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SEMI-ALGEBRAIC NEIGHBORHOODS OF
CLOSED SEMI-ALGEBRAIC SETS

by Nicolas DUTERTRE

Abstract. — Given a closed (not necessarly compact) semi-algebraic set X in
Rn, we construct a non-negative semi-algebraic C2 function f such that X=f−1(0)
and such that for δ > 0 sufficiently small, the inclusion of X in f−1([0, δ]) is a
retraction. As a corollary, we obtain several formulas for the Euler characteristic
of X.

Résumé. — Étant donné un ensemble semi-algébrique fermé (non nécessaire-
ment compact) X de Rn, nous construisons une fonction semi-algébrique f positive
et de classe C2 telle que X = f−1(0) et telle que pour δ > 0 suffisamment petit,
l’inclusion de X dans f−1([0, δ]) soit une rétraction. En corollaire, nous obtenons
plusieurs formules pour la caractéristique d’Euler de X.

1. Introduction

Let X be a compact algebraic set in Rn. The set X is the set of zeros of a
nonnegative polynomial function f . This function f may not be proper as
it is explained by the following example due to H. King: let

f(x, y) = (x2 + y2)
((

y(x2 + 1)− 1
)2 + y2

)
,

then f−1(0) = {0} but f(x, (1 + x2)−1) → 0 as |x| → +∞.
Durfee [8] proved that any compact algebraic set X can be written as

the set of zeros of a proper nonnegative polynomial function g. Following
Thom’s terminology, he called such a function a rug function for X. Then he
defined the notion of algebraic neighborhood: a subset T with X ⊂ T ⊂ Rn

is an algebraic neighborhood of X in Rn if T = g−1([0, δ]), where g is a
rug function for X and δ is a positive real smaller than all nonzero critical

Keywords: Tubular neighborhood, semi-algebraic sets, retraction, quasiregular approach-
ing semi-algebraic function, quasiregular approaching semi-algebraic neighborhood.
Math. classification: 14P10, 14P25.



430 Nicolas DUTERTRE

values of g. Using the gradient vector field of g, he showed that the inclu-
sion X ⊂ T is a homotopy equivalence. Thanks to Lojasiewicz’s work [19],
[20] on the trajectories of a gradient vector field, it is not difficult to see
that this homotopy equivalence is actually a retraction. Durfee also proved
that two algebraic neighborhoods of a compact algebraic set are isotopic.
Here also, this uniqueness result is obtained integrating appropriate gradi-
ent vector fields. He extended next these results to the case of a compact
semi-algebraic subset X of a semi-algebraic set M of Rn. He defined the
notion of a semi-algebraic neighborhood of X in M and proved that the in-
clusion of X in such a neighborhood is a homotopy equivalence. One should
mention that similar results were obtained by Coste and Reguiat [7] in the
case of a real closed field using technics of the real spectrum. They obtained
a semi-algebraic retraction theorem for any compact semi-algebraic set.

If X is a non-compact algebraic set in Rn and f is a nonnegative polyno-
mial such that X = f−1(0), then X is not in general a deformation retract
of f−1([0, δ]), where δ is a small regular value of f . Let

f(x, y) =
[
y(xy − 1)

]2
(f is the square of the Broughton polynomial [4]) and let X = f−1(0).
For δ a sufficiently small positive regular value of f , f−1([0, δ]) has one
connected components whereas X has three.

Our aim is to extend Durfee’s results to the case of closed (not necessarily
compact) semi-algebraic sets. More precisely, we consider a closed semi-
algebraic set X in Rn and an open semi-algebraic neighborhood U of X

in Rn. We say that f : U → R is an approaching function for X in U

(Definition 2.3) if

1) f is semi-algebraic, C2, nonnegative;
2) X = f−1(0);
3) there exists δ > 0 such that f−1([0, δ]) is closed in U .

However, the notion of approaching function is not enough to get a defor-
mation retract as it is suggested by the Broughton example above. Let
ρ : Rn → R>0 be a proper C2 semi-algebraic function, let f : U → R
be a C2 nonnegative semi-algebraic function such that X = f−1(0) and
let Γf,g be the set of points x in U \ X where ∇f(x) and ∇ρ(x) are co-
linear (here ∇f denotes the gradient vector field of f). We say that f is
ρ-quasiregular (Definition 2.5) if there does not exist a sequence (xk)k∈N of
points in Γf,ρ such that ‖xk‖ → +∞ and f(xk) → 0. A ρ-quasiregular ap-
proaching semi-algebraic neighborhood of X in U (Definition 3.1) is defined
as a set T = f−1([0, δ]) such that:
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1) f is a ρ-quasiregular approaching function for X in U ;
2) δ is a positive number smaller than all nonzero critical values of f ;
3) f−1([0, δ]) is closed in U ;
4) Γf,ρ does not intersect f−1([0, δ]) outside a compact subset K of Rn.

We say that a set is an approaching semi-algebraic neighborhood of X in U

if it is a ρ-quasiregular approaching semi-algebraic neighborhood of X in U

for some function ρ.
We prove that ρ-quasiregular approaching semi-algebraic neighborhoods

always exist (Corollary 2.7) and that if T = f−1([0, δ]) is a ρ-quasiregular
approaching semi-algebraic neighborhood of X in U then X is a strong de-
formation retract of T (Theorem 3.2). In order to construct this retraction,
we study a vector field w that is equal to the gradient of f inside a compact
subset of Rn and to the orthogonal projection of the gradient of f onto the
levels of ρ outside a compact set. Using the Lojasiewicz inequality with
parameters due to Fekak [10] and the usual Lojasiewicz gradient inequality
we establish an inequality of “Lojasiewicz’s type” for the norm of w. The
retraction is then achieved “pushing” T = f−1([0, δ]) along the trajectories
of w.

After we show that two ρ-quasiregular approaching semi-algebraic neigh-
borhoods of X are isotopic (Theorem 4.1). As above, the isotopy is obtained
integrating a vector field which is equal to a gradient vector field on a com-
pact set of Rn and to the projection of this gradient vector field onto the
levels of ρ at infinity.

As a corollary, this enables us to prove that when X is smooth of class C3,
every approaching semi-algebraic neighborhood of X is isotopic to a tubular
neighborhood of X (Theorem 5.7).

Then we prove that two approaching semi-algebraic neighborhoods of X

are isotopic (Corollary 6.6).
We end the paper with degree formulas for the Euler-Poincaré charac-

teristic of any closed semi-algebraic set obtained thanks to the machinery
developped before (Theorem 7.3, Corollary 7.4 and Corollary 7.5), and with
a Petrovskii-Oleinik inequality for the Euler-Poincaré characteristic of any
real algebraic set (Proposition 7.8).

The author is very grateful to Zbigniew Szafraniec, Vincent Grandjean,
Didier D’Acunto and Andreas Bernig for valuable discussions on this topic.

TOME 59 (2009), FASCICULE 1



432 Nicolas DUTERTRE

2. ρ-quasiregular approaching functions

In this section, we define the notion of a ρ-quasiregular approaching
function for a closed semi-algebraic set, which generalizes the notion of a
rug function introduced by Durfee [8].

Let us consider a closed semi-algebraic set X in Rn. Let U be an open
semi-algebraic neighborhood of X. We know that X is the zero set in U of
a continuous nonnegative semi-algebraic function f : U → R (for example
one can take for f the restriction to U of the distance function to X).
For any δ > 0, the set f−1([0, δ]) is closed in U for the induced topology.
However, even if δ is very small, it is not necessarly closed in U , as it is
shown in the following examples.

Example 1. — The set X = {0} is a closed semi-algebraic set in R, the
set U = ]− 1,+∞[ is an open semi-algebraic neighborhood of X in R. Let
f : U → R be defined by f(x) = x2(x + 1). It is clear that for any δ > 0,
the set f−1([0, δ]) is not closed in U = [−1,+∞[.

Example 2. — The set X = {(x, y) ∈ R2 | y = 0} is a closed semi-
algebraic set in R2, the set U = {(x, y) ∈ R2 | x2y2 < 1} is an open
semi-algebraic neighborhood of X in R2. Let f : U → R be defined by
f(x, y) = y2. For any δ > 0, the set f−1([0, δ]) is not closed in U =
{(x, y) ∈ R2 | x2y2 6 1}.

We would like to avoid this situation. For this we need to put a condition
on the tuple (X, U, f).

Definition 2.1. — Let X be a closed semi-algebraic set in Rn, let U

be an open neighborhood of X and let f : U → R be a nonnegative
continuous semi-algebraic function such that X = f−1(0). We say that
(X, U, f) satisfies condition (A) if there does not exist a sequence (xk)k∈N
of points in U such that limk→+∞ f(xk) = 0 and such that limk→+∞ xk

exists and belongs to Bd(U) = U \ U .

It is clear that this condition is satisfied when U = Rn. Let us remark
that for any couple (X, U), X being a closed semi-algebraic set in Rn and U

an open semi-algebraic neighborhood of X, there exists a function f such
that (X, U, f) satisfies condition (A). If d : Rn → R is the distance function
to X then the tuple (X, U, d|U ) satisfies condition (A).

We will explain how to construct from a function f such that (X, U, f)
satisfies condition (A), a nonnegative continuous semi-algebraic function g
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such that X = g−1(0) and g−1([0, δ]) is closed in U for δ small enough.
Actually we will prove a stronger result.

Let us fix a proper C2 semi-algebraic function ρ : Rn → R>0. We will
denote by Σr the set ρ−1(r), by Dr the set ρ−1([0, r]) and by Er the
set ρ−1([r, +∞[ ). Note that for r sufficiently big, Σr is a non-empty com-
pact C2-submanifold of Rn. We will call such a ρ a control function.

Lemma 2.2. — Let X be a closed semi-algebraic set in Rn, let U be
an open semi-algebraic neighborhood of X and let f : U → R be a con-
tinuous nonnegative semi-algebraic function such that X = f−1(0) and
(X, U, f) satisfies condition (A). For every integer q > 0, let fq : U → R be
defined by fq = (1 + ρ)qf . Let V ⊂ U be an open semi-algebraic neighbor-
hood of X. There exists an integer q0 such that for every integer q > q0,
there exists δq > 0 such that f−1

q ([0, δq]) is included in V and closed in V .
Furthermore, if X is compact then one can choose q0 such that for every
integer q > q0, f−1

q ([0, δq]) is compact in V .

Proof. — Let Z be the closed semi-algebraic set U \ V . Let d : Rn → R
be a continuous nonnegative semi-algebraic function such that X = d−1(0)
and Z = d−1(1). Let U1 be the open semi-algebraic neighborhood of X

in Rn defined by U1 = d−1([0, 1
2 [ ) and let V1 be the open semi-algebraic

neighborhood of X in U defined by V1 = U1 ∩ U . It is straightforward to
see that V1 ⊂ V .

Let us study first the case when U is bounded. There exists δ > 0 such
that f−1([0, δ]) ⊂ V1. Otherwise, we would be able to construct a sequence
of points (xk)k∈N in U \V1 such that limk→+∞ f(xk) = 0. By compactness
of U \ V1, there would exist a subsequence of points (xϕ(k))k∈N in U \ V1

such that f(xϕ(k)) tends to 0 and xϕ(k) tends to a point y in U \ V1. If y

belongs to U then f(y) = 0, which is impossible. So y belongs to U \ U ,
which is also impossible by condition (A). Since V1 is included in V and
bounded, the set f−1([0, δ]) is compact in V .

If U is not bounded and X is not compact, then the semi-algebraic set
F = U \V1 is unbounded as well. There exists r0 such that for every r > r0,
Σr ∩ F is not empty (the set {r ∈ R | Σr ∩ F 6= ∅} is an unbounded semi-
algebraic set of R). Let α : [r0,+∞[ → R be defined by

α(r) = inf
{
f(x) | x ∈ Σr ∩ F

}
.

The function α is a semi-algebraic function. Let us show that it is positive.
If α(r) = 0 then there exists a sequence of points (xk)k∈N in F ∩ Σr such
that f(xk) tends to 0. By compactness of Σr, we can extract a subsequence
(xϕ(k))k∈N such that f(xϕ(k)) tends to 0 and xϕ(k) tends to a point y

TOME 59 (2009), FASCICULE 1



434 Nicolas DUTERTRE

in Σr ∩F , which is included in Σr ∩U . If y belongs to U then f(y) = 0 and
so y belongs to X, which is impossible for d(y) > 1

2 . Hence y is in Bd(U).
This is impossible by condition (A). The function α−1 is semi-algebraic.
From Proposition 2.11 in [6] (see also Proposition 2.6.1 in [2]), there exists
r1 > r0 and an integer q0 such that α(r)−1 < rq for every r > r1 and every
integer q > q0. This implies that for every x in F ∩ Er1 and for q > q0,
fq(x) = (1 + ρ(x))qf(x)1. It is clear that (X, U, fq) satisfies condition (A).
The same argument as in the case U bounded shows that there exists εq

such that f−1
q ([0, εq]) ∩ Dr1 is included in V1 ∩ Dr1 . We take for δq the

minimum of 1 and εq. Since V1 ⊂ V , it is easy to see that f−1
q ([0, δq]) is

closed in V .
It remains to study the case U unbounded but X compact. There exists

r2 > 0 such that X ∩ Er2 is empty. Let β : [r2,+∞[→ R be defined by

β(r) = inf
{
f(x) | x ∈ U ∩ Σr

}
.

Thanks to condition (A), we can prove that it is a positive semi-algebraic
function. There exists r3 > r2 and an integer q1 such that β(r)−1 < rq for
every r > r3 and every integer q > q1. Hence for x ∈ U∩Er3 and for q > q1,
fq(x) = (1 + ρ(x))qf(x) > 1. The tuple (X, U, fq) satisfies condition (A).
As in the previous cases, there exists εq > 0 such that f−1

q ([0, εq]) ∩ Dr3

is included in V1 ∩ Dr3 .We take for δq the minimum of 1 and εq. The set
f−1

q ([0, δq]) is compact in V1 because it is compact in Rn. �

Definition 2.3. — Let X be a closed semi-algebraic set in Rn and let U

be an open semi-algebraic neighborhood of X in Rn. A function f : U → R
is called an approaching function for X in U if

1) f is semi-algebraic, C2, nonnegative;
2) X = f−1(0);
3) there exists δ > 0 such that f−1([0, δ]) is closed in U . Furthermore

if X is compact then f−1([0, δ]) is compact in U .

Proposition 2.4. — Let X be a closed semi-algebraic set in Rn and
let U be an open semi-algebraic neighborhood of X in Rn. There exist
approaching functions for X in U .

Proof. — From [25, Corollary C.12], it is possible to find a C2 semi-
algebraic function φ : Rn → [0, 1] such that X = φ−1(0) and Bd(U) =
φ−1(1). Let f be the restriction of φ to U . The tuple (X, U, f) satisfies con-
dition (A). Applying Lemma 2.2 to f and U , we can construct approaching
functions for X in U . �

ANNALES DE L’INSTITUT FOURIER
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We will need a definition. For every open semi-algebraic set U and for
every C2 semi-algebraic function g : U → R, let Γg,ρ be the semi-algebraic
set defined by

Γg,ρ =
{
x ∈ U | ∇g(x) and ∇ρ(x) are colinear and g(x) 6= 0

}
.

Definition 2.5. — Let g : U → R be a C2 semi-algebraic function.
We say that g is ρ-quasiregular if there does not exist a sequence (xk)k∈N
in Γg,ρ such that ‖xk‖ tends to infinity and |g(xk)| tends to 0.

This notion of ρ-quasiregularity is a slight modification of the notion
of ρ-regularity due to Tibar [24]. Note that our definition does not imply
that g−1(0) has only isolated singularities, unlike Tibar’s definition.

Proposition 2.6. — Let X be a closed semi-algebraic set in Rn and
let U be an open semi-algebraic neighborhood of X. Let f : U → R be a
C2 semi-algebraic nonnegative function such that X = f−1(0). For every
integer q, let fq : U → R be defined by

fq = (1 + ρ)qf.

There exists an integer q0 such that for every integer q > q0, the function
fq is ρ-quasiregular.

Proof. — Let r0 be the greatest critical value of ρ and let β : ]r0,+∞[→ R
be defined by

β(r) = inf
{
f(x) | x ∈ Σr ∩ Γf,ρ

}
.

The function β is semi-algebraic. It is positive since for r > r0, the function
f |Σr∩U admits a finite number of critical values. As in Lemma 2.2, this im-
plies that there exists r1 > r0 and an integer q0 such that for x ∈ Γf,ρ∩Er1

and for q > q0, (1 + ρ(x))qf(x) > 1. Since Γf,ρ = Γfq,ρ, every function fq

is ρ-quasiregular for q > q0. �

Corollary 2.7. — Let X be a closed semi-algebraic set in Rn and let
U be an open semi-algebraic neighborhood of X. Let f : U → R be a C2

semi-algebraic nonnegative function such that X = f−1(0). Assume that
(X, U, f) satisfies condition (A). For every integer q > 0, let fq : U → R
be defined by fq = (1 + ρ)qf . There exists an integer q0 such that for
every q > q0, the function fq is a ρ-quasiregular approaching function
for X in U . �

If X is an algebraic set, it is the zero set of a nonnegative polynomial f .
Choosing for ρ a proper nonnegative polynomial and applying the above
process, we obtain ρ-quasiregular approaching functions for X that are
nonnegative polynomials.

TOME 59 (2009), FASCICULE 1



436 Nicolas DUTERTRE

Let us compare our notion of ρ-quasiregular approaching function with
the notion of rug function due to Durfee [8]. If X is a compact algebraic
set of Rn, a rug function for X is a proper nonnegative polynomial f

such that X = f−1(0). It is clear that such a function is a ρ-quasiregular
approaching function for X in Rn.

3. Retraction on a closed semi-algebraic set

In this section, we prove that any closed semi-algebraic set is a strong
deformation retract of certain closed semi-algebraic neighborhoods of it.
First let us specify the closed semi-algebraic neighborhoods that we will
consider.

Definition 3.1. — Let X ⊂ Rn be a closed semi-algebraic set, let ρ be
a control function and let U be an open semi-algebraic neighborhood of X.
A subset T with X ⊂ T ⊂ U is a ρ-quasiregular approaching semi-algebraic
neighborhood of X in U if T = f−1([0, δ]) where

1) f is a ρ-quasiregular approaching function for X in U ;
2) δ is a positive number smaller than all nonzero critical values of f ;
3) f−1([0, δ]) is closed in U and compact in U if X is compact;
4) if Γf,ρ is the polar set

Γf,ρ =
{
x ∈ U \X | ∇f(x) and ∇ρ(x) are colinear

}
,

then Γf,ρ does not intersect f−1([0, δ]) outside a compact subset K

of Rn.

For short, we will say that such a T is an approaching semi-algebraic
neighborhood. By the results of the previous section, it is clear that ap-
proaching semi-algebraic neighborhoods always exist.

Theorem 3.2. — Let X be a closed semi-algebraic set and let T be
an approaching semi-algebraic neighborhood of X. Then X is a strong
deformation retract of T .

Proof. — If X is compact, this is already proved by Durfee [8] and Loja-
ziewicz [19], [20]. So let us assume that X is not compact.

Let us fix f , U , δ, ρ and K which satisfy the conditions of the above defi-
nition and such that T = f−1([0, δ]). Furthermore let us assume that δ < 1.
We will focus first on the behaviour of f at infinity.

ANNALES DE L’INSTITUT FOURIER
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Let r0 > 0 be such that K ∩ Er0 is empty and such that Σr is a C2

submanifold for r > r0. Let A = T ∩ Er0 . The set A is a closed semi-
algebraic set of Rn and A ∩ Γf,ρ is empty. Let us consider the following
closed semi-algebraic set Y of Rn+1:

Y =
{
(x, t) ∈ Rn+1 | x ∈ A and ρ(x) = t

}
.

We will denote by Yt the fibre {x ∈ A | (x, t) ∈ Y }. Observe that Yt=A ∩ Σt.
Let F : A → R be defined by

F =
∥∥∥∇f −

〈
∇f,

∇ρ

‖∇ρ‖

〉 ∇ρ

‖∇ρ‖

∥∥∥.

The function F is just the norm of the orthogonal projection of ∇f(x)
on the manifold Σρ(x). Moreover it is a continuous semi-algebraic func-
tion on A. Let f̃ and F̃ be the semi-algebraic functions defined on Y by
f̃(x, t) = f(x) and F̃ (x, t) = F (x). They are continuous in x and ver-
ify F̃−1(0) ⊂ f̃−1(0). This inclusion is easy to check since F (x) = 0 if and
only if ∇f(x) and ∇ρ(x) are colinear. On A, this can occur only if x belongs
to X.

We can apply Lojasiewicz’s inequality with parameters due to Fekak
(see [10, p. 128]). We need some notations: for every t, f̃t and F̃t are the
functions on Yt defined by f̃t(x) = f̃(x, t) and F̃t(x) = F̃ (x, t) ; for every
S ⊂ R, YS denotes the set Y ∩ (Rn×S). Fekak’s Theorem states that there
exists a finite partition into semi-algebraic subsets of R =

⋃
Si, continuous

semi-algebraic functions hi : Y|Si
→ R and rationnal numbers pi/qi such

that:
i) |f̃(x, t)|pi/qi 6 hi(x, t)|F̃ (x, t)| on Y|Si

for t ∈ Si;
ii) pi/qi is the Lojasiewicz exponent of f̃t with respect to F̃t for t ∈ Si.

Since
⋃

Si is a finite semi-algebraic partition of R, there exist t0 ∈ R and
i0 such that Si0 = [t0,+∞[. Then for every t > t0, we have:

i) |f̃(x, t)|pi0/qi0 6 hi0(x, t)|F̃ (x, t)| for x ∈ Yt;
ii) pi0/qi0 is the Lojasiewicz exponent of f̃t with respect to F̃t.

We know that f̃t = f|Yt
and F̃t = ‖∇(f|Yt

)‖. By Lojasiewicz’s gradient
inequality applied to f|Yt

, we get pi0/qi0 < 1. Let α = pi0/qi0 and let
B = T ∩Et0 . We have proved that there exist 0 6 α < 1 and a continuous
semi-algebraic function h : B × [t0,+∞[→ R such that for every x ∈ B∣∣f(x)

∣∣α 6 h(x, ρ(x))F (x),

where F is the norm of the vector field

v = ∇f −
〈
∇f,

∇ρ

‖∇ρ‖

〉 ∇ρ

‖∇ρ‖
·

TOME 59 (2009), FASCICULE 1
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Let C be the compact semi-algebraic set defined by C = T ∩D2t0 . By the
Lojasiewicz gradient inequality, there exits d > 0 and 0 6 β < 1 such that
on C

|f |β 6 d‖∇f‖.

Here we have applied the Kurdyka-Parusinski version of the Lojasiewicz
gradient inequality [18].

We will glue the two vector fields v and ∇f . Let ϕ : Rn → R be a
C∞-function such that:

• ϕ(x) = 1 if ρ(x) 6 1.3 t0;
• ϕ(x) = 0 if ρ(x) > 1.7 t0;
• 0 < ϕ(x) < 1 if 1.3 t0 < ρ(x) < 1.7 t0.

Let w be the following vector field on T :

w = (1− ϕ) v + ϕ∇f.

We want to find an inequality of “Lojasiewicz’s type” for ‖w‖. First observe
that ‖w‖ > ‖v‖, for

w = v + ϕ
〈
∇f,

∇ρ

‖∇ρ‖

〉 ∇ρ

‖∇ρ‖
·

Let M be defined by

M = max
{
h(x, ρ(x)) | x ∈ T and 1.2 t0 6 ρ(x) 6 1.8 t0

}
.

We have |f(x)|α 6 M‖w(x)‖ for x ∈ T ∩ {x | 1.2 t0 6 ρ(x) 6 1.8 t0}. For
x ∈ T ∩D1.3 t0 , we have |f(x)|β 6 d‖∇f(x)‖ and ∇f(x) = w(x). Calling γ

the maximum of α and β and N the maximum of M and d and since δ < 1,
we get that for x ∈ T ∩D1.8 t0 ,

(1)
∣∣f(x)

∣∣γ 6 N
∥∥w(x)

∥∥.

Now for x ∈ T ∩ E1.7 t0 , w(x) = v(x) and then

(2)
∣∣f(x)

∣∣γ 6 h
(
x, ρ(x)

)∥∥w(x)
∥∥.

On one hand, we have 〈∇f, w〉 = (1− ϕ)〈∇f, v〉+ ϕ〈∇f,∇f〉, hence

〈∇f, w〉 = (1− ϕ)〈v, v〉+ ϕ〈∇f,∇f〉,

since 〈v,∇f〉 = 〈v, v〉. On the other hand,

〈w,w〉 = (1− ϕ2)〈v, v〉+ ϕ2〈∇f,∇f〉.

Using the fact that 0 6 ϕ 6 1, it is easy to see that

〈∇f, w〉 > 〈w,w〉 ⇐⇒ 〈∇f,∇f〉 > 〈v, v〉.
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Since the inequality on the right hand side is verified, we have proved

(3) 〈∇f, w〉 > 〈w,w〉.

We are going to integrate the vector field −w/‖w‖. It is defined on T \X.
Let φt be the flow associated with the differential equation:

ẋ = − w

‖w‖
·

For every x ∈ T , let

b(x) = sup
{
t | f(φt(x)) > 0

}
and ω(x) = lim

t→b(x)
φt(x).

We write φx(t) the trajectory that passes through x. We extend b and ω

on T setting b(x) = 0 and ω(x) = x for all x ∈ X. The following facts are
proved using inequalities (1), (2) and (3) and adapting to our situation the
techniques of Lojasiewicz (see [19], [20], [16], [17] or [22] for details).

Fact 1. — For all x ∈ T , {φx(t) | 0 6 t 6 b(x)} ⊂ T .
Fact 2. — For all x ∈ T ∩ E1.7t0 , for all t such that 0 6 t 6 b(x),

‖φx(t)‖ = ‖x‖.
Fact 3. — For all x ∈ T ∩ D1.8t0 , for all t such that 0 6 t 6 b(x),

‖φx(t)‖ 6 1.8t0.
Fact 4. — For all x ∈ T , b(x) < +∞.
Fact 5. — For all x ∈ T , f(ω(x)) = 0.
Fact 6. — The mapping ω : T → X, x 7→ ω(x) is continuous.
Fact 7. — The mapping b : T → X, x 7→ b(x) is continuous.
Now we can end the proof of Theorem 3.2. The retraction is given by

the mapping: G : [0, 1]× T → T defined by G(t, x) = φ(tb(x), x) if (t, x) ∈
[0, 1[× T \X and G(t, x) = ω(x) otherwise.

If δ > 1, we can push f−1([0, δ]) onto f−1([0, δ′]), δ′ < 1, along the
trajectories of w. �

We end this section with a remark. Using the same method, one can
prove the following result. Let X ⊂ Rn be a closed semi-algebraic set and let
f : Rn → R be a nonnegative semi-algebraic function such that X = f−1(0).
Let Γf,ρ be the set

Γf,ρ =
{
x ∈ Rn | ∇f(x) and ∇ρ(x) are colinear and f(x) 6= 0

}
.

Let r be a regular value of ρ. Assume that the following assumption is
satisfied: there is no sequence of points (xk) in Γf,ρ∩Dr such that ρ(xk) → r

and f(xk) → 0. Then for δ > 0 sufficiently small, the inclusion X ∩Dr ⊂
f−1([0, δ]) ∩Dr is a deformation retract.
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For example, this result can be applied if f has only isolated critical
points on its zero level and X intersects Σr transversally.

4. Uniqueness of ρ-quasiregular approaching
neighborhoods

In this section, we prove that two ρ-quasiregular approaching semi-alge-
braic neighborhoods of a closed non-compact semi-algebraic set are isotopic.
We will prove the following theorem.

Theorem 4.1. — Let X be a closed non-compact semi-algebraic set and
let ρ be a control function. If T1 and T2 are two ρ-quasiregular approaching
semi-algebraic neighborhoods of X in U1 and U2 respectively then there is
a continuous family of diffeomorphisms ht : Rn → Rn, 0 6 t 6 1, such that:

1) h0 is the identity;
2) for all t, ht|X is the identity;
3) h1(T1) = T2.

Proof. — Let us write Ti = f−1
i ([0, δi]) where fi is a ρ-quasiregular ap-

proaching function for X in Ui, i = 1, 2. We will prove our result adapting
the ideas of Durfee [8]. There are three steps.

Let us first consider the case f1 = f2 = f and U1 = U2 = U . We can
assume without loss of generality that δ1 < δ2. Thanks to condition 4)
in Definition 3.1, we see that f−1(δ) is ρ-regular at infinity (see [24]) for
every δ in [δ1, δ2]. Since [δ1, δ2] does not contain any critical value of f ,
Tibar’s work implies that T1 and T2 are diffeomorphic. Let us be more
precise and explain how the family ht is obtained. As we did in the proof
of Theorem 3.2, we can construct a vector field w on f−1([δ1, δ2]) which
is equal to the orthogonal projection of ∇f on the levels of ρ outside a
set DR, and equal to ∇f inside a set DR′ , R′ < R. Then we extend w to a
complete vector field w̃ defined on Rn using a smooth function equal to 1
on the closed set f−1([δ1, δ2]) and to 0 on the closed set X ∪ (Rn \ U).
Integrating this vector field gives the required family ht.

The second case is when f2 = (1 + ρ)qf1 and U1 = U2 = U . Let δ be
the minimum of δ1 and δ2. Let v1 (resp. v2) be the orthogonal projection
of ∇f1 (resp. ∇f2) on the levels of ρ. By condition 4) in Definition 3.1,
there exists R > 0 such that v1 and v2 do not vanish in f−1

1 ( ]0, δ]) ∩ ER.
It is clear that on this set, they do not point in opposite direction. There
exists a neighborhood U ′ of X ∩D2R in D2R such that ∇f1 and ∇f2 are
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nonzero and do not point in opposite direction on U ′ \ X. This fact is
proved in the same way as Lemma 1.8 in [8]. Hence there exists δ′ such
that ∇f1 and ∇f2 are nonzero and do not point in opposite direction on
f−1
1 ( ]0, δ′]) ∩ D2R. Let δ′′ be the minimum of δ and δ′. By the first case,

it is enough to prove that f−1
2 ([0, δ′′]) and f−1

1 ([0, δ′′]) are isotopic. Let S

be the closed set f−1
1 ([0, δ′′]) \ f−1

2 ([0, δ′′[ ) and let g : S → [0, 1] be defined
by

g =
f2 − δ′′

f2 − f1
·

Note that g−1(0) = f−1
2 (δ′′) and g−1(1) = f−1

1 (δ′′). The gradient of g is

∇g =
(f2 − δ′′)∇f1 + (δ′′ − f1)∇f2

(f2 − f1)2
·

Let v be its orthogonal projection on the levels of ρ. It is nonzero in S∩ER.
Moreover, ∇g is nonzero in S ∩ D2R. Gluing these two vector fields, we
obtain a C1 vector field w on S and we proceed as in the first case.

The third case is the general case. Let U = U1 ∩ U2. By Lemma 2.2 and
the second case above, we can assume that T1 ⊂ U , T2 ⊂ U and T1 and T2

are closed in U . We need some lemmas.

Lemma 4.2. — For every integer q > 0, let f1,q : U → R be defined by

f1,q = (1 + ρ)qf1.

Let v1,q (resp. v2) be the orthogonal projection of ∇f1,q (resp. ∇f2) on the
levels of ρ. There exist q0 ∈ N and R > 0 such that for all q > q0 the
vector fields v1,q and v2 are nonzero and do not point in opposite direction
in f−1

1,q ( ]0, δq]) ∩ ER, where δq is a small regular value of f1,q such that
f−1
1,q ([0, δq]) ⊂ U and f−1

1,q ([0, δq]) is closed in U .

Proof. — We know that there exists R′ > 0 and U ′ ⊂ U such that v1

and v2 do not vanish in U ′ ∩ ER′ since f1 and f2 are ρ-quasiregular. Let
Γf1,ρ, Γf2,ρ and Γf1,f2,ρ be the semi-algebraic sets

Γf1,ρ =
{
x ∈ U \X | v1(x) = 0

}
, Γf2,ρ =

{
x ∈ U \X | v2(x) = 0

}
,

Γf1,f2,ρ =
{
x ∈ U \X | v1(x) and v2(x) point in opposite direction

}
,

and let Γ be the union of these three sets. Let r0 be the greatest critical
value of ρ and let α : ]r0,+∞[→ R be defined by

α(r) = inf
{
f1(x) | x ∈ Σr ∩ Γ

}
.

Then α is a positive semi-algebraic function. To see that it is positive, it
is enough to apply Lemma 1.8 of [8] to the semi-algebraic subset X ∩ Σr
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of the smooth semi-algebraic set Σr. As in Lemma 2.2, this implies that
there exists R > r0 and an integer q0 such that for x ∈ Γ ∩ ER and
for q > q0, (1 + ρ(x))qf1(x) > 1. Since v1,q = (1 + ρ)qv1, we see that
Γf1,f2,ρ = Γf1,q ;f2;ρ. We take δq to be the minimum of δ1 and 1. This ends
the proof of Lemma 4.2. �

Lemma 4.3. — For every integer q > 0, let f1,q : U→R and f2,q : U→R
be defined by

f1,q = (1 + ρ)qf1, f2,q = (1 + ρ)qf2.

Let v1,q (resp. v2,q) be the orthogonal projection of ∇f1,q (resp. ∇f2,q) on
the levels of ρ. There exist q0 ∈ N and R > 0 such that for all q > q0 and
for all ` ∈ N the vector fields v1,q and v2,` are nonzero and do not point
in opposite direction in f−1

1,q ( ]0, δq])∩ER, where δq is a small regular value
of f1,q such that f−1

1,q ([0, δq]) ⊂ U and f−1
1,q ([0, δq]) is closed in U .

Proof. — It is clear because v2,` = (1 + ρ)`v2 and Γf1,k;f2,`;ρ = Γf1,k;f2;ρ.
This ends the proof of Lemma 4.3. �

Let us fix q and δq which satisfy the conclusion of Lemma 4.2. Applying
Lemma 2.2 to the open semi-algebraic neighborhood f−1

1,q ([0, δq[ ) of X and
the approaching function f2, we can find ` such that

f−1
2,`

(
[0, ε`]

)
⊂ f−1

1,q

(
[0, δq[

)
,

where ε` is a small regular value of f2`. Thanks to Lemma 4.3, we can
proceed as we did for the second case, namely we consider the closed set
S′ = f−1

1,q ([0, δq]) \ f−1
2,` ([0, ε`[ ) and the function h : S′ → [0, 1] defined by

h =
f2,` − ε`

(f2,` − ε`)− (δq − f1,q)
·

This ends the proof of Theorem 4.1. �

Applying Theorem 4.1 to the case when X is compact and f1 and f2 are
two rug functions for X, we recover Durfee’s uniqueness result.

5. The smooth case

In this section, we assume that X is a closed non-compact semi-algebraic
set in Rn and also a C3 submanifold of dimension k < n. We also assume
that ρ is a control function of class C3. We show that any ρ-quasiregular ap-
proaching semi-algebraic neighborhood of X is isotopic to a tubular neigh-
borhood of X. For this, we construct a kind of distance function to X which
is C2 in a semi-algebraic neighborhood of X and ρ-quasiregular.
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Let us fix X and ρ satisfying the above assumptions. Let r0 > 0 be such
that for all r > r0, Σr is a C3 submanifold that intersects X transversally.
Let F be the following set:

F =
{
(x, v) ∈ X × Rn | ρ(x) > r0, 〈v,∇ρ(x)〉 = 0

and 〈v, w〉 = 0 for all w ∈ Tx(X ∩ Σρ(x))
}
.

It is a C2-vector bundle over X ∩ {x |ρ(x) > r0} whose fibers are (n− k)-
dimensional. Moreover it is semi-algebraic. We will denote the fiber over x

by Fx. Observe that Fx is the normal space of X ∩ Σρ(x) in Σρ(x).
Let N be the normal bundle over X ∩ {x |ρ(x) < 2r0}:

N =
{
(x, v) ∈ X × Rn | ρ(x) < 2r0 and v ⊥ TxX

}
.

It is also a C2 semi-algebraic vector bundle. We denote the fiber over x

by Nx.
We will glue these two bundles. By [25, Corollary C.12], it is possible to

find a C2 semi-algebraic function φ : X 7→ [0, 1] such that X ∩ E7/4r0 =
φ−1(1) and X ∩ D5/4r0 = φ−1(0). For each x such that r0 < ρ(x) < 2r0,
let Px be the restriction to Fx of the orthogonal projection to Nx.

We can define a bundle H ⊂ X × Rn over X in the following way:

• if ρ(x) < 5
4r0 then Hx = Nx;

• if r0 < ρ(x) < 2r0 then Hx = {v ∈ Rn | ∃w ∈ Fx such that
v = φ(x)w + (1− φ(x))Px(w)} ;

• if ρ(x) > 7
4r0 then Hx = Fx.

It is an exercise of linear algebra to prove that H is a vector bundle whose
fibres are (n− k)-dimensional planes. Furthermore, it is C2 semi-algebraic
because F and N are C2 semi-algebraic bundles and φ is a C2 semi-algebraic
function. This bundle H will enables us to construct the desired “distance”
function to X. Let ϕ be the following C2 semi-algebraic mapping:

ϕ : H −→ Rn, (x, v) 7−→ x + v.

Then there exists a semi-algebraic open neighborhood U of the zero-section
X × {0} in H such that the restriction ϕ|U is a C2 diffeomorphism onto a
neighborhood V of X. Moreover, we can take U of the form

U =
{
(x, v) | ‖v‖ < ε(x)

}
,

where ε is a positive C2 semi-algebraic function on X. The proof of this
result is given in [5, Lemma 6.15], for the normal bundle. This proof actually
holds in our case. This provides us with a C2 semi-algebraic retraction
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π : V → X and a C2 semi-algebraic distance function d′ : V → X defined
by π(ϕ(x, v)) = x and d′(ϕ(x, v)) = ‖v‖2.

Lemma 5.1. — There exists an open semi-algebraic neighborhood W

of X in V such that for every y ∈ W , ρ(y) 6 1.1ρ(π(y)). Furthermore, one
can choose W of the form

W =
{
y ∈ V | d′(y) < ε′(π(y))

}
,

where ε′ : X → R is a positive C2 semi-algebraic function.

Proof. — Let A be the semi-algebraic set

A =
{
y ∈ V | ρ(y) > 1.1ρ(π(y))

}
.

Let α : π(A) → R be the function defined as

α(x) = inf
{
d′(y) | y ∈ π−1(x) ∩A

}
.

This is a semi-algebraic function on π(A). Let us prove that it is posi-
tive. The continuity of ρ ◦ ϕ implies that for every x in π(A), there ex-
ists δx with 0 < δx < ε(x), such that ρ(ϕ(x, v)) 6 1.1ρ(ϕ(x, 0)) for every
v in Hx with ‖v‖ 6 δx. Since ‖v‖2 = d′(y) if y = ϕ(x, v), this proves
that α(x) > δx > 0. Let us show that α is locally bounded from below by
positive constants, i.e for every x ∈ π(A), there exist c > 0 and a neigh-
borhood Ω of x in π(A) such that α > c on Ω. If it is not the case, we can
find a sequence of points xn in π(A) tending to x such that α(xn) tends
to 0. Hence there exists a sequence of points yn = ϕ(xn, vn) such that vn

tends to 0, xn tends to x and ρ(ϕ(xn, vn)) > 1.1ρ(ϕ(xn, 0)). By continuity,
we obtain ρ(ϕ(x, 0)) > 1.1ρ(ϕ(x, 0)), which is impossible. Let α̃ : X → R
be defined by α̃(x) = α(x) if x ∈ π(A) and α̃(x) = ε(x) if x /∈ π(A).
The function α̃ is semi-algebraic, positive and locally bounded from below
by positive constants. Applying Lemma 6.12 of [5], we can find a positive
semi-algebraic C2 function ε′ : X → R such that ε′ < α̃ on X. �

Let us study the function d′ : W → R more precisely. Let B be the
semi-algebraic set

B =
{

y ∈ W ∩ E2r0 |
〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖‖∇ρ(π(y))‖

< 0.9
}

.

Let β : π(B) → R be the function defined as

β(x) = inf
{
d′(y) | y ∈ π−1(x) ∩B

}
.

This is a semi-algebraic function on π(B) and β(x) 6 ε′(x), for every
x ∈ π(B). The same argument as in the above lemma shows that β is posi-
tive and locally bounded from below by positive constants. Let β̃ : X → R
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be defined by β̃(x) = β(x) if x ∈ π(B) and β̃(x) = ε′(x) if x /∈ π(B).
The function β̃ is semi-algebraic, positive and locally bounded from below
by positive constants. We can find a positive semi-algebraic C2 function
ε′′ : X → R such that ε′′ < β̃ on X.

Let W ′ be defined by

W ′ =
{
y ∈ V | d′(y) < ε′′(π(y))

}
.

Note that W ′ is included in W . For every y in W ′ ∩ E2r0 , we have

〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖‖∇ρ(π(y))‖

> 0.9.

Since ∇d′(y) belongs to [∇ρ(π(y))]⊥, this can be reformulated in the fol-
lowing way: for every y in W ′ ∩ E2r0 , we have

〈∇ρ(y),∇d′(y)〉
‖∇ρ(y)‖‖∇d′(y)‖

6
√

0.19.

Lemma 5.2. — There exist q0 ∈ N and r′0 > 0 such that for every q > q0

and for every x ∈ X ∩ Er′0
,

1
(1 + ρ(x))q

6 ε′′(x).

Proof. — Let h : [0,+∞[ → R be defined by

h(r) = min
{
ε′′(x) | x ∈ X ∩ Σr

}
.

Since h is a positive semi-algebraic function, there exists an integer q0 and
a real r′0 > 0 such that 1/h(r) < rq0 for every r > r′0. Hence for every
q > q0 and every x ∈ X ∩ Er′0

, we have

1
(1 + ρ(x))q

6 ε′′(x). �

Corollary 5.3. — There exist q0 ∈ N and r′′0 > 0 such that for every
q > q0 and for every y ∈ W ′ ∩ Er′′0

,

1
(1 + ρ(π(y)))q

6 ε′′
(
π(y)

)
.

Proof. — By Lemma 5.1, we can find r′′0 > 0 such that π(y) belongs to
X ∩ Er′0

if y belongs to W ′ ∩ Er′′0
. �

Lemma 5.4. — There exist q1 ∈ N and r′1 > 0 such that for every q > q1

and for every x ∈ X ∩ Er′1
, ‖∇ρ(x)‖ 6 (1 + ρ(x))q.
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Proof. — Let c > 0 be such that [c,+∞[ does not contain any critical
value of ρ. Let ` : [c,+∞[→ R be defined by

`(r) = max
{
‖∇ρ(x)‖ | x ∈ X ∩ Σr

}
.

Since ` is a positive semi-algebraic function, there exits an integer q1 and
a real r′1 > 0 such that `(r) < rq1 for every r > r′1. Hence for every q > q1

and every x ∈ X ∩ Er′1
, we have ‖∇ρ(x)‖ 6 (1 + ρ(x))q. �

Corollary 5.5. — There exist q1 ∈ N and r′′1 > 0 such that for every
q > q1 and for every y ∈ W ′ ∩ Er′′1

, ‖∇ρ(π(y))‖ 6 (1 + ρ(π(y)))q.

Proof. — The proof is the same as Corollary 5.3. �

Proposition 5.6. — There exists an integer q2 such that for every
q > q2, the function d′q : W ′ → R defined by d′q = (1 + ρ(π))qd′ is a
ρ-quasiregular approaching function for X in W ′.

Proof. — Since W ′ = {y ∈ V | d′(y) < ε′′(π(y))} and ε′′ is a positive
function, (X, W ′, d′) satisfies condition (A). Let

W1 =
{
y ∈ V | d′(y) < 1

2ε′′(π(y))
}
.

We have W1 ⊂ W ′. By Corollary 5.3, for every q > q0, the set Er′′0
∩

d−1
q ([0, 1

4 ]) is included in W1. The tuple (X, W ′, d′q) satisfies condition (A).
As it has been already explained in Lemma 2.2, there exists εq > 0 such
that d−1

q ([0, εq]) ∩ Dr′′0
⊂ W1 ∩ Dr′′0

. Let δq be the minimum of 1
4 and εq.

The set d′−1
q ([0, δq]) is included in W1, hence closed in W1 and in W ′. This

proves that d′q is an approaching function for X in W ′.
Let us show that it is ρ-quasiregular. Let us fix r greater than r′′0 , r′′1

and 2r0 and let us fix q2 greater than q0 and q1. For every y in W ∩ Er,
let Py be the orthogonal projection onto the space ∇ρ(y)⊥. We have

∇d′q =
(
1 + ρ(π)

)q−1[ (1 + ρ(π))∇d′ + qd′∇ρ(π)
]
,

hence,
Py(∇d′q)

(1 + ρ(π))q−1 =
(
1 + ρ(π)

)
Py(∇d′) + qd′Py

(
∇ρ(π)

)
.

Let us prove that, for q > q2 and R > r sufficiently big, T (y) can not vanish
if y belongs to d′−1

q ( ]0, 1]) ∩ ER, where

T (y) =
(
1 + ρ(π(y))

)
Py(∇d′(y)) + qd′(y)Py

(
∇ρ(π(y))

)
.

First observe that if y lies in d′−1
q ([0, 1]) ∩ ER, q > q2 and R > r, then

〈∇ρ(y),∇ρ(π(y))〉
‖∇ρ(y)‖‖∇ρ(π(y))‖

> 0.9 and
〈∇ρ(y),∇d′(y)〉
‖∇ρ(y)‖‖∇d′(y)‖

6
√

0.19.
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This implies that ∥∥Py(∇ρ(π(y)))
∥∥ 6

√
0.19

∥∥∇ρ(π(y))
∥∥

and ∥∥Py(∇d′(y))
∥∥ > 0.9

∥∥∇d′(y)
∥∥.

Therefore, we have∥∥qd′(y)Py(∇ρ(π(y)))
∥∥ 6

√
0.19qd′(y)

∥∥∇ρ(π(y))
∥∥

and ∥∥ (1 + ρ(π(y)))Py(∇d′(y))
∥∥ > 0.9

(
1 + ρ(π(y))

)∥∥∇d′(y)
∥∥,

that is to say∥∥ (1 + ρ(π(y)))Py(∇d′(y))
∥∥ > 0.9

(
1 + ρ(π(y))

)
2
√

d′(y).

In order to prove that T (y) does not vanish if y ∈ d′−1
q ([0, 1]) ∩ ER for

q > q2 and R > r sufficiently big, it is enough to prove that

1.8√
0.19

>
q
√

d′(y)‖∇ρ(π(y))‖
1 + ρ(π(y))

·

But if y ∈ d′−1
q ( ]0, 1]) ∩ ER where q > q2 and R > r then we have√

d′(y) 6
1

(1 + ρ(π(y)))
1
2 q
·

So, if we show that

1.8√
0, 19

>
q‖∇ρ(π(y))‖

(1 + ρ(π(y)))
1
2 q+1

,

then the required result is established. Let q be such that 1
2q + 1 > q1. By

Corollary 5.5, we have

q‖∇ρ(π(y))‖
(1 + ρ(π(y)))

1
2 q+1

6
q

(1 + ρ(π(y)))
1
2 q+1−q1

,

for y ∈ d′−1
q ([0, 1])∩ER, R > r. Lemma 5.1 implies that there exists Rq > r

such that if y belongs to d′−1
q ([0, 1]) ∩ ER, with R > Rq, then we have

q

(1 + ρ(π(y)))
1
2 q+1−q1

<
1.8√
0.19

·

This proves the proposition. �

We can state the main result of this section, which is an application of
the uniqueness result stated in Theorem 4.1.

TOME 59 (2009), FASCICULE 1



448 Nicolas DUTERTRE

Theorem 5.7. — Let X be a closed non-compact semi-algebraic set
in Rn which is a C3 submanifold. Let ρ be a control function of class C3.
Any ρ-quasiregular approaching semi-algebraic neighborhood of X is iso-
topic to a tubular neighborhood of X.

Proof. — We known that there exist ρ-quasiregular approaching func-
tions d′q for X in W of the form d′q = (1 + ρ(π))qd′ by the previous propo-
sition. But for ν > 0 sufficiently small the set d′−1

q ([0, ν]) is a tubular
neighborhood of X. It is enough to use Theorem 4.1 to conclude. �

6. Uniqueness of approaching semi-algebraic
neighborhoods

In this section, we prove that two approaching semi-algebraic neighbor-
hoods of a closed non-compact semi-algebraic set are isotopic. We need first
the following proposition.

Proposition 6.1. — Let X ⊂ Rn be a closed non-compact semi-alge-
braic set equipped with a Whitney stratification. There exists a semi-
algebraic function f : Rn → R such that:

1) f > 0 and f−1(0) = X;
2) f is of class C3;
3) for every sequence of points (xk)k∈N in Rn tending to a point y in X

with limk→+∞ ∇f(xk)/‖∇f(xk)‖ = ν, one has ν ⊥ TyS, where S is
the stratum of X containing y and TyS is its tangent space at y.

Proof. — We may assume that 0 /∈ X. Let I : Rn \{0} → Rn \{0} be the
inversion defined by I(x) = x/‖x‖2 and let Y be the compact semi-algebraic
set I(X)∪ {0}. If {Sα}α∈Λ is a Whitney semi-algebraic stratification of X

then {I(Sα)}α∈Λ∪{0} is a Whitney stratification of Y . By [3, Theorem 7.1],
there exists a continuous semi-algebraic function g : Rn → R such that:

i) g > 0 and g−1(0) = Y ;
ii) g is of class C3 on Rn \ Y ;
iii) for every sequence of points (zk)k∈N tending to a point z in Y with

limk→+∞ ∇g(zk)/‖∇g(zk)‖ = τ , one has τ ⊥ TzR, where R is the
stratum of the stratification {I(Sα)}α∈Λ ∪ {0} that contains z.

Let f̃ : Rn\{0} → R be defined by f̃(x) = g(I(x)). The function f̃ is clearly
semi-algebraic, continuous and nonnegative on Rn \ {0}. Furthermore it
is C3 on Rn \ ({0} ∪X) and f̃−1(0) = X.

ANNALES DE L’INSTITUT FOURIER



SEMI-ALGEBRAIC NEIGHBORHOODS OF CLOSED SEMI-ALGEBRAIC SETS449

Let us consider a sequence of points (xk)k∈N tending to a point y in X

such that limk→+∞ ∇f̃(xk)/‖∇f̃(xk)‖ = ν. Then the sequence of points
(zk)k∈N defined by zk = I(xk) tends to the point I(y). A computation of
partial derivatives gives that

∀k ∈ N, ∇g(zk) =
1

‖zk‖2
(
− 2〈∇f̃(xk), xk〉zk + ∇f̃(xk)

)
,

which implies that

‖∇g(zk)‖ =
‖∇f̃(xk)‖
‖zk‖2

= ‖xk‖2 · ‖∇f̃(xk)‖

and that
∇g(zk)
‖∇g(zk)‖

= −2
〈 ∇f̃(xk)
‖∇f(xk)‖

,
xk

‖xk‖

〉 xk

‖xk‖
+

∇f̃(xk)
‖∇f̃(xk)‖

·

Therefore the sequence ∇g(zk)/‖∇g(zk)‖ tends to −2〈ν, y/‖y‖〉y/‖y‖+ ν.
Let us denote this vector by τ . A computation shows that τ=‖y‖2DI(y)(ν).
Let a be a non-zero vector in TyS (S is the stratum containing y) and
let b = DI(y)(a). We have 〈τ, b〉 = 0 hence 〈DI(y)(a), DI(y)(ν)〉 = 0, which
implies that 〈a, ν〉 = 0. We have constructed a continuous semi-algebraic
function f̃ which satisfies conditions 1) and 3) of the proposition, except
that it is not defined at 0. Using [25, Corollary C.12], we can easily obtain
a continuous semi-algebraic function f̄ : Rn → R satisfying conditions 1)
and 3) of the statement. This function is C3 on Rn \X. In order to get a
function C3 everywhere, we use [25, Corollary C.10]: there exists an odd
strictly increasing C3 semi-algebraic function φ : R → R such that φ ◦ f̄

is C3 on Rn. The function φ ◦ f̄ is the desired function f . �

Let us fix now two control functions ρ0 and ρ1. For each t ∈ [0, 1], let
ρt : Rn → R be defined by ρt = (1 − t)ρ0 + tρ1. The functions ρt are
also control functions. We will denote by Σt

r the set ρ−1
t (r), by Dt

r the set
ρ−1

t ([0, r]) and by Et
r the set ρ−1

t ([r, +∞[ ).

Lemma 6.2. — There exists r0 > 0 such that for all r > r0 and for all
t ∈ [0, 1], the sets Σt

r are non-empty compact C2 hypersurfaces of Rn that
intersect each stratum of X transversally.

Proof. — As in [8, Lemma 1.8], we can prove using the curve selection
lemma at infinity (see [21, Lemma 2]) that there exists a compact set K

of Rn such that ∇ρ0 and ∇ρ1 are non-zero and do not point in opposite
direction outside K. Furthermore we can find r1 > 0 such that for r > r1,
Σ0

r and Σ1
r are non-empty C2 submanifolds lying outside K. This implies

that all the sets Σt
r lie outside K.

TOME 59 (2009), FASCICULE 1



450 Nicolas DUTERTRE

Let θ : Rn× [0, 1] → R be defined by θ(x, t) = ρt(x). There exists r2 > r1

such that for every r > r2, θ−1(r) is a C2 submanifold with boundary Σ0
r∪Σ1

r

because θ, viewed as a smooth function on a manifold with boundary,
admits a finite number of critical values. We see that the function t|θ−1(r) :
θ−1(r) → [0, 1] is a smooth fibration since on θ−1(r), ∇ρt can not vanish.
This implies that for t ∈ [0, 1], Σt

r is a non-empty compact C2 hypersurface.
To prove the second part of the lemma, we fix a non compact stratum Sα

of X. Applying the same method to ρ0|Sα
and ρ1|Sα

and to the manifold
with boundary Sα × [0, 1], we find that there exists rα > 0 such that for
each t ∈ [0, 1], Σt

r intersects Sα transversally. Finally, we take r0 to be the
minimum of r2 and the rα’s. �

Let F : Rn × [0, 1] → R be defined by F (x, t) = f(x), where f is the
function constructed in Proposition 6.1, and let ΓF be the semi-algebraic set

ΓF =

{
(x, t) ∈ Rn × [0, 1] | rank

[ ∂F
∂x1

(x, t) · · · ∂F
∂xn

(x, t)
∂θ
∂x1

(x, t) · · · ∂θ
∂xn

(x, t)

]
< 2

}
,

where we recall that θ is defined by θ(x, t) = ρt(x).

Lemma 6.3. — There exists r3 > r0 and an integer q0 such that for every
(x, t) ∈ θ−1([r3,+∞[ )∩ΓF and every q > q0, one has (1+θ(x, t))qf(x) > 1.

Proof. — Let β : ]0,+∞[→ R be the semi-algebraic function

β(R) = inf
{
F (x, t) | (x, t) ∈ θ−1(R) ∩ ΓF

}
.

It is a nonnegative semi-algebraic function. Let us prove that it is posi-
tive at infinity. If it is not the case, there exists R0 such that for every
R > R0, β(R) = 0. This implies that there exists a sequence of points
((xR

k , tRk ))k∈N in θ−1(R) ∩ ΓF such that F (xR
k , tRk ) = f(xR

k ) tends to 0.
Since θ−1(R) is compact, we can assume that (xR

k , tRk ) tends to a point
(xR, tR) such that f(xR) = 0. We can also assume that ∇f(xR

k )/‖∇f(xR
k )‖

tends to a unit vector νR. We know that νR ⊥ TxRS by condition 3) in
Proposition 6.1 (S is the stratum containing xR). Now ∇f(xR

k )/‖∇f(xR
k )‖

is colinear to ∇ρtR
k
(xR

k ), so, taking the limit, we see that νR is colinear
to ∇ρtR(xR). Hence ΣtR

R does not intersect S transversally. By the previ-
ous lemma, we know that this is not possible if R is big enough. Since β is
strictly positive at infinity, there exists r3 > r0 and an integer q0 such that
for every r > r0 and every q > q0, one has β(r)−1 < (1 + r)q. This implies
the result. �

Note that we have proved that for q > q0, the function gt defined by
gt = (1+ρt)qf is ρt-quasiregular and that, furthermore, the radius r3 does
not depend on t, which is the most important point of the lemma.
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Lemma 6.4. — There exists δ0 > 0 such that for all 0 < δ 6 δ0 and all
t ∈ [0, 1], the set g−1

t ([0, δ]) is a ρt-quasiregular approaching semi-algebraic
neighborhood of X in Rn.

Proof. — We know that gt is a ρt-quasiregular approaching function
for X in U and that Γgt,ρt

does not intersect g−1
t ([0, 1]) outside Dt

r3
. It

remains to show that there exists 0 < δ0 < 1 such that for each 0 < δ < δ0,
δ is a regular value of gt, t ∈ [0, 1], smaller than all nonzero critical value
of gt. Let Z =

⋃
t∈[0,1] D

t
r3

. We observe that Z is a compact set and that gt,
t ∈ [0, 1], does not admit any critical point in g−1

t ( ]0, 1[) ∩ Rn \ Z, be-
cause such a point would belong to Γgt,ρt

. Hence it is enough to prove that
there exists δ0, 0 < δ0 < 1, such that gt does not admit any critical point
in Z ∩ g−1

t ( ]0, δ0[ ).
There exists a neighborhood U of X in Z such that ∇g0 and ∇g1 do not

vanish and do not point in opposite direction in U \X. Let δ0, 0 < δ0 � 1,
be a regular value of g0 and g1, smaller than all nonzero critical value of g0

and g1 such that g−1
0 ([0, δ0])∩Z and g−1

1 ([0, δ0])∩Z are included in U . We
claim that for each t ∈ [0, 1], g−1

t ( ]0, δ0]) ∩ Z does not contain any critical
point. Let us remark first that g−1

t ([0, δ0]) ∩ Z is included in U . This is an
easy consequence of the following implication:

1 + gt(x) 6
( δ0

f(x)

) 1
q

=⇒ 1 + g0(x) 6
( δ0

f(x)

) 1
q

or 1 + g1(x) 6
( δ0

f(x)

) 1
q

.

Now if gt admits a critical point x in g−1
t ( ]0, δ0]) ∩ Z then(

1 + ρt(x)
)q∇f(x) + q

(
1 + ρt(x)

)q−1
f(x)∇ρt(x)

vanishes which implies that ∇g0(x) and ∇g1(x) point in opposite direction.
This is impossible and δ0 is the required common regular value. �

Let G : Rn × [0, 1] → R be defined by G(x, t) = gt(x). Let δ be a
positive regular value of G smaller than δ0. The set T0 = g−1

0 ([0, δ]) (resp.
T1 = g−1

1 ([0, δ])) is a ρ0-quasiregular (resp. ρ1-quasiregular) approaching
semi-algebraic neighborhood of X in Rn.

Theorem 6.5. — There exists a continuous family of diffeomorphisms
hs : Rn → Rn, 0 6 s 6 1, such that:

1) h0 is the identity;
2) for all s, hs|X is the identity;
3) h1(T0) = T1.
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Proof. — Let δ′ be a positive regular value of G strictly smaller than δ.
Let W be the following semi-algebraic set of Rn × R:

W =
{
(x, t) ∈ Rn × [0, 1] | δ′ 6 G(x, t) 6 δ

}
.

It is a C2-manifold with corners of dimension n + 1. Changing r3 into a
greater value if necessary, we can assume that for r > r3, the compact
sets θ−1(r) are smooth manifolds that intersect W transversally. Let en+1

be the unit vector in Rn+1 equal to (0, . . . , 0, 1), this the gradient of the
function t. The restriction of the function t does not admit any critical
point on the manifolds G−1(δ′′), δ′′ ∈ [δ′, δ], for otherwise one of the gt’s
would have a critical point on g−1

t (δ′′). By Lemmas 6.2 and 6.3, the restric-
tion of the function t does not admit any critical point on the manifolds
θ−1(r)∩G−1(δ′′), with δ′′ ∈ [δ′, δ] and r > r3. Proceeding as in the previous
sections, we define a vector field w̃ on W which is equal to the projection
of en+1 on the levels of G in a compact set of W and which is equal to the
projection of en+1 on the manifolds θ−1(r)∩G−1(δ′′) at infinity. Let U be
an open neighborhood of W disjoint from G−1(0). Using a function equal
to 1 on W and 0 on the closed set Rn × [0, 1] \U , we extend w̃ to a vector
field w equal to en+1 on Rn × [0, 1] \ U . Integrating w gives a family of
diffeomorphisms Hs : Rn × [0, 1] → Rn × [0, 1] such that H0 is the identity,
H1(T0 × {0}) = T1 × {1} and Hs|X×{0} = id|X × {s} for s ∈ [0, 1] (here
id|X is the identity on X). Let hs : Rn → Rn, s ∈ [0, 1], be defined by
∀x ∈ Rn, Hs(x, 0) = (hs(x), s). The family hs is the required family of
diffeomorphisms. �

Corollary 6.6. — Two approaching semi-algebraic neighborhoods of
a closed non-compact semi-algebraic set are isotopic.

Proof. — This is a consequence of Theorems 4.1 and 6.5. �

Corollary 6.7. — Let X be a closed semi-algebraic set in Rn and let
φ : Rn → Rn be a C2 semi-algebraic diffeomorphism whose inverse is also
semi-algebraic. Then an approaching semi-algebraic neighborhood of X and
an approaching semi-algebraic neighborhood of φ(X) are diffeomorphic.

Proof. — Let ρ be a control function and let T be a ρ-quasiregular ap-
proaching semi-algebraic neighborhood of X of the form f−1([0, δ]). The
function ρ ◦ φ−1 is a control function and φ(T ) = (f ◦ φ−1)−1([0, δ]) is a
(ρ ◦ φ−1)-quasiregular approaching semi-algebraic neighborhood of φ(X)
diffeomorphic to T . �
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7. Degree formulas for the Euler-Poincaré characteristic of
a closed semi-algebraic set

In this section, we give degree formulas for the Euler-Poincaré character-
istic of a closed semi-algebraic set X included in Rn. When X is algebraic,
we deduce from these formulas a Petrovskii-Oleinik inequality for |1−χ(X)|.

Let X ⊂ Rn be a closed semi-algebraic set and let f : Rn → R be a
nonnegative C2 semi-algebraic function such that X = f−1(0), i.e f is an
approaching function for X in Rn. Let ρ be a control function. For every
q ∈ N, we will denote by fq the function defined by fq = (1+ρ)qf . We will
also denote by Γf,ρ (resp. Γfq,ρ) the polar set

Γf,ρ =
{
x ∈ Rn \X | ∇f(x) (resp. ∇fq(x)) and ∇ρ(x) are colinear

}
.

Note that Γf,ρ = Γfq,ρ for each q ∈ N. The following proposition is similar
to Proposition 2.6 and is proved in the same way.

Proposition 7.1. — There exists an integer q0 such that for every
q > q0, the following property holds: for any sequence (xk)k∈N ⊂ Γfq,ρ

such that limk→+∞ ‖xk‖ = +∞, we have limk→+∞ fq(xk) = +∞.

Let us fix an integer q satisfying the property of the previous proposition.
Let Σ(fq) be the set of critical points of fq and let Σ∗(fq) be the set of
critical points of fq lying in Rn \X.

Corollary 7.2. — The set Σ∗(fq) is compact.

Proof. — It is clearly closed as an union of connected components of the
closed set Σ(fq). If it is not bounded, there exists a sequence of points
(xk)k∈N such that xk /∈ X, ∇fq(xk) = 0 and limk→+∞ ‖xk‖ = +∞. Since
for each k ∈ N, xk also belongs to Γfq,ρ, this gives a contradiction. �

Let us decompose Σ∗(fq) into the finite union of its connected compo-
nents Kq

1 , . . . ,Kq
mq

:

Σ∗(fq) =
mq⋃
i=1

Kq
i .

Before stating the main results of this section, we need to introduce some
notations. For each i ∈ {1, . . . ,mq}, let Ui be a relatively compact neighbor-
hood of Kq

i such that ∂Ui is a smooth hypersurface and Ui ∩Σ∗(fq) = Kq
i .

For any mapping F : Rn → Rn such that F−1(0)∩Ui = Kq
i or F−1(0)∩Ui

is empty, we will denote by degKq
i
F the topological degree of the mapping

F

‖F‖
: ∂Ui −→ Sn−1, x 7−→ F (x)

‖F (x)‖
·
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It is well known that this topological degree does not depend on the choice
of the relatively compact neighborhood Ui.

Theorem 7.3. — The Euler-Poincaré characteristic of the closed semi-
algebraic set X is related to ∇fq by the formula

χ(X) = 1−
mq∑
i=1

degKq
i
∇fq.

Proof. — By Proposition 7.1, fq is a ρ-quasiregular approaching function
for X in Rn. Theorem 3.2 implies that for ε > 0 sufficiently small

χ(X) = χ
(
{fq 6 ε}

)
.

By the Mayer-Vietoris sequence, we have

(1) 1 = χ
(
{fq 6 ε}

)
+ χ

(
{fq > ε}

)
− χ

(
{fq = ε}

)
.

We will apply Morse theory to the manifold with boundary DR and to the
function fq. We will follow the terminology of [9], Section 2, pp. 46–47.
Let us first show that fq does not admit any inward critical point on
ΣR ∩ {fq > ε} for R sufficiently big and ε sufficiently small (an inward
critical point p is a critical point p of fq |ΣR

such that ∇fq(p) is a negative
multiple of ∇ρ(p)). If it is not the case, then we can find a sequence of points
(xk)k∈N in Γfq,ρ such that ∇fq(xk) is a negative multiple of ∇ρ(xk). Using
the version at infinity of the Curve Selection Lemma (see [21, Lemma 2]),
we obtain that limk→+∞ fq(xk) exists and belongs to [0,+∞[, which con-
tradicts the property of Proposition 7.1.

Let us fix R sufficiently big and ε sufficiently small so that Σ∗(fq) ⊂ DR,
fq does not have inward critical points in ΣR ∩ {fq > ε} and

χ
(
{fq > ε}

)
= χ

(
{fq > ε}∩DR

)
and χ

(
{fq = ε}

)
= χ

(
{fq = ε}∩DR

)
.

Since fq does not have inward critical points in ΣR∩{fq > ε}, Morse theory
for manifolds with boundary implies that

(2) χ
(
{fq > ε} ∩Dr

)
− χ

(
{fq = ε} ∩Dr

)
=

mq∑
i=1

degKq
i
∇fq.

The final result is just a combination of equalities (1) and (2). �

Let Fq : Rn → Rn be the mapping defined by

Fq = qf ∇ρ + (1 + ρ)∇f.

Note that ∇fq = (1 + ρ)q−1Fq. Hence ∇fq and Fq admit the same zeros
in Rn.
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Corollary 7.4. — The Euler-Poincaré characteristic of X is related
to Fq by the formula

χ(X) = 1−
mq∑
i=1

degKq
i
Fq.

Proof. — It is enough to prove that degKq
i
Fq = degKq

i
∇fq, for every

i ∈ {1, . . . ,mq}. Let us choose a relatively compact neighborhood Ui of Kq
i

such that ∂Ui is a smooth manifold, F−1
q (0) ∩ Ui = Kq

i = ∇f−1
q (0) ∩ Ui.

The result is clear since on ∂Ui, we have ∇fq/‖∇fq‖ = Fq/‖Fq‖. �

Corollary 7.5. — Let Gq : Rn+1 → Rn+1 be the mapping defined by
Gq(λ;x) = (f(x)λ − 1, Fq(x)). The set G−1

q (0) is compact and if R > 0 is
such that G−1

q (0) ( Bn+1
R , then

χ(X) = 1− degSn
R
Gq.

Here Bn+1
R and Sn

R are the ball and the sphere of radius R in Rn+1.

Proof. — Since Gq(λ;x) = 0 if and only if Fq(x) = 0, f(x) 6= 0 and
λ = 1/f(x), it is straightforward to see that G−1

q (0) is compact. The rest
of the proof is easy. �

These formulas are global versions of a result due to Khimshiasvili [13]
on the Euler characteristic of the real Milnor fibre. It states that, if g :
(Rn, 0) → (R, 0) is an analytic function-germ with an isolated critical point
at the origin, then

χ
(
g−1(δ) ∩Bn

ε

)
= 1− sign(−δ)n deg0 ∇g,

for any regular value δ of g, 0 < |δ| � ε � 1. Here deg0 ∇g is the topological
degree of ∇g/‖∇g‖ : Sn−1

ε → Sn−1.
In their fundamental paper [23], Petrovskii and Oleinik estimated the

Euler characteristic of some real projective algebraic sets. More precisely
they gave an upper bound for the quantities

• |χ(Y )− 1| where Y is a real projective hypersurface of even dimen-
sion;

• |2χ(Z−) − 1| where Z− is the subset of RPn that is bounded by
a real projective hypersurface Y of odd dimension and even degree
and corresponds to the negative values of the polynomial that de-
termines Y .

These results were generalized by Kharlamov [11], [12]. In [1], Arnol’d
found a new proof, based on Khimshiashvili’s formula, and an equiva-
lent formulation of the original Petrovskii-Oleinik inequalities. Let us state
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Arnol’d’s version of these inequalities. We need some notations. With ev-
ery n-tuple of positive integers m = (m1, . . . ,mn) and with every positive
integer m0, we will associate the objects:

• ∆n(m) is the parallelepiped in Rn defined by the inequalities

0 6 x1 6 m1 − 1, . . . , 0 6 xn 6 mn − 1;

• µ = m1 · · ·mn is the number of integral points in ∆n(m);
• ν = 1

2 (m1 + · · · + mn − n) is the mean value of the sum of the
coordinates of the points in ∆n(m),

• Πn(m) is the number of integral points on the central section
x1 + · · ·+ xn = ν of the parallelepiped ∆n(m);

• Πn(m,m0) is the number of integral points in ∆n(m) that lie in
the strip

ν − 1
2m0 6 x1 + · · ·+ xn 6 ν + 1

2m0;

• On(m,m0) is the number of integral points in ∆n(m) that satisfy
the inequalities

ν − 1
2m0 6 x1 + · · ·+ xn 6 ν.

Arnol’d [1] proved the following theorem.

Theorem 7.6. — Let f be a homogeneous polynomial of degree d in Rn

defining a non-singular hypersurface Y in RPn−1. If n is even, we have∣∣1− χ(Y )
∣∣ 6 Πn(d− 1), where d− 1 = (d− 1, . . . , d− 1) in Nn.

If n is odd and d is even, let Z− be the subset of RPn that is bounded
by Y and corresponds to the negative values of the polynomial f . We have∣∣1− 2χ(Z−)

∣∣ 6 Πn(d− 1).

Khovanskii [14] (see also [15]), gave an affine version of this theorem.

Proposition 7.7. — Let f : Rn → R be a polynomial of degree d such
that the surface {f = 0} is nonsingular and the domains {f 6 c} are
compact for every c ∈ R. Then the Euler-Poincaré of the domain {f 6 0}
satisfies the inequality∣∣1− 2χ({f 6 0})

∣∣ 6 Πn(d− 1, d− 1),

where d− 1 = (d− 1, . . . , d− 1) in Nn.

Our aim is to give a Petrovskii-Oleinik inequality for the Euler-Poincaré
characteristic of any algebraic set in Rn. Let X be an algebraic set in Rn de-
fined as the zero set of the polynomials f1, . . . , fk, each fi having degree di.
Hence X = {x ∈ Rn | f(x) = 0} where f = f2

1 + · · ·+f2
k . The degree of the
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polynomial f is d = 2 max{d1, . . . , dk}. The following proposition gives an
upper bound for |1− χ(X)| in terms of d.

Proposition 7.8. — Let X be an algebraic set in Rn defined as the set
of zeros of a nonnegative polynomial f of even degree d. We have∣∣1− χ(X)

∣∣ 6 On+1(d + 1, 2),

where d + 1 = (d + 1, . . . , d + 1) in Nn+1.

Proof. — Let ω : Rn → R be defined by ω(x) = x2
1 + · · ·+ x2

n. Applying
the argument described above to the functions f and ω, we find that there
exists an integer q sufficiently big and a real R > 0 sufficiently big such that

χ(X) = 1− degSn
R

Gq.

Let δ be a small positive regular value of Gq and let {p1, . . . , pl} be the set
of preimages of δ by Gq lying in Bn+1

R . We have

1− χ(X) = degSn
R
(Gq − δ) =

∑̀
j=1

degpj
(Gq − δ).

Since each component of Gq−δ has a degree not exceeding d+1, the square
of the euclidian distance function in Rn+1 has degree 2 and 2+(n+1)(d+1)
≡ n+1 mod 2; Theorem 2 of [14] applied to the vector field Gq− δ and the
function R− (x2

1 + · · ·+ x2
n + λ2) gives∣∣∣ ∑̀

j=1

degpj
(Gq − δ)

∣∣∣ 6 On+1(d + 1, 2),

where d + 1 = (d + 1, . . . , d + 1) in Nn+1. �
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