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TEMPERED SOLUTIONS OF D-MODULES ON
COMPLEX CURVES AND FORMAL INVARIANTS

by Giovanni MORANDO (*)

Abstract. — Let X be a complex analytic curve. In this paper we prove that
the subanalytic sheaf of tempered holomorphic solutions of D-modules on X in-
duces a fully faithful functor on a subcategory of germs of formal holonomic D-
modules. Further, given a germM of holonomic D-module, we obtain some results
linking the subanalytic sheaf of tempered solutions of M and the classical formal
and analytic invariants of M.

Résumé. — Soit X une courbe analytique complexe. Dans cet article nous
démontrons que le faisceau sous-analytique des solutions holomorphes tempérées
des D-modules sur X induit un foncteur pleinement fidèle sur une sous-catégorie
des germes des D-modules holonomes formels. De plus, étant donné un germe M
de D-module holonome, nous obtenons des résultats qui lient le faisceau sous-
analytique des solutions tempérées deM avec les invariants formels et analytiques
classiques de M.

Introduction

The search for algebraic or topological invariants of complex linear partial
differential equations is classical and widely developed.

At the very first step of the study of linear differential equations, two
main types of equations are distinguished: regular and irregular. To give
an idea of the difference between the two kinds of equations, let us recall
that, in dimension 1, the solutions of the former equations have moderate
growth while the solutions of the latter have exponential-type growth.

Keywords: D-modules, irregular singularities, tempered holomorphic functions,
subanalytic.
Math. classification: 34M35, 32B20, 34Mxx.
(*) Research supported in part by grant CPDA061823 of Padova University and in part
by fellowship SFRH/BPD/29934/2006 of Fundação para Ciência e Tecnologia at Centro
de Álgebra da Universidade de Lisboa.



1612 Giovanni MORANDO

The more general algebraic approach to the study of linear differential
equations consists in considering differential equations as sheaves of mod-
ules over the ring DX of linear differential operators on a manifold X. In
this framework, in [7] and [8], M. Kashiwara gives a proof of the Riemann-
Hilbert correspondence which is a generalization of the 21st Hilbert’s prob-
lem. For X a complex analytic manifold, M. Kashiwara defines the functor
THom and he gives an explicit inverse to the functor of holomorphic so-
lutions from the bounded derived category of complexes of DX -modules
with regular holonomic cohomology to the bounded derived category of
complexes of sheaves with constructible cohomology. This implies the clas-
sic result that the functor of holomorphic solutions S (·) is an equivalence
between the category of regular meromorphic connections on X with poles
along a closed submanifold Z and the category of linear representations of
finite dimension of the fundamental group of X r Z.

The irregular case is more complicated. In complex dimension 1, the clas-
sification of meromorphic connections obtained through the formal classi-
fication and the Stokes coefficients is nowadays well understood. Let us
simply recall that, roughly speaking, the difference between a regular con-
nection and an irregular one is based on the presence of functions of the
type expϕ (ϕ ∈ z−1/lC[z−1/l], l ∈ Z>0) in the solutions of the latter. The
polynomials ϕ, appearing at exponent in the solutions of a meromorphic
connectionM, are called determinant polynomials ofM. Their presence is
made explicit in the Levelt-Turrittin’s Formal Theorem (Theorem 1.13) and
in the Hukuhara-Turrittin’s Asymptotic Theorem (Theorem 1.15) which
are of analytic nature. It is interesting to look for a topological description
of the determinant polynomials.

In higher dimension, the study of irregular D-modules is much more com-
plicated. In [20] (see also [19]), C. Sabbah defines the notion of good model
in dimension 2 and he conjectures the analogue of the Levelt-Turrittin’s
Formal Theorem, further he proves it for meromorphic connections of rank
6 5. Recently, T. Mochizuki proved Sabbah’s conjecture in any dimension
in the algebraic case, see [15] and [16].

Given a complex analytic manifold X, in [10], M. Kashiwara and
P. Schapira defined the complex of sheaves of tempered holomorphic func-
tions OtXsa

. The entries of the complex OtXsa
are not sheaves on a topo-

logical space but on the subanalytic site, Xsa. The open sets of Xsa are
the subanalytic open subsets of X, the coverings are locally finite cover-
ings. If X has dimension 1, then OtXsa

is a sheaf on Xsa and, for U a
relatively compact subanalytic open subset of X, the sections of OtXsa

(U)
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TEMPERED SOLUTIONS OF D-MODULES AND FORMAL INVARIANTS 1613

are the holomorphic functions on U which extend as distributions on X or,
equivalently, which have moderate growth at the boundary of U .

Further in an example in [11], M. Kashiwara and P. Schapira explicited
the sheaf of tempered holomorphic solutions of DC exp(1/z). Such exam-
ple suggests that tempered holomorphic functions and the subanalytic site
could be useful tools in the study of ordinary differential equations. Roughly
speaking, one of the ideas underlying the irregular Riemann-Hilbert corre-
spondence in dimension 1 is to enrich, by ad hoc tools taking in account
determinant polynomials and Stokes coefficients, the structure of the cate-
gory of sheaves of C-vector spaces where the functor of holomorphic solu-
tions takes values (see the notion of Ω-filtered local systems in [1] or [14]).
The approach through subanalytic sheaves allows to enrich the topology of
the space where the sheaf of solutions lives.

In this paper we go into the study of the subanalytic sheaf of tem-
pered holomorphic solutions of germs of D-modules. Denote by S t

(
M

)
the subanalytic sheaf of tempered holomorphic solutions of a holonomic
DX -module M. Let X ⊂ C be an open neighborhood of 0, Mod(CXsa)
the category of sheaves of C-vector spaces on Xsa. We denote by GMk be
the category of modules over the ring of linear differential operators with
formal Laurent power series “without ramification” (see Section 1.3 for a
precise definition) and with Katz invariant < k. Roughly speaking, up to
ramification, every meromorphic connection is formally equivalent to an
element of GMk, for k big enough. We prove that

S t
(
· ⊗D exp(1/zk)

)
: GMk −→ Mod(CXsa)

is a fully faithful functor (Theorem 3.5). Further we prove that, given
a germ of holonomic DX -module M with Katz invariant < k, the datum
of S t

(
M⊗DX exp(1/zk+1)

)
is equivalent to the data of the holomorphic

solutions, the determinant polynomials and their “rank” (Theorem 3.7).
Let us also recall that many sheaves of function spaces have been used in

the study of irregular ordinary differential equations. For example, one can
find in [14] the definitions of the sheaves A6r (r ∈ R) defined on the real
blow-up of the complex plane at the origin. In [6], P. Deligne defined the
sheaves F̃k, successively studied in detail in [12]. Roughly speaking, the
solutions of DC exp(ϕ) with values in A6r (resp. F̃k) depend only on the
degree and the argument of the leading coefficient of ϕ (resp. the degree
and the leading coefficient of ϕ).

In conclusion we can say that tempered solutions on the subanalytic site
give a good topological description of the determinant polynomials of a

TOME 59 (2009), FASCICULE 4



1614 Giovanni MORANDO

given meromorphic connection. As further development, it would be inter-
esting to describe precisely the image category of the functor of tempered
solutions in order to give a full topological description of the space of de-
terminant polynomials. It would also be interesting to give a good notion
of Fourier transform for tempered holomorphic solutions of algebraic D-
modules in the same spirit of [14].

The present paper is subdivided in three sections organized as follows.
Section 1 is devoted to the definitions, the notations and the presen-

tation of the main results that will be needed in the rest of the paper. In
particular we recall classical results on the subanalytic sets and site, on
the tempered holomorphic functions and on the germs of D-modules on
complex curves. We recall the Levelt-Turrittin’s Formal Theorem and the
Hukuhara-Turrittin’s Asymptotic Theorem. The latter theorem allows to
endow holomorphic solutions of meromorphic connections on sufficiently
small sectors with a graduation with respect to the space of determinant
polynomials.

The functions of the form exp(ϕ), ϕ ∈ z−1C[z−1], are the responsible for
the non-tempered-growth of the solutions of an irregular D-module. This
motivates the study of exp(ϕ) that we develop in Section 2. In partic-
ular, given ϕ ∈ z−1C[z−1] and U a relatively compact subanalytic open
subset of C, we give a necessary and sufficient topological condition on U

so that exp(ϕ) ∈ OtCsa
(U). Further, given ϕ1, ϕ2 ∈ z−1C[z−1], we prove

that the condition “for any U ⊂ C relatively compact subanalytic open
set, exp(ϕ1) ∈ OtCsa

(U) if and only if exp(ϕ2) ∈ OtCsa
(U)” is equivalent to

“ϕ1 and ϕ2 are proportional by a real positive constant”.
In Section 3 we apply the results of Section 2 to the study of the functor

of tempered holomorphic solutions of germs of DX -modules on a complex
curve X. We prove that S t

(
· ⊗DX exp(1/zk)

)
: GMk → Mod(CXsa) is a

fully faithful functor and that, given a germ of DX -module M with Katz
invariant < k, the datum of S t

(
M⊗D exp(1/zk+1)

)
is equivalent to the

data of the holomorphic solutions of M, the determinant polynomials of
M and their rank.

Acknowledgements. — We thank P. Schapira for proposing this problem
to our attention, C. Sabbah and N. Honda for many fruitful discussions and
A. D’Agnolo for many useful remarks.
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TEMPERED SOLUTIONS OF D-MODULES AND FORMAL INVARIANTS 1615

1. Notations and review

In this section we recall the definitions and the classical results concern-
ing:

(i) subanalytic sets, the subanalytic site and sheaves on it,
(ii) the subanalytic sheaf of tempered holomorphic functions,
(iii) germs of D-modules on a complex curve.

1.1. The subanalytic site

Let M be a real analytic manifold, A the sheaf of real-valued real analytic
functions on M .

Definition 1.1.
(i) A set X ⊂ M is said semi-analytic at x ∈ M if the following

condition is satisfied. There exists an open neighborhood W of x
such that X ∩W = ∪i∈I ∩j∈J Xij where I and J are finite sets and
either Xij = {y ∈ W ; fij(y) > 0} or Xij = {y ∈ W ; fij(y) = 0}
for some fij ∈ A(W ). Further, X is said semi-analytic if X is semi-
analytic at any x ∈M .

(ii) A set X ⊂ M is said subanalytic if the following condition is sat-
isfied. For any x ∈ M , there exist an open neighborhood W of x,
a real analytic manifold N and a relatively compact semi-analytic
set A ⊂M ×N such that π(A) = X ∩W , where π : M ×N →M

is the projection.

Given X ⊂M , denote by
◦
X (resp. X, ∂X) the interior (resp. the closure,

the boundary) of X.

Proposition 1.2 (See [2]). — Let X and Y be subanalytic subsets

of M . Then X ∪ Y , X ∩ Y , X,
◦
X and X r Y are subanalytic. Moreover

the connected components of X are subanalytic, the family of connected
components of X is locally finite and X is locally connected.

Proposition 1.3 below is based on Łojasiewicz’s inequality, see [2, Corol-
lary 6.7].

Proposition 1.3. — Let U ⊂ Rn be an open set, X,Y closed subana-
lytic subsets of U . For any x0 ∈ X ∩ Y , there exist an open neighborhood
W of x0, c, r ∈ R>0 such that, for any x ∈W ,

dist(x,X) + dist(x, Y ) > c dist(x,X ∩ Y )r.

TOME 59 (2009), FASCICULE 4



1616 Giovanni MORANDO

Definition 1.4. — Let ε ∈ R>0, γ :]− ε, ε[→M an analytic map. The
set γ(]0, ε[) is said a semi-analytic arc with an endpoint at γ(0).

Theorem 1.5 (Curve Selection Lemma.). — Let Z 6= ∅ be a suban-
alytic subset of M and let z0 ∈ Z. Then there exists an analytic map
γ :]− 1, 1[−→M , such that γ(0) = z0 and γ(t) ∈ Z for t 6= 0.

For the rest of the subsection we refer to [10].
Let X be a complex analytic curve, we denote by Op(X) the family of

open subsets of X. For k a commutative unital ring, we denote by Mod(kX)
the category of sheaves of k-modules on X.

Let us recall the definition of the subanalytic siteXsa associated toX. An
element U ∈ Op(X) is an open set for Xsa if it is open, relatively compact
and subanalytic in X. The family of open sets of Xsa is denoted Opc(Xsa).
For U ∈ Opc(Xsa), a subset S of the family of open subsets of U is said an
open covering of U in Xsa if S ⊂ Opc(Xsa) and, for any compact K of X,
there exists a finite subset S0 ⊂ S such that K ∩ (∪V ∈S0V ) = K ∩ U .

We denote by Mod(kXsa
) the category of sheaves of k-modules on the

subanalytic site. With the aim of defining the category Mod(kXsa), the
adjective “relatively compact” can be omitted in the definition above. In-
deed, in [10, Remark 6.3.6], it is proved that Mod(kXsa

) is equivalent to the
category of sheaves on the site whose open sets are the open subanalytic
subsets of X and whose coverings are the same as Xsa.

Given Y ∈ Opc(Xsa), we denote by YXsa
the site induced by Xsa on Y ,

defined as follows. The open sets of YXsa
are open subanalytic subsets of Y .

A covering of U ∈ Op(Ysa) for the topology YXsa is a covering of U in Xsa.
We denote by % : X −→ Xsa, the natural morphism of sites associated

to Opc(Xsa) −→ Op(X). We refer to [10] for the definitions of the functors
%∗ : Mod(kX) −→ Mod(kXsa) and %−1 : Mod(kXsa) −→ Mod(kX) and for
Proposition 1.6 below.

Proposition 1.6.
(i) %−1 is left adjoint to %∗.
(ii) %−1 has a left adjoint denoted by %! : Mod(kX) −→ Mod(kXsa).
(iii) %−1 and %! are exact and %∗ is exact on R-constructible sheaves.
(iv) %∗ and %! are fully faithful.

Through %∗, we will consider Mod(kX) as a subcategory of Mod(kXsa
).

The functor %! is described as follows. Let F ∈ Mod(kX), then %!(F ) is
the sheaf on Xsa associated to the presheaf U 7→ F

(
U

)
.

Remark 1.7. — It is worth to mention that, given an analytic mani-
fold X, there exists a topological space X ′ such that the category of sheaves

ANNALES DE L’INSTITUT FOURIER
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on Xsa with values in sets is equivalent to the category of sheaves on X ′

with values in sets. A detailed description of the semi-algebraic case and
the o-minimal case are presented respectively in [3] and [5].

1.2. Definition and main properties of OtXsa

For this subsection we refer to [10].
Let X be a complex analytic curve, denote by X the complex conjugate

curve and by XR the underlying real analytic manifold. We denote by Xsa

the subanalytic site relative to XR.
Denote by OX (resp. DX) the sheaf of holomorphic functions (resp. lin-

ear differential operators with holomorphic coefficients) on X. Denote by
DbXR the sheaf of distributions on XR and, for a closed subset Z of X, by
ΓZ(DbXR) the subsheaf of sections supported by Z. One denotes by DbtXsa

the presheaf of tempered distributions on Xsa defined as follows,

Opc(Xsa) 3 U 7−→ DbtXsa
(U) :=

Γ(X;DbXR)
ΓXrU (X;DbXR)

.

In [10], using some results of [13], it is proved that DbtXsa
is a sheaf on Xsa.

This sheaf is well defined in the category Mod(%!DX). Moreover, for any
U ∈ Opc(Xsa), DbtXsa

is Γ(U, ·)-acyclic.
Denote by Db

(
%!DX

)
the bounded derived category of %!DX -modules.

The sheaf OtXsa
∈ Db

(
%!DX

)
of tempered holomorphic functions is defined

as
OtXsa

:= RHom%!DX

(
%!OX ,Db

t
XR

)
.

In [10], it is proved that, since dimX = 1, R%∗OX and OtXsa
are con-

centrated in degree 0. Hence we can write the following exact sequence of
sheaves on Xsa

0 −→ OtXsa
−→ DbtXsa

∂̄−→ DbtXsa
−→ 0.

Let us recall that DbtXsa
and OtXsa

can be defined without any change on
a complex analytic manifold X (see [10]).

Now we recall the definition of polynomial growth for C∞ functions onXR
and in (1.2) we give an alternative expression for OtXsa

(U), U ∈ Opc(Xsa).

Definition 1.8. — Let U be an open subset of X, f ∈ C∞XR
(U). One

says that f has polynomial growth at p ∈ X if it satisfies the following
condition. For a local coordinate system x = (x1, x2) around p, there exist
a compact neighborhood K of p and M ∈ Z>0 such that

(1.1) sup
x∈K∩U

dist(x,K r U)M
∣∣f(x)

∣∣ < +∞.

TOME 59 (2009), FASCICULE 4



1618 Giovanni MORANDO

We say that f ∈ C∞XR
(U) has polynomial growth on U if it has polynomial

growth at any p ∈ X. We say that f is tempered at p if all its derivatives
have polynomial growth at p ∈ X. We say that f is tempered on U if it is
tempered at any p ∈ X. Denote by C∞,tXsa

the presheaf on XR of tempered
C∞-functions.

It is obvious that f has polynomial growth at any point of U .
In [10] it is proved that C∞,tXsa

is a sheaf on Xsa. For U ⊂ R2 a relatively
compact open set, there is a simple characterization of functions with poly-
nomial growth on U .

Proposition 1.9. — Let U ⊂ R2 be a relatively compact open set and
let f ∈ C∞R2(U). Then f has polynomial growth if and only if there exist
C,M ∈ R>0 such that, for any x ∈ U ,∣∣f(x)

∣∣ 6
C

dist(x, ∂U)M
.

For Proposition 1.10 below, see [10].

Proposition 1.10. — One has the following isomorphism

OtXsa
' RHom%!DX

(
%!OX , C

∞,t
Xsa

)
.

Hence, for U ∈ Opc(Xsa), we deduce the short exact sequence

(1.2) 0 −→ OtXsa
(U) −→ C∞,tXsa

(U) ∂̄−→ C∞,tXsa
(U) −→ 0.

Now, we recall two results on the pull back of tempered holomorphic
functions. We refer to [9] for the definition of DX→Y , for f : X → Y a
morphism of complex manifolds. For Lemma 1.11, see [10, Lemma 7.4.7].

Lemma 1.11. — Let f : X → Y be a closed embedding of complex
manifolds. There is a natural isomorphism in Db(%!DX)

%!DX→Y
L
⊗

%!f−1DY

f−1OtY ' OtX .

For Proposition 1.12, see [17, Theorem 2.1].

Proposition 1.12. — Let f ∈ OC(X), U ∈ Opc(Xsa) such that f |U
is an injective map, h ∈ OX

(
f(U)

)
. Then h ∈ OtCsa

(
f(U)

)
if and only if

h ◦ f ∈ OtXsa
(U).

We conclude this subsection by recalling the definition of the sheaf of
holomorphic functions with moderate growth at the origin. We follow [14].
Let S1 be the unit circle, S1 × R>0 the real blow-up at the origin of C×.

ANNALES DE L’INSTITUT FOURIER



TEMPERED SOLUTIONS OF D-MODULES AND FORMAL INVARIANTS 1619

For τ ∈ R, r ∈ R>0, 0 < ε < π, the set

Sτ±ε,r :=
{
%eiϑ ∈ C×; % ∈]0, r[, ϑ ∈]τ − ε, τ + ε[

}
is called an open sector centered at τ of amplitude 2ε and radius r or
simply an open sector. Identifying S1 with [0, 2π[⊂ R, we will consider
sectors centered at τ ∈ S1. Further, with an abuse of language, we will say
that an open sector Sτ±ε,r contains ϑ ∈ R or eiϑ ∈ S1 if ϑ ∈]τ − ε, τ + ε[
mod 2π).

The sheaf on S1 × R>0 of holomorphic functions with moderate growth
at the origin, denoted A60, is defined as follows. For U an open set of
S1 × R>0, set

(1.3) A60(U) =
{
f ∈ OC(U r (S1 × {0})) satisfying the following con-
dition: for any (eiϑ, 0) ∈ U there exist C,M ∈ R>0

and an open sector S ⊂ U containing eiϑ such that∣∣f(z)
∣∣ < C|z|−M for any z ∈ S

}
.

Clearly, A60 is a sheaf on S1 × R>0.
In [18], the author defines the functor νsa0 of specialization at 0 for the

sheaves on the subanalytic site. One has that, %−1νsa0 (OtCsa
) ' A60.

1.3. D-modules on complex curves and good models

In this subsection we recall some classical results on germs ofDX -modules
on a complex analytic curve X. For a detailed and comprehensive presen-
tation we refer to [14], [9] and [1].

Given a complex analytic curve X and x0 ∈ X, we denote by OX(∗x0)
(resp. DX(∗x0)) the sheaf on X of holomorphic functions on X r {x0}
meromorphic at x0 (resp. the sheaf of rings of differential operators of
finite order with coefficients in OX(∗x0)). Further, we denote by Ô(∗x0)
(resp. D̂(∗x0)) the field of formal Laurent power series (resp. the ring of
differential operators with coefficients in Ô(∗x0)). The ring O(∗x0) comes
equipped with a natural valuation v : O(∗x0)→ Z ∪ {+∞}.

By the choice of a local coordinate z near x0, we can suppose that X ⊂ C
is an open neighborhood of x0 = 0 ∈ C.

The category of holonomic DX(∗0)-modules, denoted Modh(DX(∗0)), is
equivalent to the category of local meromorphic connections.

For ϕ ∈ z−1C[z−1], set Lϕ := DX(∗0) exp(ϕ).

TOME 59 (2009), FASCICULE 4



1620 Giovanni MORANDO

For l ∈ Z>0, let µl : C→ C, z 7→ zl. We denote by µ∗l the inverse image
functor for DX(∗0)-modules.

Theorems 1.13 and 1.15 below are cornerstones in the theory of ordinary
differential equations. We refer to [14], [21] and [22].

Theorem 1.13 (Levelt-Turrittin’s Formal Theorem). — Let M ∈
Modh(DX(∗0)). There exist l ∈ Z>0, a finite set Σ ⊂ z−1C[z−1], a fam-
ily, {Rϕ}ϕ∈Σ, of regular holonomic DX(∗0)-modules indexed by Σ and an
isomorphism in Mod(D̂X(∗0))

(1.4) µ∗lM⊗ Ô∗0 ' ⊕
ϕ∈Σ
Lϕ ⊗Rϕ ⊗ Ô∗0.

In the literature (for example [14]) the definition of the Katz invariant of
M∈ Modh(DX(∗0)) is given starting from the Newton polygon ofM. For
sake of simplicity we give an equivalent definition based on the isomorphism
(1.4). Clearly, the valuation v induces a map, still denoted v, z−1C[z−1]→
Z ∪ {+∞}.

Definition 1.14.
(i) Let M ∈ Modh(DX(∗0)). Suppose that (1.4) is satisfied, l is min-

imal and Σ 6= {0}. The Katz invariant of M is max
ϕ∈Σ
{−v(ϕ)

l }. If

Σ = {0} then the Katz invariant of M is 0.
For k ∈ Z>0, we denote by Modh(DX(∗0))k the full abelian

subcategory of Modh(DX(∗0)) whose objects have Katz invariant
strictly smaller than k.

(ii) Let Σ ⊂ z−1C[z−1] be a finite set and {Rϕ}ϕ∈Σ a family of reg-
ular holonomic DX(∗0)-modules. A DX(∗0)-module isomorphic to
⊕
ϕ∈Σ
Lϕ ⊗Rϕ, is said a good model.

We denote by GMk the full subcategory of Modh(DX(∗0))k whose
objects are good models.

Roughly speaking, Theorem 1.15 below says that the formal isomorphism
(1.4) is analytic on sufficiently small open sectors.

Let

P :=
m∑
j=0

aj(z)
(
d

dz

)j
,

where m ∈ Z>0, aj ∈ OC(X) and am 6= 0. Denote by C0C the sheaf of
continuous functions on C. For l ∈ Z>0, S an open sector, h ∈ {1, . . . , l},
let ζh : S → C be the l different inverse functions to z 7→ zl defined on S.

Theorem 1.15 (Hukuhara-Turrittin’s Asymptotic Theorem). — There
exist a finite set Σ ⊂ z−1C[z−1], l, rϕ ∈ Z>0 (ϕ ∈ Σ) such that for any τ ∈

ANNALES DE L’INSTITUT FOURIER
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R, there exist an open sector S containing τ , fϕkh ∈ OC(S) ∩ C0C
(
S r {0}

)
(ϕ ∈ Σ, k = 1, . . . , rϕ, h = 1, . . . , l), satisfying

(i)
{
fϕkh(z) exp(ϕ ◦ ζh(z)); ϕ ∈ Σ, k = 1, . . . , rϕ, h = 1, . . . , l

}
is a

basis of the C-vector space of holomorphic solutions of Pu = 0
on S,

(ii) there exist C,M ∈ R>0 such that, for any z ∈ S,

C|z|M 6 |fϕkh(z)| 6
(
C|z|M

)−1

(ϕ ∈ Σ, k = 1, . . . , rϕ, h = 1, . . . , l).

It is well known that, given M ∈ Modh(DX(∗0)), there exists P ∈
DX(∗0) such that M ' DX(∗0)

DX(∗0)·P . With a harmless abuse of language, we
will speak without distinctions about the solutions ofM and the solutions
of Pu = 0.

Definition 1.16. — We use the notations of Theorem 1.15. Let M ∈
Modh(DX(∗0)).

(i) If fϕkh(z) exp(ϕ◦ζh(z)) is a holomorphic solution ofM on an open
sector, then we say that ϕ ◦ ζh is a determinant polynomial of M.
We denote by Ω(M) the set of all determinant polynomials of M.
If ϕ ◦ ζh ∈ Ω(M), we say that rϕ ∈ Z>0 is the rank of ϕ ◦ ζh.

(ii) Given ϑ ∈ S1, we set

Ωϑ :=
{ n∑
j=1

ajz
− j

l ; aj ∈ C, l, n ∈ Z>0

}
.

We denote by ModΩϑ
(C) the category of finite dimensional vector

spaces graded with respect to Ωϑ.

Theorem 1.15 implies that, given ϑ ∈ S1, the holomorphic solutions of
M on a sufficiently small sector containing ϑ, can be endowed with a Ωϑ-
graduation. Hence, there exists a functor

S Ω(·)ϑ : Modh(DX(∗0)) −→ ModΩϑ
(C).

The Ωϑ-graduation on the holomorphic solutions of meromorphic con-
nections described above is the first step to have a local irregular Riemann-
Hilbert correspondence in dimension 1. We refer to [1] and [14] for a com-
plete description of Ω-filtered local systems.
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2. Tempered growth of exponential functions

This section is subdivided as follows. In the first part we study the family
of sets where a function of the form exp(ϕ), ϕ ∈ z−1C[z−1], is tempered.
In the second part we use the results of the first part in order to prove
that such family determines ϕ up to a multiplicative positive constant.
Throughout this section X = C.

2.1. Sets where exponential functions have tempered growth

For ϕ ∈ z−1C[z−1] r {0} and A ∈ R>0, set

(2.1) Uϕ,A :=
{
z ∈ C×; Re

(
ϕ(z)

)
< A

}
,

further set U0,A := C.
First we state and prove the analogue of a result of [11].

Proposition 2.1. — Let ϕ∈z−1C[z−1] and U∈Opc(Xsa) with U 6=∅.
The conditions below are equivalent.

(i) exp
(
ϕ
)
∈ OtXsa

(U).
(ii) There exists A ∈ R>0 such that U ⊂ Uϕ,A.

Before proving Proposition 2.1, we need the following

Lemma 2.2 ([11]). — Let W 6= ∅ be an open subanalytic subset of
P1(C), ∞ /∈W . The following conditions are equivalent.

(i) There exists A ∈ R>0 such that Re z < A, for any z ∈W .
(ii) The function exp(z) has polynomial growth on any semi-analytic

arc Γ ⊂ W with an endpoint at ∞. That is, for any semi-analytic
arc Γ ⊂ W with an endpoint at ∞, there exist M,C ∈ R>0 such
that, for any z ∈ Γ,

(2.2)
∣∣ exp(z)

∣∣ 6 C
(
1 + |z|2

)M
.

Proof.
Clearly, (i)⇒(ii).
Let us prove (ii)⇒(i). Set z := x+ iy and suppose that x is not bounded

on W . There exist ε, L ∈ R>0 and a real analytic map

γ : [0, ε[ −→ P1(C)

t 7−→ (x(t), y(t)),
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such that γ(0) = ∞, γ
(
]0, ε[

)
⊂ W and x

(
]0, ε[

)
=]L,+∞[. Since γ is

analytic, there exist q ∈ Q, c ∈ R and µ ∈ R>0 such that, for any t ∈]0, ε[,

γ(t) =
(
x(t) , c x(t)q +O

(
x(t)q−µ

))
.

Now, if (2.2) is satisfied, then exp(x) has polynomial growth in a neighbor-
hood of +∞, which gives a contradiction. �

Proof of Proposition 2.1.
Clearly, (ii)⇒(i).
(i)⇒(ii). The result is obvious if ϕ = 0. Otherwise, we distinguish two

cases.
Case 1: Suppose ϕ(z) = 1

z .
Suppose that for any A ∈ R>0, there exists zA ∈ U such that Re

(
1
zA

)
>

A. Then, by Lemma 2.2, there exists a semi-analytic arc with an endpoint
at 0, Γ ⊂ U , such that exp

(
Re 1

z

)
has not polynomial growth on Γ. That

is, for any M,C ∈ R>0, there exists zM,C ∈ Γ satisfying

exp
(
Re

1
zM,C

)
>

C

|zM,C |M
.

Apply Proposition 1.3 with X = Γ and Y = ∂U . There exist an open
neighborhood V of 0, c, r ∈ R>0 such that, for any z ∈ Γ ∩ V ,

|z| 6 c dist(z, ∂U)r.

Hence,

exp
(
Re

1
zM,C

)
>

c−1C

dist(zM,C , ∂U)rM
.

It follows that exp
(

1
z

)
is not tempered on U .

Case 2: Suppose ϕ(z) =
n∑
j=1

aj

zj , with n ∈ Z>0 and an 6= 0.

Let

η(z) :=
( n∑
j=1

aj
zj

)−1

=
zn

n∑
j=1

ajzn−j
.

There exists a neighborhood W ⊂ C of 0 such that η ∈ OC(W ). It is well
known that a non-constant holomorphic function is locally the composition
of a holomorphic isomorphism and a positive integer power of z. Since it
is sufficient to prove the result in a neighborhood of 0 and up to finite
coverings, we can suppose that U ⊂W and η|U is injective.
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Consider the following commutative triangle,

U
η //

exp(ϕ) !!CCCCCCCC η(U)

exp( 1
ζ )

��
C.

Using Proposition 1.12 and Case 1, we have that

exp(ϕ) ∈ Ot(U)⇔ exp
(

1
ζ

)
∈ Ot(η(U))

⇔ η(U) ⊂ U 1
ζ ,A

for some A ∈ R>0

⇔ U ⊂ Uϕ,A for some A ∈ R>0.

�

Corollary 2.3. — Let ϕ ∈ z−1C[z−1]. Let S be an open sector of
amplitude 2π, U ∈ Opc(Xsa), ∅ 6= U ⊂ S, ζ : S → C, an inverse of z 7→ zl.
Then exp

(
ϕ ◦ ζ

)
∈ OtXsa

(U) if and only if there exists A ∈ R>0 such that
ζ(U) ⊂ Uϕ,A.

In particular, setting

Uϕ◦ζ,A :=
{
z ∈ S; Re

(
ϕ ◦ ζ(z)

)
< A

}
,

one has that exp(ϕ ◦ ζ) ∈ OtXsa
(U) if and only if there exists A ∈ R>0 such

that U ⊂ Uϕ◦ζ,A.

Proof. — Let µl(z) := zl. Consider the following commutative diagram,

ζ(U)
µl //

exp(ϕ) !!DD
DD

DD
DD

U

exp(ϕ◦ζ)
��

C.

By Proposition 1.12, we have that exp(ϕ ◦ ζ) ∈ OtXsa
(U) if and only if

exp(ϕ) ∈ OtXsa
(ζ(U)). Then the conclusion follows by Proposition 2.1.

�

Now we are going to introduce a class of subanalytic sets which plays an
important role in what follows.

Definition 2.4. — For τ ∈ R we say that U ∈ Opc(Xsa) is concen-
trated along τ if U 6= ∅ is connected, 0 ∈ ∂U and, for any open sector
S containing τ , there exists an open neighborhood W ⊂ C of 0 such that
U ∩W ⊂ S.
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Lemma 2.5 below follows easily from the well known fact that a non-
constant holomorphic function is locally the composition of a holomorphic
isomorphism and a positive integer power of z.

Lemma 2.5. — Let W ⊂ C be an open neighborhood of 0, f ∈ O(W ).
Suppose that f has a zero of order l ∈ Z>0 at 0. There exists τf ∈ R,
depending only on the argument of f (l)(0), satisfying the following condi-
tions.

(i) For any τ ∈ R, U ∈ Opc(Xsa) concentrated along τ , there exists an
open neighborhood W ′ of 0, W ′ ⊂W , such that f |U∩W ′ is injective
and f(U ∩W ′) is concentrated along l(τ + τf ).

(ii) For any τ ∈ R, V ∈ Opc(Xsa) concentrated along τ , there exist
an open neighborhood W ′ of 0, V0, . . . , Vl−1 ∈ Opc(Xsa), such that
Vj is concentrated along τ

l − τf + j 2π
l , and f(Vj) = V ∩W ′ (j =

0, . . . , l − 1).

Proposition 2.6 below will play a fundamental role in the next subsection.

Proposition 2.6. — Let n ∈ Z>0, τ0 ∈ R. There exists τ ∈ R such
that, for any ϕ = %eiτ0

zn + ϕ̃ ∈ z−1C[z−1] (% ∈ R>0, −v(ϕ̃) < n), there exist
U0, . . . , U2n−1 ∈ Opc(Xsa) satisfying

(i) Uj is concentrated along τ + j πn ,
(ii) exp

(
ϕ
)
, exp

(
− ϕ

)
∈ OtXsa

(Uj),

(j = 0, . . . , 2n− 1).

Proof. — The result is obvious if ϕ = 0. Otherwise we distinguish three
cases.

Case 1: Suppose ϕ(z) = 1
z .

Recall (2.1). For A ∈ R>0, one checks easily that the set U 1
z ,A

(resp.
U− 1

z ,A
) is the complementary of the closed disc of center

(
1

2A , 0
)

(resp.(
− 1

2A , 0
)
) and radius 1

2A .
Set

U1 :=
{
(x, y) ∈ R2; |x| < 1,

√
|x| − x2 < y < 1

}
,

U2 :=
{
(x, y) ∈ R2; |x| < 1, −1 < y < −

√
|x| − x2

}
.

It is easy to see that U1 (resp. U2) is concentrated along π
2 (resp. 3π

2 )
and U1 ∪ U2 ⊂ U 1

z ,1
∩ U− 1

z ,1
. Hence, by Proposition 2.1,

(2.3) exp(1/z), exp(−1/z) ∈ OtXsa
(Uj) (j = 1, 2).
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Case 2: Suppose that ϕ(z) = 1
zm , for m ∈ Z>0. Let µm : C → C,

µm(z) = zm. Consider the commutative triangle

C×

exp (1/zm) !!DD
DD

DD
DD
µm // C×

exp(1/z)

��
C.

Consider U1, U2 as in Case 1. Applying Lemma 2.5 (ii) with f = µm,
we obtain that there exist V1,0, . . . , V1,m−1 ∈ Opc(Xsa) (resp. V2,0, . . . ,

V2,m−1 ∈ Opc(Xsa)) such that
(i) V1,j (resp. V2,j) is concentrated along π

2m + j 2π
m (resp. 3π

2m + j 2π
m ),

(ii) µm(Vk,j) = Uk ,
(j = 0, . . . ,m− 1, k = 1, 2).

Clearly, µm|Vk,j
is injective. By Proposition 1.12, we have that

exp
(
1/zm

)
∈ OtXsa

(Vk,j)(
resp. exp

(
− 1/zm

)
∈ OtXsa

(Vk,j)
)

if and only if

exp
(
1/z

)
∈ OtXsa

(
µm(Vk,j)

)
= OtXsa

(Uk)(
resp. exp

(
− 1/z

)
∈ OtXsa

(
µm(Vk,j)

)
= OtXsa

(Uk)
)

(j = 0, . . . ,m− 1, k = 1, 2). The conclusion follows.
Case 3: Suppose that

ϕ(z) =
n∑
j=1

aj
zj
∈ z−1C[z−1],

for n ∈ Z>0, aj ∈ C (j = 1, . . . , n) and an 6= 0.
First, we recall the implicit function theorem for convergent power series.

We denote by C{x} (resp. C{x, y}) the ring of convergent power series in
x (resp. x, y). We refer to [4, Theorem 8.6.1, p. 166] for the proof.

Theorem 2.7. — Let F ∈ C{x, y} be such that F (0, 0) = 0. There
exists η(x) ∈ ∪l∈Z>0x

1/lC{x1/l} such that F (x, η(x)) = 0.

Consider

F (z, η) := −ηn + zn
n∑
j=1

ajη
n−j

= −ηn + zna1η
n−1 + · · ·+ znan−1η + znan.(2.4)
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By Theorem 2.7, there exist l ∈ Z>0, η(z) ∈ z1/lC{z1/l} such that
F

(
z, η(z)

)
= 0. Since an 6= 0, we have that η(z) 6= 0, for z 6= 0. It fol-

lows that η(z) ∈ z1/lC{z1/l} satisfies

(2.5) ϕ
(
η(z)

)
=

n∑
j=1

aj
η(z)j

=
1
zn
.

Further, substituting η(z) in (2.4), one checks that l = 1 and η(z) =
zσ(z), for σ an invertible element of C{z} such that arg

(
σ(0)

)
= arg(an)

n .
In particular, there exists an open neighborhood W ⊂ C of the origin such
that η ∈ OC(W ).

Now, by Case 2, there exist Vk,j ⊂ W (j = 0, . . . , n − 1, k = 1, 2) such
that V1,j (resp. V2,j) is concentrated along π

2n + j 2π
n (resp. 3π

2n + j 2π
n ) and

(2.6) exp
( 1
zn

)
, exp

(
− 1
zn

)
∈ OtXsa

(Vk,j)

(j = 0, . . . , n− 1, k = 1, 2).
As η has a zero of order 1 at 0, by Lemma 2.5 (i), there exists τη ∈ R,

depending only on arg
(
η(0)

)
= arg(an)

n , such that, up to shrinking W ,

(i) η|Vk,j
is injective and

(ii) η
(
V1,j

)
(resp. η

(
V2,j

)
) is concentrated along τη + π

2n + j 2π
n (resp.

τη + 3π
2n + j 2π

n ),

(j = 0, . . . , n− 1).
Consider the commutative triangle

W r {0}
η //

exp
(

1
zn

)
$$IIIIIIIII C×

exp(ϕ(z))

��
C.

By Proposition 1.12, we have that

exp
(
ϕ(z)

)
∈ OtXsa

(
η(Vk,j)

)
(

resp. exp
(
− ϕ(z)

)
∈ OtXsa

(
η(Vk,j)

))
if and only if

exp
(
ϕ ◦ η(z)

)
= exp

(
1/zn

)
∈ OtXsa

(
Vk,j

)
(

resp. exp
(
− ϕ ◦ η(z)

)
= exp

(
− 1/zn

)
∈ OtXsa

(
Vk,j

))
(j = 0, . . . , n− 1, k = 1, 2). The conclusion follows from (2.6). �
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Remark 2.8. — Recall the definition given in the end of Subsection 1.2
of the sheaf A60 defined on S1×R>0, considered as the real blow-up at 0 of
C×. Let τ ∈ R, U ∈ Opc(Xsa) concentrated along τ , the set {(τ, 0)} ∪U ⊂
S1 × R>0 is not open. Further if exp(ϕ) ∈ A60

(τ,0) then exp(−ϕ) /∈ A60
(τ,0).

We conclude this subsection with an easy lemma which will be useful in
the next subsection. First, let us introduce some notation.

Given ϕ ∈ z−1C[z−1], ϕ = ηeiτ

zn + ϕ̃, for η ∈ R>0, n ∈ Z>0, τ ∈ R and
ϕ̃ ∈ z−1C[z−1], −v(ϕ̃) < n, set

Iϕ :=
{
ϑ ∈ [0, 2π]; cos(τ − nϑ) < 0

}
.

In other words, Iϕ is the support of exp(ϕ) as a section of A60
∣∣
S1×{0}.

Recall the definition of the sets Uϕ,A given in (2.1).

Lemma 2.9.
(i) Let ϕ1, ϕ2 ∈ z−1C[z−1], ϕj := ηje

iτj

znj + ϕ̃j , for ηj ∈ R>0, nj ∈
Z>0, τj ∈ R and ϕ̃j ∈ z−1C[z−1], −v(ϕ̃j) < nj .

If n1 6= n2 or τ1 6= τ2, then Iϕ1 r Iϕ2 6= ∅ and Iϕ2 r Iϕ1 6= ∅.
(ii) Let ϑ0 ∈ [0, 2π[ and ϕ ∈ z−1C[z−1] r {0}. If ϑ0 ∈ Iϕ, then there

exists an open sector S containing ϑ such that, for any A ∈ R>0,
S ⊂ Uϕ,A. In particular, for any U ∈ Opc(Xsa) concentrated along
ϑ0, exp(ϕ) ∈ OtXsa

(U).
(iii) Let ϑ0 ∈ [0, 2π[ and ϕ ∈ z−1C[z−1] r {0}. If ϑ0 /∈ Iϕ, then there

exists an open sector S containing ϑ such that, for any A ∈ R>0,
S ⊂ X r Uϕ,A. In particular, for any U ∈ Opc(Xsa) concentrated
along ϑ0, exp(ϕ) /∈ OtXsa

(U).

Proof. — The result follows from some easy computations. �

2.2. Comparison between growth of exponential functions

In this subsection we are going to use the results of the previous sub-
section in order to prove that if ϕ1, ϕ2 ∈ z−1C[z−1] and, for any λ ∈ R>0,
ϕ1 6= λϕ2, then the families {Uϕ1,A}A∈R>0 and {Uϕ2,A}A∈R>0 are not cofi-
nal.

The main result of this subsection is Proposition 2.10 below.

Proposition 2.10. — Let ϕ1, ϕ2 ∈ z−1C[z−1] r {0}.
(i) Suppose that there exists λ ∈ R>0 such that ϕ1 = λϕ2. Then, for

any A ∈ R>0, Uϕ1,A = Uϕ2,
A
λ

. In particular, for any U ∈ Opc(Xsa),
exp(ϕ1) ∈ OtXsa

(U) if and only if exp(ϕ2) ∈ OtXsa
(U).
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(ii) Suppose that, for any λ ∈ R>0, ϕ1 6= λϕ2. Then for any open
sector S of amplitude > 2π

max{−v(ϕ1),−v(ϕ2),2} at least one of the two
conditions below is satisfied (resp. for any open neighborhood S of
0, both conditions below are satisfied).
(a) There exists U ∈ Opc(Xsa), U ⊂ S such that exp(ϕ1) ∈
OtXsa

(U) and exp(ϕ2) /∈ OtXsa
(U).

(b) There exists V ∈ Opc(Xsa), V ⊂ S such that exp(ϕ1) /∈
OtXsa

(V ) and exp(ϕ2) ∈ OtXsa
(V ).

Proof.
(i) Obvious.
(ii) For S an open sector, set S̃ :=

{
ϑ ∈ [0, 2π[;∃ r > 0 reiϑ ∈ S

}
.

Let

ϕ1(z) :=
η1e

iτ1

zn1
+ ϕ̃1(z) and ϕ2(z) :=

η2e
iτ2

zn2
+ ϕ̃2(z),

for ηj ∈ R>0, τj ∈ [0, 2π[ and ϕ̃j(z) ∈ z−1C[z−1], −v(ϕ̃j) < nj (j = 1, 2).
Suppose that n1 6= n2 or τ1 6= τ2.
By Lemma 2.9 (i), Iϕ1 r Iϕ2 6= ∅ and Iϕ2 r Iϕ1 6= ∅.
Let S be an open neighborhood of 0, ϑ1 ∈ Iϕ1 r Iϕ2 and ϑ2 ∈ Iϕ2 r Iϕ1 .

There exist Uk ∈ Opc(Xsa) concentrated along ϑk such that Uk ⊂ S (k =
1, 2). The result follows by Lemma 2.9 (ii),(iii).

Suppose that S is an open sector of amplitude > 2π
max{n1,n2,2} . Then,

there exists ϑ ∈ S̃ such that either ϑ ∈ Iϕ1 r Iϕ2 or ϑ ∈ Iϕ2 r Iϕ1 . Since
ϑ ∈ S̃, there exists U ∈ Opc(Xsa) concentrated along ϑ such that U ⊂ S.
The conclusion follows by Lemma 2.9 (ii),(iii).

Now suppose that n1 = n2 = n and τ1 = τ2. That is,

ϕ1(z) =
η1e

iτ1

zn
+ ϕ̃1(z) and ϕ2(z) =

η2e
iτ1

zn
+ ϕ̃2(z).

Since, for any λ ∈ R>0, ϕ1 6= λϕ2, we have that n > 2.
Set ψ21 := ϕ2 − η2

η1
ϕ1 and ψ12 := ϕ1 − η1

η2
ϕ2. Since ψ21 6= 0 and ψ21 =

−η2η1
(
ϕ1 − η1

η2
ϕ2

)
= −η2η1ψ12, then Iψ21 = I−ψ12 .

By Proposition 2.6, there exist τ ∈ R and U0, . . . , U2n−1, V0, . . . , V2n−1 ∈
Opc(Xsa) satisfying the conditions

(i) Uj , Vj are concentrated along τ + j πn ,
(ii) exp(ϕ1), exp(−ϕ1) ∈ OtXsa

(Uj) and exp(ϕ2), exp(−ϕ2) ∈ OtXsa
(Vj),

(j = 0, . . . , 2n− 1).
Since −v(ψ12) = −v(ψ21) < n, if S is an open sector of amplitude

> 2π
n , there exists j′ ∈ {0, . . . , 2n − 1} such that τ + j′ πn ∈ S̃ and either

τ + j′ πn /∈ Iψ12 or τ + j′ πn /∈ Iψ21 .
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More generically, {τ + j πn ; j ∈ 0, . . . , 2n − 1} 6⊂ Iψ12 and {τ + j πn ; j ∈
0, . . . , 2n− 1} 6⊂ Iψ21 .

Let us consider the case τ + j′ πn /∈ Iψ12 . Since Vj′ is concentrated along
τ + j′ πn , Lemma 2.9 (iii) implies

(2.7) exp(ψ12) /∈ OtXsa
(Vj′).

Suppose now that exp(ϕ1)∈OtXsa
(Vj′). Since exp(−ϕ2), exp(ϕ2)∈OtXsa

(Vj′)
and the product of tempered functions is tempered, we have that exp(ϕ1−
η1
η2
ϕ2) ∈ OtXsa

(Vj′), which contradicts (2.7). Hence exp(ϕ1) /∈ OtXsa
(Vj′).

Let us consider the case τ + j′ πn /∈ Iψ21 . Since Uj′ is concentrated along
τ + j′ πn , Lemma 2.9 (iii) implies

(2.8) exp(ψ21) /∈ OtXsa
(Uj′).

Suppose now that exp(ϕ2)∈OtXsa
(Uj′). Since exp(ϕ1), exp(−ϕ1)∈OtXsa

(Uj′)
and the product of tempered functions is tempered, we have that exp(ϕ2−
η2
η1
ϕ1) ∈ OtXsa

(Uj′), which contradicts (2.8). Hence exp(ϕ2) /∈ OtXsa
(Uj′).

�

Corollary 2.11. — Let l ∈ Z>0 ω, ϕ1, ϕ2 ∈ z−1C[z−1], such that
−v(ω) > max

j=1,2
{−v(ϕj)

l + 1}. Let S an open sector of amplitude 2π, ζ an

inverse of z 7→ zl defined on S. The following conditions are equivalent.
(i) ϕ1 ◦ ζ 6= ϕ2 ◦ ζ.
(ii) At least one of the following two conditions is verified:

(a) there exists U ∈ Opc(Xsa), U ⊂ S such that exp(ϕ1 ◦ ζ+ω) ∈
OtXsa

(U) and exp(ϕ2 ◦ ζ + ω) /∈ OtXsa
(U);

(b) there exists V ∈ Opc(Xsa), V ⊂ S such that exp(ϕ1 ◦ ζ+ω) /∈
OtXsa

(V ) and exp(ϕ2 ◦ ζ + ω) ∈ OtXsa
(V ).

Proof.
(ii)⇒(i). Obvious.
(i)⇒(ii). Set µl(z) := zl.
Suppose now that ϕ1 ◦ ζ 6= ϕ2 ◦ ζ. It follows that, for any λ ∈ R>0,

λ(ϕ1 + ω ◦ µl) 6= ϕ2 + ω ◦ µl. Consider the sector ζ(S) of amplitude 2π
l .

Since −v(ω) > 2, then 2π
l > − 2π

lv(ω) . Hence by Proposition 2.10 there
exists ζ(U) ⊂ ζ(S) such that either exp(ϕ1 + ω ◦ µl) ∈ OtXsa

(ζ(U)) and
exp(ϕ2 +ω ◦µl) /∈ OtXsa

(ζ(U)) or viceversa. By Proposition 1.12, it follows
that either exp(ϕ1 ◦ ζ + ω) ∈ OtXsa

(U) and exp(ϕ2 ◦ ζ + ω) /∈ OtXsa
(U) or

viceversa. �

Remark 2.12. — There is another way to prove Proposition 2.10. Let
us briefly summarize it.
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Let ϕ1, ϕ2 ∈ z−1C[z−1] r {0}, such that, for any λ ∈ R>0, ϕ1 6= λϕ2.
Let nk = −v(ϕk) (k = 1, 2).

Let Cϕk,A be the boundary of the set Uϕk,A (k = 1, 2). One has that
Cϕk,A is the set of the zeros of a polynomial Qϕk,A(x, y) ∈ R[x, y] (k =
1, 2). Further Cϕk,A has 2nk distinct branches at 0 determined by the
Puiseux’s series σϕk,A,1(x), . . . , σϕk,A,2nk

(x) obtained by solving the equa-
tion Qϕk,A(x, y) = 0 (k = 1, 2) with respect to y.

One checks that the first nk terms of σϕk,A,j(x) do not depend on A (k =
1, 2, j = 1, . . . , 2nk). Further, it turns out that there exists ϑk ∈ [0, 2π[ such
that the tangent at 0 of the graph of σϕk,A,j(x) has slope tan

(
ϑk + j π

2nk

)
(k = 1, 2, j = 1, . . . , 2nk).

If n1 6= n2 or ϑ1 6= ϑ2, the result follows easily.
If n1 = n2 and ϑ1 = ϑ2, one checks that there exist j ∈

{
1, . . . , 2n1

}
and

r ∈
{
1, . . . , n1

}
such that the r-th coefficients of σϕ1,A,j

(x) and σϕ2,A,j
(x)

are different. Hence, there are infinitely many relatively compact subana-
lytic open sets concentrated along some ϑ1+j π

2n1
fitting between σϕ1,A,j

(x)
and σϕ2,A,j

(x). Choosing U among these sets, one obtains that one expo-
nential is tempered on U and the other is not.

This procedure is more intuitive than the proof we chose to expose here
but it is more technical and much longer.

3. Tempered solutions and formal invariants of D-modules

In the first part of this section we are going to prove that the tempered
solutions induce a fully faithful functor on good models. In the second
part we will prove that the datum of tempered solutions of a meromorphic
connection M is equivalent to the data of determinant polynomials and
holomorphic solutions of M.

Let us recall that M. Kashiwara, in [8], proves that, given a complex
analytic manifold X and an object M of the bounded derived category of
DX -modules with regular holonomic cohomology,

RHom%!DX
(%!M,OtXsa

) ' RHom%!DX
(%!M,OX).

Given a complex analytic curve Y , x0 ∈ Y , M ∈ Modh(D∗x0), there
exists a neighborhoodX ⊂ Y of x0 such thatM is a holonomicDX -module.
By choosing a local coordinate z near x0, we can suppose that X = C and
x0 = 0. Recall that for ω ∈ z−1C[z−1], we set Lω := DC exp(ω).
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Set

S
(
M

)
:= HomDX

(M,OX),

S t
(
M

)
:= Hom%!DX

(%!M,OtXsa
),

S t
ω(M) := Hom%!DX

(%!(M⊗Lω),OtXsa
),

the functors %∗ and %! being defined in Subsection 1.1.

3.1. Tempered solutions and good models

The main results of this subsection are Proposition 3.2 and Theorem 3.5
below. First, let us describe explicitly the subanalytic sheaf S t

(
Lϕ ⊗R

)
,

for ϕ ∈ z−1C[z−1] and R a regular holonomic DX(∗0)-module.
Recall the definition of the sets Uϕ,A given in (2.1).

Lemma 3.1. — Let ϕ ∈ z−1C[z−1], R a regular holonomic DX(∗0)-
module. Then

S t
(
Lϕ ⊗R

)
' lim−→
A>0

%∗ S
(
R

)
Uϕ,A

Proof. — If ϕ = 0, the result follows from the fact that S t(R) ' S (R).
Suppose ϕ 6= 0. Let V ∈ Opc(Xsa) be connected and simply con-

nected. If 0 ∈ V , then clearly Γ
(
V,S t

(
Lϕ ⊗R

))
' 0. Otherwise, the

C-vector space Γ
(
V,S

(
Lϕ ⊗R

))
has finite dimension r and is generated

by h1(z) exp(ϕ(z)), . . . , hr(z) exp(ϕ(z)), for h1, . . . , hr ∈ OC(V ), such that
there exist C,M > 0 satisfying

C|z|M 6 |hj(z)| 6
(
C|z|M

)−1
(z ∈ V, j = 1, . . . , r).

In particular, since Γ
(
V,S t

(
Lϕ ⊗R

))
' Γ

(
V,S

(
Lϕ ⊗R

))
∩ OtXsa

(V )
we have that

Γ
(
V,S t

(
Lϕ ⊗R

))
'

{
Γ
(
V,S

(
Lϕ ⊗R

))
if exp(ϕ) ∈ OtXsa

(V )
0 otherwise

.

The conclusion follows by Proposition 2.1.
�

We can now state and proof

Proposition 3.2. — Let ϕ1, ϕ2 ∈ z−1C[z−1], ϕ2 6= 0, R1,R2 regular
holonomic DX(∗0)-modules. If, for any λ ∈ R>0, ϕ1 6= λϕ2

HomCXsa

(
S t

(
Lϕ1 ⊗R1

)
,S t

(
Lϕ2 ⊗R2

))
' 0.
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Otherwise,

(3.1) HomCXsa

(
S t

(
Lϕ1 ⊗R1

)
,S t

(
Lϕ2 ⊗R2

))
' HomDX(∗0)

(
R1,R2

)
functorially in R1,R2.

Proof. — Suppose that, for any λ ∈ R>0, ϕ1 6= λϕ2. By Proposi-
tion 2.10 (ii), there exists W ∈ Opc(Xsa) such that

(i) there exists A0 > 0 such that, for any A > A0, W ⊂ Uϕ1,A,
(ii) for any B > 0, W 6⊂ Uϕ2,B .

In particular, for any A > A0 and B > 0,

(3.2) Uϕ1,A 6⊂ Uϕ2,B .

Combining (3.2) and the fact that S
(
R1

)
and S

(
R2

)
are locally constant

sheaves on C×, we obtain, for any A > A0 and B > 0,

HomCX

(
S

(
R1

)
Uϕ1,A

,S
(
R2

)
Uϕ2,B

)
= 0.

Now, using Lemma 3.1, we obtain

HomCXsa

(
S t

(
Lϕ1 ⊗R1

)
,S t

(
Lϕ2 ⊗R2

))
' lim←−
A>0

lim−→
B>0

HomCX

(
S

(
R1

)
Uϕ1,A

,S
(
R2

)
Uϕ2,B

)
= 0.

Suppose now there exists λ ∈ R>0 such that ϕ1 = λϕ2. Then

(3.3) Uϕ1,λA = Uϕ2,A.

We need the following

Lemma 3.3. — Let ϕ ∈ z−1C[z−1] r {0}. There exits A0 ∈ R>0 such
that for any A > A0, the sets

Uϕ,A :=
{
z ∈ C×; Reϕ(z) < A

}
are homotopically equivalent to C×.

Proof. — We prove the result in three steps: ϕ = 1/z, ϕ = 1/zn and
ϕ ∈ z−1C[z−1].

First suppose that ϕ(z) = 1
z . Then Uϕ,A is the complementary of a closed

disc and the result is obvious.
Suppose now that ϕ(z) = 1

zn , for some n ∈ Z>0. Let µn : C→ C, z 7→ zn.
Then Uϕ,A = µ−1

n (U 1
z ,A

) and the conclusion follows.
Suppose now that ϕ ∈ z−1C[z−1] and −v(ϕ) = n. Mimicking the proof

of Proposition 2.6, there exists a biholomorphism between neighborhoods
of 0, η, such that ϕ(η(z)) = 1

zn . The conclusion follows. �
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Let us conclude the proof of Proposition 3.2.
We have the following sequence of isomorphisms

HomCXsa

(
S t

(
Lϕ1 ⊗R1

)
,S t

(
Lϕ2 ⊗R2

))
' lim←−
A>0

lim−→
B>0

HomCX

(
S

(
R1

)
Uϕ1,A

,S
(
R2

)
Uϕ2,B

)
' lim←−
A>0

lim−→
B>0

HomCX

(
S

(
R1

)
Uϕ1,A

,S
(
R2

)
Uϕ1,A

)
' lim←−
A>0

lim−→
B>0

HomCX

(
S

(
R1

)
C× ,S

(
R2

)
C×

)
' HomDX(∗0)

(
R1,R2

)
,

where the first isomorphism follows from Lemma 3.1, the second from (3.3)
and the third from Lemma 3.3.

The conclusion follows. �

We can now state the main results of this subsection.

Theorem 3.4. — Let ⊕
ϕ∈Σ1

Lϕ ⊗ Rϕ and ⊕
ψ∈Σ2

Lψ ⊗ Pψ be two good

models. The following conditions are equivalent.

(i) S t
(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0}

' S t
(
⊕

ψ∈Σ2

Lψ ⊗ Pψ
)
Xr{0}

.

(ii) There exist ϕ1, . . . , ϕd ∈ z−1C[z−1] such that,
d∐
j=1

R>0ϕj = R>0Σ1 = R>0Σ2

and, for any j = 1, . . . , d,

⊕
ϕ∈Σ1∩R>0ϕj

Rϕ ' ⊕
ϕ∈Σ2∩R>0ϕj

Pψ.

Proof.
(ii) ⇒ (i). Combining Proposition 3.2 and the fact that S t(·)Xr{0} is

fully faithful on the category of regular holonomic DX(∗0)-modules, we
have that

HomCXsa

(
S t

(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0}

,S t
(
⊕

ψ∈Σ2

Lψ ⊗ Pψ
)
Xr{0}

)
' ⊕
ϕ∈Σ1

⊕
ψ∈Σ2

HomCXsa

(
S t(Lϕ ⊗Rϕ),S t(Lψ ⊗ Pψ)

)
'

d
⊕
j=1

⊕
ϕ∈Σ1∩R>0ϕj

HomCXsa

(
S t(Lϕ ⊗Rϕ), ⊕

ψ∈Σ2∩R>0ϕj

S t(Lψ ⊗ Pψ)
)

'
d
⊕
j=1

HomDX(∗0)
(

⊕
ϕ∈Σ1∩R>0ϕj

Rϕ, ⊕
ψ∈Σ2∩R>0ϕj

Pψ
)
.
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The functoriality of (3.1) allows to conclude.

(i) ⇒ (ii). First let us suppose that R>0Σ1 6= R>0Σ2. Hence either
R>0Σ1 6⊂ R>0Σ2 or R>0Σ2 6⊂ R>0Σ1. Suppose the latter.

There exists ψ ∈ Σ2 such that for any ϕ ∈ Σ1, λ ∈ R>0, ψ 6= λϕ.
Suppose that ψ 6= 0. By Proposition 3.2, we have

HomCXsa

(
S t

(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0},S

t
(
Lψ ⊗ Pψ

)
Xr{0}

)
' 0.

It follows that

S t
(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0} 6' S t

(
⊕

ψ∈Σ2

Lψ ⊗ Pψ
)
Xr{0}.

Suppose that ψ = 0, then 0 /∈ Σ1 and, by Proposition 3.2,

HomCXsa

(
S t

(
Lψ ⊗ Pψ

)
Xr{0},S

t
(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0}

)
' 0.

It follows that

S t
(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0} 6' S t

(
⊕

ψ∈Σ2

Lψ ⊗ Pψ
)
Xr{0}.

The case R>0Σ1 6⊂ R>0Σ2 is treated similarly.

Now let us suppose that R>0Σ1 = R>0Σ2 =
d∐
j=1

R>0ϕj and, there exists

j′ ∈ {1, . . . , d}, such that

⊕
ϕ∈Σ1∩R>0ϕj′

Rϕ 6' ⊕
ψ∈Σ2∩R>0ϕj′

Pψ.

By Proposition 3.2 we have that

HomCXsa

(
S t

(
⊕

ϕ∈Σ1

Lϕ ⊗Rϕ
)
Xr{0}

,S t
(
⊕

ψ∈Σ2

Lψ ⊗ Pψ
)
Xr{0}

)
'

d
⊕
j=1

HomDX(∗0)
(

⊕
ϕ∈Σ1∩R>0ϕj

Rϕ, ⊕
ψ∈Σ2∩R>0ϕj

Pψ
)
.

The functoriality of (3.1) allows to conclude. �

We conclude the study of tempered solutions of good models with

Theorem 3.5. — Let ω ∈ z−1C[z−1], −v(ω) > k. The functor

S t
ω(·) : GMk −→ Mod(CXsa)

M 7−→ Hom%!DX
(%!(M⊗Lω),OtXsa

),

is fully faithful.
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Proof. — Clearly it is sufficient to prove that, given ϕ1, ϕ2 ∈ z−1C[z−1],
k > max{−v(ϕ1),−v(ϕ2)},R1,R2 regular holonomicDX(∗0)-modules, the
functor of tempered solutions induces the isomorphism

(3.4) HomDX(∗0)
(
Lϕ1 ⊗R1,Lϕ2 ⊗R2

)
' HomCXsa

(
S t
ω

(
Lϕ1 ⊗R1

)
,S t

ω

(
Lϕ2 ⊗R2

))
.

Let us prove (3.4).
First, suppose that ϕ1 6= ϕ2. Then

HomDX(∗0)
(
Lϕ1 ⊗R1,Lϕ2 ⊗R2

)
= 0.

Moreover, as, for any λ ∈ R>0, λ(ϕ1 +ω) 6= ϕ2 +ω, Proposition 3.2 implies
that,

HomCXsa

(
S t
ω

(
Lϕ1 ⊗R1

)
,S t

ω

(
Lϕ2 ⊗R2

))
= 0.

Now, suppose that ϕ1 = ϕ2. The result follows from Proposition 3.2 and
the fact that

HomDX(∗0)
(
R1,R2

)
' HomDX(∗0)

(
Lϕ1 ⊗R1,Lϕ2 ⊗R2

)
.

�

3.2. Tempered solutions of ordinary differential equations

We begin this subsection by proving the analogue of Lemma 3.1 in the
case of ramified determinant polynomials i.e. with non-integer exponents.

Recall that, for Y ⊂ X, YXsa is the subanalytic site on Y induced by Xsa,
in particular the open sets of YXsa

are of the form U ∩Y for U ∈ Opc(Xsa).
For F ∈ Mod(kXsa

), we denote by F|Y the restriction of F to YXsa
.

Recall the definitions of Ω(M) and rϕ,M (resp. Uϕ,ε) given in Defini-
tion 1.16 (resp. Corollary 2.3).

Lemma 3.6. — Let M ∈ Modh(DX(∗0)), ϑ ∈ R, Y := X r (R>0e
iϑ).

Then
S t

(
M

)∣∣
Y
' ⊕
ϕ∈Ω(M)

lim−→
ε>0

%∗ Crϕ,M
Y,Uϕ,ε

.

Proof. — As M is fixed, for sake of simplicity, we drop the index M in
the symbol rϕ,M.

Let V ∈ Op(YXsa) connected. By the Hukuhara-Turrittin’s Asymptotic
Theorem 1.15, the C-vector space S

(
M

)
(V ) ⊂ O(V ) is generated by{

hϕ,j exp(ϕ)
}
ϕ∈Ω(M)
j∈{1,...,rϕ}

.
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Hence

S t
(
M

)
(V ) ' S

(
M

)
(V ) ∩ Ot(V )

'
{ ∑
ϕ∈Ω(M)

rϕ∑
j=1

cϕ,jhϕ,j exp(ϕ) ∈ Ot(V ); cϕ,j ∈ C
}
.

Since, for ϕ ∈ Ω(M), j ∈ {1, . . . , rϕ}, hϕ,j exp(ϕ) are C-linearly indepen-
dent functions and hϕ,j , h

−1
ϕ,j ∈ Ot(V ), one has that∑

ϕ∈Ω(M)

rϕ∑
j=1

cϕ,jhϕ,j exp(ϕ) ∈ Ot(V )

if and only if exp(ϕ) ∈ Ot(V ) for cϕ,j 6= 0.
The conclusion follows. �

Theorem 3.7 below states that the tempered solutions of a meromorphic
connection M encode the determinant polynomials, their rank and the
holomorphic solutions of M. Hence, from tempered holomorphic solutions
of M, one can’t recover the Stokes coefficients (see [1] or [14] for the defi-
nition) or the formal monodromy (i.e. the monodromy of the holomorphic
solutions of the good model formally isomorphic toM), which are essential
invariants characterizingM. In particular, tempered solutions can’t give a
fully faithful functor on Modh(DX(∗0))k.

Theorem 3.7. — Let k ∈ Z>0, M1,M2 ∈ Modh(DX(∗0))k and ω ∈
z−1C[z−1] such that −v(ω) > k. The following conditions are equivalent.

(i) S t
ω

(
M1

)
Xr{0} ' S t

ω

(
M2

)
Xr{0}.

(ii) (a) S (M1)|Xr{0} ' S (M2)|Xr{0} and
(b) for any ϑ ∈ S1, S Ω

(
M1

)
ϑ
' S Ω

(
M2

)
ϑ

as Ωϑ-graded C-
vector spaces.

Proof.
(i) ⇒ (ii). Since %−1S t

(
Mj

)
Xr{0} ' S

(
Mj

)
Xr{0}, the condition (a)

is proved.
Suppose now that there exists ϑ ∈ S1 such that S Ω(M1)ϑ 6' S Ω(M2)ϑ.

Then, either Ω(M1) 6= Ω(M2) or there exists ϕ ∈ Ω(M1) ∩ Ω(M2) such
that rϕ,M1 6= rϕ,M2 . In the former case, combining the ideas of the first part
of the proof of Proposition 3.2 with Lemma 3.6 and Corollaries 2.3 and 2.11,
we obtain that, for any ϑ ∈ R, S t

ω(M1)|XrR>0eiϑ 6' S t
ω(M2)|XrR>0eiϑ . In

the latter case the result follows easily from Lemma 3.6.
(ii) ⇒ (i). Set Sω(·) := S (· ⊗ Lω).
Let ϑ1, ϑ2 ∈ R, ϑ1 6= ϑ2 (mod 2π), Yj := X r R>0e

iϑj (j = 1, 2).
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Since for any ϑ ∈ S1, S Ω
(
M1

)
ϑ
' S Ω

(
M2

)
ϑ
, then Ω(M1) = Ω(M2)

and rϕ,M1 = rϕ,M2 . In particular, Lemma 3.6 implies that

S t
ω(M1)|Y1 ' S t

ω(M2)|Y1 and S t
ω(M1)|Y2 ' S t

ω(M2)|Y2 .

Now, we have that S
(
M1

)
Xr{0} ' S

(
M2

)
Xr{0} implies

Sω

(
M1

)
Xr{0} ' Sω

(
M2

)
Xr{0}.

We conclude thanks to the following commutative diagram

0 // S t
ω(Mj)Xr{0} //

� _

��

S t
ω(Mj)Y1 ⊕S t

ω(Mj)Y2
//

� _

��

S t
ω(Mj)Y1∩Y2� _

��

// 0

0 // Sω(Mj)Xr{0} // Sω(Mj)Y1 ⊕Sω(Mj)Y2
// Sω(Mj)Y1∩Y2

// 0.

�
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