to find obstructions
to the integrability. At first, we build some theoretical results in the spirit
of Section 2.
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4.1. Theory for Jordan blocks of size three

Now we assume that the size of the Jordan block is three. With the nota-
tions of Section 2, the subsystem of the variational equations corresponding
to the block, can be written in the following two equivalent forms

(4.1)


x′′ = rx

y′′ = ry + sx

u′′ = ru + sy

⇐⇒



x′

x′′

y′

y′′

u′

u′′


=

R 0 0
S R 0
0 S R




x

x′

y

y′

u

u′


,

where R and S are 2× 2 matrices given by (2.4).
Let us fix more notations.
• F1/K is the Picard-Vessiot extension associated to the equation
L2(x) = x′′ − rx = 0. Its Galois group is still denoted by G1.
• F2/K is the Picard-Vessiot extension associated to the first two

equations of (4.1). Its Galois group, is still denoted by G2.
• F3/K is the Picard-Vessiot extension over K associated to (4.1).

Its Galois group is denoted by G3.

Remark 4.3. — We have the following inclusions of differential fields

K ⊂ F1 ⊂ F2 ⊂ F3.

All the results of Section 2 can be applied to the extension F2/K. In par-
ticular, since G1 is finite, from Theorem 2.3, G◦2 is Abelian. Therefore, G◦2
is an Abelian quotient of G◦3.

We fix a basis {x1, x2} of the solution space V of L2 = 0. Let
(y1, y2, u1, u2) be an element of F 4

3 such that{
y′′1 = ry1 + sx1
y′′2 = ry2 + sx2

and
{
u′′1 = ru1 + sy1
u′′2 = ru2 + sy2

.

Then, we set

X =
[
x1 x2
x′1 x′2

]
, Y =

[
y1 y2
y′1 y′2

]
, U =

[
u1 u2
u′1 u′2

]
, Ξ3 =

X 0 0
Y X 0
U Y X

 .
Similarly as in Section 2, Ξ3 is a fundamental matrix of solutions of (4.1).
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For all σ ∈ G3, the equation σ(Ξ3) = Ξ3M(σ), forces σ to be represented
by a 6× 6 matrix M(σ) of the form

M(σ) =

A(σ) 0 0
B(σ) A(σ) 0
C(σ) B(σ) A(σ)

 .
Proposition 4.4. — Assume that G1 is finite. Then G◦3 is Abelian iff

there exists a basis {x1, x2} of V = Sol(L2) such that one of the following
condition is satisfied

• ϕ1 =
∫
sx2

1 ∈ F1 and
∫
ϕ′1ψ1 ∈ F1 where ψ1 =

∫
x−2

1 .
•
∫
sx2

1 ∈ F1 and
∫
sx2

2 ∈ F1.
If G◦3 is Abelian, then there exists at least one non-zero x ∈ V = Sol(L2)
such that

∫
sx2 ∈ F1.

Proof. — We consider G◦3 as a subgroup of SL(6,C). The elements of G◦3
are matrices the form

P (B,C) :=

Id 0 0
B Id 0
C B Id

 .
The product and the commutators of two such matrices are given by

P (B1, C1)P (B2, C2) = P (B1 +B2, C1 + C2 +B1B2),
[P (B1, C1)P (B2, C2)] = P (0, [B1, B2]).

Set

B := {B ∈M(2,C) | ∃C ∈M(2,C) and P (B,C) ∈ G◦3 } .

Then, thanks to the above formulae, G◦3 is Abelian iff any two matrices
belonging to B commute. This is the case iff, up to conjugation, B is con-
tained either in the set of upper triangular matrices with diagonal of the
form aId, or, B is contained in the set of diagonal matrices. For any of this
two cases, thanks to a conjugation formula similar to (2.10), we can find
a basis {x1, x2} of V such that the representation of the elements of B in
this basis are either upper triangular or diagonal.

From point 4 of Proposition 2.5, we have G◦2 = H = Gal∂(F2/F1). Let

π2 : G◦3 → G◦2, P (B,C) 7→
[
Id 0
B Id

]
= N(B),

be the projection. With the notations of Proposition 2.6, the two above
conditions for B are respectively equivalent to π2(G◦3) = G◦2 ⊂ Ha, and
π2(G◦3) = G◦2 ⊂ Hm.
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But, from Proposition 2.8, we have{
G◦2 ⊂ Ha ⇐⇒ W1 and W3 hold,
G◦2 ⊂ Hm ⇐⇒ W1 and W2 hold.

Now, from Definition 2.7 and Lemma 2.9, condition W1 holds iff
W (x1, y1) = ϕ1 =

∫
sx2

1 ∈ F1, and the same result holds for condition
W2. From the same definition and lemma, condition W3 holds iff

Q = ϕ1ψ1 − 2
∫
ϕ1ψ

′
1 = −ϕ1ψ1 + 2

∫
ϕ′1ψ1 ∈ F1.

But ψ1 = x2/x1 ∈ F1, and ϕ1 also belongs to F1 if W1 is assumed to be
satisfied. Therefore, W3 holds iff

∫
ϕ′1ψ1 ∈ F1 �

Proposition 4.5. — Let V = Sol(L2). Assume that G1 is finite. Then
we have the following properties

(1) Let x1 be a non-zero element of V . If
∫
sx2

1 ∈ F1, then for all σ ∈ G1,∫
sσ(x1)2 ∈ F1.

(2) For all x ∈ V ,
∫
sx2 ∈ F1, iff there exists a basis {x1, x2} of V such

that ∫
sx2

1 ∈ F1 and
∫
sx1x2 ∈ F1 and

∫
sx2

2 ∈ F1.

(3) Assume that
∫
sx2

1 ∈ F1, and
∫
sx2 6∈ F1, then G1 is of dihedral

type.

Proof. — (1) Let x1 be any non zero element of V . Since
∫
sx2

1 =
W (x1, y1) ∈ F2, for all σ ∈ G2 we have

σ

(∫
sx2

1

)
= σ(W (x1, y1)) = W (σ(x1), σ(y1)) =

∫
sσ(x1)2.

Therefore, if
∫
sx2

1 ∈ F1, then σ(
∫
sx2

1) =
∫
sσ(x1)2 ∈ F1. Since F1/K is

a Picard-Vessiot extension contained in F2/K, the restriction morphism
Res : G2 → G1 is surjective, therefore the integrals

∫
sσ(x1)2 ∈ F1 for all

σ ∈ G1.
(2) Assume that for all x ∈ V ,

∫
sx2 ∈ F1, and let {x1, x2} be a basis of

V . Then the three particular integrals∫
s(x1 + x2)2 and

∫
sx2

1 and
∫
sx2

2,

belong to F1. Taking the difference of those integrals we deduce that∫
sx1x2 ∈ F1. Conversely, each x ∈ V can be written in the form x =

λx1 + µx2. Therefore,∫
sx2 = λ2

∫
sx2

1 + 2λµ
∫
sx1x2 + µ2

∫
sx2

2 ∈ F1.
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(3) For the action of G1 on P(V ) ' P1, when we look at the orbit Ω of [x1],
three cases may a priory happen:

a) Card(Ω) = 1.
b) Card(Ω) = 2.
c) Card(Ω) > 3.

Let us first prove that with the assumption of point 3, case c) cannot
happen. Indeed case c) implies that there exists x2 = σ1(x1) which is not
collinear to x1, and also there exists x3 = σ2(x1) = λx1 +µx2 with λµ 6= 0.
From point 1, this implies that the three integrals

sx2
1 and

∫
sx2

2 and
∫
s(λx1 + µx2)2,

belong to F1. So,
∫
sx1x2 belongs to F1. Thus, from point 2, for all x ∈ V ,∫

sx2 ∈ F1 which is not true. There remains to show that in cases a) and
b), G1 is of dihedral type.

In case b), let Ω = {[x1], [x2]}. This means that {x1, x2} is a basis of
V . Moreover, any conjugate of x1 or x2 is either collinear to x1, or to x2.
Hence, in the basis {x1, x2}, the representation of G1 is of dihedral type.

In Cases a), since Ω = {[x1]}, x1 is an eigenvector of any σ ∈ G1. We find
a second common eigenvector for any σ ∈ G1, using the following classical
averaging argument due to Hermann Weyl in the representation theory.
Let 〈·, ·〉 be an arbitrary Hermitian product on V ' C2 for which x1 is not
an isotropic vector (i.e. 〈x1, x1〉 6= 0). Consider the average

(X,Y ) =
∑
σ∈G1

〈σ(X), σ(Y )〉.

The pairing (·, ·) is a new Hermitian product on V for which G1 is unitarian.
Therefore the orthogonal of the line Cx1 is another line of the form Cx2
which is also globally G1-invariant. Therefore G1 is diagonalizable in the
basis {x1, x2}. This proves that G1 is of dihedral type. �

Proposition 4.6. — Assume that G1 is finite, K = C(z), s = 1
2kz(z−1) ,

and consider the following properties
(1) For all x ∈ V ,

∫
sx2 ∈ F1.

(2) F2 = F1 and G2 ' G1.
(3) There exists M ∈ GL(2,K) such that S = M ′ + [M,R], where R

and S are given by (2.4).
(4) There exists a non-zero rational solution v ∈ C(z) to the equation

L4(v) = [z(z − 1)Ls2
2 (v)]′ = 0,

where Ls2
2 denotes the second symmetric power of L2.
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Then we have (1)⇔ (2)⇔ (3)⇒ (4).

Proof. — (1)⇔ (2) Let {x1, x2} be a basis of V . From point 2 of Propo-
sition 4.5, property 1 is equivalent to

W (x1, y1) ∈ F1 and W (x1, y2) ∈ F1 and W (x2, y2) ∈ F1.

By Proposition 2.8 and Corollary 2.10, these three Wronskians are fixed by
the elements

σ =
[

Id 0
B(σ) Id

]
∈ Gal∂(F2/F1)

iff B(σ) = 0. So, property 1 is equivalent to Gal∂(F2/F1) = {Id}, that is
to property 2.

(2)⇔ (3) From the exact sequence

{Id} −−−−→ Gal∂(F2/F1) −−−−→ G2 −−−−→ G1 −−−−→ {Id}[
A(σ) 0
B(σ) A(σ)

]
−−−−→ A(σ)

we have

(Gal∂(F2/F1) = {Id}) ⇐⇒ (∀σ ∈ G2, B(σ) = 0) .

But the general formulae for the action of G2 are σ(X) = XA(σ) and
σ(Y ) = Y A(σ) +XB(σ). This implies that

σ(Y X−1) = Y X−1 +XB(σ)A−1(σ)X−1.

So, σ(Y X−1) = Y X−1 iff B(σ) = 0. Therefore Gal∂(F2/F1) = {Id} iff
Y X−1 ∈ GL(2,K).

Now we are looking for the differential equation satisfied by M = Y X−1.
From

Ξ2 =
[
X 0
MX X

]
, Ξ′2 =

[
X ′ 0

M ′X +MX ′ X ′

]
=
[
R 0
S R

]
Ξ2,

we obtain

X ′ = RX,

M ′X +MX ′ = SX +RMX,

M ′X +MRX = SX +RMX,

M ′ +MR−RM = S.

This proves (2)⇔ (3).
(3) ⇒ (4). We write M =

[ u v
f g

]
, and we insert this expression into

the above differential equation. This gives a system of four equations. By
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expressing f and g in terms of u and v, the original equation is equivalent
to the system 

f = u′ + rv,

g = u+ v′,

u′ = −v′′/2,
s = u′′ + r′v + 2rv′.

From the above, v satisfies L3(v) := v′′′ − 4rv′ − 2r′v = −2s. But L3(v) =
Ls2

2 (v) is the second symmetric power of L2(v) = v′′ − rv. Now, for K =
C(z) and s = 1

2kz(z−1) ,

L3(v) = −2s = −1
kz(z − 1)

=⇒ L4(v) := [z(z − 1)Ls2
2 (v)]′ = 0.

Hence, if M ∈ GL(2,C(z)), then v ∈ C(z), and this implies that the equa-
tion L4(v) = 0 has a non-zero rational solution. �

Surprisingly, the differential equation S = M ′ + [M,R] has the form the
classical Euler equation for the angular momentum of a rigid body, see [1]
pp.142-143.

4.2. Type of G1 when it is finite

In order to apply the previous theory, we need to compute G1 = G(k, λ)
when G◦1 = {Id} in Table 1.1. Table 4.1 below gives this information.

To determine the last column of Table 4.1, we used the following facts.
• The exponents of L2 at {0, 1,∞} are

ε0 =
{
k − 1

2k
,
k + 1

2k

}
, ε1 =

{
1
4
,

3
4

}
, ε∞ =

{
τ − 1

2
,−τ + 1

2

}
,

with
τ = 1

2k
√

(k − 2)2 + 8kλ.

• Therefore, the reduced differences of exponents are

∆0 =
∣∣∣1
k

∣∣∣, ∆1 = 1
2
, ∆∞ = |τ | mod Z.

Thanks to the Schwarz Table, see p.128 in [12], we can compute
G1/{±Id} = G(k, λ)/{±Id} which is the image of G1 in PSL(2,C), and
completely determines the type of G1.
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Table 4.1. Type of G(k, λ) with G(k, λ)◦ = {Id}.

row k λ Exponents of L2 at {0,∞} G(k, λ)
5 1 0 (0, 1), (−1/4,−3/4) cyclic-dihedral
6 –1 1 (0, 1), (−1/4,−3/4) cyclic-dihedral

7 |k| > 3 1
2

(
k − 1
k

+ p(p+ 1)k
)

ε0,
(

1
4

(2p− 1),−1
4

(2p+ 3)
)

dihedral

8 3 −1
24

+ 1
6

(1 + 3p)2
(

1
3
,

2
3

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
tetrahedral

9 3 −1
24

+ 3
32

(1 + 4p)2
(

1
3
,

2
3

)
,

(
−5

8
− 1

2
p,−3

8
+ 1

2
p

)
octahedral

10 3 −1
24

+ 3
50

(1 + 5p)2
(

1
3
,

2
3

)
,

(
−3

5
− 1

2
p,−2

5
+ 1

2
p

)
icosahedral

11 3 −1
24

+ 3
50

(2 + 5p)2
(

1
3
,

2
3

)
,

(
− 7

10
− 1

2
p,− 3

10
+ 1

2
p

)
icosahedral

12 –3 25
24
− 1

6
(1 + 3p)2

(
1
3
,

2
3

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
tetrahedral

13 –3 25
24
− 3

32
(1 + 4p)2

(
1
3
,

2
3

)
,

(
−5

8
− 1

2
p,−3

8
+ 1

2
p

)
octahedral

14 –3 25
24
− 3

50
(1 + 5p)2

(
1
3
,

2
3

)
,

(
−3

5
− 1

2
p,−2

5
+ 1

2
p

)
icosahedral

15 –3 25
24
− 3

50
(2 + 5p)2

(
1
3
,

2
3

)
,

(
− 7

10
− 1

2
p,− 3

10
+ 1

2
p

)
icosahedral

16 4 −1
8

+ 2
9

(1 + 3p)2
(

3
8
,

5
8

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
octahedral

17 –4 9
8
− 2

9
(1 + 3p)2

(
3
8
,

5
8

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
octahedral

18 5 −9
40

+ 5
18

(1 + 3p)2
(

2
5
,

3
5

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
icosahedral

19 5 −9
40

+ 1
10

(2 + 5p)2
(

2
5
,

3
5

)
,

(
− 7

10
− 1

2
p,− 3

10
+ 1

2
p

)
icosahedral

20 –5 49
40
− 5

18
(1 + 3p)2

(
2
5
,

3
5

)
,

(
−2

3
− 1

2
p,−1

3
+ 1

2
p

)
icosahedral

21 –5 49
40
− 1

10
(2 + 5p)2

(
2
5
,

3
5

)
,

(
− 7

10
− 1

2
p,− 3

10
+ 1

2
p

)
icosahedral

4.3. Application of the theory when G1 is not of dihedral type

If G1 is finite but not of dihedral type, then the main point in our proof
of Theorem 4.1 will be to show that equation L4(v) = 0 does not have
rational solutions. This is why we need to compute the exponents of L4 at
the singularities.

ANNALES DE L’INSTITUT FOURIER



JORDAN OBSTRUCTION TO THE INTEGRABILITY 2875

Lemma 4.7. — With the notation 2εi = {2a, 2b}, for εi = {a, b}, the
respective exponents of L4 at z ∈ {0, 1,∞} are the following

{1, 2, 2ε0}, {1, 2, 2ε1}, {−1,−1, 2ε∞}.

Proof. — If εi = {a, b} are the exponents of L2 at the singularity i ∈
{0, 1,∞}, then the exponents of L3 = Ls2

2 at the same singularity are
{a + b, 2a, 2b}. Since at z = 0 and z = 1, a + b = 1, and a + b = −1 at
z =∞, this gives the exponents of L3.

Let χ3 and χ4 be the characteristic polynomials of the equations L3 = 0
and L4 = 0, respectively.

In a neighbourhood of z = 0 we have the following. If

L3(zρ) = χ3(ρ)zρ−3 + · · · ,

then
L4(zρ) = (χ3(ρ)zρ−2 + · · · )′ = (ρ− 2)χ3(ρ)zρ−3 + · · · .

So χ4(ρ) = (ρ− 2)χ3(ρ).
In a neighbourhood of z = 1, we obtain a similar result thanks to the

formula z(z − 1) = (z − 1)2 + (z − 1).
In a neighbourhood z =∞ we have the following. If

v = xρ + · · · = z−ρ + · · · ,

then the first term of v′′′ is proportional to xρ+3. So, we have

L4(xρ) = ( 1
x2χ3(ρ)xρ+3 + · · · )′

= (χ3(ρ)xρ+1 + · · · )′

= (χ3(ρ) 1
zρ+1 + · · · )′

= −(ρ+ 1)(χ3(ρ)xρ+2 + · · · )

Hence, up to the sign, χ4(ρ) = (ρ+ 1)χ3(ρ).
Therefore, at z = 0 and z = 1, the exponents of L4 are those of L3

together with ρ = 2. At z = ∞, the exponents of L4 are those of L3
together with ρ = −1. �

Corollary 4.8. — For all the rows in Table 4.1, except maybe for rows
5 and 6, the equation L4 = 0 does not have non-zero rational solutions. In
particular, when G1 = G(k, λ) is finite but not dihedral, L4 does not have
non-zero rational solutions.

Proof. — From Table 4.1 and Lemma 4.7, we see that for each possible
case, the exponents of L4 at z = 0 and z = 1 are greater or equal to zero.
So, if we look for a rational solution v of L4 = 0, v must be a polynomial

TOME 59 (2009), FASCICULE 7



2876 Guillaume DUVAL & Andrzej J. MACIEJEWSKI

of degree equal to the opposite of one exponent at the infinity. Therefore,
deg(v) ∈ {1,−2ε∞}. Hence, deg(v) must be equal to 1, unless maybe,−2ε∞
contains an integral number > 2. But for all the rows of Table 4.1, the set
2ε∞ does not contain any integral number, so the possible polynomial to
check are of the form v = z + d. We have

L4(z + d) = [z(z − 1)Ls2
2 (z + b)]′ = −2[z(z − 1)F (z)]′,

where
F (z) = −1

2
Ls2

2 (z + d) = 2r + r′(z + d).

Thus,
L4(z + d) = 0 ⇐⇒ F (z) = c

z(z − 1)
for a certain c ∈ C. Let us study the behaviour of F (z) around z = 0 and
z = 1. From now, we assume that we are not in the cases of rows 5 and 6,
in particular |k| > 3.

Around z = 0, r(z)0 = a
z2 with a = (1/k)2−1

4 6= 0 Therefore, r(z)′0 = −2a
z3 .

So, if d 6= 0, F (z)0 = −2ad
z3 . This is incompatible with F (z) = c

z(z−1) . Hence,
we must check this equation with d = 0 (i.e., with F (z) = 2r + zr′).

Around z = 1, r(z)1 = −3
16(z−1)2 therefore, F (z)1 = 3

8(z−1)3 , and this is
still incompatible with F (z) = c

z(z−1) .
Thus, for all the rows except maybe for rows 5 and 6, L4(z+d) 6= 0, and

L4 = 0 does not have a non-zero rational solution. �

Proof of Theorem 4.1 for G1 finite but not dihedral. — Let us assume
that G1 is finite and is not of dihedral type. This corresponds to cases of
Table 4.1, whose row numbers are greater than 7. From Corollary 4.8, L4 =
0 does not have non-zero rational solutions. Therefore, from Proposition
4.6, there exists a non-zero x ∈ V = Sol(L2), such that

∫
sx2 6∈ F1. So,

from Proposition 4.5, ∀x ∈ V \ {0},
∫
sx2 6∈ F1 since G1 is not of dihedral

type. As a consequence, from Proposition 4.4, G◦3 is not Abelian and we
can conclude thanks to Remark 4.2. �

4.4. Application when G1 is of dihedral type

We have to investigate the cases appearing in row 5, 6 and 7 in Table 4.2,
which for the convenience of the reader, we give in Table 4.2.

We follow the strategy applied above. That is, we prove that G◦3 is not
Abelian because all the integrals

∫
sx2 are not algebraic. What is more

difficult here is that we cannot deduce this fact from the existence of one
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particular non-algebraic integral. We begin with the simple cases of rows 5
and 6. Next we consider the case of row 7 which is more technical.

Table 4.2. Cases when G(k, λ) is of dihedral type.

row k λ Exponents of L2 at {0,∞} G(k, λ)

5 1 0 (0, 1), (−1/4,−3/4) cyclic-dihedral

6 –1 1 (0, 1), (−1/4,−3/4) cyclic-dihedral

7 |k| > 3 1
2

(
k − 1
k

+ p(p+ 1)k
)

ε0,
(
(2p− 1)/4,−(2p+ 3)/4

)
dihedral

4.4.1. The case of rows 5 and 6

From Table 4.2, the common Riemann scheme of L2 is

P


0 1 ∞
0 1/4 −1/4
1 3/4 −3/4

z

 .

A basis of solutions is therefore

x1 = (z − 1)1/4, x2 = (z − 1)3/4.

Since x1x2 = z − 1 ∈ C(z), here G1 is cyclic and isomorphic to Z/4Z.

Proposition 4.9. — In the cases of rows 5 and 6, we have
(1) For any non-zero solution x of L2 = 0, the integral ϕ =

∫
sx2 is not

algebraic.
(2) The group G◦ = G◦3 is not Abelian.

Proof. — Thanks to Proposition 4.4, the second point is a consequence
of the first one.

Since arbitrary solution of L2 = 0 can be written as x = αx1 + βx2, the
general from of ϕ is

ϕ =
∫

1
z(z − 1)

(α(z − 1)1/4 + β(z − 1)3/4)2,

ϕ = α2
∫

dz

z
√
z − 1

+ β2
∫ √

z − 1
z

dz + 2αβLog(z),

ϕ = α2ϕ1 + β2ϕ2 + 2αβLog(z)

Since G1 ' Z/4Z, there exists σ ∈ G2, such that σ(x1) = ix1 and σ(x2) =
−ix2. As σ(ϕ) =

∫
sσ(x2), we have

σ(ϕ) =
∫
s(iαx1 − iβx2)2 = −α2ϕ1 − β2ϕ2 + 2αβLog(z).
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If ϕ ∈ F1, then σ(ϕ) ∈ F1, and so 4αβLog(z) = ϕ+σ(ϕ) ∈ F1 is algebraic.
Therefore αβ = 0, and ϕ is proportional either to ϕ1, or to ϕ2. But in
those two remaining cases, the Taylor expansion of the integrand around
z = 0 shows that each ϕj for j ∈ {1, 2} can be written in the form ϕj =
±iLog(z) + fj(z), where fj(z) is holomorphic around z = 0. Therefore,
M0(ϕj) = ∓2π + ϕj , and ϕj cannot be algebraic since it has an infinite
number of conjugates by the iteration ofM0. �

4.4.2. The case of row 7

Here, from Table 4.2, k and p are relative integers with |k| > 3, and the
Riemann scheme of L2 is

P1


0 1 ∞

1
2
− 1

2k
1
4

2p− 1
4

1
2

+ 1
2k

3
4
−2p− 3

4

z

 .

Proposition 4.10. — In the case of row 7 we have
(1) For any non-zero solution x of L2 = 0, the integral ϕ =

∫
sx2 is not

algebraic.
(2) The group G◦ = G◦3 is not Abelian.

As in Proposition 4.9 above, the second point is a consequence of the
first one. But the proof of the first point is going to be divided into several
steps since it is more technical.

Notice that if we change k to k′ = −k, or p is to p′ = −p − 1, then the
Riemann scheme of L2 is not changed. Therefore, to prove Proposition 4.10
it is enough to consider the cases with k > 3 and p > 0.

The group D†2N . The differences of exponents of L2 are ∆0 = 1/k,
∆1 = 1/2, and ∆∞ = p+1/2. So, the reduced exponents differences are 1/k,
1/2 and 1/2. Therefore, from [12] p.128-129, the projective Galois group of
L2, i.e., the image of G1 in PSL(2,C), is isomorphic to the dihedral group
D2k, which is of order 2k. From Lemma 2.1, G1 is necessarily conjugated to
a finite subgroup of D† which is not cyclic. That is, G1 is not a subgroup of
the diagonal group Diag = {

[ ζ 0
0 1/ζ

]
, ζ ∈ C∗}. Let W =

[ 0 −1
1 0

]
∈ SL(2,C)

be the Weyl matrix. We have the following properties.
(1) D† = Diag ∪WDiag,
(2) For all R ∈ SL(2,C), WRW−1 = R−1,
(3) For all D ∈ Diag, (WD)2 = W 2 = −Id, and WD is conjugated to

W by an element of WDiag.
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By Property 3, we can assume that W ∈ G1. As W 2 = −Id, the diagonal
subgroup of G1, i.e., G1∩Diag, contains −Id. Since it is a finite cyclic group,
it is of even order N , for a certain N ∈ 2N∗. Therefore, as a subgroup of
D†, the group G1 is generated by W and by a matrix Rζ =

[ ζ 0
0 1/ζ

]
where,

ζ is a primitive N -th root of unity. This is the group D†2N of order 2N ,
whose presentation is

D†2N =< W,Rζ |W 2 = −Id, RNζ = Id, WRζW
−1 = R−1

ζ > .

The image of D†2N in PSL2(C) is the dihedral group DN = D2k, in the
considered situation.

If {x1, x2} is a basis of V in which the representation of G1 is D†2N , then
the actions of W and Rζ on this basis are given by the formulae{

W (x1) = x2
W (x2) = −x1

and


Rζ(x1) = ζx1

Rζ(x2) = 1
ζ
x2

.

Therefore, W (x1x2) = −x1x2, and Rζ(x1x2) = x1x2. So, (x1x2)2 ∈ K =
C(z), and L = K[x1x2] is quadratic over K. The group Gal(F1/L) =<
Rζ > is cyclic of order N = 2k. Since x1 has N distinct conjugates under
Gal(F1/L), we have F1 = L[x1]. Moreover, xN1 ∈ L = C(z)[x1x2].

Algebraicity of the general integral ϕ =
∫
sx2.

Lemma 4.11. — Let {x1, x2} be a basis of V in which the representation
of G1 is D†2N . Then the following statements hold true.

(1) If there exists x0 = αx1 + βx2 ∈ V with αβ 6= 0 such that ϕ0 =∫
sx2

0 ∈ F1, then for all x ∈ V the general integral ϕ =
∫
sx2 ∈ F1.

(2) ϕ1 =
∫
sx2

1 ∈ F1 iff ϕ2 =
∫
sx2

2 ∈ F1.
(3) ϕ1 =

∫
sx2

1 ∈ F1 iff there exist φ ∈ C(z)[x1x2] such that
∫
sx2

1 =
φx2

1.
(4) If {y1, y2} is a basis of V such that y1y2 is at most quadratic over

C(z), then up to a permutation of the indices, y1 is proportional to
x1 and y2 is proportional to x2.

Proof. — (1) Since

Rζ(x0) = ζαx1 + β

ζ
x2, and

∫
sx2

0 = α2ϕ1 + 2αβ
∫
sx1x2 +β2ϕ2 ∈ F1,

we deduce that

ζ2
∫
sRζ(x2

0) = ζ4α2ϕ1 + ζ22αβ
∫
sx1x2 + β2ϕ2 ∈ F1.
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Since N = 2k > 6, we can find two primitive N -th roots of unity ζ and ζ ′,
such that card{1, ζ2, ζ ′2} = 3. Therefore, we obtain an identity of the form 1 1 1

ζ4 ζ2 1
ζ ′4 ζ ′2 1

 α2ϕ1
2αβ

∫
sx1x2

β2ϕ2

 =

f1
f2
f3

 ∈ F 3
1 ,

where the 3× 3 Vandermonde matrix on the left hand side is invertible. It
implies that ϕ1,

∫
sx1x2, ϕ2 ∈ F1, because αβ 6= 0. Therefore, by Proposi-

tion 4.5, any general integral ϕ =
∫
sx2 ∈ F1.

(2) From Proposition 4.5 again,(∫
sx2

1 ∈ F1

)
=⇒

(∫
sW (x2

1) =
∫
sx2

2 ∈ F1

)
.

(3) If
∫
sx2

1 ∈ F1, then, as F1 = L[x1], we have∫
sx2

1 =
N−1∑
i=0

φix
i
1,

and this equality implies that

sx2
1 =

N−1∑
i=0

(
φ′i + i

x′1
x1
φi

)
xi1.

But, xN1 ∈ L implies that x′1/x1 ∈ L, and the above formula gives an
expansion of sx2

1 in the L-basis {1, x1, · · · , xN−1
1 }. Therefore φ′i+i

x′1
x1
φi = 0

for i 6= 2 and

φ2 + 2x
′
1
x1
φ2 = s,

that is,
∫
sx2

1 = φ2x
2
1 with φ2 ∈ L = C(z)[x1x2].

(4) If y1y2 is at most quadratic over C(z), its orbit under G1 contains
at most two elements. Looking at the orbit under the subgroup generated
by Rζ , we deduce that y1y2 must be fixed by the subgroup of the rotations
Rλ where λ ranges over the k = N/2 roots of unity. Now, let us write

y1 = ax1 + bx2 and y2 = cx1 + dx2 with ad− bc 6= 0.

We get the following two expressions
y1y2 = acx2

1 + (bc+ ad)x1x2 + bdx2
2,

Rλ(y1y2) = λ2acx2
1 + (bc+ ad)x1x2 + bd

λ2x
2
2.

But from the proof of point 1, it follows that the family {x2
1, x1x2, x

2
2}

is C-linearly independent. Therefore, when λ is a k-th roots of unity, the
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equality Rλ(y1y2) = y1y2 implies that

(λ2 − 1)ac = 0 = (1− 1
λ2 )bd.

As k > 3, we deduce that ac = bd = 0, and, up to a permutation, y1 is
proportional to x1 and y2 is proportional to x2. �

From the above lemma, {x1, x2} is a distinguished basis of V , and we
have to compute it in order to study the algebraicity of ϕ1.

Solutions of L2 = 0 and the Jacobi polynomials. The Jacobi poly-
nomials J (α,β)

n (t) with parameters (α, β), and n ∈ N are defined by the
following formulae

J (α,β)
n (t) = (t− 1)−α(t+ 1)−β

2nn!
dn

dtn
(
(t− 1)α+n(t+ 1)β+n) ,

see p. 95 in [12]. The polynomial J (α,β)
n (t) is of degree n, and belongs to

the Riemann scheme

PJ


−1 ∞ 1
0 −n 0
−β α+ β + n+ 1 −α

t

 ,

thus it is a solution of the following equation

(4.2) (1− t2)d
2w

dt2
+ [(β − α)− (α+ β + 2)t]dw

dt
+ n(α+ β + n+ 1)w = 0

If α and β are real and greater than −1, then the pairing

〈P,Q〉 =
∫ 1

−1
(1− t)α(1 + t)βP (t)Q(t)dt,

defines a scalar product on R[t]. It can be shown, see, e.g., page 97 in
[12], that the family {J (α,β)

n (t)}n∈N is an orthogonal basis for this scalar
product. From this it can be proved, see Ex. 2.39 on p. 94 in [13], that the
roots of J (α,β)

n (t) are simple and contained in the real interval ]− 1, 1[.
In what follows, we use the Jacobi polynomials with parameters

(α, β) = (−1/k, 1/k),

and we denote them by Jn(t).
Using the following change of variable

(4.3) t =
√

1− z ⇐⇒ z = 1− t2,

the solutions of L2 = 0 can be expressed in the terms of variable t. We
have the following.
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Lemma 4.12. — Let k and p be natural integers with k > 3, and
x1 = (1− t2)1/2(−t2)1/4

(
t+ 1
t− 1

)1/2k
Jp(t),

x2 = i(1− t2)1/2(−t2)1/4
(
t+ 1
t− 1

)−1/2k
Jp(−t).

Then, {x1, x2} is a basis of V in which the representation of G1 is D†2N ,
and L = C(z)[x1x2] = C(z)(

√
1− z) = C(t).

Before proving the above lemma, we use it to finish the proof of Propo-
sition 4.10.

The integral
∫
sx2

1 6= φx2
1. From Lemmas 4.11 and 4.12,

∫
sx2

1 ∈ F1 iff
there exists φ ∈ C(z)(

√
1− z) = C(t) such that

∫
sx2

1 = φx2
1, or equiva-

lently

(4.4) d

dz

(
φx2

1) = sx2
1.

But here all the quantities may be expressed in term of t =
√

1− z. Ap-
plying the chain rule we obtain

(4.5) d

dt

(
φx2

1) = −2tsx2
1.

From Lemma 4.12,

x2
1 = (1− t2)(−t2)1/2

(
t+ 1
t− 1

)1/k
J2
p (t) = it(1− t2)

(
t+ 1
t− 1

)1/k
J2
p (t).

Since
s = 1

2kz(1− z)
= 1

2kt2(t2 − 1)
,

equation (4.5)) reads

(4.6) d

dt

(
φ(t)t(1− t2)

(
t+ 1
t− 1

)1/k
J2
p (t)

)
= 1
k

(
t+ 1
t− 1

)1/k
J2
p (t).

If we set ψ(t) = φ(t)t(1− t2)J2
p (t), then φ ∈ C(t) iff ψ ∈ C(t). In terms of

ψ(t), equation (4.4) has the form

d

dt

(
ψ(t)

(
1 + t

1− t

)1/k
)

= 1
k

(
1 + t

1− t

)1/k
J2
p (t),(4.7)

dψ

dt
+ 1
k

(
1

1 + t
+ 1

1− t

)
ψ = 1

k
J2
p (t).(4.8)

We can use the above equation to study the local behaviour of the function
ψ(t). A simple analysis shows that if ψ(t) is rational, then it has a simple
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zero at t = ±1. Moreover, by the Cauchy theorem, ψ has no pole in ]−1, 1[.
Since 0 < 1/k 6 1/3, if ψ is rational, then the real function

t 7→ ψ(t)
(

1 + t

1− t

)1/k
,

vanishes at t = ±1. Therefore, integrating (4.7), we get

0 =
∫ 1

−1

1
k

(
1 + t

1− t

)1/k
J2
p (t)dt,

but it is impossible since the integrand is positive on ]− 1, 1[.
Therefore, ϕ1 =

∫
sx2

1 does not belong to F1.
Proof of Proposition 4.10. — Since ϕ1 =

∫
sx2

1 6∈ F1, by Lemma 4.11,
ϕ2 =

∫
sx2

2 6∈ F1, and for all non-zero x ∈ V the general integral ϕ =
∫
sx2

does not belong to F1. Therefore, by Proposition 4.4, G◦3 is not Abelian. �

Proof of Lemma 4.12. — We can prove the first part of the lemma
directly by making a change of dependent and independent variables in the
equation x′′ = rx. Namely, if we put

y = x(z(t)) = (1− t2)1/2(−t2)1/4
(
t+ 1
t− 1

)1/2k
w(t),

where
z = z(t) = 1− t2,

then w(t) satisfies equation (4.2) with β = −α = 1/k and n = p. Also,
we can prove this part of the lemma applying successive transformations
of Riemann schemes, see Chapter VI in [12].

This implies that the function

(4.9) y1 = (1− t2)1/2(−t2)1/4
(
t+ 1
t− 1

)1/2k
Jp(t).

is a solution of L2 = 0 expressed in t variable. Moreover, it can be easily
shown that

(4.10) y2 =M1(y1) = i(1− t2)1/2(−t2)1/4
(
t+ 1
t− 1

)−1/2k
Jp(−t).

Hence,

(4.11) y1y2 = t(1− t2)Jp(t)Jp(−t) ∈ C[t].

Since C(t)/C(z) is quadratic, y1y2 is at most quadratic over C(z). There-
fore, from point 4 of Lemma 4.11 we deduce that, up to a permutation,
y1 is proportional to x1 and y2 is proportional to x2. Therefore, {y1, y2} is
a basis of V in which the representation of G1 is D†2N , and we can call it
{x1, x2}.
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Since C(z)[y1y2] = L = C(z)[x1x2] ⊂ C(t), and W (x1x2) = −x1x2, the
element x1x2 is quadratic over C(z). Thus, we deduce that

L = C(z)[x1x2] = C(t),

and this finishes the proof. �

Conclusion. From this study, it follows that the first three points of
Theorem 1.3 are proved.

5. Symmetries in Table 1.2 and potentials of degree k = ±2

In this section, we notice an important symmetry contained in Table 1.2.
We use it to prove Theorem 1.3, for the exceptional cases when deg(V ) =
k = ±2.

5.1. Symmetries in Table 1.2

Let us recall that the reduced VE (1.11) depends on two rational func-
tions r, s ∈ C(z). The function r is defined by the equations (1.12) and
(1.13); the function s is the following

s = 1
2kz(z − 1)

.

In Table 1.1 there are symmetries between the rows for which k is changed
into k̃ = −k. In fact we have the following.

Proposition 5.1. — If the pair (k, λ) is changed into the pair (k̃, λ̃) =
(−k, 1− λ), then

(1) The pair of function (r, s) is changed into (r̃, s̃) = (r,−s).
(2) For all d > 1 the differential Galois groups Gd and G̃d of the subsys-

tems of the VE associated to the Jordan blocks B(λ, d) and B(λ̃, d)
are isomorphic.

Proof. — If k is changed into k̃ = −k, then from (1.14) the Riemann
schemes P (resp. P̃ ) of the equations x′′ = rx (resp. x′′ = r̃x) have the
same exponents at z = 0 and at z = 1. Now, P = P̃ iff τ̃ = ±τ . From (1.13)
this happens iff λ̃ = 1− λ. Therefore, if (k̃, λ̃) = (−k, 1− λ), then P = P̃ ,
and G̃1 = G1. Moreover, from (1.14) again, we have (r̃, s̃) = (r,−s).

Now, let us make the following change of variables

x̃ = −x, ỹ = y, ũ = −u,

in the system

x′′ = rx, y′′ = ry + sx, u′′ = ru+ sy.
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We can easily obtain

x̃′′ = r̃x̃, ỹ′′ = r̃ỹ + s̃x̃, ũ′′ = r̃ũ+ s̃ỹ

By considering the first two equations of both systems we see that the
two Picard-Vessiot extensions F2/C(z) and F̃2/C(z) are equal. So their
differential Galois group G2 and G̃2 coincide. Similarly, by considering the
three equation of both systems we have

F3 = F̃3 and G3 = G̃3.

This arguments are can be obviously generalised for any Jordan block of
size d > 3. �

As a consequence, Table 1.1 remains stable for the involutive pairing
(k, λ)↔ (k̃, λ̃). For example, for rows 2, 3 and 4, we have

λ(k, p) + λ(−k, 1− p) = 1.

So, if λ = λ(k, p) then λ̃ = λ(−k, 1− p).

5.2. The case k = ±2

Proposition 5.2. — Let V (q) be a homogeneous potential of degree
k = ±2. Then at an arbitrary PDP, the connected component G(VEt)◦ '
G(VEz)◦ is Abelian.

Proof. — Let us assume that k = 2. The VE (1.4) η̈ = −ϕk−2V ′′(c)η
reduces to the following linear differential system with constant coefficients

η̈ = −V ′′(c)η.

Let F/C(ϕ(t), ϕ̇(t)) be the Picard-Vessiot extension associated to this sys-
tem. It is generated over C(ϕ(t), ϕ̇(t)) by the entries of a n × n matrix
Ξ(t) = exp(St), where, S is a constant matrix such that

(5.1) S2 = −V ′′(c).

Since it is always possible to extract a square root of a complex matrix,
(5.1) has a solution whose spectrum consists of numbers µi with µ2

i = −λi,
where the λi belong to the spectrum of V ′′(c). By considering the Jordan
decomposition S = D+N of S with D conjugated to diag(µ1, . . . , µn), the
entries of Ξ(t) are polynomial in t combinations of the exponential exp(µit).

Since the hyperelliptic equation (1.3) is now

ϕ̇(t)2 + ϕ(t)2 = 1⇒ ϕ̈(t) = −ϕ(t),

the associated ground field is C(ϕ(t), ϕ̇(t)) = C(exp(it)). Therefore, the
connected component G(VEt)◦ is either a torus, or the direct product of a
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torus and Ga. The latter case happens only if some of the above mentioned
polynomials appearing inside Ξ(t) are not constant. In both cases G(VEt)◦
is Abelian, and the same happens for the connected component G(VEz)◦,
by Proposition 1.6.

As a consequence for any system of the form (1.11), corresponding to
a Jordan block of size d > 1 with k = 2, the connected component G◦d
is Abelian. Moreover, this result is independent of the value of the eigen-
value λ.

Now, let k̃ = −2. Over the ground field C(z), the VE (1.10), can be
written as a direct sum of m systems of the form (1.11), corresponding
to Jordan blocks of sizes di and eigenvalue λ̃i. If we denote by G̃di their
respective Galois groups for 1 6 i 6 m, then from Section 1.4 we know
that G(VEz)◦ is an algebraic subgroup of the direct product

G̃◦d1
× · · · × G̃◦dm .

But from the above principle of symmetries, each G̃di ' Gdi , where Gdi is
the Galois group of system (1.11) corresponding to Jordan blocks of size di
and eigenvalue λi = 1− λ̃i, with k = 2. Since each G◦di is Abelian, so does
G(VEz)◦ and G(VEt)◦. �

6. About the applications of Theorem 1.3

From now, n and k are fixed integers with n>2 and k∈Z?, c∈Cn\{0}
is a fixed non-zero complex vector. In Cn we define the following pairing

〈x, y〉 :=
n∑
i=1

xiyi, where x = (x1, . . . , xn) ∈ Cn, y = (y1, . . . , yn) ∈ Cn.

Our aim in Section 6.1 is to show the existence of a great amount of ho-
mogeneous polynomial potentials of degree k such that c is a PDP of V
and V ′′(c) = A is a n × n symmetric matrix as general as possible. As a
consequence, there are a lot of potentials such that V ′′(c) is not diagonaliz-
able. Next, in Section 6.3, we find an explicit condition for the integrability
which does not involve the eigenvalues of the Hessian.

6.1. From polynomial potential to symmetric matrices

Here we assume that k > 3, and we consider the following sets
Rn,k = {V (q) ∈ C[q1, . . . , qn] | V is homogeneous, and deg(V ) = k } ,
Rn,k(c) = {V (q) ∈ Rn,k | V ′(c) = c } ,
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Symn =
{
A ∈Mn(C) | AT = A

}
,

Symn,k(c) = {A ∈ Symn | Ac = (k − 1)c } .
All these sets are affine spaces of respective complex dimensions

dimRn,k =
(
n+ k − 1
n− 1

)
, dimRn,k(c) =

(
n+ k − 1
n− 1

)
− n,

dim Symn =
(
n+ 1

2

)
, dim Symn,k(c) =

(
n+ 1

2

)
− n.

Now, the Hessian map

h : Rn,k(c)→ Symn, V 7→ V ′′(c)

is an affine morphism whose image is contained in Symn,k(c). Indeed, from
the Euler identity,

V ′(c) = c =⇒ V ′′(c)c = (k − 1)c.

More precisely we have the following property whose proof follows from
computations of dimensions.

Proposition 6.1. — The image of the Hessian map coincides with
Symn,k(c). In other words, if n > 2 and k > 3, then for any complex
symmetric matrix satisfying Ac = (k − 1)c, there exists a homogeneous
polynomial potential V of n variables and degree k such that c is PDP of
V and V ′′(c) = A.

6.2. Non diagonalizable complex symmetric matrices

Let us assume that k ∈ Z∗, we show that there are a lot of non-
diagonalizable symmetric matrices belonging to the space Symn,k(c). The
most reachable ones belong to

Speck−1 :=
{
A ∈ Symn,k(c) | Spec(A) = {k − 1}

}
,

which is the set of matrices such that λ = k − 1 is the only eigenvalue of
A. Indeed, any such A is either equal to (k− 1) · Id, or non-diagonalizable.

Proposition 6.2. — With the notations above we have:
(1) If n > 3, then the space Symn,k(c) contains non-diagonalizable

matrices.
(2) For n = 2, the space Sym2,k(c) contains non diagonalizable matrices

iff c is isotropic, i.e., 〈c, c〉 = 0.
(3) Moreover, when n = 2 and c is isotropic, Sym2,k(c) = Speck−1.
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Proof. — By triangularizing a n× n matrix A, we see that λ = k − 1 is
its only eigenvalue iff A satisfies the following n algebraic equations

(6.1) 1
n

TrAp = (k − 1)p for 1 6 p 6 n.

If A ∈ Symn,k(c), then λ = k− 1 is one of the eigenvalues of A, so we only
need the (n−1) first equations of (6.1) to ensure that its (n−1) remaining
eigenvalues coincide with k − 1. This proves that Speck−1 is an algebraic
affine subset of Symn,k(c), whose dimension satisfies

dim Speck−1 > dim Symn,k(c)− (n− 1) =
(
n+ 1

2

)
− 2n+ 1.

Hence dim Speck−1 > 1, as soon as n > 3. This proves point 1.
Let n = 2, and A ∈ Sym2,k(c). The line (Cc)⊥ of vectors of C2 which are

orthogonal to c is globally left invariant by A. Therefore, if (Cc)⊥ 6= Cc,
then A is diagonalizable in a basis (c, v), where v ∈ (Cc)⊥. So, if Sym2,k(c)
contains a matrix which is not diagonalizable, then we have (Cc)⊥ = Cc.
That is, c is isotropic. Conversely, let us assume that c is isotropic. Let
A ∈ Sym2,k(c). If λ 6= k − 1 is another eigenvalue of A, then ker(A− λId)
is a line which is orthogonal to Cc and different from it. This is impossible
since (Cc)⊥ = Cc. Therefore k − 1 is the only possible eigenvalue of each
matrix belonging to Sym2,k(c). Hence, Sym2,k(c) = Speck−1, and point 3
is proved. Since

dim Sym2,k(c) = 1 = dim Speck−1,

except for the matrix (k − 1) · Id, any other matrix of Sym2,k(c) is not
diagonalizable. This proves point 2. �

6.3. New necessary condition for integrability

Here we focus our attention on some potentials admitting isotropic PDP.
Altought the eigenvalues of the Hessian V ′′(c) does not give any obstacle to
the integrability, we exhibit a new one. In the following we set c0 = (1, i).

Proposition 6.3. — Let V (q) = V (q1, q2) be a two degrees of freedom
homogeneous potential of the following form

V (q) := (q2
1 + q2

2)W (q)

where W (q) is a homogeneous function with

degW ∈ Z \ {−4,−2,−1, 0}, W (c0) ∈ P1 \ {0,∞}.
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If the Hamiltonian system associated with this potential is completely in-
tegrable, then

i ∂W
∂q1

(c0) + ∂W

∂q2
(c0) = 0.

Proof. — If k = deg V = 2 + degW , then k ∈ Z \ {−2, 0, 1, 2}, i.e., we
have either |k| > 3, or k = −1. From V (q) = (q2

1 + q2
2)W (q) we get

V ′(c0) = 2W (c0) · c0.

So, V ′(c) = c for c = µc0, where 2µk−2W (c0) = 1. Hence, according to
point 3 of Proposition 6.2, it follows that V ′′(c) ∈ Speck−1, i.e., λ = k−1 is
the only eigenvalue of V ′′(c). Hence,G◦1 ' Ga, and the potential satisfies the
conditions appearing in the row 2 or 3 of Table 1.1. Thus Theorem 1.2 does
not give any obstacles for the integrability of V . Now, Theorem 1.3 gives an
obstacle iff V ′′(c) is not diagonalizable. This happens iff V ′′(c) 6= (k−1)·Id,
i.e., iff

∂2V

∂q1∂q2
(c) 6= 0 ⇐⇒ ∂2V

∂q1∂q2
(c0) 6= 0

But a direct computation shows that the last condition is equivalent to the
following one

i ∂W
∂q1

(c0) + ∂W

∂q2
(c0) 6= 0. �

Let V (q) = (q2
1+q2

2)W (q), with degW ∈ Z\{−4,−2,−1, 0}, andW (c0) ∈
P1 \ {0,∞}. The condition

i ∂W
∂q1

(c0) + ∂W

∂q2
(c0) = 0,

is therefore a non-trivial condition for the integrability of V . For example,
let us take W (q) = aq1 + bq2. By the above proposition, if V is integrable,
then W (q) = a(q1 − iq2), for a certain a ∈ C. Moreover, in this case
V = a(q2

1 + q2
2)(q1 − iq2) is indeed integrable with the additional first

integral

(6.2) F = ip2
1 + 6p1p2 − 5ip2

2 + 8aq2(q1 − iq2)2.
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