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ON MICROLOCAL ANALYTICITY OF SOLUTIONS
OF FIRST-ORDER NONLINEAR PDE

by Shif BERHANU (*)

Abstract. — We study the microlocal analyticity of solutions u of the nonlin-
ear equation

ut = f(x, t, u, ux)

where f(x, t, ζ0, ζ) is complex-valued, real analytic in all its arguments and holo-
morphic in (ζ0, ζ). We show that if the function u is a C2 solution, σ ∈ Char Lu

and 1
i
σ([Lu, Lu]) < 0 or if u is a C3 solution, σ ∈ Char Lu, σ([Lu, Lu]) = 0,

and σ([Lu, [Lu, Lu]]) 6= 0, then σ /∈ WFau. Here WFau denotes the analytic wave-
front set of u and Char Lu is the characteristic set of the linearized operator. When
m = 1, we prove a more general result involving the repeated brackets of Lu and
Lu of any order.

Résumé. — Nous étudions l’analyticité microlocale des solutions de l’équation
non linéaire

ut = f(x, t, u, ux)

où f(x, t, ζ0, ζ) est une fonction analytique réelle, à valeurs complexes, et holo-
morphe en (ζ0, ζ). Nous montrons que si u est une solution de classe C2, σ ∈
Char Lu et 1

i
σ([Lu, Lu]) < 0, ou si u est une solution de classe C3, σ ∈ Char Lu,

σ([Lu, Lu]) = 0 et σ([Lu, [Lu, Lu]]) 6= 0, alors σ 6∈ WFa(u). Ici, WFa(u) désigne le
front d’onde analytique de u et Char Lu l’ensemble caractéristique de l’opérateur
linéarisé. Quand m = 1, nous démontrons un résultat plus général faisant intervenir
les crochets des opérateurs Lu et Lu de tout ordre.

1. Introduction

This paper studies the local and microlocal analyticity of solutions of the
nonlinear PDE

(1.1) ut = f(x, t, u, ux)

Keywords: Analytic wave-front set, linearized operator.
Math. classification: 35A18, 35B65, 35F20.
(*) Work supported in part by NSF DMS 0714696.



1268 Shif BERHANU

where u is always assumed to be at least C2, f(x, t, ζ0, ζ) is complex-valued,
real analytic in all its arguments and holomorphic in (ζ0, ζ). The variable
x varies in an open subset of Rm, t in an interval in R, and (ζ0, ζ) varies in
an open subset of Cm+1.

When u is a C2 solution of (1.1), it was proved in [7] that the analytic
wave-front set of u is contained in the characteristic set of the linearized
operator

(1.2) Lu =
∂

∂t
−

m∑
j=1

∂f

∂ζj
(x, t, u, ux)

∂

∂xj
.

For the analogous result in the C∞ case see [5] and [1]. Here we prove
that if u is a C2 solution of (1.1), σ ∈ CharLu (= the characteristic set
of Lu) and 1

i σ([Lu, Lu]) < 0 or u is a C3 solution of (1.1), σ ∈ CharLu,
σ([Lu, Lu]) = 0, and σ([Lu, [Lu, Lu]]) 6= 0, then σ /∈ WFau where WFau

denotes the analytic wave-front set of u. In the linear case, for a real an-
alytic vector field with no singularities, these results are due to H. Lewy
and C. H. Chang [4] respectively. Chang’s result was generalized to a real
analytic, linear partial differential operator of principal type in the works
[8] and [9]. In this paper we follow the approach of [7] which requires that
we prove the corresponding regularity results for a nonanalytic vector field
L which has only C1 coefficients when u is C2 and C2 coefficients when u is
C3. Since the known linear results require one more derivative for the first
integrals of L, we give here a self contained proof. Actually, to prove Chang’s
result when the vector field L has lower regularity (Lemma 3.2), we also
assume that the vector field satisfies an additional condition (see condition
(3.22)) which involves the existence of first integrals satisfying convenient
Cauchy conditions on each noncharacteristic hyperplane through the origin.
Fortunately, this additional condition is satisfied by the linearized operator
Lu. With this additional condition, we are able to use the ideas in the more
recent article [6] to prove Chang’s result for L of lower regularity. Observe
that the brackets [Lu, Lu] and [Lu, [Lu, Lu]] are defined when u is C2 and
C3 respectively. When m = 1 and u is a Ck solution of (1.1), we prove a
microlocal analyticity result that involves assumptions on brackets of Lu

and Lu up to length k.
Complex-valued solutions of first order nonlinear pdes arise in numerous

applications. For example, the initial value problem for the complex inviscid
Burger’s equation

ut + u ux = 0, u(x, 0) = f(x)

ANNALES DE L’INSTITUT FOURIER



ANALYTICITY OF SOLUTIONS OF NONLINEAR PDE 1269

has complex-valued solutions of physical significance (see [3]). This complex
Burger’s equation also arises in geometrical problems (see for example [11]
and [10]).

The article is organized as follows. In section 2 we state the main results
and present some examples. Section 3 is devoted to results for linear vector
fields. Section 4 applies the results in section 3 to the nonlinear pde (1.1).

2. Statement of results and examples

In the sequel f(z, w, ζ0, ζ) will denote a holomorphic function in a neigh-
borhood Ω×N of ((0, 0), (a, ω)) in Cm+1×Cm+1. We assume U ⊂ Ω∩Rm+1

is a neighborhood of (0, 0) ∈ Rm+1 and we will consider a solution u ∈
C2(U) of

ut = f(x, t, u, ux)

under the assumption that

u(0, 0) = a, ux(0, 0) = ω, and (u(x, t), ux(x, t)) ∈ N for all (x, t) ∈ U.

Let

Lu =
∂

∂t
−

m∑
j=1

∂f

∂ζj
(x, t, u, ux)

∂

∂xj
.

Theorem 2.1. — Suppose u ∈ C2(U) is a solution of the nonlinear pde

ut = f(x, t, u, ux).

If σ ∈ CharLu and 1
i σ([Lu, Lu]) < 0, then σ /∈ WFau.

Theorem 2.2. — Suppose u ∈ C3(U) is a solution of

ut = f(x, t, u, ux).

If σ ∈ CharLu, σ([Lu, Lu]) = 0, and σ([Lu, [Lu, Lu]]) 6= 0, then σ /∈ WFau.

In Theorem 2.3 below we will consider brackets of the planar vector fields

L =
∂

∂t
+ c(x, t)

∂

∂x
and L of order k. By a bracket of order 1 we mean L

or L, order 2 will mean [L,L], while a bracket of order 3 by definition is
either [L, [L,L]] or [L, [L,L]]. Continuing this way, a bracket of order j by
definition has the form [L,Mj−1] or [L,Mj−1] where Mj−1 is a bracket of
order j − 1.

TOME 59 (2009), FASCICULE 4



1270 Shif BERHANU

Theorem 2.3. — Assume m = 1 and u ∈ Ck(U) is a solution of

ut = f(x, t, u, ux).

Assume that σ(L) = 0 whenever L is a repeated bracket of Lu and Lu of
length < k and σ(M) 6= 0 for some repeated bracket of Lu and Lu of length
k. If k is even and 1

i σ(M) < 0, then σ /∈ WFau, and if k is odd, σ /∈ WFau.

Example 2.4. — Let u be a C3 solution of the equation

ut + u ux = λ(x, t).

where λ(x, t) is a real analytic function in a neighborhood of the origin in
R2. If Im u(0) 6= 0, then the linearized operator Lu is elliptic and so by
the main result of [7], u is real analytic near the origin. We assume that
Im u(0) = 0. Using this and the equation that u satisfies, we get

[Lu, Lu](0) = (λ(0)− λ(0))
∂

∂x
.

Hence by Theorem 2.1, if σ = (0, 0; ξ0, τ0) ∈ CharLu, and Im λ(0)ξ0 > 0,
then σ /∈ WFa(u), while if Im λ(0)ξ0 < 0, then −σ /∈ WFa(u). Next assume
that Im λ(0) = 0. Then we have

[Lu, [Lu, Lu]](0) =
(
λt(0)− λt(0) + u(0)(λx(0)− λx(0))

) ∂

∂x
.

By Theorem 2.2, we conclude that if Im λ(0) = 0, Im λx(0) = 0, and
Im λt(0) 6= 0, then u is real analytic near the origin.

Example 2.5. — Consider next the semilinear equation
∂u

∂t
+ it2ka(x, t)

∂u

∂x
= f(x, t, u)

where a(x, t) is real analytic near the origin in R2, f(x, t, ζ0) is real analytic
in all variables, and holomorphic in ζ0. If k is a nonnegative integer and
<a(0, 0) 6= 0, then by Theorem 2.3 and the result in [7], any solution u is
real analytic near the origin.

3. Some lemmas on first-order linear pdes

Let

(3.1) L =
∂

∂t
+

m∑
j=1

cj(x, t)
∂

∂xj

be a complex vector field in an open neighborhood Ω of the origin in Rm+1.
In Lemma 3.1 below we will assume that the coefficients cj ∈ C1(Ω). We
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ANALYTICITY OF SOLUTIONS OF NONLINEAR PDE 1271

will assume that there are m complex-valued functions Ψi (1 6 i 6 m)
which are C1 in Lemma 3.1 and C2 in Lemma 3.2 such that

Zi(x, t) = xi + tΨi(x, t)

solve

(3.2) LZi = 0, 1 6 i 6 m.

We will write Ψ = (Ψ1, . . . ,Ψm), and Z = (Z1, . . . , Zm). Observe that at a
point (x, 0) near the origin, the characteristic set of L is given by
(3.3)
CharL|(x,0) ={(x, 0; ξ, τ) : Im Ψ(x, 0)·ξ = 0, τ =<Ψ(x, 0)·ξ, (ξ, τ) 6=(0, 0)}.

The latter follows from the equations,

c(x, t) = −Z−1
x · Zt, Zx = I + tΨx, and Zt = Ψ + tΨt.

Lemma 3.1. — Suppose L has C1 coefficients and the Ψj ∈ C1(Ω). Let
h ∈ C1(Ω) be a solution of Lh = 0. If σ = (0, 0; ξ0, τ0) ∈ CharL and
1
2iσ([L,L]) < 0, then (0, ξ0) /∈ WFah(x, 0).

Proof. — By adding variables as in [4], we may assume that L is a CR
vector field near the origin. This means that for some j, Im Ψj(0) 6= 0.
Without loss of generality assume that

(3.4) Im Ψ1(0) 6= 0.

Observe next that the linear change of coordinates

x′l = xl + t<Ψl(0), t′ = t

allow us to assume, after dropping the primes, that

(3.5) <Ψj(0) = 0, for all j = 1, ...,m.

We can use (3.4) and (3.5) to replace Z2, . . . , Zm by a linear combination
of Z1, . . . , Zm and apply a linear change of coordinates to get
(3.6)

Zj = xj + tΨj , 1 6 j 6 m, and Ψ1(0) = i,Ψj(0) = 0, for 2 6 j 6 m.

The equation LZl = 0 implies that

(3.7) Ψl + t
∂Ψl

∂t
+ cl +

m∑
j=1

cjt
∂Ψl

∂xj
= 0

and so from (3.6) and (3.7),

(3.8) c1(0) = −i and cj(0) = 0 for j > 2.

TOME 59 (2009), FASCICULE 4



1272 Shif BERHANU

The condition that (0, 0; ξ0, τ0) ∈ CharL therefore means that τ0 = 0 = ξ0
1

and ξ0
j 6= 0 for some j > 2. In particular, ξ0 6= 0 and

(3.9) ξ0 · Im Ψ(0) = 0.

We may assume that

(3.10) ξ0 = (0, 1, 0, . . . , 0).

We have

[L,L] =
m∑

l=1

Al(x, t)
∂

∂xl

where

(3.11) Al(x, t) =
∂cl

∂t
− ∂cl

∂t
+

m∑
j=1

cj
∂cl

∂xj
−

m∑
j=1

cj
∂cl

∂xj
.

We will express Al(0, 0) using the Ψj . From (3.7) we have

(3.12) Ψl(x, 0) + cl(x, 0) = 0.

Subtract (3.12) from (3.7), divide by t, and let t → 0 to arrive at (recalling
that Ψ and L are C1):

(3.13) 2
∂Ψl

∂t
(x, 0) +

∂cl

∂t
(x, 0) +

m∑
j=1

cj(x, 0)
∂Ψl

∂xj
(x, 0) = 0.

From (3.12) and (3.13), we get:

(3.14)
∂cl

∂t
(x, 0) = −2

∂Ψl

∂t
(x, 0) +

m∑
j=1

Ψj(x, 0)
∂Ψl

∂xj
(x, 0).

Thus from (3.6), (3.11), (3.12) and (3.14), we conclude

Al(0, 0) = 4i
∂ Im Ψl

∂t
(0).

Thus, the assumption that 1
2iσ([L,L]) < 0 implies that

(3.15)
∂ Im Ψ2

∂t
(0) =

∂ Im Ψ
∂t

(0) · ξ0 < 0.

Next, we show that coordinates (x, t) and first integrals Zl = xl + tΨl can
be chosen so that (3.6), (3.10) and (3.15) still hold and in addition,

∂ Im Ψl

∂xj
(0) = 0 for all l, j.

Define

Z̃l(x, t) = Zl +
m∑

k=1

alkZ1Zk l = 1, ..., m,

ANNALES DE L’INSTITUT FOURIER
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where

al,k =


− 1

2

∂ Im Ψl

∂xk
(0), k = 1

−∂ Im Ψl

∂xk
(0), 2 6 k 6 m.

Note that

Z̃l(x, t) = xl +
m∑

k=1

alkx1xk + tΨ̃l(x, t),

where

Ψ̃l(x, t) = Ψl +
∑

k

al,k(x1Ψk + xkΨ1 + tΨ1Ψk).

By the choice of the alk and the fact that Ψ1(0) = i, we have

∂ Ĩm Ψl

∂xj
(0) = 0 for all l, j.

Introduce new coordinates

x̃l = xl +
∑
k=1

alkx1xk, t̃ = t, 1 6 l 6 m.

These change of coordinates are smooth and hence L is still C1 in these
coordinates. After dropping the tildes both in the new coordinates and the
first integrals, we have:

(3.16) Zj = xj + tΨj with
∂ Im Ψl

∂xj
(0) = 0 for all l, j

and (3.6), (3.10) and (3.15) still hold. Moreover, the new coordinates pre-
serve the set {t = 0} and so L still has the form

L =
∂

∂t
+

m∑
j=1

cj(x, t)
∂

∂xj
.

Let η(x) ∈ C∞
0 (Br(0)), where Br(0) is a ball of small radius r centered at

0 ∈ Rm and η(x) ≡ 1 when |x| 6 r/2. We will be using the FBI transform

Fκ(t, z, ζ) =
∫

Rm

eiζ.(z−Z(x,t))−κ〈ζ〉[z−Z(x,t)]2η(x)h(x, t) dZ

where for z ∈ Cm, we write [z]2 =
∑m

j=1 z2
j , 〈ζ〉 = (ζ · ζ)1/2 is the main

branch of the square root, dZ = dZ1∧ ...∧dZm = detZx(x, t)dx1∧ ...∧dxm,
and κ > 0 is a parameter which will be chosen later.

TOME 59 (2009), FASCICULE 4



1274 Shif BERHANU

To prove that (0, ξ0) /∈ WFa(h(x, 0)), we need to show that for some
κ > 0 and constants C1, C2 > 0,

|Fκ(0, z, ζ)| =
∣∣∣∣∫ eiζ.(z−x)−κ〈ζ〉[z−x]2η(x)h(x, 0) dx

∣∣∣∣
6 C1e

−c2|ζ|
(3.17)

for z near 0 in Cm and ζ in a conic neighborhood of ξ0 in Cm. Let U =
Br(0)× (0, δ) for some δ small. Since h and the Zj are solutions, the form

ω = eiζ.(z−Z(x,t))−κ〈ζ〉[z−Z(x,t)]2h(x, t)dZ1 ∧ dZ2 ∧ ... ∧ dZm

is a closed form. This is well known when the Zj are C2 and when they are
only C1 as in our case, one can prove that ω is closed by approximating
the Zj by smoother functions. By Stokes’ theorem, we therefore have

(3.18) Fκ(0, z, ζ) =
∫
{t=0}

ηω =
∫

t=δ

ηω −
∫∫

U

dη ∧ ω.

We will show that κ, δ and r > 0 can be chosen so that each of the two
integrals on the right side of (3.18) satisfies an estimate of the form (3.17).
Set

Q(z, ζ, x, t) =
<(iζ · (z − Z(x, t))− κ〈ζ〉[z − Z(x, t)]2)

|ζ|
.

Observe that it is sufficient to show that there is C > 0 so that Q(0, ξ0, x, t)
6 −C for (x, t) ∈ (supp η×{δ})∪(supp dη× [0, δ]). For then, Q(z, ζ, x, t) 6
−C/2 for the same (x, t), z near 0 in Cm, and ζ in a conic neighborhood
of ξ0 in Cm. We recall that ξ0 = (0, 1, ..., 0), and so |ξ0| = 1. We have:

Q(0, ξ0, x, t) = <(−iξ0 · (x + tΨ)− κ[x + tΨ]2)

= tξ0 · Im Ψ(x, t)− κ[|x|2 + t2|<Ψ|2 + 2t〈x,<Ψ〉 − t2| Im Ψ|2].

(3.19)

Since Ψ is C1, using (3.6), (3.15), and (3.16),

(3.20) t(ξ0 · Im Ψ(x, t)) = −C1t
2 + o(|x|t + t2)

where C1 = −∂ Im Ψ
∂t

(0) · ξ0 > 0. Let C > | Im Ψ|2 + 1 on U , and set

α = C1
8C . Note that (3.20) allows us to choose r and δ small enough so that

on U ,

(3.21) t(ξ0 · Im Ψ(x, t)) 6 −C1

2
t2 + α|x|2.

From (3.19) and (3.21), we get:

Q(0, ξ0, x, t) 6 −C1

2
t2 + α|x|2 − κ[|x|2 − 2t|x||<Ψ| − t2| Im Ψ|2].

ANNALES DE L’INSTITUT FOURIER



ANALYTICITY OF SOLUTIONS OF NONLINEAR PDE 1275

Since <Ψ(0) = 0, we may assume r and δ are small enough so that

2t|x||<Ψ| 6 t2 + |x|2/2

and hence

Q(0, ξ0, x, t) 6 −C1

2
t2 + α|x|2 − κ|x|2 − κ|x|2/2 + κCt2.

Choose κ = 3C1
8C . Recalling that α = C1

8C , we get:

Q(0, ξ0, x, t) 6 −C1

8
t2 − C1

16C
|x|2

and so on supp η × {δ} ∪ (supp(dη) × [0, δ]), Q(0, ξ0, x, t) 6 −C for some
C > 0. This proves the Lemma. �

In the following lemma we will assume that the vector field

L =
∂

∂t
+

m∑
j=1

cj(x, t)
∂

∂xj

satisfies the following condition:

for each hyperplane Σ in Rm+1of the form Σ =
{

(x, t) : t =
m∑

j=1

ajxj

}
,

(3.22)

there exist C2 functions ZΣ
j near 0 such that LZΣ

j = 0 for j = 1, . . . ,m

and ZΣ
j (x, t) = xj +

(
t−

m∑
k=1

akxk

)
ΨΣ

j (x, t) for some C2 functions ΨΣ
j .

Lemma 3.2. — Suppose L =
∂

∂t
+

m∑
j=1

cj(x, t)
∂

∂xj
is C2 and CR at

0. Assume that L satisfies condition (3.22) above and h ∈ C1(Ω) is a
solution of Lh = 0. If σ = (0, 0; ξ0, τ0) ∈ CharL, σ([L,L]) = 0, and
σ([L, [L,L]]) 6= 0, then (0, ξ0) /∈ WFah(x, 0).

Remark 3.3. — If L has first integrals that are of class C3, then Lemma
3.2 would follow from the results in [4] (or [6]) and condition (3.22) is not
needed.

Proof. — Since σ([L, [L,L]]) 6= 0, we can find θ ∈ (0, 2π), θ /∈ {π/2, 3π/2,

π} such that if L′ = eiθL, then

(3.23) <σ([L′, [L′, L′]]) >
√

3| Im σ([L′, [L′, L′]])|.

TOME 59 (2009), FASCICULE 4



1276 Shif BERHANU

Using the fact that L′ = X + iY is CR near 0, we can find a hyperplane
Σ = {(x, t) : t =

∑m
j=1 ajxj} such that

(3.24) X(0) ∈ T0Σ and Y (0) /∈ T0Σ.

The hypotheses on L tell us that we can find C2 functions

ZΣ
j (x, t) = xj +

(
t−

m∑
k=1

akxk

)
ΨΣ

j (x, t) 1 6 j 6 m

with ΨΣ
j (x, t) C2 such that LZΣ

j = 0. Consider the change of coordinates
F (x, t) = (x, t−

∑m
j=1 ajxj) = (x′, t′). Observe that

(3.25) F ∗σ̃ = σ, where σ̃ =
m∑

j=1

(ξ0
j + ajτ

0)dx′j + τ0dt′.

If Σ0 = {(x′, t′) : t′ = −
∑m

j=1 ajx
′
j}, we need to show that

i∗Σ0
σ̃ /∈ WFa(h ◦ F−1|Σ0).

Observe next that this is equivalent to showing that

(3.26) i∗M σ̃ =
m∑

j=1

(ξ0
j + ajτ

0)dx′j /∈ WFa(h̃(x′, 0))

where h̃ = h ◦ F−1 and M = {(x′, 0)}. Indeed, according to Theorem 4.1
of [2], if θ0 is a characteristic covector at the origin, X is a real analytic,
maximally real submanifold through the origin, πX(θ0) denotes the pull-
back of θ0 to X, and hX is the trace of h on X, then πX(θ0) /∈ WFa(hX)
if and only if πY (θ0) /∈ WFa(hY ) for any other Y like X. Using (3.24), we
have

L′ =
m∑

j=1

cje
iθ ∂

∂x′j
+ ib

∂

∂t′

where b(0) is real and nonzero. Moreover, by replacing θ with θ + π
2 if

necessary, we may assume that b(0) > 0. Dividing by b will not affect the
condition that

<σ̃([L′, [L′, L′]]) >
√

3| Im σ̃([L′, [L′, L′]])|.

Therefore, we may assume that

L′ =
m∑

j=1

aj
∂

∂x′j
+ i

∂

∂t′

where the aj are C2. Expressing the ZΣ
j in (x′, t′) coordinates we have first

integrals
Zj(x′, t′) = x′j + t′jΨj(x′, t′) 1 6 j 6 m,
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with the Ψj C2. We can now drop the primes and assume

(3.27) L =
m∑

j=1

aj
∂

∂xj
+ i

∂

∂t

is a C2 vector field with C2 first integrals

Zj(x, t) = xj + tΨj(x, t) 1 6 j 6 m,

σ = (ξ0, τ0) ∈ CharL, σ([L,L]) = 0, and

(3.28) <σ([L, [L,L]]) >
√

3| Im σ([L, [L,L]])|.

The function h(x, t) is a C1 solution near the origin and we need to show
that (0, ξ0) /∈ WFa(h(x, 0)). Since L is CR near 0, <aj(0) 6= 0 for some j,
and so we may assume that <a1(0) 6= 0. By stretching the x1 coordinate,
we may also assume that <a1(0) = 1 and thus after dividing by 2,

(3.29) L =
∂

∂z
+

m∑
j=1

aj
∂

∂xj
, <a1(0) = 0.

where z = x1 + it. The form (3.29) implies that Im Ψ1(0) = 1 and hence
we can use linear change of coordinates and a substitution of Z2, ..., Zm by
a linear combination of Z1, ..., Zm as in the proof of Lemma 3.1 to get

(3.30) Zj = xj + tΨj , 1 6 j 6 m and Ψ(0) = (i, 0, ..., 0).

These changes will not affect the validity of (3.28) and we still have

L =
∂

∂z
+

m∑
j=1

aj
∂

∂xj
for some aj that are C2.

We next proceed as in the proof of Lemma 3.1 to find coordinates (x, t)
and first integrals

Zj = xj + tΨj , 1 6 j 6 m

such that

(3.31)
∂ Im Ψl

∂xj
(0) = 0, for all l, j.

Note that (3.30) still holds and the form of L is still the same. The equations
LZl = 0 become

(3.32)
1
2
δ1l +

i

2
Ψl + t(Ψl)z + al +

m∑
j=1

ajt
∂Ψl

∂xj
= 0

which imply

(3.33)
1
2

+
i

2
Ψ1(x, 0)+a1(x, 0) = 0,

i

2
Ψj(x, 0)+aj(x, 0) = 0 for j > 2.
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From (3.30), (3.31), and (3.33), we get

(3.34) al(0) = 0, and
∂<al

∂xj
(0) = 0 for all l, j.

The condition that σ = (0, 0, ξ0, τ0) ∈ CharL now means that τ0 = 0 = ξ0
1 ,

and ξ0
j 6= 0 for some j > 2. We may assume that

(3.35) ξ0 = (0, 1, 0, .., 0).

We have

(3.36) [L,L] =
m∑

l=1

(
∂al

∂z
− ∂al

∂z

)
∂

∂xl
+
∑

l

∑
j

(
aj

∂al

∂xj
− aj

∂al

∂xj

)
∂

∂xl

and hence using (3.34) and (3.35) we get:

(3.37) σ([L,L]) =
∂a2

∂z
(0)− ∂a2

∂z
(0)

Differentiating (3.32) with respect to z, we get

i
∂Ψl

∂z
(0)− i

∂Ψl

∂z
(0) + 2

∂al

∂z
(0) = 0.

This latter equation, (3.37), and the assumption that σ([L,L]) = 0 lead to

(3.38)
∂ Im Ψ2

∂t
(0) = 0.

Next using (3.36) and (3.34), we get

[L, [L,L]](0) =
m∑

l=1

(
∂2al

∂z2 (0)− ∂2al

∂z∂z
(0))

∂

∂xl

+
m∑

l=1

m∑
j=1

(
∂aj

∂z

∂al

∂xj
− ∂aj

∂z

∂al

∂xj
)(0)

∂

∂xl

−
m∑

l=1

m∑
j=1

(
∂al

∂z
− ∂al

∂z
)(0)

∂aj

∂xl
(0)

∂

∂xj

and hence

σ([L, [L,L]]) =
∂2a2

∂z2 (0)− ∂2a2

∂z∂z
(0)

− i

m∑
j=1

(
∂aj

∂z
+ 2

∂aj

∂z
− ∂aj

∂z
)(0)

∂ Im a2

∂xj
(0).

(3.39)
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We will express (3.39) using Ψ2. Since Ψ is C2, we can differentiate (3.32)
to get:

i
∂Ψ2

∂z
+ t

∂2Ψ2

∂z2 +
∂a2

∂z
+

m∑
j=1

∂aj

∂z
t
∂Ψ2

∂xj

+
i

2

m∑
j=1

aj
∂Ψ2

∂xj
+

m∑
j=1

ajt
∂2Ψ2

∂z∂xj
= 0.

(3.40)

At t = 0, we have :

(3.41) i
∂Ψ2

∂z
(x, 0) +

∂a2

∂z
(x, 0) +

i

2

m∑
j=1

aj(x, 0)
∂Ψ2

∂xj
(x, 0) = 0.

Subtract (3.41) from (3.40), divide by t, let t → 0 and evaluate at x = 0 to
get:

i∂t∂zΨ2(0) + ∂2
zΨ2(0) + ∂t∂za2(0) +

m∑
j=1

∂aj

∂z
(0)

∂Ψ2

∂xj
(0)

+
i

2

m∑
j=1

∂aj

∂t
(0)

∂Ψ2

∂xj
(0) = 0.

(3.42)

Next differentiate (3.41) with respect to x1 which leads to:

(3.43) i∂x1∂zΨ2(0) + ∂x1∂za2(0) +
i

2

m∑
j=1

∂aj

∂x1
(0)

∂Ψ2

∂xj
(0) = 0.

From (3.42) and (3.43) we conclude that

∂2a2

∂z∂z
(0) = −i

∂2Ψ2

∂z∂z
(0) +

i

2
∂2Ψ2

∂z∂z(0)

− i

2

m∑
j=1

∂aj

∂z
(0)

∂Ψ2

∂xj
(0) +

i

2

m∑
j=1

∂aj

∂z
(0)

∂Ψ2

∂xj
(0).

(3.44)

By a similar reasoning, we also get

∂2a2

∂z∂z
(0) =

i

2
∂2Ψ2

∂z∂z
(0)− i

∂2Ψ2

∂z∂z
(0)− i

m∑
j=1

∂aj

∂z
(0)

∂Ψ2

∂xj
(0)

and hence (3.39) can be written as

(3.45) σ([L, [L,L]]) =
∂2 Im Ψ2

∂z∂z
(0)− 2

∂2 Im Ψ2

∂z∂z
(0).
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From (3.30), (3.31) and (3.38), we know that the linear part of Im Ψ2 at 0
is 0 and so since it is C2, we have:
(3.46)
Im Ψ2(x1, x

′, t) = at2 +3bx1t+3cx2
1 +O(|x′|t+ |x′|2 + |x′||x1|)+o(x2

1 + t2).

From (3.45) and (3.46), it follows that

σ([L, [L,L]]) =
3
2
(−a− c + ib)

and hence (3.28) implies that

−a− c >
√

3|b|.

We proceed now as in [6], Lemma III.5. From (3.46) we have:

t Im Ψ2(x1, x
′, t) = at3 + 3bx1t

2 + 3cx2
1t

+ O(|x′|t2 + |x′|2|t|+ |x′||x1||t|) + o(tx2
1 + t3).

(3.47)

The error terms in (3.47) are not the same as the ones in (15) of [6].
However, we will show that the arguments in [6] will still work. Let Z̃2 =
Z2 + µZ3

1 for some µ ∈ R to be determined. Set x̃2 = <Z̃2 and leave t and
the other xk and Zk unchanged. In these new coordinates, in (3.47), a is
replaced by a−µ and c by c+µ. Observe that these changes of coordinates
are C2 and so in the new coordinates, the vector field L is C1. However, this
will be of no consequence in what follows. As observed in [6], the inequality

−a− c >
√

3|b|

allows us to choose µ so that the quadratic form

(a− µ)t2 + bx1t
2 + 3(c + µ)x2

1 is negative definite.

Hence there exist α > 0 and C > 0 such that for t > 0,

(3.48) t Im Ψ2(x1, x
′, t) 6 −α(t3 + x2

1t) + C(|x′|t2 + |x′|2t + |x′||x1|t).

Next for 0 < λ 6 λ0 where λ0 is small, change the coordinates and first
integrals as follows:

x̃1 =
x1

λ
, t̃ =

t

λ
, x̃2 =

x2

λ3
, x̃k =

xk

λ2
for k > 3

and
Z̃1 =

Z1

λ
, Z̃2 =

Z2

λ3
, Z̃k =

Zk

λ2
for k > 3.

Removing the tildes, we have:

(3.49) t Im Ψ2(x1, x
′, t) 6 −αt3 + Cλ(|x|3 + t3),

where we may assume that 0 < α < 1 (the left hand side depends on λ but
we are suppressing this dependence in the notation). We are now ready

ANNALES DE L’INSTITUT FOURIER



ANALYTICITY OF SOLUTIONS OF NONLINEAR PDE 1281

to estimate the FBI transform. For some δ > 0 to be chosen small, let
U = {(x, t) : |x| < 6δ, 0 < t < δ}. Let η(x) ∈ C∞

0 (Rm) such that supp η ⊂
{x : |x| 6 5δ}, and η ≡ 1 for |x| 6 4δ. Since Zj(x, 0) = xj , 1 6 j 6 m,
Proposition II.6 in [6] allows us to choose κ = αδ

6 . Choose λ and δ small
enough so that for (x, t) ∈ U,

(3.50) Cλ(|x|3 + t3) 6
α

4
δ3.

Since Ψ(0) = (i, 0, ..., 0), we may assume that on U,

(3.51) | Im Ψ(x, t)|2 6 2, and 2t|x||<Ψ(x, t)| 6 t2 +
|x|2

2
.

We use (3.49), (3.50), and (3.51) to estimate

Q(0, ξ0, x, t) = t Im Ψ(x, t)− κ[|x|2 + t2|<Ψ|2 + 2t〈x,<Ψ〉 − t2| Im Ψ|2]

6 −αt3 +
α

4
δ3 − κ

|x|2

2
+ 3κt2

= −αt3 +
α

4
δ3 − αδ

12
|x|2 +

αδ

2
t2.

Therefore, if |x| 6 6δ and t = δ, then

Q(0, ξ0, x, t) 6 −3α

4
δ3 +

α

2
δ3 = −α

4
δ3,

while if 0 6 t 6 δ and x ∈ supp dη,

Q(0, ξ0, x, t) 6
α

4
δ3 − 16α

12
δ3 +

α

2
δ3 = −7α

12
δ3.

Thus in any case, the FBI transform has the required exponential decay
which proves the Lemma. �

Lemma 3.4. — Let L =
∂

∂t
+ c(x, t)

∂

∂x
be a Ck−1 vector field on a

neighborhood of 0 in R2 with a Ck−1 first integral Z(x, t) = x + tΨ(x, t).
Let σ = (0, 0; ξ0, τ0) ∈ CharL. Assume that σ(M) = 0 whenever M is a
bracket of L and L of length less than k and σ(Mk) 6= 0 for some bracket
of length k. Let h be a C1 solution of Lh = 0 near the origin. If k is
even and 1

i σ(Mk) < 0, then (0, ξ0) /∈ WFah(x, 0) and if k is odd, (0, ξ0) /∈
WFah(x, 0).

Proof. — We may assume that k > 3 since k = 2 is contained in
Lemma 3.1 and k = 1 is Lemma 1.3 in [7]. Write <Ψ(x, t) = p(x, t)+g(x, t)
where p(x, t) is a polynomial of degree k−1 and g ∈ Ck−1 with Dαg(0) = 0
for |α| 6 k− 1. By introducing the coordinates x′ = x + tp(x, t), t′ = t, we
may assume that our first integral Z(x, t) = x + tΨ(x, t) satisfies

(3.52) Dα<Ψ(x, t) = 0 for |α| 6 k − 1.
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Let Mn = fn(x, t)
∂

∂x
be a repeated bracket of L and L of length n, 2 6

n 6 k. We will show that fn has the form

fn = −2i∂n−1
t =c(t) + ∂n−2

t

(
c
∂c

∂x
− c

∂c

∂x

)
+

n−3∑
j=1

∂j
t

(
ej

∂fn−j−1

∂x
− fn−j−1

∂ej

∂x

)
+ en−1

∂fn−1

∂x
− fn−1

∂en−1

∂x

(3.53)

where ej(x, t) = c(x, t) or c(x, t) and fl
∂

∂x
is some bracket of length l for

1 6 l 6 n− 1. Indeed, (3.53) holds for n = 2 since

[L,L] = −2i∂t Im c(x, t)
∂

∂x
+
(

c
∂c

∂x
− c

∂c

∂x

)
∂

∂x
.

Assume it also holds for all brackets of length 6 n. Let M be a bracket of
length n + 1. By definition, either M = [L,Mn] or M = [L,Mn] where Mn

is a bracket of length n and hence Mn = fn
∂

∂x
with fn as in (3.53). We

have

[L,Mn] =
∂fn

∂t

∂

∂x
+
(
c
∂fn

∂x
− fn

∂c

∂x

) ∂

∂x

=
{
− 2i∂n

t Im c(t) + ∂n−1
t

(
c
∂c

∂x
− c

∂c

∂x

)
+

n−2∑
j=1

∂j
t

(
ej

∂fn−j

∂x

− fn−j
∂ej

∂x

)} ∂

∂x
+
(
c
∂fn

∂x
− fn

∂c

∂x

) ∂

∂x

(3.54)

and

[L,Mn] =
∂fn

∂t

∂

∂x
+
(

c
∂fn

∂x
− fn

∂c

∂x

)
∂

∂x
,

and so it follows that (3.53) holds for all n. Suppose now σ(M) = 0 when-
ever M is a bracket of L and L of length 6 n. We want to show that

(1) ∂j
t c(0) = 0, ∀j 6 n− 1 and

(2) ∂j
t fn−l(0) = 0, ∀j 6 l − 1, 2 6 l 6 n− 2

(3.55)

whenever fs
∂

∂x
is a bracket of length s, 1 6 s 6 n−1. Because of (3.52) and

the assumption that σ ∈ Char L, (3.55) clearly holds for n = 2. Suppose it
holds for n− 1. Then

(3.56) ∂j
t c(0) = 0, ∀j 6 n−2 and ∂j

t fn−l(0) = 0, ∀j 6 l−1, 2 6 l 6 n−3
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whenever fs
∂

∂x
is a bracket of length s, 1 6 s 6 n− 2. We will first prove

part (2) of (3.55) by induction on l. For l = 2, suppose fn−2
∂

∂x
is a bracket

of length n− 2. Then

fn−1
∂

∂x
=
[
L, fn−2

∂

∂x

]
is a bracket of length n− 1 where

fn−1 =
∂fn−2

∂t
− c

∂fn−2

∂t
+ fn−2

∂c

∂x
.

Since fn−1(0) = fn−2(0) = c(0) = 0, it follows that
∂fn−2

∂t
(0) = 0 and so

(3.55) holds for l = 2. Assume it holds for some 2 < l < n− 2. We want to

prove that if fn−l−1
∂

∂x
is a bracket of length n−l−1, then ∂j

t fn−l−1(0) = 0

for j 6 l. By (3.56), we only need to show this for j = l. Observe that

fn−l
∂

∂x
=
[
L, fn−l−1

∂

∂x

]
is of length n− l where

(3.57) fn−l =
∂fn−l−1

∂t
− fn−l−1

∂c

∂x
+ c

∂fn−l−1

∂x
.

Apply ∂l−1
t to (3.57) and use the fact that ∂l−1

t fn−l(0) = 0 (since (3.55)
holds for l) and

∂j
t fn−l−1(0) = ∂j

t c(0) = 0 for j 6 l − 1

by (3.56). We conclude that ∂l
tfn−l−1(0) = 0 and hence (3.55) holds for all l.

To prove (1), in view of (3.56), we only need to show that ∂n−1
t c(0) = 0.

From fn(0) = 0, equation (3.53) for fn and application of (2) and (1) for
j 6 n− 1, we conclude that

∂n−1
t Im c(0) = 0.

Next from LZ = 0, we have tΨt + Ψ + c(1 + tΨx) = 0 and hence hence
since ∂j

t c(0) = 0 for j = 0, ..., n− 2, we get

(3.58) n∂n−1
t Ψ(0) + ∂n−1

t c(0) = 0 n 6 k − 1.

Since ∂n−1
t <Ψ(0) = 0 by (3.52), (3.58) implies that

∂n−1
t c(0) = ∂n−1

t Im c(0) = 0.
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Hence (1) and (2) hold for all n 6 k − 1. We can now use the hypotheses
of the Lemma, (3.52), (3.53), and (3.58) to conclude that
(3.59)
∂j

t Im Ψ(0) = 0 for j < k − 1 and ∂j
t Im Ψ(0) 6= 0 (< 0 when k is even).

We will now estimate the FBI transform. We assume without loss of gen-
erality that k is even and ξ0 = 1. For some δ > 0 small and m a positive
integer, let

U = {(x, t) : |x| < (m + 1)δk, 0 < t < δ}.

Let η(x) ∈ C∞
0 (R), supp η ⊂ {x : |x| < (m + 1

2 )δk}, and η ≡ 1 for |x| 6
(m+1

2 )δk. Since Ψ ∈ Ck−1, by (3.52) we can find C2 > 0 such that

2|〈x, t<Ψ(x, t)〉| 6 C2|x|(tk + |x|k−1).

Using (3.59) we also have for t > 0,

Im Ψ(x, t) 6 −Ctk−1 + C1|x| for some C, C1 > 0,

and

t2 | Im Ψ(x, t)|2 6 C3 t2(t2k−2 + |x|2)

for some C3 > 0. Choose δ < C
4C1

. Choose κ = α
δk where α = C

2(m+1)(C2+C3)
.

We then have (for t > 0):

<Q(x, t, 0, ξ0) = t Im Ψ(x, t)− κ[|x|2 + 2〈x, t<Ψ〉+ t2|<Ψ|2 − t2| Im Ψ|2]

6 −Ctk + C1|x|t− κ[|x|2 + 2〈x, t<Ψ〉 − t2| Im Ψ|2]
which for δ small since k > 3

6 −Ctk + C1|x|t− κ[
|x|2

2
− C2|x|tk − C3t

2k].

Hence when t = δ, we get

<Q(x, t, 0, ξ0) 6 −Cδk + C1(m + 1)δk+1 + C2(m + 1)αδk + C3αδk

< 0 for δ small enough since α =
C

2(m + 1)(C2 + C3)
.

When 0 < t < δ and x ∈ supp dη,

<Q(x, t, 0, ξ0) 6 C1(m+1)δk+1−α(m + 1)2

4
δk+C2α(m+1)δk+2C3αδk < 0

for m chosen so that (m + 1)2 > 4C2(m + 1) + 8C3 and δ is small enough.
This proves Lemma 3.4. �
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We will next work in (x, t, ξ, τ) space and apply the results of our lemmas
by using a trick from [7]. Let

L =
∂

∂t
+

m∑
j=1

cj(x, t)
∂

∂xj

be a vector field in a neighborhood Ω of the origin in Rm+1. Introduce an
additional variable s ∈ R, a parameter θ ∈ [0, 2π) and define

Lθ =
∂

∂s
− e−iθL.

Observe that if h ∈ C1(Ω) is a solution of Lh = 0, it is also a solution of
Lθh = 0 in Ω× R. We will say that Lθ satisfies the integrability condition
(3.2) if there are m functions Ψθ

i ∈ C1(Ω × I) (I an open interval in R
centered at 0) such that, if

Zθ
i = xi + sΨθ

i (x, t, s),

then LθZ
θ
i = 0. Note that Zθ

m+1 = t + e−iθs is also a solution whose value
at s = 0 equals t. For the proof of Theorem 2.2, We will also be interested
in the following stronger integrability condition for Lθ:

for each hyperplane Σ in Rm+2 of the form

Σ = {(x, t, s) : s =
m∑

j=1

ajxj + am+1t}, there exist C2 functions

ZΣ
j (1 6 j 6 m + 1) near 0 such that LθZ

Σ
j = 0 and

ZΣ
j (x, t, s) = xj + (s−

m∑
k=1

akxk − am+1t)ΨΣ
j (x, t, s), 1 6 j 6 m,

ZΣ
m+1(x, t, s) = t + (s−

m∑
k=1

akxk − am+1t)ΨΣ
m+1(x, t, s))

for some C2 functions ΨΣ
k (x, t, s), 1 6 k 6 m + 1.

(3.60)

Consider the FBI transform in the variables (x, t) in Rm+1:

F̃κh(z, w, ζ, τ) =
∫

Rm+1
ei[ζ·(z−x′)+τ(w−t′)]−κ〈ζ,τ〉[(z−x′)2+(w−t′)2]

η h(x′, t′)dx′dt′

where η(x′, t′) is a smooth cut-off function supported near the origin in
Rm+1. Note that this is the same as the FBI transform considered before
but in (x, t, s) space and computed on the hyperplane s = 0. An application
of Lemmas 3.1, 3.2 and 3.4 leads to the following theorem which is a result
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on the microlocal analyticity of h(x, t) as opposed to that of the trace
h(x, 0).

Theorem 3.5. — Suppose σ = (0, 0; ξ0, τ0) ∈ CharL, and for some θ,
the vector field Lθ satisfies (3.2) with C1 first integrals. Let h ∈ C1(Ω) be
a solution of Lh = 0.

(i) If 1
2iσ([L,L]) < 0, then σ /∈ WFah.

(ii) If L is C2, Lθ satisfies condition (3.60) for some θ, σ([L,L]) = 0,
and σ([L, [L,L]]) 6= 0, then σ /∈ WFah.

(iii) Suppose m = 1, L is Ck−1, and for some θ, Lθ satisfies (3.2)
with Ck−1 first integrals. Assume that σ(M) = 0 whenever M is a
bracket of L and L of length less than k and σ(Mk) 6= 0 for some
bracket of length k. If k is even and 1

i σ(Mk) < 0, then σ /∈ WFah

and if k is odd, σ /∈ WFah.

Proof. — We will only prove (i) since (ii) and (iii) follow in a similar
fashion. Let σ̃ = (0, 0, 0; ξ0, τ0, 0) which is a co-vector in (x, t, s) space.
Observe that σ̃ ∈ CharLθ and

1
2i

σ̃([Lθ, Lθ]) =
1
2i

σ([L,L]) < 0.

Since Lθh = 0 and Lθ satisfies (3.2), by Lemma 3.1, for some κ > 0, we
can find an open neighborhood O of 0 in Cm+1, a conic neighborhood C of
σ = (0, 0; ξ0, τ0) in Cm+1 and constants C1, C2 > 0 such that

|F̃κh(z, w, ζ, τ)| 6 C1e
−C2|〈ζ,τ〉|

for all z ∈ O, and ζ ∈ C. It follows that σ /∈ WFah. �

Finally we shall need the following result which is Lemma 1.5 in [7]:

Lemma 3.6. — Suppose h(x, t, λ) is C1 in all variables and depends an-
alytically on λ. Assume that for each λ fixed, (0, 0; ξ0, τ0) /∈ WFah(x, t, λ).
Then (0, 0; ξ0, τ0) /∈ WFah(x, t, t).

4. Application to a nonlinear pde

In this section we will apply the results of section 3 by following [7] closely
with some modifications that are needed for the proof of Theorem 2.2.
Let f(z, w, ζ0, ζ) be a holomorphic function in a neighborhood Ω̃ × N of
((0, 0), (a, ω)) in Cm+1 × Cm+1. Assume U ⊂ Ω̃ × Rm+1 and consider a
solution u ∈ C2(U) of the nonlinear pde

(4.1) ut = f(x, t, u, ux)
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satisfying

(4.2) u(0, 0) = a, ux(0, 0) = ω and (u(x, t), ux(x, t)) ∈ N ∀(x, t) ∈ U.

Let

(4.3) L =
∂

∂t
−

m∑
j=1

∂f

∂ζj
(x, t, ζ0, ζ)

∂

∂xj
.

L is a vector field in Ω depending on the parameters (ζ0, ζ) ∈ N . Set

Lu =
∂

∂t
−

m∑
j=1

∂f

∂ζj
(x, t, u, ux)

∂

∂xj
.

Note that the vector field Lu has C1 coefficients in U . Let v = (u, ux). It
follows from (4.1) that (see [7])

(4.4) Luv = g(x, t, v)

where

g0(x, t, ζ0, ζ) = f(x, t, ζ0, ζ)−
m∑

j=1

ζj
∂f

∂ζj
(x, t, ζ0, ζ),

gi(x, t, ζ0, ζ) = fxi(x, t, ζ0, ζ) + ζ
∂f

∂ζ0
(x, t, ζ0, ζ).

Consider the principal part of the holomorphic Hamiltonian of the system
(4.4):

H = L+ g0
∂

∂ζ0
+

m∑
j=1

gj
∂

∂ζj
.

If Ψ(x, t, ζ0, ζ) is a C1 function holomorphic in (ζ0, ζ), set

Ψv(x, t) = Ψ(x, t, v(x, t))

and let Lv be the vector field obtained from L by substituting v(x, t) for
(ζ0, ζ) in each coefficient of L (recall that v = (u, ux)). Thus Lv = Lu.
Equation (4.4) implies (see [7]) that

(4.5) LvΨv = (HΨ)v.

Let Zi (1 6 i 6 m) and Ξj (0 6 j 6 m) be holomorphic solutions in Ω̃×N
(after contracting Ω̃×N ) of the Cauchy problems

(4.6) HZi = 0, Zi|t=0 = xi, 1 6 i 6 m

(4.7) HΞj = 0, Ξj |t=0 = ζj , 0 6 j 6 m.
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Using (4.5) we can see that Zv
i (x, t) (1 6 i 6 m) and Ξv

j (x, t) (0 6 j 6 m)
are C1 solutions of the Cauchy problems

(4.8) LvZv
i = 0, Zv

i (x, 0) = xi, 1 6 i 6 m,

(4.9) LvΞv
j = 0, Ξv

j (x, 0) = v(x, 0), 0 6 j 6 m.

Consider next the map

F (z, w, ζ0, ζ) = (Z(z, w, ζ0, ζ), w, Ξ(z, w, ζ0, ζ))

which is biholomorphic near (0, 0, a, ω) and F (0, 0, a, ω) = (0, 0, a, ω). Let

G(z′, w′, ζ ′0, ζ
′) = (P (z′, w′, ζ ′0, ζ

′), w′, Q(z′, w′, ζ ′0, ζ
′))

denote its inverse. Then Q is holomorphic and

Q(Z(z, w, ζ0, ζ), w, Ξ(z, w, ζ0, ζ)) = (ζ0, ζ).

In particular,
v(x, t) = Q(Zv(x, t), t,Ξv(x, t)).

Now u(x, t) is also a solution of the equation

us = e−iθ(ut − f(x, t, u, ux))

which is of the same kind as (4.1), and the associated vector field Lθ as in
(4.3) is

Lθ =
∂

∂s
− e−iθL

where L is as in (4.3). Therefore, conclusion (4.8) applies, that is the vector
field

(Lθ)v =
∂

∂s
− e−iθLv

has first integrals in U × R as in (3.2). Observe that

(4.10) (Lθ)v = (Lv)θ

where we recall that for a vector field M in (x, t) space such as Lv,

Mθ =
∂

∂s
− e−iθ M.

For each t′, the function Q(Zv(x, t), t′,Ξv(x, t)) is a C1 solution of Lvh = 0,

and is analytic with respect to t′. We are now ready to prove Theorems 2.1,
2.2 and 2.3. Since the arguments from here on are similar, we will only
present the details for the proof of Theorem 2.2.

ANNALES DE L’INSTITUT FOURIER



ANALYTICITY OF SOLUTIONS OF NONLINEAR PDE 1289

Proof of Theorem 2.2. — We are given u ∈ C3(U) is a solution of (4.1),
σ ∈ CharLu, σ([Lu, Lu]) = 0, and σ([Lu, [Lu, Lu]]) 6= 0. In order to apply
Theorem 3.5 (ii), we need to show that (Lv)θ satisfies condition (3.60).
Consider the equation

(4.11) ws = fθ(x, t, w, wx, wt)

where

fθ(x, t, ζ0, ζ1, ..., ζm+1) = e−iθ(ζm+1 − f(x, t, ζ0, ...ζm)).

The function w(x, t, s) = u(x, t) is a solution of equation (4.11). Equation
(4.11) leads to the Hamiltonian

Hθ = Lθ + gθ
0

∂

∂ζ0
+

m+1∑
j=1

gθ
j

∂

∂ζj

where

gθ
0(x, t, ζ, ζ1, ..., ζm+1) = fθ −

m+1∑
j=1

ζj
∂fθ

∂ζj
,

gθ
i = fθ

xi
+ ζi

(∂fθ

∂ζ0

)
1 6 i 6 m and gθ

m+1 = fθ
t + ζm+1

(∂fθ

∂ζ0

)
.

Since any hyperplane Σ of the form s =
∑m

j=1 ajxj +am+1t is non-characte-
ristic for Hθ, we can find holomorphic solutions Z̃j(x, t, s, ζ0, ζ1, ..., ζm+1)
(1 6 j 6 m + 1) for the Cauchy problems

HθZ̃j = 0, Z̃j |Σ = xj , 1 6 j 6 m

and

HθZ̃m+1 = 0, Z̃m+1|Σ = t.

Set Z̃v
j (x, t, s) = Z̃j(x, t, s, u, ux, ut), 1 6 j 6 m + 1. Then just as in (4.8),

we have:

(Lθ)vZ̃v
j (x, t, s) = 0, Z̃v

j |Σ = xj

for 1 6 j 6 m, and Z̃v
m+1|Σ = t. Thus (Lv)θ = (Lθ)v satisfies condition

(3.60). By Theorem 3.5 (ii) applied to the vector field Lv, σ /∈ WFah

whenever h(x, t) = Q(Zv(x, t), t′,Ξv(x, t)) for some fixed t′. Finally, by
Lemma 3.6, σ /∈ WFau since

v(x, t) = (u(x, t), ux(x, t)) = Q(Zv(x, t), t,Ξv(x, t)).

�
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