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HEAT KERNEL ON MANIFOLDS WITH ENDS

by Alexander GRIGOR’YAN & Laurent SALOFF-COSTE (*)

Abstract. — We prove two-sided estimates of heat kernels on non-parabolic
Riemannian manifolds with ends, assuming that the heat kernel on each end sep-
arately satisfies the Li-Yau estimate.

Résumé. — Nous obtenons des bornes inférieures et supérieures du noyau de la
chaleur sur des variétés riemanniennes non-paraboliques à bouts, sous l’hypothèse
que sur chaque bout, séparément, une estimation de type Li-Yau est vérifiée.

1. Introduction

1.1. Motivation

Because of its intrinsic interest and its many applications in various areas
of mathematics, the heat diffusion equation on manifolds has been studied
intensively. In particular, during the past 30 years many authors attacked
the problem of describing the global behavior of the heat diffusion kernel
p (t, x, y) on various Euclidean domains and manifolds. See for instance
[3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 30, 31, 33,
32, 34, 48, 52, 56, 55, 60, 61, 62, 63, 64].

Since p (t, x, y) represents the temperature at point y at time t start-
ing with a unit amount of heat concentrated at x at time 0, one of the
most basic questions one might ask concerns the behavior of the functions
p (t, x, y), supy′ p (t, x, y′), and supx′,y′ p (t, x′, y′) as t tends to +∞. An-
other fundamental question is to describe the location of the approximate
hot spot, that is, of the set

{y : p (t, x, y) > ε sup
y′
p (t, x, y′)},

Keywords: Heat kernel, manifold with ends.
Math. classification: 58J65, 31C12, 35K10, 60J60.
(*) Research supported by SFB 701 of German Research Council.
Research supported by NSF grant DMS 9802855, DMS 0102126, DMS 0603886.
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where ε ∈ (0, 1), a starting point x and temperature t are fixed. The latter
question is rather difficult since it calls for precise global two sided bounds
of the heat kernel.

The aim of this paper is to prove satisfactory estimates for the heat kernel
on complete manifolds with finitely many ends. These estimates were an-
nounced in [40]. The proofs are quite involved and, in particular, make use
of results from [41], [42], [43] and [39] (in fact, these works were largely mo-
tivated by the applications presented here). Our main result, Theorem 6.6,
allows us to answer the questions mentioned above and applies to a large
class of manifolds including the catenoid-like surface in Fig. 1, the three
dimensional body (with the Neumann boundary condition) in Fig. 2, and
all non-parabolic manifolds with non-negative sectional curvature outside
a compact set. It seems likely that the techniques introduced here will be
essential to make further progress in our understanding of the heat kernel
on manifolds that contain parts with different geometric characteristics.

Figure 1. Catenoid as a manifold with two ends

To the best of our knowledge, the large time behavior of the heat kernel
on manifolds with ends has been considered only in a handful of papers
where some very partial results were obtained. Among them are the papers
by Benjamini, Chavel, Feldman [5], Chavel and Feldman [9], and Davies
[25], which have been a great source of motivation and insight for us. More
recently, Carron, Coulhon, and Hassell [8] obtained precise asymptotic re-
sults for manifolds with a finite number of Euclidean ends.

It is well established that the long time behavior of the heat kernel re-
flects, in some way, the large scale geometry of the manifold. Still, the
number of situations for which satisfactory upper and lower global bounds
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HEAT KERNELS 1919

Figure 2. A domain in R3 with three ends: conical, planar, cylindrical

are known is very limited. If one excepts a few specific cases of symmet-
ric spaces (see [1]) and the case of fractal like manifolds (see [4]), all the
known global two-sided estimates of the heat diffusion kernel p(t, x, y) have
the form
(1.1)

c1

V (x,
√
t)

exp
(
−C1

d2(x, y)
t

)
6 p(t, x, y) 6

C2

V (x,
√
t)

exp
(
−c2

d2(x, y)
t

)
where V (x, r) is the volume of the ball of radius r around x and d(x, y)
is the distance between x and y. Such a two-sided bound indicates that
the heat diffusion on M is controlled by the volume growth of balls and
by a universal Gaussian factor that reflects a simple distance effect (see
[29, 21, 34]). In terms of the hot spot problem, (1.1) indicates that the
approximate hot spot at time t starting from x is roughly described by the
ball of radius

√
t centered at x.

Examples where (1.1) holds are complete manifolds having non-negative
Ricci curvature [48], manifolds which are quasi-isometric to those with non-
negative Ricci curvature [31, 56] and manifolds that cover a compact man-
ifold with deck-transformation group having polynomial volume growth
[55, 57]. In fact, the two-sided estimate (1.1) is rather well understood,
since it is known to be equivalent to the conjunction of the following two
properties:

(V D): the doubling volume property which asserts that there exists
a finite constant C such that, for all x ∈M and r > 0,

V (x, 2r) 6 CV (x, r).
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1920 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

(PI): the Poincaré inequality on balls, which asserts that there exists
a positive constant c such that, for any ball B = B(x, r) ⊂M

(1.2) λ
(N)
2 (B) >

c

r2 ,

where λ(N)
2 (B) is the second Neumann eigenvalue of B (note that

λ
(N)
1 (B) = 0).

It is known that (1.1) is also equivalent to the validity of a uniform
parabolic Harnack inequality for positive solutions of the heat equation in
cylinder of the form (s, s+r2)×B(x, r). See [31, 55] and Section 5.1 below.

Typically, manifolds with ends do not satisfy (1.1). An example that was
first considered by Kuz’menko and Molchanov [46], is the connected sum
of two copies of R3, that is, the manifold M obtained by gluing together
two punctured three-dimensional Euclidean spaces through a small three
dimensional cylinder. This manifold has two ends and its volume growth
function is comparable to that of R3, that is, V (x, r) ≈ r3. However, as
was shown in [5], the lower bound in (1.1) fails on M . Indeed, if x and
y are in different ends and far enough from the compact cylinder, then
p(t, x, y) should be significantly smaller than predicted by (1.1), at least
for some range of t > 0, because all paths from x to y must go through
the cylinder(1) . In other words, there should be a bottleneck effect which
must be accounted for if one wants to obtain precise heat kernel estimates
on M .

The manifolds on Fig. 1 and 2 do not satisfy (1.1) either. This is easy to
see for the Euclidean body in Fig 2 because the volume doubling property
fails in this case. For the catenoid in Fig. 1, the volume doubling property
is true but one can show that the Poincaré inequality (1.2) fails. Sharp two
sided estimates for the heat kernel on the catenoid follow from Theorem
7.1 below.

The goal of this paper is to develop tools that lead, in some generality, to
upper and lower bounds taking into account the bottleneck effect. In order
to describe some of our results, let us introduce the following terminology.
Let M be a complete non-compact Riemannian manifold. Let K ⊂M be a
compact set with non-empty interior and smooth boundary such that M\K
has k connected components E1, . . . , Ek and each Ei is non-compact. We

(1) Another way to see that the lower bound in (1.1) fails is to disprove the uniform
Harnack inequality. Indeed, as was shown in [46], the connected sum of two copies of
Rn, n > 2, admits a non-constant bounded harmonic function, which contradicts the
uniform Harnack inequality. The upper bound in (1.1) still holds on the manifold in
question (see Section 4.1). Hence, the lower bound fails.
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say in such a case that M has k ends Ei with respect to K. We will refer
to K as the central part of M .

In many cases (in fact, in full generality if one admits as we will manifolds
with boundary), each Ei is isometric to the exterior of a compact set in
another manifold Mi. In such case, we write

M = M1#M2#...#Mk

and refer to M as a connected sum of the manifolds Mi. For instance, the
example considered above can be described in this notation as R3#R3.

1.2. Description of the results in model cases

To obtain a rich class of elementary examples, fix a large integerN (which
will be the topological dimension of M) and, for any integer m ∈ [1, N ],
define the manifold Rm by

(1.3) R1 = R+ × SN−1, Rm = Rm × SN−m, m > 2.

The manifold Rm has topological dimension N but its “dimension at infin-
ity” is m in the sense that V (x, r) ≈ rm for r > 1. Thus, for different values
of m, the manifolds Rm have different dimension at infinity but the same
topological dimension N . This enables us to consider finite connected sums
of the Rm’s. In particular, for n 6= m, Rn#Rm is well-defined whereas
Rn#Rm does not make sense in the category of manifolds.

Fix N and k integers N1, N2, ..., Nk ∈ [1, N ] and consider the manifold

(1.4) M = RN1#RN2#...#RNk .

From the viewpoint of this paper, this is already an interesting class of
examples for which we would like to obtain global, two-sided, heat kernel
estimates. This class of manifolds is also useful for testing the validity of
various geometric and analytic properties.

We now describe how the results obtained in this paper apply to the
manifold M at (1.4) when each Ni is larger than 2. This hypothesis means
that all the ends of M are non-parabolic and we set

(1.5) n := min
16i6k

Ni > 2.

Let K be the central part of M and E1, . . . Ek be the ends of M so that
Ei is isometric to the complement of a compact set in RNi . With some
abuse of notation, we write Ei = RNi \K. Thus x ∈ RNi \K means that

TOME 59 (2009), FASCICULE 5



1922 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

the point x ∈ M belongs to the end associated with RNi . For any point
x ∈M , set

|x| := sup
z∈K

d(x, z) .

Observe that since K has non-empty interior, |x| is separated from 0 on M
and |x| ≈ 1 + d (x,K).

In the following estimates we always assume that t > t0 (where t0 > 0
is fixed), x, y are points on M and d = d(x, y) is the geodesic distance
in M . We follow the convention that C,C1, . . . denote large finite positive
constants whereas c, c1, . . . are small positive constants (these constants
may depend on M but do not depend on the variables x, y, t). Given two
non-negative functions f, g defined on a domain I, we write

f ≈ g

to signify that there are constants 0 < c 6 C < ∞ such that, on I,
cf 6 g 6 Cf .

1. Let us first consider the simplest case k = 2, i.e., M at (1.4) has two
ends. To simplify notation, set M = Rn#Rm where 2 < n 6 m. Assume
that x ∈ Rn \K and y ∈ Rm \K. Then we claim that(2)

(1.6) p(t, x, y) 6 C1

(
1

tm/2 |x|n−2 + 1
tn/2 |y|m−2

)
exp

(
−c1

d2

t

)
and

(1.7) p(t, x, y) > c2

(
1

tm/2 |x|n−2 + 1
tn/2 |y|m−2

)
exp

(
−C2

d2

t

)
.

In particular, if x and y are fixed and t→∞ then (1.6) and (1.7) yield

(1.8) p(t, x, y) ≈ 1
tn/2

,

that is, the smallest end Rn determines the long term behavior of the heat
kernel. This phenomenon was observed by E.B.Davies [25] for a weighted
one-dimensional complex.

If we allow x, y, t to vary in the range — call it the long time asymptotic
regime —

(1.9) |x| 6 η(t), |y| 6 η(t)

(2) In fact, the upper bound (1.6) holds also when n ∈ {1, 2}, m > n. However, the lower
bound (1.7) fails in this case.
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K

n

m

x

y

Figure 3. Points x and y on Rn#Rm

where η denotes a positive function going to infinity slower than any posi-
tive power of t then we obtain

(1.10) p(t, x, y) ≈ q(x, y)
tn/2

,

where

(1.11) q(x, y) =

{
|y|2−m , m > n,

|x|2−n + |y|2−n , m = n.

If instead we consider the medium time asymptotic regime

(1.12) |x| ≈ |y| ≈
√
t and t→∞,

(1.6)-(1.7) implies

(1.13) p(t, x, y) ≈ 1
t(n+m)/2−1 .

Clearly, the decay of the heat kernel given by (1.13) is much faster than
that of (1.8). This is the bottleneck effect that was alluded to earlier. As far
as we know, even the basic estimate (1.13) is new, not to mention the full
inequalities (1.6) and (1.7). Benjamini, Chavel and Feldman [5] showed, for
n = m and assuming (1.12), that

p(t, x, y) 6
Cε

tn−1−ε , ∀ε > 0,

whereas (1.13) gives a better estimate

p(t, x, y) ≈ 1
tn−1 .

TOME 59 (2009), FASCICULE 5
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2. Let k > 3 be any integer. Assume that x ∈ RNi \K and y ∈ RNj \K
where i 6= j. Then, for all t > t0,
(1.14)

p(t, x, y) 6C1

(
1

tn/2 |x|Ni−2 |y|Nj−2 + 1
tNj/2 |x|Ni−2 + 1

tNi/2 |y|Nj−2

)
exp

(
−c1

d2

t

)
and
(1.15)

p(t, x, y)>c2

(
1

tn/2 |x|Ni−2 |y|Nj−2 + 1
tNj/2 |x|Ni−2 + 1

tNi/2 |y|Nj−2

)
exp

(
−C2

d2

t

)
.

The last two terms in (1.14) and (1.15) are the same as the terms in (1.6)
and (1.7), respectively. There is also an additional effect due to the presence
of at least three ends which is reflected in the first term

(1.16) 1
tn/2 |x|Ni−2 |y|Nj−2 .

Recall that n is the smallest of the numbers N1, N2, ..., Nk. If n = Ni or
n = Nj , then the term (1.16) is majorized by the other two terms in (1.14)
and (1.15) (in particular, (1.14) and (1.15) formally hold also for k = 2 in
which case they are equivalent to (1.6) and (1.7), respectively).

Assuming (1.9), (1.14) and (1.15) give (1.10) with

(1.17) q(x, y) =


|y|2−Nj , n = Nj < Ni,

|x|2−Ni , n = Ni < Nj ,

|x|2−n + |y|2−n , n = Ni = Nj ,

|x|2−Ni |y|2−Nj , n < min(Ni, Nj).

Note that the power of t in the long time asymptotic is again determined
by the smallest end Rn. In the last case in (1.17) when n < min(Ni, Nj),
we see that the term (1.16) becomes the leading term provided t is large
enough, and we have

(1.18) p(t, x, y) ≈ 1
tn/2 |x|Ni−2 |y|Nj−2 .

Each factor in this asymptotic has a heuristic interpretation in terms of
the Brownian motion (Xt)t>0 on the manifold M which we now explain.

a) |x|−(Ni−2) is roughly the probability that the process Xt started at
x ever hits K;

b) t−n/2 is roughly the probability of making a loop from K to K

through the smallest end (i.e. the end Rn) in a time of order t;
c) |y|−(Nj−2) is roughly the probability of getting from K to y.

ANNALES DE L’INSTITUT FOURIER
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In particular, (1.18) says that the most probable way of going from x to
y in a very long time t involves visiting the smallest end.

x

y

K
Ni

n

Nj

Figure 4. The most probable trajectories from x to y go through the
smallest end Rn

3. Finally, assume that both x, y ∈ RNi \K. Then, for all t > t0,

(1.19) p(t, x, y) 6
C1

tNi/2
e−c1d

2/t + C1

tn/2 |x|Ni−2 |y|Ni−2 e
−c1(|x|2+|y|2)/t

and

(1.20) p(t, x, y) >
c2

tNi/2
e−C2d

2/t + c2

tn/2 |x|Ni−2 |y|Ni−2 e
−C2(|x|2+|y|2)/t.

Assuming (1.9), we obtain (1.10) with

q(x, y) =

{
1, n = Ni,

|x|2−Ni |y|2−Ni , n < Ni.

In particular, if n < Ni then we obtain again (1.18), for t large enough.
Next, let us briefly discuss the mixed case where the restriction n =

miniNi > 2 is relaxed to maxiNi > 2. The word “mixed” refers to the fact
that in this case M has both parabolic and non-parabolic ends. A detailed
discussion is given in Section 6 where full two-sided bounds are obtained.
Here we present selected results to give a flavour of what can occur:

(1) Let M = R1#R3. Then, for large enough t, we have

p(t, x, y) ≈ 1
t3/2

, sup
y
p (t, x, y) ≈ 1

t
, sup
x,y

p (t, x, y) ≈ 1
t1/2

.
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(2) In the case M = R2#R3, we have

p(t, x, y) ≈ 1
t log2 t

, sup
y
p (t, x, y) ≈ 1

t log t
, sup
x,y

p (t, x, y) ≈ 1
t

(3) In the case M = R1#R2#R3, we have

(1.21) p(t, x, y) ≈ 1
t log2 t

, sup
y
p (t, x, y) ≈ 1

t
, sup
x,y

p (t, x, y) ≈ 1
t1/2

The estimates (1.21) also apply to the Euclidean body of Fig. 2.
Finally, heat kernel estimates for the manifold M = R2#R2 follow from

the results of Section 7. We prove that, for large time,

p (t, x, y) ≈ sup
y
p (t, x, y) ≈ sup

x,y
p (t, x, y) ≈ 1

t

whereas in the medium time asymptotic regime (1.12),

p(t, x, y) ≈
{
t−1 if x, y are in the same end
(t log t)−1 if x, y are in different ends.

The same estimates apply to the catenoid of Fig. 1.
The examples described above clearly show that the presence of more

than one end brings in interesting and somewhat complex new phenom-
ena as far as heat kernel bounds are concerned. The tools developed in
this paper allows us to analyze much more general situations than (1.4).
For instance, we obtain a complete generalization of the above results (i.e.,
global matching upper and lower heat kernel bounds) for the connected sum
M = M1#M2#...#Mk provided each Mi is a non-parabolic complete Rie-
mannian manifold satisfying the hypotheses (V D) and (PI) stated at the
beginning of this introduction (see Theorems 4.9 and 5.10). In particular,
this result applies whenever each Mi has non-negative Ricci curvature.

1.3. Guide for the paper

The structure of the paper is as follows. Section 2 introduces notation
and basic definitions.

Section 3 develops gluing techniques for which the key result is Theo-
rem 3.5. These techniques enable us to obtain bounds on the heat kernel
p(t, x, y) on a manifold M with ends E1, . . . , Ek and central part K in terms
of:

ANNALES DE L’INSTITUT FOURIER
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(a) The size of p(t, u, v) where u, v ∈ K. Roughly speaking, for large t,
this can be thought of as a function of t alone but it depends on
the global geometry of M and, in particular, of all the ends taken
together.

(b) Quantities that depend only on the geometry of the ends taken
separately. One such quantity is the Dirichlet heat kernel in Ei
(i.e., the transition function of Brownian motion killed as it exits
Ei). Another such quantity is the probability that Brownian motion
started at x ∈ Ei hits K before time t. In both cases, it is clear that
these quantities involve only the end Ei.

Section 4 is devoted to heat kernel upper bounds on manifolds with ends.
It starts with background on various results that are used in a crucial way
in this paper. Several of these results were in fact developed by the authors
with the applications presented here in mind. Faber-Krahn inequalities on
manifolds with ends are studied in [39] where a rough initial upper bound of
the heat kernel on manifolds with ends is derived. Hitting probabilities are
studied in detail in [42]. Using these ingredients and the gluing techniques of
Section 3, we prove sharp heat kernel upper bounds on manifolds with ends
under the basic assumption that each end satisfies a certain relative Faber-
Krahn inequality (other situations, e.g. flat Faber-Krahn inequalities, can
be treated by the same technique – see [38]). The main result of Section 4
is Theorem 4.9.

Section 5 is devoted to heat kernel lower bounds onM=M1#M2#...#Mk.
These lower bounds match (in some sense) the upper bounds of Section 4
but they require stronger hypotheses. Namely, we assume that each Mi is
a non-parabolic manifold satisfying (V D) and (PI). Here the key ingredi-
ents are a lower bound for hitting probabilities that is taken from [42] and
a lower bound on the Dirichlet heat kernels of the different ends which is
taken from [41]. Both the lower bound on hitting probability and the lower
bound on the Dirichlet heat kernels depend crucially on the hypothesis that
each end is non-parabolic. The main Theorem of Section 5 is Theorem 5.10.

Sections 4 and 5 both ends with examples illustrating Theorems 4.9
and 5.10 respectively. In particular, these examples cover the case of the
manifolds M = RN1# . . .#RNk with n = min16i6kNi > 2, discussed
earlier in this introduction.

Section 6 treats the mixed case, that is, the case when at least one end is
non-parabolic but parabolic ends are also allowed. The main result of this
section (as well as that of the whole paper) is Theorem 6.6. In order to treat
the mixed case, we use a Doob’s transform technique that turns the original

TOME 59 (2009), FASCICULE 5
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manifold into a weighted manifold all of whose ends are non-parabolic. The
difficulty here is to verify that the ends of this weighted manifold still satisfy
(V D) and (PI). This follows from a result of [43] provided the manifolds
Mi satisfy (V D), (PI) and an additional property labeled by (RCA) (the
relative connectedness of certain annuli in Mi). Theorem 6.6 applies to all
manifolds of type (1.4) with maxiNi > 2. These examples are discussed in
detail at the end of Section 6.

Section 7 deals with a restricted class of parabolic manifolds where all the
ends have comparable volume growth. This allows us to treat the case of
R2#R2. The general treatment of parabolic manifolds with ends including
R1#R2 require different additional arguments and is postponed to the
forthcoming paper [37].

Finally, Section 8 gives a perhaps surprising application of the main re-
sults (Theorems 4.9, 5.10) to the study of the one-dimensional Schrödinger
operator with a positive potential of at least quadratic decay at ∞.

Acknowledgement. The authors are grateful to Gilles Carron for use-
ful discussions and to the unnamed referee for careful reading of the man-
uscript.

2. Preliminaries

2.1. Weighted manifolds

Let N be a positive integer and M = (M,g) be an N -dimensional
Riemannian manifold with boundary δM (which may be empty). Given
a smooth positive function σ on M , we define a measure µ on M by
dµ(x) = σ2(x)dx where dx is the Riemannian measure. The pair (M,µ)
is called a weighted manifold and it will be the main underlying space for
our considerations. Let us recall some standard definition from Riemannian
geometry.

For x, y ∈M , denote by d(x, y) the Riemannian distance induced by the
metric g. Let

B(x, r) = {y ∈M | d(x, y) < r}
be the geodesic ball with center x ∈M and radius r > 0 and let

V (x, r) := µ(B(x, r))

be its µ-volume. For any set A ⊂ M , denote by Aδ the δ-neighborhood
of A.

ANNALES DE L’INSTITUT FOURIER
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The manifold M is called complete if the metric space (M,d) is complete.
Equivalently, M is complete if all metric balls are precompact. If δM = ∅
then M is complete if and only if M is geodesically complete.

The Riemannian metric induces the notion of gradient. For any smooth
enough function f and vector field X on M , the gradient ∇f is the unique
vector field such that g(∇f,X) = df(X). In a coordinate chart x1, x2, ...xN ,
the gradient ∇f is given by

(∇f)i =
N∑
j=1

gij
∂f

∂xj
,

where gij are the matrix entries of the Riemannian metric g and gij are
the entries of the inverse matrix ‖gij‖−1.

A weighted manifold possesses a divergence divµ which is a differential
operator acting on smooth vector fields and which is formally adjoint to
∇ with respect to µ. Namely, for any smooth enough vector field F , the
divergence divµF is a function which, in any coordinate chart, is given by

divµF := 1
σ2√g

N∑
i=1

∂

∂xi

(
σ2√gF i

)
,

where g := det ‖gij‖ . The weighted Laplace operator L on M is defined by

Lu := divµ(∇u) = σ−2div(σ2∇u),

for any smooth function u on M . When σ ≡ 1, divµF is the Riemannian
divergence divF and L coincides with the Laplace-Beltrami operator ∆ =
div ◦ ∇.

Consider the Hilbert space L2(M,µ) and the Dirichlet form

D(u, v) =
∫
M

(∇u,∇v)dµ

defined for all u, v ∈ C∞0 (M), where C∞0 (M) is the set of smooth functions
on M with compact support (note that functions in C∞0 (M) do not have to
vanish on δM). The integration-by-parts formula for the operator L implies

(2.1) D(u, v) = −
∫
M

uLvdµ−
∫
δM

u
∂v

∂ν
dµ′,

where ν is the inward unit normal vector field on δM and µ′ is the measure
with density σ2 with respect to the Riemannian measure of codimension
1 on any smooth hypersurface, in particular, on δM . Clearly, the operator
L is symmetric on the subspace of C∞0 (M) of functions with vanishing
normal derivative on δM . It follows that the operator L initially defined
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on this subspace, admits a Friedrichs extension L which is a self-adjoint
non-positive definite operator on L2(M,µ).

The associated heat semigroup Pt = etL has a smooth integral kernel
p(t, x, y) which is called the heat kernel of (M,µ). Alternatively, the heat
kernel can be defined as the minimal positive solution u(t, x) = p(t, x, y) of
the Cauchy problem

(2.2)


(∂t − L)u = 0 on (0,∞)×M
u(0, x) = δy (x)
∂u

∂ν

∣∣∣∣
δM

= 0.

(see [12], [28], [54]). Note that the heat kernel is symmetric in x, y, that is,

p (t, x, y) = p (t, y, x) .

The operator L generates a diffusion process (Xt)t>0 on M . Denote by
Px the law of (Xt)t>0 given X0 = x ∈ M and by Ex the corresponding
expectation. The heat kernel coincides with the transition density for Xt
with respect to measure µ, that is, for any Borel set A ⊂M ,

Px (Xt ∈ A) =
∫
A

p(t, x, y)dµ(y).

Note that the Neumann boundary condition corresponds to the fact that
the process Xt is reflected on the boundary δM . A weighted manifold
(M,µ) is called parabolic if∫ ∞

1
p (t, x, y) dt ≡ ∞

for some/all x, y ∈ M , and non-parabolic otherwise. It is known that the
parabolicity of M is equivalent to the recurrence of the associated diffusion
Xt (see, for example, [35]).

Any open set Ω ⊂ M (equipped with the restriction of µ to Ω) can
be consider as a weighted manifold with boundary(3) δΩ = Ω ∩ δM . The
weighted Laplace operator LΩ on Ω generates a diffusion in Ω which is killed
on ∂Ω and reflected on δΩ. Let pΩ(t, x, y) be the heat kernel in (Ω, µ). It
is convenient to extend pΩ (t, x, y) to M by setting pΩ (t, x, y) = 0 if one of
the points x, y is outside Ω.

We say that an open set Ω ⊂M has smooth boundary if the topological
boundary ∂Ω is a smooth submanifold of M of dimension N − 1, which

(3) Recall that, by the definition of a manifold with boundary, any point of δM is an
interior point ofM . For the same reason, any point of δΩ is an interior point of Ω. Hence,
the boundary δΩ of Ω as a manifold with boundary is disjoint from the topological
boundary ∂Ω of Ω as a subset of the topological space M .
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is transversal to δM (the latter condition being void if δM is empty). If
Ω has smooth boundary then pΩ (t, x, y) satisfies the Dirichlet boundary
condition on ∂Ω \ δM and the Neumann boundary condition on δΩ.

2.2. Connected sum of manifolds

Let {Mi}ki=1 be a finite family of non-compact Riemannian manifolds.
We say that a Riemannian manifold M is a connected sum of the manifolds
Mi and write

(2.3) M = M1#M2# · · ·#Mk
if, for some non-empty compact set K ⊂ M (called a central part of M),
the exterior M \K is a disjoint union of open sets E1, E2, . . . , Ek, such that
each Ei is isometric to Mi \Ki, for some compact Ki ⊂Mi; in fact, we will
always identify Ei and Mi \Ki (see Fig. 5).

E1

K

E1

E2

E2

E3

E3

Figure 5

If (M,µ) and (Mi, µi) are weighted manifolds then the isometry is under-
stood in the sense of weighted manifolds, that is, it maps the measure µ to
µi. Of course, taking connected sums is not a uniquely defined operation.
Without loss of generality, we will always assume that K is the closure of
an open set with smooth boundary.

Conversely, let M be a non-compact manifold and K ⊂M be a compact
set with smooth boundary such that M \K is a disjoint union of a finitely
many connected open sets E1, E2, . . . , Ek that are not precompact. We say
that the Ei’s are the ends of M with respect to K. Consider the closure
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Ei as manifold with boundary. Then by definition of a connected sum we
have M = E1#E2# · · ·#Ek. Sometimes it will be convenient to choose
a precompact open set E0 ⊂ M with smooth boundary containing K, so
that M is covered by the open sets E0, E1, ..., Ek.

Example 2.1. — Say that a complete non-compact Riemannian mani-
fold M (without boundary) has asymptotically non-negative sectional cur-
vature if there exists a point o ∈ M and a continuous decreasing function
k : (0,∞) 7→ (0,∞) satisfying

∫ ∞
sk(s)ds <∞

and such that the sectional curvature Sect(x) of M at x ∈ M satisfies
Sect(x) > −k(d(o, x)). Such manifolds were studied in [47, 45] and include,
of course, all manifolds with non-negative sectional curvature outside a
compact set. The catenoid of Fig 1 is also a manifold with asymptotically
non-negative curvature.

All such manifolds have a finite number of ends and thus can be written
as a connected sum M = M1# . . .#Mk of complete manifolds; further-
more, each manifold Mi satisfies the properties (V D) and (PI) as well as
the property (RCA)(4) (see [43, Sect. 7.5] and references therein). Hence,
our main Theorem 6.6 applies to all non-parabolic manifolds with asymp-
totically non-negative sectional curvature.

Example 2.2. — Let M be a complete non-compact Riemannian mani-
fold (without boundary), and assume that M has non-negative Ricci cur-
vature outside a compact set. Then M has finitely many ends ([6, 47])
and it can be written has has a connected sum M = M1# . . .#Mk, where
each Mi corresponds to an end of M . These Mi’s should be thought of as
manifolds with non-negative Ricci curvature outside a compact set having
exactly one end (strictly speaking, even so M has no boundary, we may
have to allow the Mi’s to have a (compact) boundary). It is known that if
an end Mi satisfies (RCA) then it satisfies also (V D) and (PI) (see [43,
Propositions 7.6, 7.10]). Hence, our main Theorem 6.6 applies to all non-
parabolic manifolds with non-negative Ricci curvature outside a compact
set, provided each end satisfies (RCA).

(4) (RCA) stands for "relative connectedness of annuli" – see Section 6 for the definition.

ANNALES DE L’INSTITUT FOURIER



HEAT KERNELS 1933

3. Gluing techniques for heat kernels

We start with general inequalities which relate the heat kernel with hit-
ting probabilities on an arbitrary weighted manifold (M,µ) . These inequal-
ities will be one of the main technical tools we introduce here to handle
heat kernel estimates on manifolds with ends. However, in this section we
do not make any a priori assumption about the manifold in question.

For any closed set Γ ⊂M define the first hitting time by

τΓ = inf{t > 0 : Xt ∈ Γ}.

Let us set

(3.1) ψΓ(t, x) := Px(τΓ 6 t).

In other words, ψΓ(t, x) is the probability that the process hits Γ by time
t. Observe that ψΓ(t, x) is an increasing function in t, bounded by 1, and
ψ(x, t) = 1 if x ∈ Γ. We will denote by ψ′Γ the time derivative of ψΓ(t, x).

Lemma 3.1. — Let Γ ⊂ M be a closed set and Ω ⊂ M be an open set
such that ∂Ω ⊂ Γ. Then for all x ∈ Ω, y ∈M , and t > 0

(3.2) p(t, x, y) 6 pΩ(t, x, y) + sup
06s6t
z∈Γ

p(s, z, y)ψΓ(t, x).

Furthermore, we have

(3.3) p(t, x, y) 6 pΩ(t, x, y) + sup
t/26s6t
z∈Γ

p(s, z, y)ψΓ

(
t

2
, x

)
+

+ sup
t/26s6t

ψ′Γ(s, x)
t/2∫
0

sup
z∈Γ

p(θ, z, y)dθ

and

(3.4) p(t, x, y) > pΩ(t, x, y) + inf
t/26s6t
z∈Γ

p(s, z, y) ψΓ

(
t

2
, x

)
+

+ inf
t/26s6t

ψ′Γ(s, x)
t/2∫
0

inf
z∈Γ

p(θ, z, y)dθ .

Remark 3.2. — Inequality (3.2) will not be used in the main part of
the paper. However, its proof is instructive since it contains the main idea
of the proof of the more involved inequalities (3.3), (3.4) as well as other
inequalities presented below.
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Proof. — By hypothesis any continuous path from x to y either intersects
Γ or stays in Ω (the latter can happen only in the case y ∈ Ω). Set τ = τΓ.
The strong Markov property yields

p(t, x, y) = pΩ(t, x, y) + Ex
(
1{06τ6t}p(t− τ,Xτ , y)

)
(3.5)

= pΩ(t, x, y) + Ex
(

1{06τ6 t
2}p(t− τ,Xτ , y)

)
(3.6)

+Ex
(

1{ t2<τ6t}p(t− τ,Xτ , y)
)

(3.7)

(see Fig. 6).

Γ

y
x

Ω z=Xτ

Figure 6. A path between points x, y

The identity (3.5) implies

p(t, x, y) 6 pΩ(t, x, y) + sup
z∈Γ

06θ6t

p(t− θ, z, y)Px {0 6 τ 6 t}

which is exactly (3.2).
To prove (3.3) and (3.4) we will use (3.6)-(3.7). The second term in (3.6)

can be estimated as above. This gives

(3.8) Ex
(

1{06τ6 t
2}p(t− τ,Xτ , y)

)
6 sup

z∈Γ
06θ6 t

2

p(t− θ, z, y)ψΓ

(
t

2
, x

)
.
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To estimate the term in (3.7), let us denote by ν the joint distribution of
(τ,Xτ ) on (0,∞)× Γ. Then we have

Ex
(

1{ t2<τ6t}p(t− τ,Xτ , y)
)

=
t∫

t/2

∫
Γ

p(t− s, z, y)dν(s, z)

6

t∫
t/2

sup
z∈Γ

p(t− s, z, y)
∫
Γ

dν(s, z)

=
t∫

t/2

sup
z∈Γ

p(t− s, z, y)∂sψΓ(s, x)ds

6 sup
t
2 6s6t

ψ′Γ(s, x)
t∫

t/2

sup
z∈Γ

p(t− s, z, y)ds

whence (3.3) follows.
To prove (3.4) note that the second term in (3.6) is bounded below by

inf
z∈Γ

06θ6t/2

p(t− θ, z, y)Px (0 6 τ 6 t/2) = inf
z∈Γ

t/26s6t

p(s, z, y)ψΓ(t/2, x) .

Finally, the term in (3.7) is estimated from below by writing

Ex
(

1{ t2<τ6t}p(t− τ,Xτ , y)
)

>

t∫
t/2

inf
z∈Γ

p(t− s, z, y)
∫
Γ

dν(s, z)

=
t∫

t/2

inf
z∈Γ

p(t− s, z, y)∂sψΓ(s, x)ds

> inf
t/26s6t

ψ′Γ(s, x)
t∫

t/2

inf
z∈Γ

p(t− s, z, y)ds.

Inequality (3.4) follows.

Lemma 3.3. — Let Ω1 and Ω2 be two open sets in M with the topolog-
ical boundaries Γ1 and Γ2 respectively. Assume that Γ2 separates Ω2 from
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Γ1. Then for all x ∈ Ω1, y ∈ Ω2, and t > 0 we have

(3.9) 2p(t, x, y) > pΩ1(t, x, y) + inf
t/26s6t
v∈Γ1

p(s, v, y) ψΓ1

(
t

2
, x

)
+

+ inf
t/26s6t
w∈Γ2

p(s, w, x) ψΓ2

(
t

2
, y

)
and

(3.10) p(t, x, y) 6 pΩ1(t, x, y) + sup
t/26s6t
v∈Γ1

p(s, v, y)ψΓ1

(
t

2
, x

)
+

+ sup
t/26s6t
w∈Γ2

p(s, w, x)ψΓ2

(
t

2
, y

)
.

Furthermore, the following refinement of (3.10) takes places:

(3.11) p(t, x, y) 6 pΩ1(t, x, y) + sup
t/26s6t
v∈Γ1

p(s, v, y)ψΓ1

(
t

2
, x

)
+

+ sup
t/26s6t
w∈Γ2

p̂Ω1(s, w, x)ψΓ2

(
t

2
, y

)
,

where

(3.12) p̂Ω1 (s, w, x) := p (s, w, x)− pΩ1 (s, w, x) .

Remark 3.4. — The hypothesis that Γ2 separates Ω2 from Γ1 means
that either Ω1 and Ω2 are disjoint or Ω2 ⊂ Ω1 (see below Fig. 7 and 8
respectively). Note that in the former case the term pΩ1 (t, x, y) vanishes.

Proof. — Applying (3.4) with Ω = Ω1, Γ = Γ1 we obtain

p(t, x, y) > pΩ1(t, x, y) + inf
t/26s6t
v∈Γ1

p(s, v, y) ψΓ1

(
t

2
, x

)
and similarly

p(t, x, y) > pΩ2(t, x, y) + inf
t/26s6t
w∈Γ2

p(s, w, x) ψΓ2

(
t

2
, y

)
.

Adding up these inequalities, we obtain (3.9).
For the upper bound (3.10) we need some preparation. Fix some T > 0

and consider Px as a measure in the space ΩT of all continuous paths
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ω : [0, T ]→M . Note that Px sits in ΩT,x := {ω ∈ ΩT : ω (0) = x}. For any
µ-measurable set A ⊂M with µ (A) <∞ define a measure PA in ΩT by

(3.13) PA (A) =
∫
A

Px (A) dµ (x) ,

where A is an event in ΩT . For any two such sets A,B ⊂ M define a
probability measure PT,A,B in ΩT by

PT,A,B (A) := PA (A ∩ (XT ∈ B))
PA (XT ∈ B)

.

For any paths ω ∈ ΩT denote by ω∗ the path obtained from ω by the time
change t 7→ T − t, that is ω∗ (t) = ω(T − t). Respectively, for any event
A ⊂ ΩT set A∗ = {ω∗ : ω ∈ A}. Then we claim that

(3.14) PT,A,B (A) = PT,B,A (A∗) .

Indeed, observe that by the symmetry of the heat kernel
(3.15)

PA (XT ∈ B) =
∫
A

Px (XT ∈ B) dµ (x) =
∫
A

∫
B

p (T, x, y) dµ (y) dµ (x)

= PB (XT ∈ A) .

Hence, (3.14) will follow if we show that

(3.16) PA (A ∩ (XT ∈ B)) = PB (A∗ ∩ (XT ∈ A)) .

It suffices to prove (3.16) for an elementary event A, that is for

A = (Xt1 ∈ E1, Xt2 ∈ E2, ..., Xtn ∈ En)

where 0 < t1 < t2 < ... < tn < T and Ek are measurable sets in M . For
this A, we have

PA (A ∩ (XT ∈ B)) =

=
∫
A

Px (Xt1 ∈ E1, Xt2 ∈ E2, ..., Xtn ∈ En, XT ∈ B) dµ (x) ,

where the right hand side is equal to

(3.17)
∫
B

∫
En

...

∫
E1

∫
A

p (t1, x, z1) p (t2 − t1, z1, z2)

...p (T − tn, zn, y) dµ (x) dµ (z1) ...dµ (zn) dµ (y) .
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Similarly, we have

PB (A∗ ∩ (XT ∈ A)) =

=
∫
B

Py (XT−tn ∈ En, ..., XT−t1 ∈ E1, XT ∈ A) dµ (y) ,

where the right hand side is equal to

(3.18)
∫
A

∫
E1

...

∫
En

∫
B

p (T − tn, y, zn) p (tn − tn−1, zn, zn−1)

...p (t1, z1, x) dµ (y) dµ (zn) ...dµ (z1) dµ (x) .

Comparing (3.17) and (3.18) we obtain (3.16).
Now we are in position to prove (3.10). For any path ω ∈ ΩT , denote

by τi (ω) the first time the path ω hits Γi, provided ω does intersect Γi.
Fix sets A ⊂ Ω1 and B ⊂ Ω2 and observe that the measure PT,A,B sits on
the set ΩT,A,B of paths ω such that ω (0) ∈ A and ω (T ) ∈ B. Clearly, for
any ω ∈ ΩT,A,B , either ω stays in Ω1 (which is only possible in the case
Ω2 ⊂ Ω1) or both τ1 (ω) and τ2 (ω∗) are defined and τ1 (ω) + τ2 (ω∗) 6 T .
Hence, in the latter case we have either τ1 (ω) 6 T/2 or τ2 (ω∗) 6 T/2 (see
Fig. 7 and 8).

v= Xτ (ω)

Γ2

1

Γ1
Ω1 Ω2

x y

w= Xτ (ω∗)2

Figure 7. The case Ω1 and Ω2 are disjoint. Any path from x to y

crosses Γ1 and Γ2.

Therefore, we obtain
(3.19)

1 6 PT,A,B (ω ⊂ Ω1) + PT,A,B (τ1 (ω) 6 T/2) + PT,A,B (τ2 (ω∗) 6 T/2) .

By (3.14) we have

PT,A,B (τ2 (ω∗) 6 T/2) = PT,B,A (τ2 (ω) 6 T/2) .
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x
y

Γ2Γ1

Ω1

Ω2

v= Xτ (ω)
w= Xτ (ω∗)

1 2

Figure 8. The case Ω2 ⊂ Ω1. Any path from x to y either stays in Ω1
or crosses Γ1 and Γ2

Substituting into (3.19) and multiplying (3.19) by PA (XT ∈ B) =
PB (XT ∈ A) we obtain

(3.20)
∫
A

∫
B

p (T, x, y) dµ (y) dµ (x) 6

6 PΩ1
A (XT ∈ B) + PA (τ1 6 T/2, XT ∈ B) + PB (τ2 6 T/2, XT ∈ A) .

Clearly, we have

PΩ1
A (XT ∈ B) =

∫
A

∫
B

pΩ1 (T, x, y) dµ (y) dµ (x) ,

whereas by the strong Markov property and (3.8)

PA (τ1 6 T/2, XT ∈B)=
∫
A

∫
B

Ex
(
1{τ16T/2}p(T − τ1, Xτ1 , y)

)
dµ (y) dµ (x)

6
∫
A

∫
B

ψΓ1

(
T

2
, x

)
sup

T/26s6T
v∈Γ1

p (s, v, y) dµ (y) dµ (x) .

Similarly, we obtain
(3.21)

PB (τ2 6 T/2, XT ∈ A) 6
∫
B

∫
A

ψΓ2

(
T

2
, x

)
sup

T/26s6T
w∈Γ2

p (s, w, x) dµ (x) dµ (y) .

Substituting into (3.20), dividing by µ (A)µ (B) and contracting the sets
A and B to the points x and y, respectively, we finish the proof of (3.10).
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Finally, let us prove (3.11). If Ω1 and Ω2 are disjoint then pΩ1 (s, w, x) = 0
because x ∈ Ω1 and w /∈ Ω1. Therefore, by (3.12) p̂Ω1 (s, w, x) = p (s, w, x)
so that (3.11) is identical to (3.10). Assuming now that Ω2 ⊂ Ω1. The last
term in (3.19) can be replaced by

PT,A,B (τ2 (ω∗) 6 T/2 and ω∗ crosses ∂Ω1)
= PT,B,A (τ2 (ω) 6 T/2 and ω crosses ∂Ω1)
= PT,B,A (τ2 (ω) 6 T/2)− PT,B,A (τ2 (ω) 6 T/2 and ω does not cross ∂Ω1) .

Multiplying by PB (XT ∈ A) we obtain that the last term in (3.20) can be
replaced by

PB (τ2 6 T/2, XT ∈ A)− PB (τ2 6 T/2, Xt /∈ ∂Ω1 for all t ∈ [0, T ], XT ∈ A)

=
∫
B

∫
A

[
Ey
(
1{τ26T/2}p(T − τ2, Xτ2 , x)

)
−Ey

(
1{τ26T/2}pΩ1(T − τ2, Xτ2 , x)

)]
dµ (x) dµ (y)

6
∫
B

∫
A

ψΓ2

(
T

2
, y

)
sup

T/26s6T
w∈Γ2

p̂Ω1 (s, w, x) dµ (x) dµ (y) ,

where p̂Ω1 is defined by (3.12). Using this estimate instead of (3.21) we
obtain (3.11).

The next statement is the main result of this section.

Theorem 3.5. — Let Ω1 and Ω2 be two open sets in M with boundaries
Γ1 and Γ2 respectively. Assume that Γ2 separates Ω2 from Γ1. Write for
simplicity ψi(t, x) = ψΓi(t, x), i = 1, 2, and set
(3.22)

G(t) :=
t∫

0

sup
v∈Γ1,w∈Γ2

p(s, v, w)ds and G(t) :=
t∫

0

inf
v∈Γ1,w∈Γ2

p(s, v, w)ds .

Then, for all x ∈ Ω1, y ∈ Ω2, and t > 0,

p(t, x, y) 6 pΩ1(t, x, y) + 2

[
sup
s∈[t/4,t]

sup
v∈Γ1,w∈Γ2

p(s, v, w)

]
ψ1(t, x)ψ2(t, y)

+G(t)

[
sup
s∈[t/4,t]

ψ′1(s, x)

]
ψ2(t, y) +G(t)

[
sup
s∈[t/4,t]

ψ′2(s, y)

]
ψ1(t, x)(3.23)
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and

2p(t, x, y) > pΩ1(t, x, y) + 2
[

inf
s∈[t/4,t]

inf
v∈Γ1,w∈Γ2

p(s, v, w)
]
ψ1

(
t

4
, x

)
ψ2

(
t

4
, y

)(3.24)

+G
(
t

4

)[
inf

s∈[t/4,t]
ψ′1(s, x)

]
ψ2

(
t

4
, y

)
+G

(
t

4

)[
inf

s∈[t/4,t]
ψ′2(s, y)

]
ψ1

(
t

4
, x

)
.

(3.25)

Proof. — By (3.11) and the monotonicity of ψi (t, x) in t we have

(3.26) p(t, x, y) 6 pΩ1(t, x, y) + sup
t/26s6t
v∈Γ1

p(s, v, y)ψ1(t, x)+

+ sup
t/26s6t
w∈Γ2

p̂Ω1(s, w, x)ψ2(t, y) .

Applying (3.3) with Ω = Ω1 and Γ = Γ1 we obtain, for all w ∈ Γ2 and
s > 0,

p̂Ω1(s, w, x) = p (s, x, w)− pΩ1 (s, x, w) 6

6 sup
s/26θ6s
z∈Γ1

p(θ, z, w)ψ1(s, x) + sup
s/26θ6s

ψ′1(θ, x)
s∫

0

sup
z∈Γ1

p(θ, z, w)dθ .

Set

q (θ) := sup
z1∈Γ1,z2∈Γ2

p (θ, z1, z2) .

As ψi (t, x) is increasing in t, the above inequality gives, for s ∈ [t/2, t],

p̂Ω1 (s, w, x) 6 sup
θ∈[t/4,t]

q (θ)ψ1 (t, x) + sup
θ∈[t/4,t]

ψ′1 (θ, x)
∫ t

0
q (θ) dθ.

Similarly, as pΩ2 (s, y, v) = 0, (3.3) with Ω = Ω2 and Γ = Γ2 implies that,
for any v ∈ Γ1 and s ∈ [t/2, t],

p (s, v, y) 6 sup
θ∈[t/4,t]

q (θ)ψ2 (t, y) + sup
θ∈[t/4,t]

ψ′2 (θ, y)
∫ t

0
q (θ) dθ.

Using these two estimates in (3.26) yields (3.23).
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The lower bound (3.24)-(3.25) is proved in a similar way. Indeed, by (3.9)
we have

(3.27) 2p(t, x, y) > pΩ1(t, x, y) + inf
t/26s6t
v∈Γ1

p(s, v, y) ψ1

(
t

4
, x

)
+

+ inf
t/26s6t
w∈Γ2

p(s, w, x) ψ2

(
t

4
, y

)
.

Setting
q (t) := inf

z1∈Γ1,z2∈Γ2
p (θ, z1, z2)

and using (3.4) we obtain for any w ∈ Γ2 and s ∈ [t/2, t]

p(s, x, w) > inf
t/46θ6t

q (θ)ψ1( t
4
, x) + inf

t/46θ6t
ψ′1(θ, x)

t/4∫
0

q (θ) dθ,

and a similar inequality for p (s, y, v). Substituting into (3.27) finishes the
proof.

Remark 3.6. — Since ψi(t, x) is the Px-probability of Xt hitting Γi by
time t, the function ψi(t, x) is fully determined by the intrinsic geometry of
the set Ωi, and so is pΩi . Thus, the estimates of p(t, x, y) given by Theorem
3.5 are determined by the intrinsic geometries of Ωi and by estimates of
p(t, v, w) where v ∈ Γ1 and w ∈ Γ2. To obtain the latter, we will use
different techniques for upper and for lower bounds – see Sections 4.3 and
5.4.

4. Upper bound

4.1. Faber-Krahn inequalities and the heat kernel

Let (M,µ) be a non-compact complete weighted manifold, possibly with
boundary. For any region Ω ⊂M, set

λ1(Ω) := inf
φ∈C∞0 (Ω)

∫
Ω |∇φ|

2
dµ∫

Ω φ
2dµ

.

In words, λ1(Ω) is the smallest eigenvalue of L in Ω satisfying the Dirichlet
condition on ∂Ω and the Neumann condition on δΩ.

The classical Faber-Krahn theorem says that, for any open set Ω ⊂ RN
and L = ∆,

(4.1) λ1(Ω) > cNµ(Ω)−2/N ,
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where µ is the Lebesgue measure in RN (the constant cN is such that equal-
ity is attained for balls; however, the exact value of cN is of no importance
for our purpose). For an arbitrary manifold, (4.1) may not be true. How-
ever, as balls in M are precompact, a compactness argument implies that
for any ball B (x, r) there exists b (x, r) > 0 such that for any open set
Ω ⊂ B(x, r)

λ1(Ω) > b(x, r)µ(Ω)−2/N .

If we know the function b(x, r) then we can control the heat kernel on M

as follows.

Theorem 4.1. — ([33, Theorem 5.2]) Assume that (M,µ) is a complete
weighted manifold such that, for any ball B(x, r) and any open set Ω ⊂
B(x, r),

(4.2) λ1(Ω) > b(x, r)µ(Ω)−α,

where b(x, r) > 0 and α > 0. Then, for all x, y ∈M and t > 0,

p(t, x, y) 6
C exp

(
−cd

2(x,y)
t

)
(
t2b(x,

√
t)b(y,

√
t)
)1/(2α) .

One particular case of (4.2) will be frequently used so that we separate
it out as the following condition:

(RFK): The relative Faber-Krahn inequality: there exist α > 0 and
c > 0 such that, for any ball B(x, r) ⊂ M and for any precompact
open set Ω ⊂ B(x, r),

(4.3) λ1(Ω) >
c

r2

(
V (x, r)
µ(Ω)

)α
.

In other words, the condition (RFK) means that (4.2) holds with

b(x, r) = c

r2V (x, r)α.

For example, (RFK) holds with α = 2/N if M is a complete Riemannian
manifold with non-negative Ricci curvature (see [31, Theorem 1.4]).

Note that if (4.3) holds for some α = α0 then it is satisfied also for any
smaller value α < α0 because µ (Ω) 6 V (x, r) .

Consider also the following properties which in general may be true or
not.

(V D): The volume doubling property: for all x ∈M and r > 0,

(4.4) V (x, 2r) 6 CV (x, r).

TOME 59 (2009), FASCICULE 5



1944 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

For a later reference, we also note that (V D) implies that for any ε > 0
and for all x, y ∈M, t > 0,

(4.5) V (y,
√
t)

V (x,
√
t)

6

(
1 + d (x, y)√

t

)C
6 Cε exp

(
ε
d2(x, y)

t

)
.

(UED): The on-diagonal upper estimate of the heat kernel: for all
x ∈M and all t > 0,

(4.6) p(t, x, x) 6
C

V (x,
√
t)
.

(UE): The off-diagonal upper estimate of the heat kernel: for all x, y ∈
M and all t > 0,

(4.7) p(t, x, y) 6
C

V (x,
√
t)

exp
(
−cd

2(x, y)
t

)
.

Theorem 4.2. — ([33, Proposition 5.2]) For any complete weighted
manifold (M,µ), the following equivalences take place

(RFK)⇐⇒ (V D) + (UED)⇐⇒ (V D) + (UE) .

Proposition 4.3. — ([35, Theorem 11.1]) Let (M,µ) be a complete
weighted manifold satisfying (RFK). Then (M,µ) is non-parabolic if and
only if

(4.8)
∫ ∞ ds

V (x,
√
s)
<∞.

4.2. Hitting probability

Given a complete weighted manifold (M,µ), fix a compact set K with
non-empty interior and a reference interior point o ∈ K. Set

|x| := sup
y∈K

d (x, y) , x ∈M,

and

(4.9) H∗(x, t) := min

{
1, |x|2

V (o, |x|)
+

(∫ t
|x|2

ds

V (o,
√
s)

)
+

}
,

where (·)+ is the positive part, that is, max(·, 0). Note that H∗ (x, t) in
increasing in t. The following result is a combination of Proposition 4.3
and Corollary 4.2 from [42].
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Theorem 4.4. — Let (M,µ) be a complete non-compact manifold sat-
isfying (RFK), K ⊂ M be a compact set, o ∈ K be an interior point of
K, and δ > 0. Then, for all x ∈M \Kδ and t > 0,

(4.10) ψK(t, x) 6 CH∗ (x, t) exp

(
−c |x|

2

t

)
and

(4.11) ∂tψK(t, x) 6
C

V (o,
√
t)

exp

(
−c |x|

2

t

)
.

Note that the function H used in [42, Corollary 4.2] is slightly different
from the function H∗ defined above, and this is why the present estimates
require also Proposition 4.3 from [42].

4.3. Initial upper bound

In this and the next section, we assume that M = M1#...#Mk and will
use the notation from Section 2.2. In particular, let us recall that M is the
disjoint union of the central part K and the ends E1, ...Ek with respect to
K. Each Ei is identified with the complement of a compact set in Mi.

Geodesic balls are denoted by B(x, r) in M and by Bi(x, r) in Mi. We
also set V (x, r) = µ(B(x, r)) and Vi(x, r) = µi(Bi(x, r)). Observe that if
Bi(x, r) ⊂ Ei then Bi(x, r) = B(x, r) and Vi(x, r) = V (x, r). For each
index i > 1, fix a reference point oi ∈ ∂Ei, and set

(4.12) Vi(r) = Vi(oi, r), V0(r) = min
16i6k

Vi(r).

It will also be useful to set

V0 (x, r) ≡ V0 (r)

for all x ∈ M . If all functions Vi (r) satisfy the doubling property then so
does V0 (r).

For any x ∈M , r > 0, set

(4.13) F (x, r) :=
{
V (x, r) , if B (x, r) ⊂ Ei, i > 1,
V0(r), otherwise.

Note that if r stays bounded and x varies in a compact neighbourhood of
K then Vi(x, r) ≈ rN . For this range of x and r we have also

(4.14) F (x, r) ≈ V0(r) ≈ rN ≈ V (x, r) .
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Theorem 4.5. — ([39, Proposition 3.6]) Assume that for each i =
1, ..., k, the manifold (Mi, µi) satisfies (RFK). Then there exists α > 0 and
c > 0 such that for any ball B = B(x, r) ⊂M and for any open set Ω ⊂ B

λ1 (Ω) >
c

r2

(
F (x, r)
µ (Ω)

)α
.

Combining with Theorem 4.1 we obtain the following result.

Corollary 4.6. — Assume that for each i = 1, ..., k, each manifold
(Mi, µi) satisfies (RFK). Then the heat kernel on (M,µ) satisfies

(4.15) p(t, x, y) 6
C√

F (x,
√
t)F (y,

√
t)

exp
(
−cd

2(x, y)
t

)
,

for all x, y ∈M and t > 0, where F is defined at (4.13).

Corollary 4.7. — Let E0 be a precompact open set with smooth
boundary containing K. Referring to the setting of Corollary 4.6, we have:

(i) For any positive finite t0, for all x, y ∈M and 0 < t < t0,

(4.16) p(t, x, y) 6
C√

V (x,
√
t)V (y,

√
t)

exp
(
−cd

2(x, y)
t

)
.

(ii) For all x, y ∈ E0 and t > 0,

(4.17) p(t, x, y) 6
C

V0(
√
t)

exp
(
−cd

2(x, y)
t

)
.

Proof. — (i) It suffices to show that, for all x ∈M and 0 < r < r0 := t20,

F (x, r) ≈ V (x, r) .

If B (x, r) is in some end Ei then F (x, r) = V (x, r) by definition. Oth-
erwise, the condition r < r0 implies that x belongs to Kr0 and the claim
follows from (4.14).

(ii) It suffices to show that for all x ∈ E0 and r > 0,

F (x, r) > cV0 (r) .

If B (x, r) is in Ei then r has a bounded range and hence the claim follows
from (4.14). Otherwise, we have F (x, r) = V0 (r) by definition.

Remark 4.8. — The inequality (4.16) is equivalent to say that, for all
x, y ∈M and 0 < t < t0,

(4.18) p(t, x, y) 6
C

V (x,
√
t)

exp
(
−cd

2(x, y)
t

)
.
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Indeed, (4.18) implies (4.16) by switching x, y in (4.18) and using the sym-
metry of the heat kernel. Conversely, (4.16) implies (4.18). To see this,
observe that the function V satisfies V (x, 2r) 6 CV (x, r) for all x ∈ M
and all r ∈ (0, r0). It follows (see, e.g., [58, Lemma 5.2.7]) that

V (x,
√
t)

V (y,
√
t)

6 exp
(
C
d(x, y)√

t

)
which easily shows that (4.16) implies (4.18).

4.4. Full upper bounds

For any x ∈M set

ix =
{
i, if x ∈ Ei, i > 1,
0, if x ∈ K.

Set also
|x| = sup

y∈K
d (x, y)

and notice that |x| is bounded away from 0. Define the function H(x, t) by

(4.19) H(x, t) = min

{
1, |x|2

Vix(|x|)
+

(∫ t
|x|2

ds

Vix(
√
s)

)
+

}
.

Clearly, H (x, t) is bounded away from 0 when |x| is bounded from above.
Let us spell out explicitly the simple relationship between H and the
functions Hi∗ obtained on each Mi by considering a compact set Ki such
that Ei = Mi \Ki and applying Definition (4.9). Setting for convenience
H0
∗ (x, t) = 1, we have

(4.20) H(x, t) ≈ Hix∗ (x, t).

Indeed, for bounded x, we have H(x, t) ≈ 1 ≈ Hix∗ (x, t) whereas, if x ∈ Ei
with i ∈ {1, . . . , k}, then the volume functions used in (4.9) and (4.19) are
comparable and thus H(x, t) ≈ Hi∗(x, t).

In the case the function Vix (r) satisfies in addition the condition

Vix (R)
Vix (r)

> c

(
R

r

)2+ε
for all R > r > 1,

with some c > 0 and ε > 0, one easily obtains from (4.19) that

(4.21) H(x, t) ≈ |x|2

Vix(|x|)
(cf. the proof of Corollary 4.5 in [42]).
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For x, y ∈M , let us set

(4.22) d+(x, y) = inf{ length (γ) : γ(0) = x, γ(1) = y, γ ∩K 6= ∅},

where the infimum is taken over all curves γ : [0, 1] → M connecting x, y
and passing through K. Let us define also

(4.23) d∅(x, y) = inf{ length (γ) : γ(0) = x, γ(1) = y, γ ∩K = ∅ },

where the infimum is taken over all curves γ[0, 1] → M connecting x, y,
without intersecting K.

Note that always d+(x, y) > d(x, y) and d∅(x, y) > d(x, y), and, more-
over, one of these inequalities must in fact be an equality. For example,
if x ∈ Ei ∪ K, y ∈ Ej ∪ K and i 6= j, then d∅(x, y) = ∞ whence
d+(x, y) = d(x, y). If x, y ∈ Ei then the elementary argument with the
triangle inequality shows that

(4.24) |x|+ |y| − 2diamK 6 d+ (x, y) 6 |x|+ |y|

and

(4.25) d (x, y) 6 d∅ (x, y) 6 d (x, y) + CK

where CK is a constant depending on K.
The next theorem is one of the main results of this paper.

Theorem 4.9. — Assume that (M,µ) is a connected sum of complete
non-compact weighted manifolds (Mi, µi), i = 1, 2, ..., k, each of which sat-
isfies (RFK). Assume further that (M,µ) is non-parabolic. Then, for all
x, y ∈M and t > 0, the heat kernel on M is bounded by

p(t, x, y) 6 C

(
H(x, t)H(y, t)

V0(
√
t)

+ H(y, t)
Vix(
√
t)

+ H(x, t)
Viy (
√
t)

)
exp

(
−c

d2
+(x, y)
t

)(4.26)

+ C√
Vix(x,

√
t)Viy (y,

√
t)

exp
(
−c

d2
∅(x, y)
t

)
.(4.27)

Each term in (4.26)-(4.27) has a geometric meaning and corresponds to
a certain way a Brownian particle may move from x to y. To start with,
the term (4.27) estimates the probability of getting from x to y without
touching K. This may happen only if x, y belong to the same end Ei, and
the term (4.27) comes from estimating pEi . The third (and, similarly, the
second) term in (4.26) estimates the probability that starting from x, the
particle hits K before time t and then reaches y in time of order t. The
first term in (4.26) estimates the probability that the particle hits K before
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time t, loops from K to K in time of order t and finally reaches y in time
smaller than t. It is natural to use the distance d+ in (4.26) since the
corresponding events involve trajectories from x to y passing through K.
Using the distance d∅ in (4.27) reflects the fact that the trajectories from
x to y, corresponding to that term, avoid K.

Remark 4.10. — If x ∈ Ei ∪ K and y ∈ Ej ∪ K with i 6= j then
d∅ (x, y) =∞ so that the term (4.27) vanishes, whereas d+ (x, y) in (4.26)
can be replaced by d (x, y).

If x, y belong to the same end Ei and t > t0 > 0 then, by (4.24), d+ (x, y)
in (4.26) can be replaced by |x|+ |y| and, by (4.25), d∅ (x, y) in (4.27) can
be replaced by d (x, y).

Remark 4.11. — If k = 2 and x ∈ E1 ∪K, y ∈ E2 ∪K then the term
H(x,t)H(y,t)
V0(
√
t) in (4.26) is dominated by the two other terms and, hence, can

be neglected.

Remark 4.12. — An equivalent heat kernel estimate is obtained by re-
placing the volume functions Vix

(√
t
)

and Viy
(√
t
)

in (4.26) by Vix
(
x,
√
t
)

and Viy
(
y,
√
t
)
, respectively. Indeed, if x ∈ K then ix = 0 and

V0

(
x,
√
t
)

= V0

(√
t
)
.

If ix = i > 1 and |x| is large enough then, by (4.5), for any ε > 0,
(4.28)
Vi
(√
t
)

Vi
(
x,
√
t
) =

Vi
(
oi,
√
t
)

Vi
(
x,
√
t
) 6 Cε exp

(
ε
d2
i (x, oi)
t

)
6 Cε exp

(
εC

d2
+ (x, y)
t

)
.

If |x| is bounded then (4.28) holds again because

Vi

(√
t
)

= Vi

(
oi,
√
t
)
≈ Vi

(
x,
√
t
)
.

Indeed, for small t all these functions are of the order tN/2 and, for large t,
(V D) applies. In the same way, we obtain

Vi
(
x,
√
t
)

Vi
(√
t
) 6 Cε exp

(
ε
d2
i (x, oi)
t

)
6 Cε exp

(
εC

d2
+ (x, y)
t

)
.

Choosing ε small enough proves the claim.

Remark 4.13. — Note that the term in (4.27) can be replaced by

C

Vix(x,
√
t)

exp
(
−c

d2
∅(x, y)
t

)
or by C

Viy (y,
√
t)

exp
(
−c

d2
∅(x, y)
t

)
,

which can be seen by an argument similar to that of the previous remark.
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Remark 4.14. — Observe that the non-parabolicity of (M,µ) is equiv-
alent to the fact that one of the manifolds (Mi, µi) is non-parabolic (see
[35, Proposition 14.1]). However, the estimate (4.26)-(4.27) is sharp only if
all (Mi, µi) are non-parabolic (see Sections 5.4 and 6).

Proof of Theorem 4.9. — Set δ = diamK and let K ′ and K ′′ be compact
sets with smooth boundaries such that K ⊂ K ′ ⊂ K ′′ and

d (∂K, ∂K ′) > 2δ and d (∂K ′, ∂K ′′) > 2δ.

Since the estimate (4.26)-(4.27) is symmetric in x, y, there are three essen-
tially different cases:

(1) x, y ∈ K ′′.
(2) x ∈ Ei \K ′ and y ∈ Ej \K ′′ where i, j > 0 may be the same or not.
(3) x ∈ K ′ and y ∈ Ej \K ′′ for some j > 0.

Case 1. Let x, y ∈ K ′′. By Corollary 4.7, we have

(4.29) p(t, x, y) 6
C

V0(
√
t)

exp
(
−cd

2(x, y)
t

)
.

If d+(x, y) = d(x, y) then (4.29) implies

(4.30)
p(t, x, y) 6

C

V0(
√
t)

exp
(
−c

d2
+(x, y)
t

)
6 C

H(x, t)H(y, t)
V0(
√
t)

exp
(
−c

d2
+(x, y)
t

)
,

(because H (x, t) and H (y, t) are separated from 0 for x, y ∈ K ′′), which
in turn yields (4.26)-(4.27). Moreover, if d+(x, y) 6

√
t then the same

argument works because the Gaussian factor in (4.30) is comparable to 1.
Assume now that d+(x, y) > d(x, y) and d+(x, y) >

√
t. Then x and y

belong to the same end Ei, i > 1, and d∅(x, y) = d(x, y). Also, t is bounded
by 4diam2 (K ′′) whence

V0(
√
t) ≈ tN/2 ≈

√
Vi(x,

√
t)Vi(y,

√
t).

Therefore, the right hand side of (4.29) is majorized by the term (4.27).
Before we consider the other two cases, let us set

(4.31) J :=
∞∫

0

sup
v,w∈K′′
d(v,w)>δ

p(s, v, w)ds.
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It follows from (4.29) and from the condition d (v, w) > δ that the integral
(4.31) converges at 0. The fact that M is non-parabolic, ensures the con-
vergence of the integral (4.31) at ∞. Hence, J < ∞. The number J will
enter the heat kernel upper bounds as a constant.

Case 2. (“the main case”) Let x ∈ Ei \K ′ and y ∈ Ej \K ′′ (see Fig.
9 when i 6= j).

x
y

K EjEi

K K’ K’’K’

Figure 9. Case x ∈ Ei \K ′ and y ∈ Ej \K ′′, i 6= j

By Theorem 3.5 with Ω1 = Ei and Ω2 = Ej \K ′ we obtain

p(t, x, y) 6 pEi (t, x, y) +

 sup
s∈[t/4,t]

sup
v∈∂K
w∈∂K′

p(s, v, w)

ψK(t, x)ψK′(t, y)

(4.32)

+
t∫

0

sup
v∈∂K
w∈∂K′

p(s, v, w)ds

(
sup
s∈[t/4,t]

ψ′K(s, x)

)
ψK′(t, y)(4.33)

+
t∫

0

sup
v∈∂K
w∈∂K′

p(s, v, w)ds

(
sup
s∈[t/4,t]

ψ′K′(s, y)

)
ψK(t, x).(4.34)

If i 6= j then pEi (t, x, y) = 0 whereas for i = j Theorem 4.2 yields

pEi (t, x, y) 6 pMi (t, x, y) 6
C√

Vi
(
x,
√
t
)
Vi
(
y,
√
t
) exp

(
−c

d2
∅ (x, y)
t

)
,

where we have used the fact that dMi (x, y) ≈ d∅ (x, y) for all x, y ∈ Ei\K ′.
As x ∈ Ei \ K ′, the hitting probability ψK (t, x) depends only on the

intrinsic properties of the manifold (Mi, µi). Since (Mi, µi) satisfies (RFK),
Theorem 4.4 and (4.20) yield

(4.35) ψK(t, x) 6 C H(x, t) exp

(
−c |x|

2

t

)
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and

(4.36) ψ′K(t, x) 6
C

Vi(x,
√
t)

exp

(
−c |x|

2

t

)
.

Since x ∈ Ei \K ′, we have di (xi, oi) ≈ |x| and, by Remark 4.12,

(4.37) ψ′K(t, x) 6
C

Vi(
√
t)

exp

(
−c |x|

2

t

)
.

Similar estimates take place for ψK′ (t, y) and its time derivative for
y ∈ Ej \K ′′. By (4.29), we have for all v, w ∈ K ′

(4.38) sup
s∈[t/4,t]

p(s, v, w) 6
C

V0(
√
t)
.

Finally, each integral in (4.33) and (4.34) is bounded from above by the
constant J defined by (4.31) because d (v, w) > δ. Substituting the above
estimates into (4.32)-(4.34) and observing that

|x|2 + |y|2 ≈ d2
+(x, y),

we obtain (4.26)-(4.27).
Case 3. Let x ∈ K ′ and y ∈ Ej \K ′′ for some j > 0.

y

x

K

Ej

Γ= K’K’’

Figure 10. Case x ∈ K ′ and y ∈ Ej \K ′′

Let Ω be an open subset of Ej containing Ej \K ′′ but such that
d (∂Ω,K ′) > δ (see Fig. 10). By inequality (3.3) of Lemma 3.1 for this
Ω and for Γ = ∂Ω we have
(4.39)

p(t, x, y) 6 sup
t/26s6t
z∈Γ

p(s, z, x)ψΓ(t, y) + sup
t/26s6t

ψ′Γ(s, y)
t∫

0

sup
z∈Γ

p(θ, z, x)dθ .
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By (4.29) we obtain, for all x ∈ K ′, z ∈ Γ, and s ∈ [t/2, t],

p(s, z, x) 6
C

V0(
√
t)
.

The integral in (4.39) is bounded from above by the constant J because
d (x, z) > δ. The functions ψΓ(t, y) and ψ′Γ(s, y) are estimated as in (4.35)
and (4.37), respectively. From (4.39) we obtain

(4.40) p(t, x, y) 6 C

(
H(y, t)
V0(
√
t)

+ 1
Vj(
√
t)

)
exp

(
−c |y|

2

t

)
,

which implies (4.26)-(4.27) because H(x, t) ≈ 1 and |y| ≈ d+ (x, y).

Remark 4.15. — Alternatively, Case 3 can be obtained directly from
Case 2 by extending the range of x using a local Harnack inequality argu-
ment (see Section 5.1 below).

Theorem 4.9 provides a heat kernel upper bound for all x, y ∈ M and
t > 0. Still, it may be useful and convenient to write more explicit estimates
for certain ranges of x, y, t.

Corollary 4.16. — Let E0 be a precompact open set with smooth
boundary containing K. Referring to the setting of Theorem 4.9, we have
the following estimates:

0. For any fixed t0 >0, if t 6 t0 and x, y ∈M then

(4.41) p(t, x, y) 6
C

V (x,
√
t)

exp
(
−cd

2(x, y)
t

)
.

1. If x, y ∈ E0 then, for all t > 0,

(4.42) p(t, x, y) 6
C

V0(
√
t)

exp
(
−cd

2(x, y)
t

)
.

2. If x ∈ Ei, i > 1, and y ∈ E0 then, for all and t > 0,

(4.43) p(t, x, y) 6 C

(
H(x, t)
V0(
√
t)

+ 1
Vi(
√
t)

)
exp

(
−cd

2(x, y)
t

)
.

3. If x ∈ Ei, y ∈ Ej , i 6= j, i, j > 1, then, for all t > 0,
(4.44)

p(t, x, y) 6 C

(
H(x, t)H(y, t)

V0(
√
t)

+ H(y, t)
Vi(
√
t)

+ H(x, t)
Vj(
√
t)

)
exp

(
−cd

2(x, y)
t

)
.
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4. If x, y ∈ Ei, i > 1, then, for all t > 0,

p(t, x, y) 6 C
H(x, t)H(y, t)

V0(
√
t)

exp

(
−c |x|

2 + |y|2

t

)

+ C

Vi(x,
√
t)

exp
(
−cd

2(x, y)
t

)
.(4.45)

Proof. — Parts 0,1 follow from Corollary 4.7 and Remark 4.8.
Part 2. If |x| is bounded then the result follows as in Part 1, so we

can assume in the sequel that |x| is large enough. If y ∈ K then using
iy = 0, H(y, t) ≈ 1 and d+(x, y) > d(x, y) in (4.26)-(4.27), we obtain
(4.43). Assume now y ∈ E0 \ K. Then, for j = iy, we have y ∈ Ej ∩ E0,
and (4.26)-(4.27) yields

p(t, x, y) 6 C

(
H(x, t)
V0(
√
t)

+ 1
Vi(
√
t)

+ H(x, t)
Vj(
√
t)

)
exp

(
−cd

2(x, y)
t

)
(4.46)

+ C√
Vi(x,

√
t)Vj(y,

√
t)

exp
(
−c

d2
∅(x, y)
t

)
.(4.47)

Since V0
(√
t
)

6 Vj
(√
t
)
, the third term in (4.46) can be absorbed into

the first one. If j 6= i then the term in (4.47) vanishes and (4.43) follows.
Assuming now i = j, we have

d∅ (x, y) > d (x, y) ≈ |x|

and, by Remark 4.12, the term (4.47) is dominated by the middle term in
(4.46).

Part 3. Inequality (4.44) coincides with (4.26)-(4.27) since in this case
d∅(x, y) =∞ and d+(x, y) = d(x, y).

Part 4. Assume first that |x| and |y| are bounded. If also t is bounded
then the last term in (4.45) is comparable with the right hand side of (4.42)
and the claim follows from Part 1. If t is large enough then the first term
in (4.45) is comparable with the right hand side of (4.42) and the claim
again follows from Part 1.

If one of |x|, |y| is bounded and the other is large enough then the
claim follows from Part 2. Now let us assume that both |x| and |y| are
large enough. We always have d∅(x, y) > d(x, y) and in the present case
d+(x, y) ≈ |x|+ |y|. Thus, the first term in (4.26) and the term (4.27) are
dominated by the right hand side of (4.45).
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To finish the proof, it suffices to show that the second term (and similarly,
the third term) in (4.26) is dominated by the last term of (4.45), that is

H(y, t)
Vi(
√
t)

exp
(
−c

d2
+(x, y)
t

)
6

C

Vi(x,
√
t)

exp
(
−c′ d

2(x, y)
t

)
.

As H (y, t) 6 1, this follows from Remark 4.12.

4.5. Examples

Let us assume, under the hypotheses of Theorem 4.9, that

Vi(r) ≈
{
rNi , if r > r0
rN , if r 6 r0

,

where all Ni > 2. By definition (4.12), we have

V0(r) ≈
{
rn, if r > r0
rN , if r 6 r0

,

where
n := min

i
Ni > 2.

By definition (4.19) we have, for any x ∈ Ei,

H(x, t) ≈ 1
|x|Ni−2 .

Thus, the estimates (4.44) and (4.45) yield, for t > t0 := r2
0, x ∈ Ei, y ∈ Ej ,

(4.48)

p(t, x, y) 6 C

(
1

tn/2 |x|Ni−2 |y|Nj−2 + 1
tNi/2 |y|Nj−2 + 1

tNj/2 |x|Ni−2

)

exp
(
−cd

2(x, y)
t

)
when i 6= j, i, j > 1, and

(4.49) p(t, x, y) 6
C

tn/2 |x|Ni−2 |y|Ni−2 exp

(
−c |x|

2 + |y|2

t

)
+

+ C

tNi/2
exp

(
−cd

2(x, y)
t

)
when i = j > 1. These upper bounds yield the estimates (1.14) and (1.19)
of the Introduction.
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Note that if Ni or Nj is equal to n (which is the case when M has only
two ends), then (4.48) simplifies to

p(t, x, y) 6 C

(
1

tNi/2 |y|Nj−2 + 1
tNj/2 |x|Ni−2

)
exp

(
−cd

2(x, y)
t

)
.

This gives (1.6).

5. Lower bounds

5.1. Parabolic Harnack inequality

Fix R0 ∈ (0,+∞] and consider the following property of a weighted
manifold (M,µ), which in general may be true or not:

(PHR0): The parabolic Harnack inequality (up to scale R0): there
exists C > 0 such that any positive solution u(t, x) of the heat
equation ∂tu = Lu in a cylinder

Q = (τ, τ + 4T )×B(x0, 2R),

where x0 ∈ M , 0 < R < R0, T = R2, and τ ∈ (−∞,+∞), satisfies
the inequality

(5.1) sup
Q−

u(t, x) 6 C inf
Q+

u(t, x) ,

where

Q− = (τ + T, τ + 2T )×B(x0, R), Q+ = (τ + 3T, τ + 4T )×B(x0, R).

t

t+ 4 T

t+ 3 T

t+ 2 T

t + T

Q_

Q+

B(x0,R)

Q

Figure 11. Cylinders Q+ and Q−
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For simplicity, we will write (PH) for (PH∞). For example, (PH) holds
for Riemannian manifolds with non-negative Ricci curvature (see [48]).
Moreover, (PH) still holds if the weighted manifold M is quasi-isometric
to a manifold of non-negative Ricci curvature and σ, σ−1 are uniformly
bounded on M (see [31, 55]). Other examples are described in [55] and
[57].

Consider also the following properties of M which, in general, may be
true or not.

(PI): The Poincaré inequality: for any x ∈ M , r > 0 and for any
function f ∈ C1(B(x, 2r))

(5.2)
∫
B(x,2r)

|∇f |2 dµ >
c

r2 inf
ξ∈R

∫
B(x,r)

(f − ξ)2
dµ .

(ULE): The upper and lower estimate of the heat kernel: for all x, y ∈
M, t > 0,

(5.3) c2

V (x,
√
t)

exp
(
−C2

d2

t

)
6 p(t, x, y) 6

C1

V (x,
√
t)

exp
(
−c1

d2

t

)
,

where d = d(x, y).
The following theorem combines results of [31] and [55]. For this state-

ment, recall that (V D) and (RFK) are defined Section 4.1.
Theorem 5.1. — Let (M,µ) be a complete weighted manifold. Then

the following is true:
1. (V D) + (PI)⇐⇒ (PH)⇐⇒ (ULE).
2. (V D) + (PI) =⇒ (RFK).

Remark 5.2. — Clearly, assertion 2 follows from assertion 1 and Theo-
rem 4.2.

Theorem 5.1 admits an extension treating (PHR0) with R0 <∞. In this
case, (V D) and (PI) are also restricted to balls of radii < R0, and (ULE)
holds for all x, y ∈M and t < R2

0 (see [2, 53, 31, 32, 55, 57] or [58, Section
5.5.1]).

The following standard consequence of (PHR0) will be useful (see [58,
Corollary 5.4.4]).

Lemma 5.3. — Assume that M satisfies (PHR0) for some R0 > 0 and
let u (t, x) be a positive solution to the heat equation ∂tu = Lu in (0,∞)×
M . Then, for all positive ρ, c, C there exists a constant a = a (ρ, c, C) > 0
such that
(5.4)
u(t, x) > au(s, y) if t > s > cρ2 , cρ2 6 t− s 6 Cρ2 , d(x, y) 6 Cρ.
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5.2. Dirichlet heat kernel

For any open set Ω of a complete weighted manifold (M,µ), the Dirichlet
heat kernel pΩ in Ω satisfies

(5.5) pΩ(t, x, y) 6 p(t, x, y).

The next theorem provides for non-parabolic manifolds a lower bound for
pΩ, which matches the upper bound (5.5).

Theorem 5.4. — ([41, Theorem 3.3])Let (M,µ) be a non-parabolic,
complete weighted manifold. Assume that the parabolic Harnack inequality
(PH) holds on (M,µ). Let K ⊂ M be a compact set and Ω := M \ K.
Then there exists δ > 0 and, for each t0 > 0, there exist positive constants
C and c such that, for all t > t0 and all x, y /∈ Kδ,

(5.6) pΩ(t, x, y) >
c

V (x,
√
t)

exp
(
−C d

2(x, y)
t

)
.

Remark 5.5. — Recall that (PH) implies the upper bound (ULE).
Thus, under the hypotheses of Theorem 5.4, inequality (5.5) implies that,
for all x, y /∈ K and t > 0,

(5.7) pΩ(t, x, y) 6
C

V (x,
√
t)

exp
(
−cd

2(x, y)
t

)
.

Hence the lower bound (5.6) is, in a sense, optimal. Furthermore (5.6)
means that the Dirichlet heat kernel pΩ(t, x, y) is essentially of the same
order of magnitude than the global heat kernel p(t, x, y). This hangs on the
transience of the process Xt which escapes to infinity without touching K,
with a positive probability. Therefore, the influence of the killing condition
on the boundary ∂K becomes negligible in the long term. If, instead, the
process Xt is recurrent then pΩ may be substantially smaller than p (see
[37]).

Remark 5.6. — Since the heat kernel pΩ(t, x, y) is symmetric in x, y,

(5.6) implies also the symmetric inequality

(5.8) pΩ(t, x, y) >
c

V (y,
√
t)

exp
(
−C d

2(x, y)
t

)
.

5.3. Hitting probability

Theorem 4.4 gives an upper bound for the hitting probability ψK (t, x).
Here we will also need a lower bound.
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Theorem 5.7. — ([42, Theorem 4.4]) Let (M,µ) be a complete non-
compact non-parabolic weighted manifold satisfying (PH), and let K be a
compact subset of M with non-empty interior. Then, for any δ > 0 and for
all x /∈ Kδ , t > 0,

(5.9) cH∗(x, t) exp
(
−C |x|

2

t

)
6 ψK(t, x) 6 CH∗(x, t) exp

(
−c |x|

2

t

)
,

where |x| and H∗(x, t) are as in Section 4.2.

For the application of this theorem, we will need the following elementary
lemma.

Lemma 5.8. — On an arbitrary manifold M , we have, for all x ∈ M
and t > 0,

H∗(x, 2t) 6 2H∗(x, t).

Proof. — We have (see definition (4.9) of H∗)

H∗(x, t) := min

{
1, r2

V (r)
+
(∫ t
r2

ds

V (
√
s)

)
+

}
,

where V (r) := V (o, r), o ∈ K is a fixed point, and r = |x| > 0. It suffices
to show

(5.10) r2

V (r)
+
(∫ 2t

r2

ds

V (
√
s)

)
+

6
2r2

V (r)
+ 2

(∫ t
r2

ds

V (
√
s)

)
+
.

We will use only the fact that the function V (r) is increasing. If t 6 r2

then (5.10) follows from ∫ 2t

r2

ds

V (
√
s)

6
r2

V (r)
.

If t > r2 then, by change of variable s = ξ/2, we obtain

2
∫ t
r2

ds

V (
√
s)

>
∫ 2t

2r2

dξ

V (
√
ξ)

and ∫ 2t

r2

ds

V (
√
s)
− 2

∫ t
r2

ds

V (
√
s)

6
∫ 2t

r2

ds

V (
√
s)
−
∫ 2t

2r2

ds

V (
√
s)

=
∫ 2r2

r2

ds

V (
√
s)

6
r2

V (r)
,

whence (5.10) follows.
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5.4. Full lower bounds

This section applies the results of Section 3, 5.2, and 5.3 to obtain global
lower bounds for the connected sum M = M1#M2#...#Mk. We start with
a simple lemma dealing with the small time behavior of the heat kernel.

Lemma 5.9. — Assume that (M,µ) is a connected sum of complete non-
compact weighted manifolds (Mi, µi), i = 1, 2, ..., k, each of which satisfies
(PH). Then, for all x, y ∈M and t > 0, For any finite R0, the manifold M
satisfies (PHR0). Moreover, for any finite t0 there exist positive constants
c, C such that for 0 < t 6 t0 and all x, y ∈M ,
(5.11)

c

V (x,
√
t)

exp
(
−C d

2(x, y)
t

)
6 p(t, x, y) 6

C

V (x,
√
t)

exp
(
−cd

2(x, y)
t

)
.

Proof. — Let first R0 be so small that any ball of radius 2R0 on M

lies either in one of the ends Ei or in E0. Then one can apply either the
Harnack inequality from Mi or the one from E0 which holds just due to the
compactness of E0. By a standard chaining argument, (PHR0) holds to any
finite R0. The estimate (5.11) follows then from Theorem 5.1 and Remark
5.2. Note that no hypotheses concerning the parabolicity/non-parabolicity
of the ends are required for Lemma 5.9.

In the rest of this section we use the same notation as in Sections 2.2,
4.3, and 4.4. In particular, the function H on M is defined at (4.19).

Theorem 5.10. — Assume that (M,µ) is a connected sum of complete
non-compact weighted manifolds (Mi, µi), i = 1, 2, ..., k, each of which sat-
isfies (PH). Assume further that each (Mi, µi) is non-parabolic. Then, for
all x, y ∈M and t > 0,

p(t, x, y) > c

(
H(x, t)H(y, t)

V0(
√
t)

+ H(y, t)
Vix(
√
t)

+ H(x, t)
Viy (
√
t)

)
exp

(
−C

d2
+(x, y)
t

)(5.12)

+ c√
Vix(x,

√
t)Viy (y,

√
t)

exp
(
−C

d2
∅(x, y)
t

)
.(5.13)

Remark 5.11. — Since (PH) implies (RFK) and the non-parabolicity of
one end (Mi, µi) implies the non-parabolicity of (M,µ) (see [35, Proposition
14.1]), the heat kernel upper bound (4.26)-(4.27) of Theorem 4.9 applies
in the present setting. The upper bound (4.26)-(4.27) matches the lower
bound (5.12)-(5.13).
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Remark 5.12. — In (5.12) one can replace Vix(
√
t) and Viy (

√
t) respec-

tively by Vix(x,
√
t) and Viy (y,

√
t) (see Remark 4.12).

Remark 5.13. — The term
√
Vix(x,

√
t)Viy (y,

√
t) in (5.13) can be re-

placed by either Vix(x,
√
t) or Viy (y,

√
t) – see Remark 4.13.

We precede the proof by a series of lemmas in which the hypotheses of
Theorem 5.10 are always implicitly assumed. It will be useful to choose the
neighborhood E0 of K as follows. By Theorem 5.4 applied to Mi, there
exists δi > 0 such that, for all x, y ∈ Ei \Kδi and t > t0

(5.14) pEi(t, x, y) >
c

Vi(x,
√
t)

exp
(
−C d

2
i (x, y)
t

)
,

where t0 > 0 is arbitrary. Set

δ = max
16i6k

δi

and choose E0 so that it contains Kδ.

Lemma 5.14. — Fix t0 > 0. For all x, y ∈ Ei, i > 1, and t > t0,

(5.15) p(t, x, y) >
c

Vi(x,
√
t)

exp
(
−C d

2(x, y)
t

)
.

Proof. — Observe that, for all x, y ∈ Ei and t > 0,

(5.16) p(t, x, y) > pEi(t, x, y),

where pEi is the Dirichlet heat kernel of Ei. For x, y ∈ E′i := Ei \Kδ, we
have d (x, y) ≈ di (x, y). Hence, for such x, y, (5.15) follows from (5.14) and
(5.16).

In general, for x, y ∈ Ei and t > t0, find the points x′ ∈ E′i and y′ ∈ E′i
such that d(x, x′) 6 2δ and d(y, y′) 6 2δ.

x

y

KKEi Kδ

y

x

K2

Figure 12. Points x, y ∈ Ei and x′, y′ ∈ E′i
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By Lemma 5.9, M satisfies (PHR0) for any finite R0. Setting t′ = t−t0/4
and t′′ = t− t0/2 and applying (5.4) twice, we obtain

p(t, x, y) > cp(t′, x′, y) > c′p(t′′, x′, y′) >
c

Vi(x′,
√
t′′)

exp
(
−C d

2(x′, y′)
t′′

)
,

where we have used (5.15) for p(t′′, x′, y′). Inequality (5.15) for p(t, x, y)
follows from t′′ ≈ t,

d2(x′, y′) 6 C(d2(x, y) + δ2),

and

(5.17) Vi(x′,
√
t′′) 6 CVi(x,

√
t),

which is a consequence of (V D).

Lemma 5.15. — Fix t0 > 0. For all x, y ∈ E0 and all t > t0,

(5.18) p(t, x, y) >
c

V0(
√
t)
.

Proof. — Fix t > t0 and choose i > 1 so that (see the definition of V0 at
(4.12))

V0(
√
t) = Vi(

√
t).

Fix a point z ∈ Ei ∩ E0. Using (5.4) observe that, for all x, y ∈ E0 and
t > t0,

p(t, x, y) > cp(t′, z, z),
where t′ = t − t0/2. By Lemma 5.14 and the doubling property (V D) in
Mi, we have

p(t′, z, z) >
c

Vi(z,
√
t′)

>
c′

Vi(z,
√
t)
.

Applying again the doubling property (V D) in Mi, we get

Vi(z,
√
t) 6 CVi(oi,

√
t) = CVi

(√
t
)

= CV0

(√
t
)
.

Combining the above three estimates, we obtain (5.18).

Lemma 5.16. — Fix t0 > 0. For all x, y ∈M and t > t0, we have

(5.19) p(t, x, y) >
cH(x, t)H(y, t)

V0(
√
t)

exp

(
−C |x|

2 + |y|2

t

)
.

Proof. — Case 1. Assume x, y ∈ K. Then (5.19) follows from Lemma
5.15 and H 6 1. By symmetry, we can now assume y /∈ K.

Case 2. Assume that x ∈ Ei and y ∈ Ej (where i, j > 1 may be equal
or not) and apply Theorem 3.5 with Ω1 = Ei and Ω2 = Ej (see Fig. 13).
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Using also Theorem 5.7, Lemma 5.8, (4.20) and Lemma 5.15, we obtain,
for t > t0/2,

p(t, x, y) >

(
inf

s∈[t/4,t]
inf
v,w∈K

p(s, v, w)
)
ψK(t/4, x)ψK(t/4, y)

>
c

V0(
√
t)
H(x, t)H(y, t) exp

(
−C |x|

2 + |y|2

t

)
.

x y

Ej
Ei

K

Figure 13. Points x ∈ Ei and y ∈ Ej

Case 3. Finally, assume x ∈ K and y ∈ Ej , j > 1. Let x′ be a fixed
point in Ej ∩E0 (hence at bounded distance from x). By Case 2, for t > t0
and t′ := t− t0/2, we have

p (t′, x′, y) >
c

V0(
√
t)
H(x, t)H(y, t) exp

(
−C |x|

2 + |y|2

t

)
,

where we have used H (x′, t) ≈ H (x, t) ≈ 1 and |x′| ≈ |x| ≈ 1. By the local
Harnack inequality (5.4), we have

p (t, x, y) > cp (t′, x′, y) ,

whence (5.19) follows.

Lemma 5.17. — Fix t0 > 0. For all x, y ∈M and t > t0, we have

(5.20) p(t, x, y) >
cH(x, t)
Viy (
√
t)

exp

(
−C |x|

2 + |y|2

t

)
.

Proof. — Case 1. Assume y ∈ E0. Then (5.20) follows from (5.19) be-
cause H (y, t) ≈ 1 and Viy

(√
t
)

> V0
(√
t
)
.

Case 2. Assume that x, y /∈ E0. Then, for some i, j > 1, we have x ∈
E′i := Ei \Kδ and y ∈ E′j . Lemma 3.1 with Γ = K and Ω = M \K gives

p(t, x, y) > inf
t/26s6t
z∈K

p(s, z, y)ψK(t/2, x).
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z

Ej
K

K
K?

y

z
E0

Figure 14. Points y ∈ E′j , z ∈ K and z′ ∈ E0 ∩ E′j

Fix z′ ∈ E0 ∩E′j . As z′ ∈ E0 and z ∈ K (see Fig. 14), the local Harnack
inequality (5.4) yields

p(s, z, y) > cp(s′, z′, y),

for all s > t0/2 and s′ = s− t0/4. Since

p(s′, z′, y) > pEj (s′, z′, y),

we obtain, for all t > t0,

(5.21) p(t, x, y) > c inf
t/46s′6t

pEj (s′, z′, y)ψK(t/2, x).

As x ∈ E′i, Theorem 5.7 gives the lower bound for ψK (t/2, x). As y and z′
are in E′j , Theorem 5.4 gives the lower bound for pEj (s′, z′, y). Using also
s′ ≈ t and dj(y, z′) 6 C |y|, (5.21) gives

p(t, x, y) >
cH(x, t/2)
Vj(y,

√
t)

exp

(
−C |x|

2 + |y|2

t

)
.

Finally, by Remark 4.12, Lemma 5.8 and (4.20), we obtain (5.20).
Case 3. Assume x ∈ E0 and y /∈ E0. Fix a point x′ in M \ E0. By the

local Harnack inequality (5.4), we have

p (t, x, y) > cp (t′, x′, y)

where t′ = t − t0/2. Using the previous case to estimate p (t′, x′, y) and
noticing that H (x, t) ≈ H (x′, t) ≈ 1, we finish the proof.

Proof of Theorem 5.10. — Fix t0 > 0 and let E0 be large enough so that
is containsK√t0 . Let us assume t 6 t0 and deduce the estimate (5.12)-(5.13)
from the lower bound in (5.11) of Lemma 5.9 and its symmetric version in
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x, y. Since H 6 1, d(x, y) 6 d+(x, y), it suffices to prove

(5.22)

V (x,
√
t) 6 CVix(x,

√
t)

and V (x,
√
t) 6 CεV0(

√
t) exp

(
ε
d+(x, y)2
√
t

)
, ∀ε > 0.

If x ∈ E0 then all the functions V (x,
√
t), V0(

√
t), Vix(x,

√
t) are of the

order tN/2. Assume that x ∈ Ei \ E0 for some i > 1. Then B(x,
√
t) ⊂ Ei

and
V (x,
√
t) = Vi(x,

√
t),

which proves the first inequality in (5.22). Next, by (4.5) we have

V (x,
√
t)

Vi(oi,
√
t)

= Vi(x,
√
t)

Vi(oi,
√
t)

6 Cε exp
(
ε
d2
i (x, oi)√

t

)
6 Cε exp

(
Cε

d2
+ (x, y)
√
t

)
.

Finally, since Vi
(
oi,
√
t
)
≈ V0

(√
t
)
≈ tN/2, (5.22) follows.

Let now t > t0. Note that d∅ (x, y) is finite only when x, y are in the
same end, say Ei. This is the only case when we need to prove (5.13), and
it follows from Lemma 5.14, its symmetric version in x, y, and d (x, y) 6
d∅ (x, y). We are left to prove (5.12). If both x, y ∈ E0 then this follows from
Lemma 5.15. If one of the points x, y is outside E0 then d+ (x, y) ≈ |x|+ |y|,
and (5.12) follows by adding up the inequalities (5.19) of Lemma 5.19,
(5.20) of Lemma 5.17 and its symmetric version in x, y.

The next corollary gives lower bounds for x, y in different regions of M .
Taken together, they are equivalent to the lower bound of Theorem 5.10
but are more explicit. These lower bounds match case by case the upper
bounds of Corollary 4.16.

Corollary 5.18. — Referring to the setting of Theorem 5.10, the fol-
lowing estimates of p(t, x, y) hold.

0. For any fixed t0 > 0, if t 6 t0 and x, y ∈M then

p(t, x, y) >
c

V (x,
√
t)

exp
(
−C d

2(x, y)
t

)
.

1. If x, y ∈ E0, then, for all t > 0,

p(t, x, y) >
c

V0(
√
t)

exp
(
−C d

2 (x, y)
t

)
.

2. If x ∈ Ei, i > 1, y ∈ E0 then, for all t > 0,

p(t, x, y) > c

(
H(x, t)
V0(
√
t)

+ 1
Vi(
√
t)

)
exp

(
−C d

2 (x, y)
t

)
.
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3. If x ∈ Ei, y ∈ Ej , i 6= j, i, j > 1 then, for all t > 0,

p(t, x, y) > c

(
H(x, t)H(y, t)

V0(
√
t)

+ H(x, t)
Vj(
√
t)

+ H(y, t)
Vi(
√
t)

)
exp

(
−C d

2 (x, y)
t

)
.

4. If x, y ∈ Ei, i > 1, then, for all t > 0,

(5.23) p(t, x, y) >
cH(x, t)H(y, t)

V0(
√
t)

exp

(
−C |x|

2 + |y|2

t

)
+

+ c

Vi(x,
√
t)

exp
(
−C d(x, y)2

t

)
.

Proof. — Part 0 coincides with the lower bound of Lemma 5.9. This
lemma implies also Part 1 for t 6 t0 because V0

(√
t
)
≈ V

(
x,
√
t
)

for
bounded x and t. For t > t0, Part 1 follows from Lemma 5.15.

In Part 2, if |x| is bounded then the estimate follows from Part 1. If
|x| is large enough then d+ (x, y) ≈ d (x, y), and the estimate follows from
Theorem 5.10 and H (y, t) ≈ 1.

Part 3 also follows from Theorem 5.10 because in this case d+ (x, y) =
d (x, y).

Part 4 for t > t0 follows by adding up the estimates of Lemmas 5.14 and
5.16. If t < t0 then the second term in (5.23) dominates because by (4.5)

Vi
(
x,
√
t
)

V0
(√
t
) ≈ Vi

(
x,
√
t
)

Vi
(√
t
) 6 Cε exp

(
ε
d2
i (x, oi)
t

)
6 Cε exp

(
ε
|x|2

t

)
and |x| + |y| > d (x, y). Then (5.23) follows from Part 0 and the first
inequality in (5.22).

Remark 5.19. — In the proofs in this section, we have used some lower
bounds for the heat kernel obtained in Section 3, namely, the middle term in
(3.4) (Lemma 3.1) and the last term in (3.24) (Theorem 3.5). Alternatively,
we could have used the full estimate (3.24)-(3.25) of Theorem 3.5. However,
this would require using the lower estimates of the time derivative ψ′K (t, x)
obtained in [42]. These estimates are more involved than the estimates of
ψK (t, x) given by Theorem 5.7.

5.5. Examples

Assume that each Mi is a complete non-compact Riemannian manifold
of non-negative Ricci curvature equipped with its Riemannian measure µi.
Assume in addition that ∫ ∞ dt

Vi(x,
√
t)
<∞
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so that each Mi is non-parabolic. Then all hypotheses of Theorem 5.10 are
satisfied, and we have the heat kernel lower bounds on M=M1#M2#...#Mk
implied by this theorem. For the case when

Vi(r) ≈
{
rN , r 6 1,
rNi , r > 1

with Ni > 2, the upper bounds for p were considered in Example 4.5. Now
Theorem 5.10 yields the matching lower bounds, which proves the estimates
(1.15), (1.20) of the Introduction.

Another source of examples are domains in Euclidean space with ends
isometric to convex domains of revolution. For instance, in R3 with coordi-
nates x = (x1, x2, x3), set xi = (xj , xk), i, j, k ∈ {1, 2, 3}, i 6∈ {j, k}, j < k,
and ‖xi‖ =

√
x2
j + x2

k. For i = 1, 2, 3, consider the (closed) domains of
revolution

Di = {x = (x1, x2, x3) : xi > 0, ‖xi‖ 6 fi(xi)}

where the functions fi are smooth, concave with fi(0) = 0 and all deriva-
tives equal to +∞ at 0. Let M be the closure of a domain in R3 such that
there exists a compact K ⊂ M for which M \K has 3 connected compo-
nents E1, E2, E3 with Ei isometric to the complement of a compact set in
Di. Thus, M = D1#D2#D3. Convex domains in Rn satisfy (V D), (PI)
and (PH). Hence Theorems 4.9 and 5.10 apply and yield matching upper
and lower bounds for the heat kernel on M . Assume for instance that for
each i and r > 1, fi(r) 6 r. Then, in the notation of Theorems 4.9 and
5.10, for i = 1, 2, 3 and r > 1, we have

Vi(r) ≈
∫ r

0
fi(s)2ds ≈ rfi(r)2.

In particular, if fi(r) =
√
r logαi (2 + r), αi > 0, then for r large enough

Vi(r) ≈ r2 logαi r.

Of course, examples with more than 3 ends are easily constructed in a
similar fashion.

More generally, consider a weighted manifold M = M1# . . .#Mk satis-
fying the hypothesis of Theorem 5.10 and such that for all i = 1, 2, ...k,

(5.24) Vi(r) ≈ r2 logαi r , ∀r > 2,

where αi > 1. Set α = mini αi. Clearly, by (4.12) we have,

V0(r) ≈ r2 logα r , ∀r > 2.
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Therefore, by Theorems 4.9 and 5.10, the long term behavior of the heat
kernel is given by

p(t, x, y) ≈ 1
V0(
√
t)
≈ 1
t logα t

, t→∞.

Let us compute H(x, t) assuming x ∈ Ei and |x| > 2. Definition (4.19)
of H gives

(5.25) H(x, t) ≈ log−αi |x|+
(

log1−αi |x|2 − log1−αi t
)

+
.

In particular, one has

(5.26) H(x, t) ≈ log−αi |x| if |x| > c
√
t

and

(5.27) H(x, t) ≈ log1−αi |x| if |x| 6 Ctε, ε < 1/2.

Suppose now that x ∈ Ei, y ∈ Ej , i 6= j, i, j > 1, and

(5.28) |x| 6 C
√
t and |y| 6 C

√
t.

Hence, Corollary 4.16(3) and Corollary 5.18(3) yield

(5.29) p(t, x, y) ≈ H(x, t)
t logαj t

+ H(y, t)
t logαi t

+ H(x, t)H(y, t)
t logα t

.

Let t be large enough. For |x| ≈ |y| ≈
√
t, (5.26) and (5.29) give

p(t, x, y) ≈ 1
t logαi+αj t

.

For |x| 6 Ctε and |x| 6 Ctε with ε < 1/2, (5.29) and (5.27) give

p(t, x, y) ≈ 1
t logαj t logαi−1 |x|

+ 1
t logαi t logαj−1 |y|

+

+ 1
t logα t logαi−1 |x| logαj−1 |y|

.

In particular, if |x| ≈ |y| ≈ tε with ε < 1/2 then

p(t, x, y) ≈ 1
t logαi+αj−1 t

.

Remark 5.20. — In the examples above, the ends can easily be ordered
according to their volume growth and, in particular, one can identify the
“smallest ” end (or ends). However, in the settings of Theorems 4.9 and 5.10,
it is well possible that no such ordering exists. Indeed, one can construct
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two pointed manifolds (M1, o1), (M2, o2), both satisfying (PH) and such
that the volume functions Vi(r) = Vi(oi, r) satisfy

lim sup
r→∞

V1(r)
V2(r)

= lim sup
r→∞

V2(r)
V1(r)

=∞.

Nevertheless, Theorems 4.9 and 5.10 yield matching upper and lower
bounds for the heat kernel of M1#M2.

6. The mixed case

This section is devoted to heat kernel estimates on connected sums M =
M1# . . .#Mk when manifold M is nonparabolic but some of the ends Mi’s
are parabolic (recall that M is non-parabolic if and only if at least one
of the Mi’s is non-parabolic [35, Proposition 14.1]) The case when M is
parabolic (i.e., all Mi’s are parabolic) will be treated in a forthcoming paper
[37] (a special case is considered in Section 7 below).

6.1. Harmonic functions

Let (M,µ) be a weighted manifold. We say that a function u defined in
a region Ω ⊂M is harmonic if ∆µu = 0 in Ω. If the boundary δM is non-
empty, then we require in addition that u satisfies the Neumann boundary
condition on δΩ := Ω ∩ δM , that is

(6.1) ∂u

∂n

∣∣∣∣
δΩ

= 0.

For the purposes of this section, we need to be able to construct a harmonic
function in an exterior domain with a controlled rate of growth at infinity.
For that, we introduce a new geometric assumption. Fix a reference point
o ∈M and consider the following condition that in general may be true or
not:

(RCA): Relative connectedness of the annuli: there exists A > 1 such
that, for all R large enough and for any two points x, y ∈ M both
at distance R from o, there is a continuous path γ connecting x to
y and staying in the annulus B(o,AR) \B(o,R/A) (see Fig. 15).

In particular, M has property (RCA) if the annuli B(o,AR)\B(o,R/A)
are connected. Note that, although property (RCA) is defined for a pointed
manifold (M,o), the role of the pole o is very limited. Indeed, (M,o) has
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o

x

y

γ

AR

A-1R
R

Figure 15. A path γ connecting x and y in the annulus

property (RCA) if and only if (M,o′) has it for some other point o′ (the
value of the constant A may change, as well as how large R has to be before
the relevant connectedness property holds true).

Note that Rn satisfies (RCA) if and only if n > 2. The manifolds Rn
introduced above satisfy (RCA) for all n > 1. It is easy to see that any two-
dimensional convex surface in R3 satisfies (RCA) provided it is complete
and unbounded. It was shown in [51] that any complete weighted manifold
M satisfying the Poincaré inequality (PI), the doubling volume property
(V D), and the condition

V (o, r)
V (o, s)

> c
(r
s

)N
,

for some point o ∈M , and all r > s > 1, where c > 0 and N > 2, satisfies
(RCA) (see also a previous result of [44, Proposition 4.5]).

The following statement is a consequence of [41, Lemma 4.5].

Lemma 6.1. — If a complete weighted manifold M satisfies (PH) and
(RCA) then, for any non-empty compact set K ⊂M with smooth bound-
ary, there exists a non-negative continuous function u on M such that
u = 0 on K, u is positive and harmonic in M \K and satisfies the following
estimate

u(x) ≈
∫ r2

1

ds

V (o,
√
s)
,

for all large enough r = d (x, o).

Note that in the case when M is non-parabolic, the function u is bounded
while in the parabolic case u (x)→∞ as x→∞.

From now on, let M = M1#...#Mk be a connected sum as in Section
2.2. As before, let K be the central part of M , that is, a compact set with
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smooth boundary such that M \ K is the disjoint union of k connected
components E1, ...Ek (the ends with respect to K), and each end Ei is
identified with the complement of a compact set in Mi. Define a subset
I ⊂ {1, . . . , k} by

(6.2) i ∈ I ⇐⇒Mi is parabolic.

The structure of various spaces of harmonic functions on complete Rie-
mannian manifolds with finitely many ends has been studied in [59], and
these results are easily extended to weighted manifolds. The following state-
ment is a consequence of [59, Lemma 3.1 and Proposition 2.7].

Proposition 6.2. — Let M = M1# . . .#Mk be a connected sum of
complete weighted manifolds (Mi, µi), and assume that M is non-parabolic.
For each i ∈ I, let ui be a non-negative continuous function on M which
vanishes on M \ Ei and is harmonic on Ei. Then there exists a positive
harmonic function h defined on all of M and such that |h −

∑
i∈I ui| is

uniformly bounded on M .

Note that the assumption that M is non-parabolic cannot be omitted. It
is known (see [59] and the references therein) that each parabolic end Ei,
i ∈ I, admits a continuous non-negative harmonic function ui vanishing
on the boundary ∂Ei and such that supEi ui = ∞. Thus, Proposition 6.2
produces an unbounded positive harmonic function on M , whereas on any
parabolic manifold any positive harmonic function is constant.

In what follows, we will use property (RCA) as one of our basic assump-
tion on the components Mi of M . From this viewpoint, (RCA) is a very
natural assumption. It implies that the ends Ei are connected at infinity,
i.e., that M has exactly k “true ends”. Furthermore, it prohibits the situa-
tion when Mi consists of two “nearly” disjoint unbounded parts connected
only by a rare sequence of small tubes.

Proposition 6.3. — Let M = M1# . . .#Mk be a connected sum of
complete weighted manifolds (Mi, µi). Assume that M is non-parabolic
and that, for each i = 1, . . . , k, Mi satisfies (PH). Assume further that,
for each i ∈ I, Mi satisfies (RCA). Then there exists a positive harmonic
function h on M such that, for all x ∈M ,

h(x) ≈ 1 +

(∫ |x|2
1

ds

Vix(
√
s)

)
+

.

Remark 6.4. — It follows from the above estimate of the function h that
h(x) ≈ 1 if x stays in any non-parabolic end whereas h(x)→∞ if x→∞
within a parabolic end.
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Proof. — For each i ∈ I, manifold Mi satisfies the hypotheses of Lemma
6.1. Hence, there is a continuous function ui on M that vanishes on M \Ei,
is positive and harmonic on Ei, and satisfies the estimate

ui(x) ≈
∫ |x|2

1

ds

Vi(
√
s)
.

for all x ∈ Ei and |x| large enough. Applying Proposition 6.2, we obtain a
desired harmonic function h.

6.2. Doob’s transform

Let (M = M1# . . .#Mk, µ) be a connected sum of complete non-compact
weighted manifolds (Mi, µi). Let h be an arbitrary positive harmonic func-
tion on M . We can then consider the new weighted manifold M̃ = (M, µ̃)
where

dµ̃ = h2dµ.

Moreover, by restricting h to Ei = Mi \ Ki and extending the resulting
function smoothly to a function hi defined on Mi, i ∈ {1, . . . , k}, we obtain
new weighted manifolds M̃i = (Mi, µ̃i) where dµ̃i = h2

i dµi and such that

M̃ = M̃1# . . .#M̃k.

As h is harmonic on M , the weighted Laplacian

L̃ = L
µ̃

= h−2divµ(h2∇)

of M̃ is related to the weighted Laplacian L of M by the formula

L̃ = h−1 ◦ L ◦ h.

This implies that the heat kernels on M and M̃ are related exactly by

(6.3) p̃(t, x, y) = p(t, x, y)
h(x)h(y)

.

Thus, in this situation, any estimate of p̃(t, x, y) translates easily into an
estimate of p(t, x, y).

Proposition 6.5. — Let M = M1# . . .#Mk be a connected sum of
complete non-compact weighted manifolds (Mi, µi). Assume that M is non-
parabolic and that, for each i = 1, . . . , k, Mi satisfies (PH). Assume further
that, for each i ∈ I, MI satisfies (RCA). Let h be the harmonic function
from Proposition 6.3 and let M̃i = (Mi, µ̃i), i = 1, . . . , k, be the correspond-
ing weighted manifolds constructed as above. Then each M̃i, i = 1, . . . , k,
is non-parabolic and satisfies (PH).
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Proof. — This is essentially [41, Lemma 4.8]. More precisely, if i is such
that Mi is non-parabolic then hi ≈ 1. It then follows that M̃i is still non-
parabolic and satisfies (PH) (see Theorem 5.1). If instead i is such that
Mi is parabolic, that is, i ∈ I, then

hi(x) ≈ 1 +

(∫ |x|2
1

ds

Vi(
√
s)

)
+

.

In this case, the hypothesis that Mi satisfies (RCA) and (PH) (hence
(V D)) together with [43, Theorem 5.7] shows that M̃i satisfies (PH). A
classical argument (see, e.g., the proof of [41, Lemma 4.8]) shows that M̃i
is non-parabolic.

6.3. Full two-sided bounds

For a connected sum M = M1# . . .#Mk satisfying the hypotheses of
Proposition 6.5, let M̃ , M̃i, i ∈ {1, . . . , k} be the weighted manifolds con-
structed in Section 6.2 using the function h of Proposition 6.3. We will use
a tilde ˜ to denote objects relative to the manifold M̃ . In particular, H̃
denotes the function defined at (4.19) relative to M̃ .

Proposition 6.5 allows us to apply Theorems 4.9 and 5.10 to M̃ . This
yields two-sided heat kernel estimates for p̃(t, x, y) which we can transfer
to the heat kernel p(t, x, y) of M using (6.3). The resulting estimates are
recorded in the following Theorem that gathers in one statement all the
main results of this paper, that is, the upper bounds of Theorems 4.9 and
the lower bounds of 5.10. Recall that I defined by (6.2), is the set of indices
i such that Mi is parabolic.

Theorem 6.6. — Let M = M1# . . .#Mk be a connected sum of com-
plete non-compact weighted manifolds Mi. Assume that M is non-parabolic
and that each Mi, i = 1, . . . , k, satisfies (PH). Assume further that, for
each i ∈ I, Mi satisfies (RCA). Referring to the weighted manifolds M̃i
introduced above, the heat kernel p(t, x, y), t > 0, x, y ∈M , of the weighted
manifold M satisfies

p(t, x, y) 6 Ch(x)h(y)

(
H̃(x, t)H̃(y, t)

Ṽ0(
√
t)

+ H̃(x, t)
Ṽiy (
√
t)

+ H̃(y, t)
Ṽix(
√
t)

)
exp

(
−c

d2
+(x, y)
t

)
+ Ch(x)h(y)√

Ṽix(x,
√
t)Ṽiy (y,

√
t)

exp
(
−c

d2
∅(x, y)
t

)
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and

p(t, x, y) > ch(x)h(y)

(
H̃(x, t)H̃(y, t)

Ṽ0(
√
t)

+ H̃(x, t)
Ṽiy (
√
t)

+ H̃(y, t)
Ṽix(
√
t)

)
exp

(
−C

d2
+(x, y)
t

)
+ ch(x)h(y)√

Ṽix(x,
√
t)Ṽiy (y,

√
t)

exp
(
−C

d2
∅(x, y)
t

)

Remark 6.7. — In the estimates above one can replace Ṽix(
√
t) and

Ṽiy (
√
t) respectively by Ṽix(x,

√
t) and Ṽiy (y,

√
t) (see Remarks 4.12 and

5.12). Similarly,
√
Ṽix(x,

√
t)Ṽiy (y,

√
t) can be replaced by either Ṽix(x,

√
t)

or Ṽiy (y,
√
t) (see Remarks 4.13 and 5.13).

Remark 6.8. — Any geodesically complete non-compact manifold M

with asymptotically non-negative sectional curvature can be written as
M = M1# . . .#Mk where each end Mi satisfies (PH) and (RCA) (cf.
Example 2.1). Thus, Theorem 6.6 yields heat kernel bounds on any such
manifold as long as it is non-parabolic. The same applies to manifolds
with non-negative Ricci curvature outside a compact set, provided each
end satisfies (RCA) (cf. Example 2.2).

Let us give some general formulas for computing the various terms in
Theorem 6.6. For i = 0, 1, . . . , k, set

(6.4) ηi(r) := 1 +

(∫ r2

1

ds

Vi(
√
s)

)
+

and note that

(6.5) h(x) ≈ ηix(|x|) > c
|x|2

Vix(|x|)
.

By [41, Lemma 4.8], we have, for x ∈ Ei, i = 0, 1, . . . , k,

(6.6) Ṽi(x, r) ≈ (η2
i (|x|) + η2

i (r))Vi(x, r).

Hence

(6.7) Ṽi(r) ≈ η2
i (r)Vi(r).

and

(6.8) H̃(x, t) ≈ |x|2

η2
ix

(|x|)Vix (|x|)
+ 1
ηix (|x|) ηix

(√
t
) (∫ t

|x|2

ds

Vix(
√
s)

)
+

.

When comparing (6.8) with Definition 4.19 note that, by (6.5), the right-
hand side of (6.8) is always bounded above so that there is no need to take
the minimum with 1.
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The following statement follows by inspection from the estimates of The-
orem 6.6.

Corollary 6.9. — Under the hypotheses and notation of Theorem
6.6, we have, for any fixed x, y ∈M and all large enough t,

sup
x′,y′

p (t, x′, y′) ≈ max
i

1
Vi
(√
t
)

sup
y′
p (t, x, y′) ≈ max

i

1
Vi
(√
t
)
ηi
(√
t
)

p (t, x, y) ≈ max
i

1
Vi
(√
t
)
η2
i

(√
t
) .

In particular, if I = ∅ then, for any fixed x, y ∈M and all large t,

p (t, x, y) ≈ sup
y′
p (t, x, y′) ≈ sup

x′,y′
p (t, x′, y′) ≈ max

i

1
Vi
(√
t
) .

Using the parabolicity test (4.8) and its consequence that ηi (r) → ∞ as
r →∞ on any parabolic end, one can prove that if I 6= ∅ then

lim inf
t→∞

p (t, x, y)
supy′ p (t, x, y′)

= 0 and lim inf
t→∞

supy′ p (t, x, y′)
supx′,y′ p (t, x′, y′)

= 0.

Using the remarks from Section 2.2, we obtain the following.

Corollary 6.10. — Let M be a complete non-parabolic Riemannian
manifold without boundary. Assume that either M has asymptotically non-
negative sectional curvature, or M has non-negative Ricci curvature outside
a compact set and each end satisfies (RCA). Then M has a parabolic end
if and only if for some/any x, y ∈M ,

lim inf
t→∞

p(t, x, y)
supx′,y′ p(t, x′, y′)

= 0.

6.4. Examples

Example 6.11. — Let M1 = R1 := R+ × SN−1, M2 = R3 and consider
the connected sum M = R1#R3. We have, for r > 1,

V1(r) ≈ r and V2(r) ≈ r3.

By (6.4), we obtain, for r > 1,

η1(r) ≈ r and η2(r) ≈ 1.
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Then, by (6.7), Ṽi satisfies

Ṽ1(r) ≈ r3 and Ṽ2(r) ≈ r3,

whence
Ṽ0(r) = min(Ṽ1(r), Ṽ2(r)) ≈ r3.

Using (6.8) to compute H̃(x, t), we find that H̃(x, t) ≈ η1(|x|)−1 if x ∈ E1
and H̃(x, t) ≈ |x|2/V2(|x|) if x ∈ E2. It follows that, for all x ∈ M and all
t > 0,

H̃(x, t) ≈ |x|−1.

Hence, Theorem 6.6 yields the following estimates:
(1) For x ∈ E0 ∪ E1, y ∈ E0 ∪ E2 and t > 1,

(6.9)
c

t3/2

(
1 + |x|
|y|

)
e−Cd

2(x,y)/t 6 p(t, x, y) 6
C

t3/2

(
1 + |x|
|y|

)
e−cd

2(x,y)/t.

(2) For x, y ∈ E0 ∪ E1 and t > 1,

p(t, x, y) >
c |x| |y|√

t(t+ |y|2)(t+ |x|2)
e−Cd

2(x,y)/t

and

(6.10) p(t, x, y) 6
C |x| |y|√

t(t+ |y|2)(t+ |x|2)
e−cd

2(x,y)/t.

Note that for |x| > |y| >
√
t, the above two estimates reduce to

c

t1/2
e−Cd(x,y)

2/t 6 p(t, x, y) 6
C

t1/2
e−cd(x,y)

2/t

as it should whereas for |x| ≈
√
t > 1 and |y| ≈ tε, ε ∈ [0, 1/2], we

get p(t, x, y) ≈ t−(1−ε).
(3) For x, y ∈ E0 ∪ E2, and t > 1,

(6.11) c

t3/2
e−C

d(x,y)2
t 6 p(t, x, y) 6

c

t3/2
e−C

d(x,y)2
t .

In (6.9), the contributions of both ends R1 and R3 to the long time
behavior of the heat kernel on M are of the same order t−3/2. This may
seem surprising in view of the heat kernel estimates (1.6)-(1.7) for the
manifold Rn#Rm with n,m > 2, which contains both terms t−n/2 and
t−m/2. The explanation is that what counts for the manifold R1#R3 is
the heat kernel long time behavior on R̃1 rather than that on R1. On R̃1,
we have Ṽ1(r) ≈ r3 and therefore a heat kernel behavior of order t−3/2.
This effect was first observed by E.B.Davies [25] in a model situation of a
one-dimensional complex.
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Example 6.12. — Let us now generalize the previous example and de-
scribe a situation where the formulas (6.4), (6.7) and (6.8) can be simplified.
Assume that, for r large enough and i ∈ I (i.e., Ei is a parabolic end),

(6.12)
∫ r2

1

ds

Vi(
√
s)
≈ r2

Vi(r)
.

Then, for r large enough, we have

ηi(r) ≈
r2

Vi(r)
, Ṽi(r) ≈

r4

Vi(r)

Ṽix(x, r) ≈
(
|x|4

Vi(|x|)2 + r4

Vi(r)2

)
Vix(x, r)

H̃(x, t) ≈ |x|−2
Vix(|x|).

For example, (6.12) holds if Vi(r) ≈ rαi with 0 < αi < 2 in which case we
obtain

ηi(r) ≈ r2−αi , Ṽi(r) ≈ r4−αi = rα
∗
i

Ṽix(x, r) ≈
(
|x|4−2αix + r4−2αix

)
Vix(x, r)

≈ (|x|2α
∗
ix
−4 + r2α∗ix−4)Vix(x, r)

H̃(x, t) ≈ |x|αi−2 = |x|2−α
∗
i

where

α∗i := 4− αi.

We see that Ṽi(r) and H̃(x, t) behave like the corresponding functions on
a non-parabolic manifold with volume growth rα∗i . Hence, to some extent,
the parabolic manifold with volume growth rαi can be regarded as dual
to the non-parabolic manifold with volume growth rα

∗
i . This leads to the

following statement.

Corollary 6.13. — Referring to the setting of Theorem 6.6, assume
further that for each manifold Mi there is a positive real ni 6= 2 such that
Vi(r) ≈ rni for r > 1. Set

n∗i :=
{

4− ni, ni < 2
ni, ni > 2

and

n := min
16i6k

n∗i .
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(1) If x ∈ E0 ∪ Ei, y ∈ E0 ∪ Ej , 1 6 i 6= j 6 k, and t > 1 then

p(t, x, y) 6 C

(
1

tn/2 |x|n
∗
i
−2 |y|n

∗
j
−2 + 1

tn
∗
j
/2 |x|n

∗
i
−2 + 1

tn
∗
i
/2 |y|n

∗
j
−2

)

× |x|(2−ni)+ |y|(2−nj)+ exp
(
−cd

2(x, y)
t

)
(6.13)

and

p(t, x, y) > c

(
1

tn/2 |x|n
∗
i
−2 |y|n

∗
j
−2 + 1

tn
∗
j
/2 |x|n

∗
i
−2 + 1

tn
∗
i
/2 |y|n

∗
j
−2

)

× |x|(2−ni)+ |y|(2−nj)+ exp
(
−C d

2(x, y)
t

)
.(6.14)

(2) If x, y ∈ Ei, 1 6 i 6 k, and t > 1 then

(6.15) p(t, x, y) 6
C(|x||y|)(2−ni)−

tn/2
exp

(
−c |x|

2 + |y|2

t

)
+
(

C |x| |y|
(|x|+

√
t)(|y|+

√
t)

)(2−ni)+ 1√
Vi(x,

√
t)Vi(y,

√
t)

exp
(
−cd

2(x, y)
t

)
and

(6.16) p(t, x, y) >
c(|x||y|)(2−ni)−

tn/2
exp

(
−C |x|

2 + |y|2

t

)
+
(

c |x| |y|
(|x|+

√
t)(|y|+

√
t)

)(2−ni)+ 1√
Vi(x,

√
t)Vi(y,

√
t)

exp
(
−C d

2(x, y)
t

)
.

In particular, (6.13)-(6.14) gives (1.6)-(1.7) and (1.14)-(1.15) for the man-
ifold

RN1#RN2#...#RNk

when all Ni are larger than 2. The estimate (6.9) for the manifoldR1#R3 is
also a straightforward consequence of (6.13)-(6.14). Similarly, (6.15)-(6.16)
gives (1.19)-(1.20). It also gives (6.10)-(6.11) for R1#R3 although in that
case there are additional simplifications due to the similarity of the behavior
of both ends.

The long time asymptotic in Corollary 6.13 is determined by the term
t−n/2 where n = mini n∗i . This was noticed by Davies [25] for an one-
dimensional complex, modelling manifolds with ends. If ni > 2 for all
i = 1, . . . k then n/2 can be interpreted as the exponent of the largest
heat kernel of the Mi’s. However, in general this is not true. It turns out
that t−n∗i /2 is the long time decay rate of the Dirichlet heat kernel of Ei,
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that is, the heat kernel on Ei with the vanishing boundary condition on
∂Ei. Therefore, the term t−n/2 is determined in general by the largest
Dirichlet heat kernel on the Ei’s. In fact, we have used precise estimates
of the Dirichlet heat kernel on each Ei as crucial tools for the proof of the
results described above.

Assume that x ∈ Ei, y ∈ Ej , 1 6 i 6= j 6 k. Consider the long time
asymptotic regime |x| 6 η(t), |y| 6 η(t) where η is a positive function
going to infinity slower than any positive power of t (see (1.9)). In this case,
Corollary 6.13 gives

p(t, x, y) ≈ q(x, y)
tn/2

with

q(x, y) = |x|(2−ni)+ |y|(2−nj)+ ×


|y|2−n

∗
j if n = n∗j < n∗i ,

|x|2−n
∗
i if n = n∗i < n∗j

|x|2−n∗i + |y|2−n
∗
j if n = n∗i = n∗j ,

|x|2−n∗i |y|2−n
∗
j if n < min{n∗i , n∗j}.

This generalizes (1.17) which treats the case where all ni are greater than
2.

Next consider the medium time asymptotic regime when |x| , |y| ≈
√
t

and t→∞. In this case Corollary 6.13 gives

(6.17) p(t, x, y) ≈ t[(2−ni)++(2−nj)+−n∗i−n
∗
j+2]/2.

If both ni, nj are greater than 2 then (6.17) gives p(t, x, y) ≈ t−(ni+nj)/2+1

as in (1.13). Similarly, if both ni, nj are less than 2 (in this case there
must be another end that is non-parabolic) then (6.17) becomes p(t, x, y) ≈
t−(n∗i+n∗j )/2+1. However, if ni < 2 and nj > 2 then (6.17) gives p(t, x, y) ≈
t−nj/2. Thus, in this third case, the medium time asymptotic is determined
only by the larger end, in contrast to the previous two cases where both
ends contribute.

However, the most interesting paradoxical effect in (6.13)-(6.14) occurs
if ni < 2, nj > 2, |x| ≈

√
t, and |y| ≈ 1. In this case, the middle term in

(6.13)-(6.14) dominates and gives

(6.18) p(t, x, y) ≈ t−1,

regardless of the exponents ni, nj ! Therefore, if x moves away at the rate√
t in a parabolic end and y stays in E0, then p(t, x, y) ≈ t−1 is larger than

p(t, y, y) ≈ p(t, u, v), u, v ∈ E0, since the latter satisfies p(t, u, v) ≈ t−n/2.
Note that p(t, x, x) ≈ t−ni/2 in this situation. The explanation is that if x
and y are close to the central part and t is large then the process Xt started
at x tends to escape to infinity within the larger end so that its chances
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to loop back to y are relatively small. On the contrary, if Xt starts at the
point x located at the smaller end at the distance

√
t from the central part,

then it cannot escape to infinity within this end because of its parabolicity.
Hence, it moves towards the central part and hits y in time t with a higher
probability. Note that, in this type of heuristic explanation, it is easy to
forget that p(t, x, y) is symmetric!

To describe what the above estimates say concerning the approximate
hot spot for fixed x and large t, consider the function

H(y) = p(t, x, y)
supy′ p(t, x, y′)

.

• If all manifolds Mi are non-parabolic then H (y) ≈ 1 on the set

{|y| ≈ 1} ∪
⋃

{i:ni=m}

{
y ∈ Ei : |y| 6 C

√
t
}

where m = minni (see Fig. 16). Moreover, in this region

p (t, x, y) ≈ 1
V0
(√
t
) ≈ 1

tm/2
≈ p (t, x, x) .

x

ni

m

nj

|y| C t
_

Figure 16. Non-parabolic case: the highest temperature (up to a con-
stant factor) is attained in the shaded area.

• If some Mi are parabolic and some non-parabolic then H (y) ≈ 1
on the set ⋃

{i∈I:ni=m}

{
y ∈ Ei : |y| ≈

√
t
}
,
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where m = minni (see Fig. 17). Moreover, in this region

p (t, x, y) ≈ 1
t
� 1

tn/2
≈ p (t, x, x) .

ni

m

nj

|y| t
_

x

Figure 17. Mixed case: the highest temperature (up to a constant fac-
tor) is attained in the shaded area.

Example 6.14. — Let us take M1 = R2 and M2 = R3. For r > 2 and
|x| > 2, we have

V1(r) ≈ r2, V2(r) ≈ r3,

h1(x) ≈ log(1 + |x|), h2(x) ≈ 1,
Ṽ1(r) ≈ r2 log2(2 + r), Ṽ2(r) ≈ r3,

Ṽ0(r) = min(Ṽ1(r), Ṽ2(r)) ≈ r2 log2(2 + r),
and

Ṽ1(x, r) ≈ [log2(2 + |x|) + log2(2 + r)]r2, Ṽ2(x, r) ≈ r3.

We first discuss the case where x ∈ E1, y ∈ E2. Then, for t > 1, we have
H̃(y, t) ≈ |y|−1 whereas

H̃(x, t) ≈ 1
log2(1 + |x|)

+
(

1
2 log(1 + |x|)

− 1
log(1 + t)

)
+
.

Hence, for such x, y, t, we obtain

p(t, x, y) 6 C

(
log(1 + |x|)
|y| t log2(1 + t)

+ 1
t3/2

[
1

log(1 + |x|)
+

+
(

1
2
− log(1 + |x|)

log(1 + t)

)
+

])
e−c

d2(x,y)
t ,
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p(t, x, y) > c

(
log(1 + |x|)
|y| t log2(1 + t)

+ 1
t3/2

[
1

log(1 + |x|)
+

+
(

1
2
− log(1 + |x|)

log(1 + t)

)
+

])
e−C

d2(x,y)
t .

In particular, for fixed x, y, the long time asymptotic is given by

p(t, x, y) ≈ 1
t log2 t

.

The medium time asymptotic when |x| ≈ |y| ≈
√
t is given by

p(t, x, y) ≈ 1
t3/2 log t

.

If instead |x| ≈
√
t and |y| ≈ 1 then (compare with (6.18))

p(t, x, y) ≈ 1
t log t

.

Next, assume that x, y ∈ E1 with |x|, |y| 6 C
√
t. Then we have

p(t, x, y) ≈ log(1 + |x|) log(1 + |y|)
t log2 t

.

Finally, if x, y ∈ E2 and |y| 6 |x| 6 C
√
t, then

p(t, x, y) ≈ 1
|y|t log2 t

+ 1
t3/2

.

Example 6.15. — Our last example is M = R1#R2#R3 (this is essen-
tially the same as the manifold with boundary on Fig. 2). For this example,
we will only write down the long time and medium time estimates. The var-
ious functions entering the inequalities of Theorem 6.6 have been already
computed in the previous examples. The long time asymptotic for any fixed
x, y ∈M is given by

p(t, x, y) ≈ 1
t log2 t

.

Setting Mi = Ri, we obtain for the medium time regime |x| ≈ |y| ≈
√
t,

that

p(t, x, y) ≈


t−1/2 if x, y ∈ E1
t−1 if x, y ∈ E2
(t log t)−1 if x ∈ E1 ∪ E3, y ∈ E2
t−3/2 if x ∈ E1 ∪ E3, y ∈ E3

.
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If |x| ≈ 1 and |y| 6 C
√
t, we get

p(t, x, y) ≈



1
t

(
1

log2 t
+ |y|√

t

)
if y ∈ E1

1 + log |y|
t log2 t

if y ∈ E2

1
t

(
1√
t

+ 1
|y| log2 t

)
if y ∈ E3.

This proves the estimates (1.21) from the Introduction and allows to allo-
cate the approximate hot spots as follows. For fixed x, t, set again

H (y) = p (t, x, y)
supy′ p (t, x, y′)

.

Then, for large enough t, we have the following (see Fig. 18):
• H (y) ≈ 1 occurs only in the annulus E1 ∩

{
|y| ≈

√
t
}

so that the
approximate hot spot contains such an annulus and is contained in
one.
• H (y) ≈ 1

log t on E1 ∩
{
|y| ≈

√
t

log t

}
and on E2 ∩ {log y ≈ log t} (for

y ∈ E2 this is the approximate maximal value of H).
• H (y) ≈ 1

log2 t
on {|y| ≈ 1} (for y ∈ E3 this is the approximate

maximal value of H).

x

3

1

2

|y| t , (y) 1
_

|y| t /log t
_

|y| 1

log|y| log t

(y) 1/log t

(y) 1/log2 t

Figure 18. The approximate hot spot (darkest shade) and other rela-
tively hot regions on the manifold R1#R2#R3.
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7. The homogeneous parabolic case

In this section we consider a very restricted class of parabolic mani-
folds with ends for which the results from [41], [42], and Theorem 3.5 suf-
fice to obtain sharp two-sided bounds (an example of such a manifold is
the catenoid). Let M = M1# . . .#Mk be a connected sum of complete
non-compact weighted manifolds. We assume that each Mi satisfies (PH),
(RCA) and is parabolic. We assume further that M is homogeneous in the
sense that, for any i, j ∈ {1, . . . , k} and all r > 0, we have

(7.1) Vi(r) ≈ Vj(r) ≈ V0(r).

Thus all the ends Mi of M have essentially the same volume growth. In
this case, set

η(r) = 1 +

(∫ r2

1

ds

V0(
√
s)

)
+

,

Q(x, t) = |x|2

η(|x|)V0(|x|)
+ 1
η(
√
t)

(∫ t
|x|2

ds

V0(
√
s)

)
+

,

and
D(x, t) = η(|x|)

η(|x|) + η(
√
t)
.

With this notation, we have the following result.

Theorem 7.1. — Let M = M1# . . .#Mk be a connected sum of com-
plete non-compact weighted manifolds. Assume that M is parabolic and
that each Mi satisfies (PH), (RCA). Assume further that M satisfies (7.1).
Referring to the notation introduced above, the heat kernel on M satisfies,
for all x, y ∈M and t > 0,

p(t, x, y) 6
C

V0(
√
t)

(Q(x, t)Q(y, t) +Q(x, t)D(y, t) +D(x, t)Q(y, t)) exp
(
−cd+(x, y)2

t

)

+ CD(x, t)D(y, t)√
V (x,
√
t)V (y,

√
t)

exp
(
−cd∅(x, y)2

t

)

and

p(t, x, y) >
c

V0(
√
t)

(Q(x, t)Q(y, t) +Q(x, t)D(y, t) +D(x, t)Q(y, t)) exp
(
−C d+(x, y)2

t

)

+ cD(x, t)D(y, t)√
V (x,
√
t)V (y,

√
t)

exp
(
−C d∅(x, y)2

t

)
.
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Proof. — For any fixed t0 and t ∈ (0, t0) these bounds reduce to the two-
sided estimate given by Lemma 5.9. For t > t0, using the local Harnack
inequality provided by Lemma 5.9, it suffices to consider the case where
|x|, |y| are large enough. In this case, we either have d(x, y) ≈ d+(x, y) ≈
|x| + |y| or d(x, y) ≈ d∅(x, y) depending on whether or not x, y are in
different ends.

In order to use Theorem 3.5, we need two-sided estimates for the following
quantities:

(1) p(t, u, v) when |u|, |v| are bounded;
(2) ψ(t, x) when |x| is large enough;
(3) ψ′(t, x) when |x| is large enough.
(4) pEi(t, x, y) when |x|, |y| are large enough, x, y ∈ Ei.

Here ψ is the hitting probability for the central part K of M and pEi is
the Dirichlet heat kernel in the end Ei.

We start with point 1. Because, by hypothesis, the volume functions
Vi, i ∈ {1, . . . , k} are all comparable, Theorems 5.1(2) and 4.5 show that
the manifold M has the doubling volume property (V D) and satisfies the
relative Faber-Krahn inequality (4.3) for some α > 0. In particular, it
follows from Theorem 4.1 that, for all t > t0 and |u|, |v| bounded,

(7.2) p(t, u, v) 6
C

V0(
√
t)
.

By [18, Theorem 7.2], we also have the matching lower bound

(7.3) p(t, u, v) >
c

V0(
√
t)
.

Note that the above argument strongly uses the homogeneity hypothesis,
i.e., the fact that all ends have comparable volume growth. Without this
hypothesis, Theorem 4.5 does not provide a sharp central upper bound
when M is parabolic. Under the present hypotheses, (7.2)-(7.3) takes care
of point 1 above.

For points 2 and 3, i.e., two-sided bounds on ψ(t, x) and ψ′(t, x), observe
that the problem is localized to each of the different ends, separately. The
desired two-sided bounds are given in [42, Theorem 4.6].

Finally, a two-sided bound on the Dirichlet heat kernel of each end is
provided by [41, Theorem 4.27], taking care of point 4.

Given those results, the rest of the proof of Theorem 7.1 reduces to
bookkeeping and we omit the details.

We will illustrate Theorem 7.1 with two different examples.

TOME 59 (2009), FASCICULE 5



1986 Alexander GRIGOR’YAN & Laurent SALOFF-COSTE

Example 7.2. — Consider the connected sum R2#R2 of two Euclidean
planes (the same estimates apply to the catenoid). The hypotheses of The-
orem 7.1 are satisfied and η(r) ≈ log(2 + r). Hence,

Q(x, t) ≈ 1
log(2 + |x|)

+
(

1
2
− log(2 + |x|)

log(2 + t)

)
+

and
D(x, t) ≈ log(2 + |x|)

log(2 + |x|) + log(2 + t)
.

For all t > 0, and x, y in the same end Ei ∪ E0, i = 1 or 2, we obtain

c

t
exp

(
−C d(x, y)2

t

)
6 p(t, x, y) 6

C

t
exp

(
−cd(x, y)2

t

)
.

Indeed, for t ∈ (0, 1), this follows from Lemma 5.9. Fix ε ∈ (0, 1/2). If t > 1
and |x|, |y| > tε, then the term involving d∅ dominates (essentially) and
gives the desired two-sided bound. If |x| 6 tε and |y| > tε then Q(x, t) ≈
1 ≈ D(y, t) whereas if |x|, |y| 6 tε then D(x, t) ≈ 1 ≈ D(y, t). In these two
cases, the term involving d+ dominates (essentially) and gives the desired
result.

For t > 1, x ∈ E1, y ∈ E2 and |x|, |y| 6 C
√
t, we have

p(t, x, y) ≈ C

t
(Q(x, t)D(y, t) +D(x, t)Q(y, t) +Q(x, t)Q(y, t)) .

In particular, for t > 1, x ∈ E1, y ∈ E2 and |x|, |y| ≈
√
t, we have

p(t, x, y) ≈ 1
t log t

because

D(x, t) ≈ D(y, t) ≈ 1, Q(x, t) ≈ Q(x, t) ≈ 1
log(2 + t)

.

For t > 1, x ∈ E1, |y| ∈ E2 and |x| ≈
√
t, |y| ≈ tε, ε ∈ [0, 1/2), we have

p(t, x, y) ≈ 1
t

because Q(y, t) ≈ 1 and D(x, t) ≈ 1.

Example 7.3. — In our second example, we assume that the function
V0 satisfies the following additional condition

(7.4)
∫ r2

1

ds

V0(
√
s)

6 C
r2

V0(r)
.

In particular, (7.4) is satisfied when V0(r) ≈ rα, r > 1, for a real α ∈ (0, 2).

ANNALES DE L’INSTITUT FOURIER



HEAT KERNELS 1987

Corollary 7.4. — Under the hypotheses of Theorem 7.1, assume fur-
ther that V0 satisfies (7.4). Then, for all x, y ∈M and t > 0, the heat kernel
satisfies (ULE), that is,
(7.5)

c

V (x,
√
t)

exp
(
−C d(x, y)2

t

)
6 p(t, x, y) 6

C

V (x,
√
t)

exp
(
−cd(x, y)2

t

)
.

and M satisfies the parabolic Harnack inequality (PH).
Proof. — Although (7.5) can be proved by inspection of the upper and

lower bound in Theorem 7.1, it is simpler to first observe that the upper
bound immediately follows from Corollary 4.6. Indeed, under the hypothe-
sis that each Mi satisfy the volume doubling property and that (7.1) holds,
the function F defined at (4.13) satisfy

F (x, r) ≈ V (x, r).

Indeed, if the ball B(x, r) is contained in one of the ends Ei then F (x, r) =
V (x, r) by definition. If not, then B(x, r) ∩ K 6= ∅ and it follows that
F (x, r) = V0(r) ≈ V (x, r) because of the doubling property. Now the upper
bound in (7.5) follows immediately from (4.5) and Corollary 4.6. Note that
we have not used the additional hypothesis (7.4) to prove this upper bound.

For t 6 t0, the matching lower bound follows from Lemma 5.9.
To prove the matching lower bound for t > t0 we use Theorem 7.1.

Observe that (7.4) implies

η(r) ≈ 1 + r2

V (r)
, Q(x, t) ≈ 1.

By Theorem 7.1, this implies that for |x| 6
√
t

p(t, x, y) >
c

V0(
√
t)

exp
(
−c |x|

2 + |y|2

t

)
.

By the volume inequality (4.5), this gives

p(t, x, y) >
c

V (x,
√
t)

exp
(
−C |x|

2 + |y|2

t

)
.

As d(x, y) > |y|2 − |x|2 − diam(K), the last inequality implies (7.5) if
|x| 6

√
t. By symmetry, we can now assume that |x| and |y| are larger

than
√
t and thus D(x, t) ≈ D(y, t) ≈ 1. If x, y are in the same end, then

d∅(x, y) ≈ d(x, y) whereas if they are in different ends, d+(x, y) ≈ d(x, y) ≈
|x| + |y|. In the first case, the lower bound in (7.5) follows directly from
the bounds of Theorem 7.1 using the term involving d∅. In the second case,
it follows from (4.5) and Theorem 7.1, using the term involving d+. This
finishes the proof of (7.5).
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The fact that M satisfies (PH) follows from (7.5) and Theorem 5.1.
The statement of Corollary 7.4 was proved by a different method in [43,

Theorem 7.1].

8. One-dimensional Schrödinger operator

In this section we apply our main result to estimate the heat kernel
q (t, x, y) of the operator d2

dx2 − Φ in R where Φ is a smooth non-negative
function on R. Assume that there is a smooth positive function h in R
satisfying the equation h′′ − Φh = 0. Let λ be the Lebesgue measure in R
and µ be a measure in R defined by

(8.1) dµ = h2dλ.

It is easy to verify the following identity

(8.2) d2

dx2 − Φ = h ◦ L ◦ h−1

where
L = 1

h2
d

dx

(
h2 d

dx

)
is the Laplace operator for the weighted manifold (R, µ) (cf. the discussion
in Section 6.2). This implies that the operator d

2

dx2−Φ in L2 (R, λ) is unitary
equivalent to the operator L in L2 (R, µ). Consequently, if p (t, x, y) is the
heat kernel for L then we have the identity

(8.3) q (t, x, y) = p(t, x, y)h (x)h (y) .

The manifold (R, µ) can be considered as a connected sum of (R+, µ) and
(R−, µ). If (R+, µ) and (R−, µ) satisfy (PH) and are non-parabolic, then
the heat kernel p (t, x, y) can be estimated by Theorems 4.9 and 5.10. This
and (8.3) lead to the desired estimates of q (t, x, y).

A particularly interesting case, which received attention in literature is
when Φ (x) = c |x|−2 for large x (see, e.g., [27], [49], [50], [65]). In this
case, as we will see below, the exponent of the long time decay of q (t, x, y)
depends on c. In Rn, n > 2, this problem is actually easier and the result is
simpler than in R1 because Rn satisfies (RCA) and the gluing techniques
are not necessary (see [36, Section 10.4]).

We start with the following lemma.

Lemma 8.1. — Let Φ (x) be a smooth function on R such that

0 6 Φ (x) 6 C0 |x|−2
,
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for some C0 > 0 and for all x ∈ R. Then the solution h of the initial value
problem

h′′ − Φh = 0
h (0) = 1
h′ (0) = 0

is a smooth positive function on R, and there exists a constant C =
C (C0) > 1 such that

(8.4) C−1 6
h (x)
h (y)

6 C

for all x, y ∈ R of the same sign such that

(8.5) 1
2
|y| 6 |x| 6 2 |y| .

If in addition Φ (0) > 0 then there there exists a constant δ > 0 such that

(8.6) h (x)
h (y)

> δ
|x|
|y|

for all x, y of the same sign such that |x| > |y| > 1.

Proof. — Note that if h is positive on some interval then h is convex
on this interval, due to the equation h′′ = Φh. Since h is positive in a
neighborhood of 0, there is a maximal open interval I containing 0 where h
is positive. It follows that h is convex in I and since h′ (0) = 0, h increases
in the positive part of I and decreases in the negative part of I. Hence,
if I has a finite end, then h will have a non-zero limit at that end, which
contradicts the maximality of I. Thus, I = R which finishes the proof of
the positivity of h.

To prove (8.4), let us consider the function g = h′

h . It suffices to show
that, for some constant A,

(8.7) |g (x)| 6 A

|x|

because then we have, for positive x, y satisfying (8.5),

ln h (x)
h (y)

=
∫ x
y

g (t) dt 6 A ln x
y

6 A ln 2

whence (8.4) follows. Negative x, y are handled similarly.
We will prove (8.7) with A being the unique positive root of the equation

A2 −A = C0.
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Assume that (8.7) is not true for some x > 0. Since (8.7) holds for x = 0,
there is the minimal a > 0 such that g (a) = A

a and g (x) > A
x in a right

neighborhood of a, say in (a, b). It is easy to see that g satisfies the equation

(8.8) g′ + g2 = Φ.

It follows that in the interval (a, b)

g′ (x) = Φ (x)− g2 (x) 6
C0 −A2

x2 = − A
x2 .

Integrating this differential inequality from a to x ∈ (a, b), we obtain

g (x)− g (a) 6 −A
(

1
a
− 1
x

)
,

whence
g (x) 6

A

x
+ g (a)− A

a
= A

x
,

which contradicts the choice of the interval (a, b).
If Φ (0) > 0 then h′ (0) = 0 implies that h′ (x) > 0 for x > 0. Hence, also

g (x) > 0 for x > 0. It follows from (8.8) that in (0,+∞)
g′

g2 + 1 > 0.

Integrating this differential inequality, we obtain, for x > 1,
1

g (x)
− 1
g (1)

6 x− 1

whence
g (x) >

1
x+ α

where α =
(

1
g(1) − 1

)
+

. Using g = (ln h)′ and integrating again, we obtain,
for all x > y > 1,

h (x)
h (y)

>
x+ α

y + α
> δ

x

y

where δ = 1
1+α . The case x 6 y 6 −1 is handled similarly.

To state the next result, we will use the notation f � gc,C , which means
that both inequalities f 6 gc,C and f > gc,C hold but with different values
of the positive constants c, C.

Theorem 8.2. — Let Φ (x) be a smooth function on R such that

0 6 Φ (x) 6 C0 |x|−2
,

for some C0 > 0 and for all x ∈ R and Φ (0) > 0, and let h (x) be defined
as in Lemma 8.1. Then the heat kernel q (t, x, y) of the operator d2

dx2 − Φ
satisfies the estimates:

ANNALES DE L’INSTITUT FOURIER



HEAT KERNELS 1991

0. For all x, y ∈ R and 0 < t 6 1,

q(t, x, y) � C√
t

exp

(
−c |x− y|

t

2
)
.

1. For all x 6 1, y > −1, t > 1,

q (t, x, y) � C√
t

(
h (y) (1 + |x|)
h (x)h2

(√
t
) + h (x) (1 + |y|)

h (y)h2
(
−
√
t
)) exp

(
−c |x− y|

2

t

)
.

2. For all x, y of the same sign σ such that |x| , |y| > 1 and for all
t > 1,

q(t, x, y) � C√
t

|x| |y|
h (x)h (y)

(
1

h2
(√
t
) + 1

h2
(
−
√
t
)) exp

(
−c |x|

2 + |y|2

t

)

+ Ch (x)h (y)√
th
(
x+ σ

√
t
)
h
(
y + σ

√
t
) exp

(
−c |x− y|

2

t

)
.

Proof. — Define measure µ on R by (8.1). The main point of this proof
is to estimate the heat kernel p (t, x, y) of the weighted manifold (R, µ) and
use it to estimate q (t, x, y) by (8.3).

Set M1 = M2 = [0,+∞) so that R = M1#M2 where we follows the
agreement that M1 maps to the positive half-line of R and M2 maps to the
negative half-line. Let the central part be K = [−1, 1].

Define on Mi the function hi by

h1 (x) = h (x) , h2 (x) = h (−x) .

Then (R, µ) is a connected sum of (M1, µ1) and (M2, µ2) where dµi = h2
i dλ.

Since (Mi, λ), i = 1, 2, satisfies (PH) and (RCA), the weighted manifold
(Mi, µi) also satisfies (PH) because the function h is increasing in |x| and
satisfies (8.4) (see [43, Theorem 5.7] and [41, Theorem 2.11]). The volume
function Vi (x, r) on (Mi, µi) is estimated by

(8.9) Vi (x, r) ≈ rh2
i (x+ r) ,

where the factor r comes from the volume of balls in (Mi, λ). It follows
from (8.6) that hi (r) > cr for r > 1 whence Vi (x, r) > cr3 for r > 1. By
Proposition 4.3, this implies that (Mi, µi) is non-parabolic.

Hence, all the hypotheses of Theorems 4.9, 5.10 are satisfied and we can
apply these theorems to estimate the heat kernel p (t, x, y) of (R, µ). Using
the notation of Section 4.3, we have

Vi (r) ≈ rh2
i (r) , i = 1, 2
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and

V0 (r) ≈ rmin (h1 (r) , h2 (r))2
.

Due to (8.6), we have

Vi (R)
Vi (r)

> c

(
R

r

)3

for R > r > 1. Therefore, the function H (x, t) defined in Section 4.4, can
be estimated by (4.21) as follows:

H (x, t) ≈ x2

Vi (|x|)
≈ |x|
h2 (x)

if |x| > 1 and x ∈Mi,

and

H (x, t) ≈ 1 if |x| 6 1.

Applying Corollaries 4.16, 5.18 for the cases 0 and 2 and Theorems 4.9,
5.10 for the case 1 (cf. Remark 4.10), we obtain estimates for p (t, x, y),
which by (8.3) imply the desired estimates for q (t, x, y).

Corollary 8.3. — Let Φ (x) > 0 for all x, Φ (0) > 0, and

Φ (x) =

{
α+ |x|−2

, x > x0,

α− |x|−2
, x < −x0,

where x0 > 0 and α+, α− are non-negative constants. Set

(8.10) β± = 1
2

+
√

1
4

+ α± .

Then the heat kernel q (t, x, y) of the operator d2

dx2 − Φ (x) satisfies the
estimates:

0. For all x, y ∈ R and 0 < t 6 1,

q(t, x, y) � C√
t

exp

(
−c |x− y|

t

2
)
.

1. For all x 6 1, y > −1, t > 1,

q (t, x, y) � C
(
〈x〉1−β−〈y〉β+

tβ++1/2 + 〈x〉
β−〈y〉1−β+

tβ−+1/2

)
exp

(
−c |x− y|

2

t

)
.

where 〈·〉 = 1 + |·| .

ANNALES DE L’INSTITUT FOURIER



HEAT KERNELS 1993

2. For all x, y > 1 and all t > 1,

q(t, x, y) � C
|x|1−β+ |y|1−β+

tβ+1/2 exp

(
−c |x|

2 + |y|2

t

)

+ C

t1/2

(
1 +
√
t

|x|

)−β+ (
1 +
√
t

|y|

)−β+

exp

(
−c |x− y|

2

t

)
,

where β = min (β+, β−). A similar estimate holds for x, y 6 −1
with β− instead of β+.

Proof. — Consider function f (x) = xγ for x > 0. It is easy to see that
f ′′/f = γ (γ − 1)x−2. Therefore, if γ2−γ = α then f satisfies f ′′−αx−2f =
0. For α > 0 this quadratic equation has two roots

γ1 = 1
2

+
√

1
4

+ α and γ2 = 1
2
−
√

1
4

+ α

and γ1 > 0 > γ2. It follows that any solution to the equation u′′−αx−2u = 0
on an interval (a,+∞) is a linear combination of the functions xγ1 and xγ2 .
This implies that either u (x) ∼ cxγ1 or u (x) ∼ cxγ2 as x→ +∞.

As a consequence, we obtain that the function h (x) from Lemma 8.1
satisfies

h (x) ≈ xβ+ on [1,+∞) and h (x) ≈ |x|β− on (−∞, 1],

where β+, β− are defined by (8.10). Substituting into Theorem 8.2, we
finish the proof.

9. Appendix - the list of conditions

(RFK) - relative Faber-Krahn inequality, Section 4.1,
(V D) - volume doubling, Introduction and Section 4.1,
(PI) - Poincaré inequality, Introduction and Section 5.1,

(PH) - parabolic Harnack inequality, Section 5.1,
(ULE) - upper and lower estimates of the heat kernel, Section 5.1,
(RCA) - relative connectedness of annuli, Section 6.1.
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