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INVERSE SPECTRAL RESULTS ON EVEN
DIMENSIONAL TORI

by Carolyn S. GORDON, Pierre GUERINI,
Thomas KAPPELER & David L. WEBB (*)

Abstract. — Given a Hermitian line bundle L over a flat torus M , a connection
∇ on L, and a function Q on M , one associates a Schrödinger operator acting on
sections of L; its spectrum is denoted Spec(Q; L,∇). Motivated by work of V.
Guillemin in dimension two, we consider line bundles over tori of arbitrary even
dimension with “translation invariant” connections∇, and we address the extent to
which the spectrum Spec(Q; L,∇) determines the potential Q. With a genericity
condition, we show that if the connection is invariant under the isometry of M
defined by the map x → −x, then the spectrum determines the even part of the
potential. In dimension two, we also obtain information about the odd part of
the potential. We obtain counterexamples showing that the genericity condition
is needed even in the case of two-dimensional tori. Examples also show that the
spectrum of the Laplacian defined by a connection on a line bundle over a flat
torus determines neither the isometry class of the torus nor the Chern class of the
line bundle.

In arbitrary dimensions, we show that the collection of all the spectra
Spec(Q; L,∇), as ∇ ranges over the translation invariant connections, uniquely
determines the potential. This collection of spectra is a natural generalization to
line bundles of the classical Bloch spectrum of the torus.

Résumé. — À un fibré en droites hermitien sur un tore plat M , une connexion
∇ sur L et une fonction Q sur M , on associe un opérateur de Schrödinger agissant
sur les sections de L ; on note Spec(Q; L,∇) son spectre. À la suite du travail de V.
Guillemin en dimension deux, on considère des fibrés en droites complexes au des-
sus de tores de dimension paire quelconque ainsi qu’une connexion « invariante par
translation » fixée et on se demande dans quelle mesure Spec(Q; L,∇) détermine
le potentiel Q. Sous une condition générique, on montre que le spectre détermine
la partie paire du potentiel, à condition que la connexion soit invariante par l’iso-
métrie du tore définie par l’application x 7→ −x. En dimension deux, on obtient
également des informations sur sa partie impaire. On obtient des contre-exemples
qui montrent que la condition générique utilisée est nécessaire même dans le cas des
tores de dimension deux. Ces exemples montrent aussi que le spectre du laplacien
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2446 C.S. GORDON, P. GUERINI, T. KAPPELER & D.L. WEBB

défini par une connexion sur un fibré en droites sur un tore plat ne détermine ni
la classe d’isométrie du tore ni la classe de Chern du fibré.

En dimension quelconque, on montre que la collection de tous les spectres
Spec(Q; L,∇), lorsque∇ parcourt l’ensemble des connexions invariantes, détermine
le potentiel de manière unique. Cette collection de spectres est une généralisation
naturelle aux fibrés en droites du spectre classique de Bloch sur le tore.
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1. Introduction

Let M be a flat n-dimensional torus L\Rn. To each smooth function
Q on M , viewed as an L-periodic function Q : Rn → R, one associates
a Schrödinger operator ∆ + Q. In their pioneering work [4], G. Eskin, J.
Ralston, and E. Trubowitz address the extent to which the potential Q

is determined by its periodic spectrum Spec(Q), i.e., by the spectrum of
the Schrödinger operator acting on L-periodic functions, and also by the
more extensive data of the Bloch spectrum. The latter associates to each
linear functional α on Rn the spectrum Specα(Q) of the Schrödinger oper-
ator acting on smooth functions on Rn satisfying the condition f(x + l) =
e2πiα(l)f(x) for all l ∈ L. In what follows, we will refer to the Bloch spec-
trum as the “classical Bloch spectrum.” As explained in Section 2, the clas-
sical Bloch spectrum can be viewed as the spectrum of the bundle Laplacian
determined by a flat connection on the trivial complex line bundle over M .

Given a Hermitian line bundle L over M and a connection ∇ on L, one
associates a Laplace operator acting on smooth sections of L. A smooth
function Q on M then gives rise to a Schrödinger operator acting on sec-
tions of the bundle. The spectrum Spec(Q;L,∇) of this operator depends
both on the connection and on the potential. In case L is the trivial bundle
and ∇ the trivial connection, then Spec(Q;L,∇) coincides with the peri-
odic spectrum of Q. The torus M = L\Rn is said to have nondegenerate
length spectrum if for each l ∈ L, the only elements of L of length |l| are
±l. G. Eskin [3] addressed the problem of determining both the connection
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INVERSE SPECTRAL RESULTS 2447

and potential from Spec(Q;L,∇) in the case of an arbitrary connection and
potential on trivial line bundles L over two-dimensional tori with nonde-
generate length spectrum. Our work is motivated by that of V. Guillemin
[10] who addressed the same question for line bundles of Chern number
one. For 2-tori with nondegenerate length spectrum and for the class of
connections and potentials that are invariant under the isometry of M de-
fined by the map x → −x, he first proved under curvature bounds on the
connection that Spec(Q;L,∇) determines the connection. He then proved
that for a given connection, Spec(Q;L,∇) determines the potential.

In this article, we consider Schrödinger operators on Hermitian line bun-
dles L over higher-dimensional tori. In general dimensions, it seems unlikely
that one could recover the connection from the spectrum of the Schrödinger
operator. Thus we fix either a single connection or a family of specified con-
nections on a line bundle L and ask whether the potential function can be
determined from the associated spectral data. Associated to each connec-
tion on L is a curvature 2-form on M . By an abuse of language, we will refer
to a connection as translation-invariant if the associated curvature 2-form
is translation-invariant, i.e., invariant under the group of isometries of the
torus given by the translations. For a given potential function Q, the map-
ping ∇ 7→ Spec(Q;L,∇) as ∇ ranges over the translation-invariant con-
nections is a natural analog of the classical Bloch spectrum (as explained
in Remark 2.23) and thus will be referred to as the L-Bloch spectrum of Q.
Among the translation invariant connections on L, there is a unique con-
nection (up to gauge equivalence) that is also Z2-invariant, i.e., invariant
under the map x → −x of Rn, and exactly 2n connections that are weakly
Z2-invariant in the sense that they are gauge equivalent to their pullbacks
with respect to the map x → −x. We address two questions in this article:

• Given a weakly Z2-invariant, translation invariant connection ∇ on
L, does Spec(Q;L,∇) determine Q?

• Does the L-Bloch spectrum of Q determine Q?

A line bundle over a torus is uniquely determined up to equivalence by
its Chern class. We consider bundles whose Chern class is represented by
a nondegenerate two-form. This condition forces the dimension of M to
be even, say n = 2m. As will be explained in Section 2, associated to the
Chern class is an ordered m-tuple (r1, . . . , rm) of positive integers such
that ri|ri+1 for i = 1, . . . ,m− 1; we refer to the integers rj as the invariant
factors of the Chern class. The m-tuple of invariant factors is a topological
invariant of the line bundle but not a complete invariant (although in the
case m = 1, r1 is, up to sign, the Chern number of the bundle).

TOME 58 (2008), FASCICULE 7
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For our positive results, we restrict attention to the case in which all
the invariant factors of the Chern class equal 1, the analog of the setting
studied by Guillemin in dimension 2. In this setting, we give an affirmative
answer to the second question even without assuming nondegeneracy of
the length spectrum. For the first question, we obtain some positive results
in the setting of tori with nondegenerate length spectrum. We also con-
struct counterexamples illustrating that, both in the two-dimensional case
studied by Guillemin and in the higher dimensional case studied here, the
hypothesis of nondegeneracy of the length spectrum cannot be dropped.

We first state the negative results. Two potentials Q1 and Q2 on a torus
M are said to be congruent if there exists an isometry σ of M such that
Q2 = Q1 ◦ σ.

Theorem 1.1. — Let M be a rectangular nonsquare 2-torus for which
the ratio of the side lengths is rational. Then for every line bundle L over
M with nondegenerate Chern class and for every translation invariant con-
nection ∇ on L, there exist pairs of noncongruent potentials Q1 and Q2

on M such that Spec(Q1;L,∇) = Spec(Q2;L,∇). The potentials may be
chosen to be real analytic.

A slightly weaker result holds in arbitrary even dimensions, as explained
in Section 3.

According to Theorem 4.2 in [6] Part I, the potentials we construct do not
have the same periodic spectrum. This example is contrary to the general
belief that “spectral rigidity” in the case of a non trivial line bundle is more
pronounced than in the case of a trivial line bundle.

The method used to construct the examples in Theorem 1.1 also yields
results concerning the spectrum of the Laplace operator itself. Letting
Spec(L,∇) denote the spectrum of the Laplacian defined by ∇ acting on
sections of L, we show (in contrast to the case of the Schrödinger opera-
tor with nontrivial potential) that within the class of translation invariant
connections ∇ on L, the spectrum Spec(L,∇) is independent of the choice
of ∇. We refer to this common spectrum as the spectrum of L. We show:

• For every even integer n > 4, there exists an n-dimensional flat
rectangular torus M and a pair of topologically distinct, isospectral
line bundles over M . The Chern classes of these line bundles have
different invariant factors.

• For every even integer n = 2m, there exist pairs of nonisometric
n-dimensional flat tori M and M ′ such that for every choice of
r = (r1, . . . , rm) as above, there is a pair of isospectral line bundles
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INVERSE SPECTRAL RESULTS 2449

Lr → M and L′r → M ′. Thus the spectrum does not determine the
isometry class of the torus.

We next address the positive results. First note that the spectrum of the
Schrödinger operator associated with a fixed connection on a line bundle
L may sometimes distinguish between congruent potentials. In particular,
given a smooth potential Q on M , let Q̌ denote the congruent potential
given by Q̌(x) = Q(−x). For the bundles L that we consider, Spec(Q̌;L,∇)
will typically differ from Spec(Q;L,∇) when ∇ is not weakly Z2-invariant.
In fact, a consequence of Theorem 1.3 below is that Q and Q̌ are dis-
tinguished by their L-Bloch spectra when all the Chern invariant factors
of L equal one. On the other hand, we will see that Spec(Q̌;L,∇) and
Spec(Q;L,∇) do agree when ∇ is weakly Z2-invariant.

Our first theorem below generalizes to tori M of arbitrary even dimension
n = 2m a result of Guillemin [10] in dimension two. Both theorems below
are based on wave invariants constructed in the appendix.

Given a connection ∇ on L and a potential Q, we let Iso(Q;L,∇) denote
the set of all potentials P such that Spec(P ;L,∇) = Spec(Q;L,∇).

Theorem 1.2. — Let M2m be an even-dimensional torus with nonde-
generate length spectrum, and let L → M be a line bundle with Chern
invariant factors r1 = · · · rm = 1. Let Q be a smooth potential on M .
Then the following statements hold for every translation invariant, weakly
Z2-invariant connection ∇ on L:

(a) For any P ∈ Iso(Q;L,∇),
1
2
(P + P̌ ) =

1
2
(Q + Q̌),

i.e. the even part Q+ := 1
2 (Q + Q̌) of Q is uniquely determined by

Spec(Q;L,∇).
(b) If Q is assumed to be even, then Iso(Q;L,∇) = {Q}.

We will show in Section 4 that when m = 1, the odd part of Q has strong
spectral rigidity properties as well (see Theorem 4.9) and its corollaries.

Theorem 1.1 shows that the nondegeneracy hypothesis cannot be
dropped in Theorem 1.2, in contrast to the following result.

Theorem 1.3. — Let M2m be an even-dimensional torus and let L →
M be a line bundle with Chern invariant factors r1 = · · · rm = 1. Then
every smooth potential Q on M is uniquely determined by its L-Bloch
spectrum.

We emphasize the generality of Theorem 1.3; in particular, we do not
assume nondegeneracy of the length spectrum. In the special case in which

TOME 58 (2008), FASCICULE 7
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the length spectrum is nondegenerate, then Theorem 1.3 can be improved;
see Remark 4.5.

Since, as noted above, Spec(Q;L,∇) = Spec(Q̌;L,∇) when ∇ is transla-
tion invariant and weakly Z2-invariant, Theorem 1.3 shows that
Spec(Q;L,∇) does not suffice to determine the full L-Bloch spectrum of
Q even in the nondegenerate case.

In contrast, when the bundle L in Theorem 1.3 is replaced by a trivial
bundle, then the conclusion of Theorem 1.3 fails. In fact, it can be easily
verified that Q and Q̌ have the same classical Bloch spectrum. Moreover,
G. Eskin, J. Ralston, and E. Trubowitz [4] showed that for real analytic
potentials Q, the periodic spectrum of Q determines the classical Bloch
spectrum of Q. See Remark 4.6 for further discussion of this contrasting
behavior as well as possible similarities.

The paper is organized as follows. In section 2 we introduce the line
bundles, connections and spectra as well as the notation that are used
throughout the paper. The reader interested only in wave invariants and
positive results need only read the first two subsections of Section 2. The
third subsection gives the background used in the construction of the coun-
terexamples. In section 3 we prove Theorem 1.1 and other negative inverse
spectral results for rectangular tori. In section 4 we prove Theorem 1.2, The-
orem 1.3 and additional positive results. Recall that a quantitiy I(Q,L,∇)
is a spectral invariant of (Q,L,∇) if I(Q′, L′,∇′) = I(Q,L,∇) whenver
Spec(Q′;L′,∇′) = Spec(Q;L,∇). The proofs of the positive results use
wave invariants, which are spectral invariants arising from the asymptotics
of the wave trace. In the appendices, we construct the necessary wave in-
variants by adapting to our setting constructions developed in [4] (cf also
[3] and [10]) to the case of non-trivial line bundles.

Acknowledgment. The authors wish to thank Y. Kurylev for pointing
out that an earlier version of Theorem 1.3 could be strengthened. In par-
ticular, the earlier version assumed that the length spectrum of the torus
was nondegenerate. We also thank Dorothee Schueth for bringing to our
attention the distinction between the notions of Z2-invariance and weak Z2-
invariance of connections (see Definition 2.12). Finally, we thank Thomas
Haller and the referee for suggesting various improvements to the text.

2. Line bundles over tori: construction and classification

The results in this section are standard; we include them for completeness
and for setting up notation.
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2A. Invariant factors of 2-forms

Let n > 2, let L be a lattice of maximal rank in Rn, and let g0 be an
inner product on Rn. Then M := (L\Rn, g0) is a flat Riemannian torus of
dimension n. We review the classification and construction of complex line
bundles over M .

A complex line bundle L over M is classified up to equivalence by its
Chern class c1(L) in H2(M ; Z). Like every real or integer cohomology class
on the torus M , the Chern class may be uniquely represented by a trans-
lation invariant 2-form Ω on Rn; this is the harmonic representative of the
class. This form Ω may be viewed as an antisymmetric bilinear map on
Rn ×Rn that takes integer values on L×L. We will consider only bundles
with nondegenerate Chern class; i.e., we require that Ω be a nondegenerate
bilinear map. In order that such a nondegenerate antisymmetric bilinear
form exist, the dimension n of M must be even.

The following result is standard. See, for example, [8], page 304.

Lemma 2.1. — Let n = 2m be an even integer. Given a nondegenerate
antisymmetric bilinear map Ω on Rn × Rn that takes integer values on
L × L, there exists a unique m-tuple (r1, . . . , rm) of positive integers with
the following properties:

• r1|r2| . . . |rm;
• there exists a lattice basis B = {U1, . . . , Um, V1, . . . , Vm} of L such

that Ω(Uj , Vj) = rj for j = 1, . . . ,m and Ω vanishes on all other
pairs of vectors from B.

Equivalently, letting (u, v) := (u1, . . . , um, v1, . . . , vm) be the coordinates
on Rn associated with the basis B and viewing Ω as a 2-form on Rn, we
have

Ω =
m∑

j=1

rj duj ∧ dvj .

Remark 2.2. — The nondegenerate form Ω : L × L → Z induces an
injective map L → L∗ := HomZ(L, Z), i.e., an injection Zn → Zn. The
sequence r1, r1, r2, r2, . . . , rm, rm is just the sequence of invariant factors
associated with this injection, i.e., the entries of its Smith normal form.

Definition 2.3. — In view of Remark 2.2, in the notation of Lemma
2.1, we will refer to the integers (r1, . . . , rm) as the invariant factors of the
cohomology class [Ω] ∈ H2(M ; Z).

TOME 58 (2008), FASCICULE 7
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Notation 2.4.

(i) Throughout the rest of this section, we fix r = (r1, . . . , rm) (all
nonzero) with r1|r2| . . . |rm, and we fix a lattice basis

B = {U1, . . . , Um, V1, . . . , Vm},

thus defining coordinates (u1, . . . , um, v1, . . . , vm). For x ∈ Rn, we
will express x in these coordinates as

x = (u(x), v(x)) =
m∑

j=1

uj(x)Uj + vj(x)Vj .

Define a 2-form Ω by Ω =
∑m

j=1 rj duj ∧ dvj .
(ii) Given x, y in Rn, define

(2.1) ex(y) =
m∑

j=1

rjuj(x)vj(y).

In particular, viewing Ω as a bilinear form on Rn, we have
Ω(x, y) = ex(y)− ey(x).

Remark 2.5. — In the notation of 2.4, [Ω] depends on the choice of B
as well as on (r1, . . . , rm). However, if the torus M is two-dimensional, the
cohomology class depends only on the invariant factor r(= r1) and the ori-
entation of the basis B. In this case, if L is a line bundle with Chern class
c1(L) = [Ω], then the Chern number of L is ±r, with the sign depending on
the orientation of the basis B. While we will normally assume that the inte-
gers ri in 2.4 are positive (i.e., that they are the invariant factors as defined
in 2.3), the constructions in Subsections 2B and 2C below never use the
positivity of the integers ri. In considering two-dimensional tori, it is conve-
nient to allow r to be an arbitrary nonzero integer so that as r varies (with
the basis B remaining fixed), the corresponding 2-forms Ω range over all
nontrivial cohomology classes in H2(M ; Z), which parametrize nontrivial
complex line bundles over a two-dimensional torus M .

2B. Line bundles, connections, and spectra.
Given the data in Notation 2.4(i), we now construct a complex Hermitian

line bundle L over the torus M and a connection on L. By computing the
curvature of this connection, we will see below that the line bundle has
Chern class [Ω].

Definition 2.6. — Define an action of the group L on the total space
Rn × C of the trivial complex line bundle over Rn as follows: for l ∈ L,
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x ∈ Rn, and z ∈ C,

(2.2) l.(x, z) = (l + x, e2πiel(x)z),

where el(x) is given by Notation 2.4(ii). We define L to be the orbit space
of the L-action on Rn × C.

Denote elements of L by [(x, z)]. The bundle projection Rn × C → Rn

is L-equivariant, so induces π : L → M by π([(x, z)]) = x ∈ L\Rn = M .
Then L is a complex line bundle over M . Moreover, L pulls back to our
original trivial line bundle Rn × C over Rn. Many of our considerations –
sections, connections, curvature, etc. – will be simplified by expressing data
associated with the bundle L via corresponding “pullback” data associated
with the trivial complex line bundle over Rn.

(Aside: We can endow L with local trivializations in such a way that
its structure group is the unitary group U(1). To describe the local trivi-
alizations and transition functions explicitly, let p : Rn → M = L\Rn be
the projection. Given x ∈ M , let U be an evenly covered neighborhood
of x in M , so p−1(U) is a union of disjoint open sheets each carried dif-
feomorphically by p to U . Let U be one of these sheets. For each y ∈ U ,
let y ∈ U be the unique lift of y in U . Define tU : L|U → U × C by
tU ([(y, z)]) = (y, z). If U ′ is another of the sheets of p−1(U), then there
exists l ∈ L such that U ′ = l+U = {l+y : y ∈ U}. The transition function
tU ′ ◦ (tU )−1 : U × C → U × C is given by (y, z) 7→ (y, σU ′U (y)z), where
σU ′U : U ∩U

′ → U(1) is given by y 7→ e2πiel(y). We emphasize that e2πiel(y)

is independent of the choice of lift y of y in Rn since el(L) ⊂ Z.)
The Hermitian structure on the trivial bundle Rn×C given by the stan-

dard Hermitian inner product on C induces a Hermitian structure on L.
Given any bundle B, we denote by E(B) the space of smooth sections

of B. An element of E(Rn × C) is a map s : Rn → Rn × C of the form
s(x) = (x, h(x)) for some smooth complex valued function h on Rn. The
group L acts on E(Rn × C) on the left via the action

(2.3) (ly s)(x) = l.(s(x− l)) = (x, e2πiel(x)h(x− l)).

Sections of L pull back to sections s : Rn → Rn × C of the trivial bundle
that are L-invariant for this action, i.e., to sections that satisfy

(2.4) s(l + x) = l.s(x)

for all l ∈ L and x ∈ Rn. Such a section has the form

(2.5) s(x) = (x, h(x))

TOME 58 (2008), FASCICULE 7
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with h a complex-valued function on Rn satisfying the functional equation

(2.6) h(l + x) = e2πiel(x)h(x)

for x ∈ Rn and l ∈ L. Given such a function h, the corresponding section
h of L is given by

(2.7) h(x) = [(x, h(x))].

Definition 2.7. — Given a complex-valued 1-form A on Rn, we obtain
a connection ∇ on the trivial bundle Rn × C over Rn by

∇ = d + A.

Thus for a section s given by s(x) = (x, h(x)) and a tangent vector X ∈
TxRn,

(∇Xs)(x) = (x, dh|x(X) + A|x(X)h(x)).

The connection ∇ descends to a connection on L if and only if it carries
L-invariant sections to L-invariant sections. More precisely, the condition
that ∇ descend to a connection on L is the following: if s is a section
of the trivial complex line bundle over Rn satisfying (2.4), then for every
X ∈ TxRn and l ∈ L, we have that

(2.8) (∇Tl∗(X)s)(l + x) = l. ((∇Xs)(x))

where Tl : Rn → Rn denotes translation by l. In this case we will use the
same notation ∇ for the connection thus obtained on L.

One checks that the condition on A that guarantees that the connection
on the trivial line bundle Rn×C → Rn descends in this way to a connection
on the line bundle L over the torus is that, for any l ∈ L,

(2.9) T ∗
l A = A− 2πiel

(one uses the fact that el can be viewed as either a function or a 1-form,
and for a tangent vector X ∈ TxRn, X(el) = el|x(X)).

A necesssary and sufficient condition that the connection be compatible
with the Hermitian structure on the bundle is that the 1-form A be purely
imaginary; for convenience, we will write A = 2πiϕ for some real-valued
1-form ϕ on Rn. We will assume in what follows that all connections are
Hermitian.

Remark 2.8. — For l ∈ L, view the linear functional el as a harmonic
(equivalently, translation-invariant) 1-form on Rn. Then by Equation (2.9),
a connection ∇ = d + 2πiϕ satisfies Equation (2.8), and thus defines a
connection on L, if and only if T ∗

l ϕ = ϕ − el for all l ∈ L. By identifying
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each tangent space TxRn with Rn and thus viewing the covectors ϕ|x and
ϕ|x+l as linear functionals on Rn, this equation may be rewritten as

(2.10) ϕ|x+l = ϕ|x − el.

Definition 2.9. — Let ϕD be the 1-form on Rn given by ϕD =
−
∑m

j=1 rjujdvj , and set ∇D = d + 2πiϕD. Note that under the identifica-
tion of the tangent space TxRn with Rn, we have ϕD|x = −ex for x ∈ Rn.
Thus ϕD trivially satisfies Equation (2.10) and hence defines a connection
on L. This connection will be called the distinguished connection on L.

We will see in Remark 2.19(iii) that this connection is distinguished by
its invariance properties.

Proposition 2.10. — The Chern class of the line bundle L constructed
in 2.6 is represented by the 2-form Ω =

∑m
j=1 rj duj ∧ dvj on L\Rn.

Proof. — The Chern class is represented by − 1
2πiκ, where κ is the cur-

vature form defined by a choice of connection on L. (The cohomology class
of this form is independent of the choice of connection.) We use the dis-
tinguished connection ∇D. Pulling back to the trivial bundle over Rn, the
curvature form is given by d(2πiϕD) = −2πi

∑m
j=1 rjduj ∧ dvj . This form,

being translation-invariant, descends to a 2-form on M which is the curva-
ture form of the distinguished connection ∇D on L. The proposition now
follows. �

Thus for every 2-form Ω of the type given by Notation 2.4(i), we have
constructed a line bundle with Chern class [Ω]. Hence every complex line
bundle over the torus with Chern class represented by a nondegenerate
harmonic form arises from the construction above.

Definition 2.11. — Two Hermitian connections ∇1 and ∇2 on L are
said to be gauge equivalent if there exists a Hermitian bundle automor-
phism F : L → L that intertwines the two connections: F ◦ ∇2 = ∇1 ◦ F .

Definition 2.12.

(i) Denote by ρ both the involutive isometry ρ : Rn → Rn given by
x 7→ −x and the induced isometry of M . This isometry of M is
covered by the map ρ of L given by [(x, z)] 7→ [(−x, z)]. We obtain
an involution ρ∗ : E(L) → E(L) given by ρ∗(s) = ρ ◦ s ◦ ρ; in
particular, in the notation of Equation (2.7), we have ρ∗(h)(x) =
[(x, h(−x))]. We will say that a connection ∇ on L is Z2-invariant if
it is invariant under ρ, i.e., ∇ρ∗(X) ◦ ρ∗ = ρ∗ ◦∇X for all X ∈ TM .
Expressing the connection (pulled back to the trivial bundle over
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Rn) as in Definition 2.7, we see that it is Z2-invariant if and only
if the 1-form ϕ is invariant under the involution ρ. We will also say
that ϕ is Z2-invariant in this case. Under the identification of each
tangent space Tx(Rn) with Rn, the Z2-invariance of ϕ says that
ϕ|−x(−X) = ϕ|x(X); i.e., ϕ|−x = −ϕ|x.

(ii) We will say that a connection ∇ is weakly Z2-invariant if the pull-
back of ∇ by ρ is gauge equivalent to ∇; i.e., if there exists a Her-
mitian bundle automorphism F of L such that ρ∗−1 ◦∇ρ∗(X) ◦ρ∗ =
F−1 ◦ ∇X ◦ F for all X ∈ TM .

(iii) By an abuse of language, we will say that a connection ∇ on a
line bundle L over M is a translation-invariant connection if its
curvature is a translation-invariant 2-form. (The pullback of such
a connection to the bundle Rn × C → Rn is translation-invariant
in the sense that each translation of Rn is covered by a connection
preserving map from Rn×C to itself. However, in general the anal-
ogous statement does not hold for the bundle L → M .) We remark
that the translation-invariant forms on the torus are precisely the
harmonic forms.

Remark 2.13. — Since the curvature form of any connection is coho-
mologous to that of ∇D, and since the translation-invariant forms are pre-
cisely the harmonic forms, it follows by Hodge theory that the translation-
invariant connections all have the same curvature form.

Remark 2.14. — Every Hermitian connection on L is of the form

∇ = ∇D + 2πiν = d + 2πi(ϕD + ν)

where ν is a real-valued 1-form on M . By the Hodge decomposition, we
may write

(2.11) ν = α + dg + d∗µ

where α is a harmonic 1-form on M , g ∈ C∞(M), and µ is a smooth 2-form
on M . The harmonic form α may be viewed as a linear functional on Rn.

Notation 2.15. — Let L′ ⊂ (Rn)′ denote the dual lattice to L; L′ consists
of linear functionals on Rn taking integer values on L.

Proposition 2.16. — We use the notation of Definitions 2.6, 2.7, 2.9,
and 2.12 and Remark 2.14. Let ∇ = ∇D +2πiν be a Hermitian connection
on L with ν given as in Equation (2.11).

(i) The gauge equivalence class of ∇ is given by {∇ + 2πi(β + dh) :
β ∈ L′, h ∈ C∞(M)}. In particular, the gauge equivalence class of
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∇ is independent of g in Equation (2.11) and depends on α only
through the coset of α in L′\(Rn)′.

(ii) ∇ is translation-invariant if and only if d∗µ = 0.
(iii) ∇ is both translation-invariant and Z2-invariant if and only if α =

0 = d∗µ and g is Z2-invariant. (Thus ∇ = ∇D + dg.)
(iv) ∇ is both translation-invariant and weakly Z2-invariant if and only

if d∗µ = 0 and α(L) ⊂ 1
2Z.

Proof.

(i) Any Hermitian bundle automorphism F : L → L is of the form
[(x, z)] 7→ [(x, e2πif(x)z)], where f ∈ C∞(Rn) satisfies f(x + l) ≡
f(x) mod Z for all x ∈ Rn and l ∈ L. The function f may be
written in the form f = h + β where h is periodic with respect to
L and β ∈ L′. We then have F−1 ◦ ∇ ◦ F = ∇+ 2πi(β + dh).

(ii) The curvature forms of ∇ and ∇D differ by 2πidν = 2πidd∗µ. Thus,
if d∗µ = 0, then ∇ is translation-invariant, since ∇D is. Conversely,
suppose that ∇ is translation-invariant. Then dd∗µ is translation-
invariant, i.e., harmonic. By Hodge theory, this means that dd∗µ =
0, i.e., d∗µ is closed. But being both closed and coclosed, d∗µ is
harmonic; in view of the Hodge decomposition (2.11), it must be
zero.

(iii) One easily checks that ∇D is Z2-invariant. The connection ∇ =
∇D + 2πiν is thus Z2-invariant if and only if ρ∗ν = ν. By (ii) and
Equation (2.11), we may write ν = α + dg and compute ρ∗ν =
−α + d(ρ∗g). Hence α = 0 and g is even.

(iv) By (i) and the proof of (iii), we see that the translation invariant
connection ∇ is weakly Z2-invariant if and only if α ≡ −α mod L′,
i.e., 2α ∈ L′, so α(L) ⊂ 1

2Z.
�

Definition 2.17. — The torus L\Rn has a flat Riemannian metric de-
fined by the inner product g0 on Rn. Given a connection ∇ : E(L) →
E(T ∗(M)⊗L) on L, we can thus define an associated Laplacian ∆ : E(L) →
E(L) by

(2.12) ∆ = −
n∑

j=1

(∇Xj ◦ ∇Xj −∇∇LC
Xj

(Xj))

where ∇LC is the Levi-Civita connection on the tangent bundle to M and
X1, . . . , Xn is an orthonormal frame field on M . The expression (2.12) is
independent of the choice of the orthonormal frame field. Since (M, g) is a
flat torus, we may choose the vector fields Xj to be translation-invariant

TOME 58 (2008), FASCICULE 7



2458 C.S. GORDON, P. GUERINI, T. KAPPELER & D.L. WEBB

vector fields (equivalently, coordinate vector fields), in which case the sec-
ond term in each of the summands vanishes.

As ∇ is assumed to be Hermitian, ∆ is essentially self-adjoint with re-
spect to the L2-inner product on E(L) induced by the metric g on M and
the Hermitian structure on L.

Notation 2.18. — For ∇ = d + 2πiϕ as in Definition 2.7, we will denote
the associated Laplacian by ∆ϕ. We will use the shorthand notation ∆D

for ∆ϕD .

Remarks 2.19.

(i) The connection ∇, viewed as a connection on the trivial bundle
Rn × C over Rn, gives rise to a Laplace operator ∆̃ on E(Rn × C)
defined by the same expression (2.12), where X1, . . . , Xn is any or-
thonormal frame field on Rn. If each Xi is chosen to be a translation-
invariant vector field on Rn, then Equation (2.8) shows that ∇Xi

commutes with the action of L on E(Rn × C) defined in Equation
(2.3). It follows that ∆̃ commutes with the action and thus induces
an operator on E(L), namely the Laplacian defined in Definition
2.17.

(ii) If ∇ and ∇′ are gauge equivalent connections, say ∇′ = F−1 ◦∇◦F

for some Hermitian bundle automorphism F , then F intertwines
the associated Laplacians, i.e., ∆′ = F−1 ◦ ∆ ◦ F . Moreover, for
any Q ∈ C∞(M), we have ∆′ + Q = F−1 ◦ (∆ + Q) ◦ F . Thus
the Schrödinger operators ∆ + Q and ∆′ + Q are isospectral. For
this reason, we will in general only be concerned with the gauge
equivalence classes of the connections. Hence in the notation of
Equation (2.11) and Proposition 2.16, we will always assume g = 0.

(iii) The notion of weak Z2-invariance of a connection is invariant under
gauge transformations, but the notion of Z2-invariance is not. As
seen in Proposition 2.16, the only translation-invariant Z2-invariant
connection (with our convention that g = 0) is ∇D. The one set-
ting in which we will need Z2-invariance rather than just weak Z2-
invariance is in Theorem 4.9; in that case we will work specifically
with ∇D.

(iv) If the connection ∇ is Z2-invariant as in Definition 2.12, then the
associated Laplacian ∆ commutes with the involution ρ∗ of E(L).
Equivalently, under the identification of sections of L with complex-
valued functions on Rn satisfying Equation (2.6), we have ∆(h ◦
ρ)(x) = (∆h)(−x).
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(v) More generally, if ∇ is weakly Z2-invariant, let F be a bundle au-
tomorphism satisfying ρ∗−1 ◦ ∇ρ∗(X) ◦ ρ∗ = F−1 ◦ ∇X ◦ F as in
Definition 2.12, and let T = ρ∗ ◦ F−1. Then T commutes with the
Laplacian. Moreover, if Q ∈ C∞(M), then T ◦(∆+Q) = (∆+Q̌)◦T,

where Q̌(x) = Q(−x), so the Schrödinger operators ∆+Q and ∆+Q̌

are isospectral.

Proposition 2.20. — Let L be a complex line bundle over the flat
torus (M, g). In the notation of Definition 2.17, we have

∆ϕ = −div ◦ grad−4πiϕ ◦ grad+4π2 |ϕ|2 − 2πi div(ϕ#)

where the “index-raising" map # : T ∗M → TM is the inverse of the duality
isomorphism [ : TM → T ∗M arising from the Riemannian metric g0 on Rn.

Proof. — For h a smooth, complex-valued function on Rn satisfying
Equation (2.6) and for X a tangent vector to Rn, we have ∇Xh = dh(X)+
2πiϕ(X)h = (X + 2πiϕ(X))h. Thus
(2.13)
∇X ◦ ∇X(h) = X2h− 4π2ϕ(X)ϕ(X)h + 2πiX(ϕ(X))h + 4πiϕ(X)Xh.

Let {X1, . . . , Xn} be an orthonormal, translation-invariant frame field on
M . We have

∑n
j=1 X2

j (h) = div gradh,
∑n

j=1 ϕ(Xj)ϕ(Xj) = |ϕ|2,∑n
j=1 Xj(ϕ(Xj)) = div(ϕ#), and

∑n
j=1 ϕ(Xj)Xj(h) = ϕ(gradh). Thus

the proposition follows from Equation (2.13). �

Notation 2.21. — Given [α] ∈ L′\(Rn)′ and Q ∈ C∞(M) (viewed as
a periodic function on Rn), let Specα(Q;L) denote the spectrum of the
Schrödinger operator ∆ϕD+α + Q acting on smooth sections of L. Since
∆ϕD+α + Q is essentially self-adjoint with respect to the L2-inner product
on E(L) and M is closed, Specα(Q;L) is real and discrete. The correspon-
dence that associates to each [α] ∈ L′\(Rn)′ the spectrum Specα(Q;L) will
be called the L-Bloch spectrum of Q. Usually, the line bundle L will be
understood and we will use “Bloch spectrum” to mean L-Bloch spectrum.

Proposition 2.22. — In the notation of 2.21, Specα(Q;L) coincides
with the spectrum of the operator ∆D +Q acting on the space of all smooth
functions on Rn satisfying

(2.14) h(x + l) = e2πiα(l)e2πiel(x)h(x)

for all x ∈ M , l ∈ L, where el is given as in Notation 2.4.

Proof. — Let Lα be the bundle over M given by the quotient of Rn ×C
by the equivalence relation (x, z) ≡ (x + l, e2πiα(l)e2πiel(x)z) for l ∈ L.
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Sections of Lα may be viewed as functions on Rn satisfying Equation (2.14).
The automorphism of Rn × C given by (x, z) 7→ (x, e2πiα(x)z) intertwines
∇D + 2πiα with ∇D and induces an isomorphism from L to Lα. Thus it
intertwines ∆ϕD+α with the operator ∆D acting on the space of all smooth
functions on Rn satisfying Equation (2.14). �

Remark 2.23. — In the case of the trivial line bundle M × C, the dis-
tinguished connection is given by ∇ = d, (i.e., ϕD = 0), the associated
Laplacian ∆ is the Euclidean Laplacian ∆ defined by the Euclidean metric,
and el = 0 for every l ∈ L. Thus Specα(Q) is the spectrum of ∆+Q acting
on the space of smooth functions on Rn satisfying f(x + l) = e2πiα(l)f(x)
for all x ∈ Rn and l ∈ L. Hence the notion of Bloch spectrum in Defini-
tion 2.21 in the case of a trivial bundle agrees with the classical Bloch (or
Floquet) spectrum in the literature.

2C. Nilmanifold structure on the principal circle bundle.
We continue to use the conventions of Notation 2.4.
Let π : L → M be a smooth Hermitian complex line bundle over M. The

unit sphere bundle P → M of L → M whose fiber Px, above x ∈ M is
given by Px = {ξ ∈ Lx | 〈ξ, ξ〉 = 1}, is a principal S1-bundle. Conversely,
given the principal circle bundle P , one recovers the original line bundle L

as the associated vector bundle given as follows: The circle S1 = U(1) acts
on C by unitary transformations (t ∈ S1 acts as multiplication by e2πit).
We thus obtain a left action of S1 on P×C given by g ·(p, z) = (p ·g−1, g ·z)
for g ∈ S1, (p, z) ∈ P × C. We let L be the orbit space of this action,

(2.15) L = P ×S1 C = S1\(P × C).

Then L is a complex line bundle over L\Rn.
The space E(L) of smooth sections of L may be identified with the space

of S1-equivariant smooth maps from P to the representation space C:
(2.16)

C∞(P, C)S1
=
{
f ∈ C∞(P, C) | f(pg−1) = gf(p) ∀p ∈ P, ∀g ∈ U(1)

}
.

(Given f ∈ C∞(P, C)S1
, define its associated section σ ∈ E(L) by σ(x) =

[p, f(p)] where p is any element of P for which π(p) = x and where [p, z]
denotes the equivalence class of (p, z) in L′ = S1\(P × C).)

R. S. Palais and T. E. Stewart [14] proved (by explicit construction)
that every principal torus bundle over a torus has the structure of a two-
step nilmanifold, i.e., a quotient of a two-step nilpotent Lie group by a
cocompact discrete subgroup. In what follows, we will first describe the
nilmanifold structure in the case of the circle bundles discussed above. We
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will then construct an associated bundle L′ and show that it coincides with
the line bundle L constructed in Subsection 2B.

2C.1. Principal bundles.
Define a two-step nilpotent Lie group structure on Rn+1 by setting

(2.17)

(x, t)(y, s) =

x + y, s + t +
m∑

j=1

rjuj(x)vj(y)

 = (x + y, s + t + ex(y))

for all x, y ∈ Rn and t, s ∈ R. (See Notation 2.4.) Let N denote Rn+1 with
this Lie group structure. The derived group (i.e., the subgroup generated by
all η1η2η

−1
1 η−1

2 with η1, η2 ∈ N) is given by {(0, t) : t ∈ R} and is central in
N . We will denote the derived group by (0, R). It is easily checked that the
center consists of elements (z, u) such that z is in the kernel of the bilinear
form Ω. In this paper, we are interested only in the case in which r1, . . . , rm

are all nonzero, i.e., Ω is nondegenerate, in which case the derived group
coincides with the center. Thus we will refer to the derived group as the
center in what follows.

The lattice L in Rn extends to a cocompact discrete subgroup Γ of N

given by
Γ = {(l, k) : l ∈ L, k ∈ Z}.

Letting N = (0, Z)\N , where (0, Z) is the integer lattice in (0, R), then N

is a nilpotent Lie group with center isomorphic to S1. Elements in N will
be denoted by (x, z). Set Γ = (0, Z)\Γ ∼= L and

P ′ = Γ\N = Γ\N.

Denote elements of P ′ by (x, t), with (x, t) ∈ N . The surjective group
homomorphism N → Rn given by (x, t) 7→ x induces a submersion

π : P ′ → L\Rn = M,

with fiber S1 = (0, Z)\(0, R):

1 // Z //
� _

��

Γ //
� _

��

L //
� _

��

1

1 // R //

����

N //

����

Rn //

����

1

Z\R
‖
S1

// // Γ\N
‖
P ′

// // L\Rn

‖
M
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The action by translation of the center (0, R) of N on N gives rise to a
right (and left) action of S1 on P ′ given by

(x, t) · e2πis = (x, t + s).

This action gives P ′ the structure of a principal circle bundle over M .
Let L′ be the line bundle over M associated with P ′ as in Equation

(2.15). Elements of L′ will be written [(x, t), z]. We have [(x, t + s), z] =
[(x, t), e2πisz].

Notation 2.24. — By Equation (2.16), sections of L′ may be viewed as
smooth functions f : P ′ → C satisfying f((x, t− s)) = e2πisf((x, t)). Such
a function pulls back to a C-valued function, which we again denote by f ,
on N satisfying the S1-equivariance condition

f(x, t− s) = e2πisf(x, t);

the latter in turn pulls back to a Γ-invariant function (still denoted f) on
N satisfying

(2.18) f(x, t− s) = e2πisf(x, t)

for all s, t ∈ R, x ∈ Rn:

N

����

��/
//

//
//

//
//

//
//

(0, Z)\N N

���� ��?
??

??
??

?

Γ\N P ′
f

// C.

Note that the Γ-invariance of f : N → C together with Equation (2.18)
says that

(2.19) f(x, t) = f((l, k)(x, t)) = f(l+x, k+t+el(x)) = e−2πiel(x)f(l+x, t).

In order to compare the bundle L′ with the bundle L constructed in Sub-
section 2B, we consider the pullbacks of P ′ and L′ to bundles over Rn. The
former is simply N , with S1 action given by (x, t)·e2πis = (x, t + s). The lat-
ter is the bundle L̃′ = N×S1C over Rn given by equivalence classes [(x, t), z]
with [(x, t), z] = [(x, t− s), e2πisz]. In particular, [(x, t), z] = [(x, 0), e2πitz].

Proposition 2.25. — In the notation above, define T : L̃′ → Rn×C by
T ([(x, t), z]) = (x, e2πitz). Then T induces an equivalence, also denoted T ,
between the line bundle L′ over M constructed above and the line bundle
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L constructed in Definition 2.6. Under this equivalence, a section f of L′,
viewed as a function on N satisfying Equation (2.18), corresponds to the
section h of L given by h(x) = f(x, 0), where h is as in Equation (2.5).

Proof. — The group Γ ∼= L acts on the line bundle L̃′ by

(l, 0)·[(x, t), z] = [(l, 0)(x, t), z] = [(l+x, t+el(x)), z] = [(l+x, t), e2πiel(x)z].

The bundle L′ is the quotient of L̃′ by this group action. The map T carries
orbits of the action of Γ on L̃′ to equivalence classes of Rn×C with respect
to the equivalence relation in Equation (2.2). The proposition follows. �

2C.2. Connections on the principal bundle.
The coordinate vector field ∂

∂t on Rn+1 with respect to the global coor-
dinates (x, t) is invariant under left translations by elements of Γ and thus
induces a vector field, which we still denote by ∂

∂t , on P ′. This vector field
is the infinitesimal generator of the S1 action on P ′. A connection on P ′

is specified by a real-valued 1-form ω on P ′ which is invariant under the
S1 action and satisfies ω( ∂

∂t ) = 1. (Here we are using the canonical identi-
fication of the Lie algebra of the Lie group S1 with R.) The kernel H of ω

is referred to as the horizontal distribution defined by the connection. We
have

(2.20) H =
{

X − ω(X)
∂

∂t
: X ∈ TP ′

}
and π∗p carries Hp isomorphically to Tπ(p)(M) for all p ∈ P ′. The horizontal
distribution H is invariant under the action of S1. Conversely, any S1-
invariant n-plane distribution on P ′, complementary at each point to ∂

∂t ,
defines a connection on P ′.

A connection specified by a 1-form ω on P ′ defines a connection ∇ on the
associated line bundle L′ as follows. Given x ∈ M and X ∈ Tx(M), choose
p ∈ π−1(x) and let X̃ denote the unique horizontal lift of X in Tp(P ′);
i.e., X̃ ∈ Hp and π∗(X̃) = X. Given a section of L′, viewed as an element
of C∞(P ′, C)S1

(i.e., as an S1-equivariant smooth map P ′ → C), we then
define ∇X(f) = X̃(f). (The fact that H is S1-invariant guarantees that
this definition is independent of the choice of p.)

Example 2.26. — Let e1, . . . , en denote the standard basis vectors of
Rn. The left-invariant vector field X̃j on N whose value at the identity is
given by ∂

∂xj
is given at (x, t) by

(2.21)

X̃j =
d

ds

∣∣∣∣
s=0

(x, t)(sej , 0) =
d

ds

∣∣∣∣
s=0

(x+sej , t+sex(ej)) =
∂

∂xj
+ex(ej)

∂

∂t
.
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A left-invariant vector field X̃ on N induces a vector field, also denoted X̃,
on P ′. We will abuse terminology and refer to X̃ as a left-invariant vector
field on P ′. Let H be the distribution on P ′ spanned by the left-invariant
vector fields X̃1, . . . , X̃n given in Equation (2.21). Viewing sections of L′

as Γ-invariant functions f on N satisfying Equation (2.18), then ∂f
∂t =

−2πif . Thus comparing Equation (2.21) and Definition 2.9, we see that the
connection on L′ defined by H corresponds to the distinguished connection
on L under the equivalence between L and L′ given in Proposition 2.25.

More generally, for α =
∑n

j=1 ajdxj a harmonic 1-form on M , the
translation-invariant connection ∇ = d + 2πi(ϕD + α) on L corresponds
to the connection on L′ for which the horizontal distribution (on P ′) is
spanned by the left-invariant vector fields X̃j − aj

∂
∂t , j = 1, . . . , n. (Note

that ∂
∂t is a left-invariant vector field.) Thus by Proposition 2.16, a con-

nection on L′ corresponds to a translation-invariant connection on L if and
only if its associated horizontal distribution H is spanned by left-invariant
vector fields, or equivalently, if the one-form ω on P ′ lifts to a left-invariant
one-form on N .

Suppose that ∇ is a translation-invariant connection so that H is spanned
by left-invariant vector fields. The Riemannian inner product on M gives
rise to an inner product on H. Let X̃1, . . . , X̃n denote an orthonormal basis
of H. Then the Laplacian on L′ associated to the connection ∇ is given by

(2.22) ∆(f) = −
n∑

j=1

X̃2
j (f)

where, as usual, we view f as a Γ-invariant function on N satisfying equa-
tion (2.18).

3. Negative inverse spectral results on rectangular tori

Notation 3.1.

(i) Let n = 2m be an even integer and let (u, v) = (u1, . . . , um, v1, . . . ,

vm) be the standard coordinates on Rn. Given m-tuples a =
(a1, . . . , am) and b = (b1, . . . , bm) of positive real numbers, give Rn

the inner product for which the standard ordered basis elements are
orthogonal and have lengths a1, . . . , am, b1, . . . , bm, respectively. Let
M = Ma,b be the rectangular torus Zn\Rn with the metric defined
by this inner product.
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(ii) Given an m-tuple r = (r1, . . . , rm) of positive integers such that
r1|r2| . . . |rm, let Ωr =

∑m
j=1 rj duj ∧ dvj . The construction in Sec-

tion 2 gives us a line bundle over M with Chern class represented
by Ωr; we denote this bundle by Lr. We will work in the setting
of Subsection 2C, viewing the principal circle bundle given by the
unit vectors in Lr as a nilmanifold. We will write elements of the
nilpotent group N in the form (u, v, t), with u, v ∈ Rm, t ∈ R. Com-
paring with the notation in Subsection 2C, an element (x, t) ∈ N

in the notation of Subsection 2C will be written as (u(x), v(x), t),
where u(x) and v(x) are defined as in Notation 2.4(i). The group
multiplication in N is given by

(3.1) (u, v, t)(u′, v′, t′) =

u + u′, v + v′, t + t′ +
m∑

j=1

rjujv
′
j

 .

The discrete group Γ is given by

Γ = {(u, v, t) ∈ N : u, v ∈ Zm, t ∈ Z}.

Thus under the identifications discussed in Subsection 2C, sec-
tions of Lr will be viewed as Γ-invariant functions on N satisfying
f(u, v, t + s) = e−2πisf(u, v, t) (see Equation (2.18)).

(iii) Each harmonic 1-form α on M (equivalently, linear functional on
R2m) will be identified with a pair of elements µ, ν ∈ Rm by writing
α(u, v) =

∑m
j=1 (µjuj + νjvj).

Remark 3.2. — Recall Remark 2.5. Since in Notation 3.1, we fixed the
basis used to construct Ωr and the associated line bundle Lr, the bundles
Lr do not represent all possible line bundles over M . However, in the case
of two-dimensional tori (so m = 1 and we drop the subscripts on u, v), the
bundles Lr, as r varies over the positive integers, range over all equivalence
classes of line bundles with positive Chern number. As in Subsections 2B
and 2C, all the results below continue to make sense if we allow r to be
negative, so as to obtain all nontrivial line bundles over M in the two-
dimensional case.

Notation 3.3.

(i) Given m-tuples a, b, and r as in Notation 3.1, define an operator
Dr,a,b on C∞(Rm) by

Dr,a,b =
m∑

j=1

((
2π

rj

bj
sj

)2

− 1
a2

j

∂2

∂s2
j

)
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where s1, . . . , sm are the standard coordinates on Rm.
Under the change of coordinates on Rm given by setting wj =√
aj

bj
sj , the operator Dr,a,b transforms to the operator

D̃r,a,b =
m∑

j=1

1
ajbj

(
(2πrjwj)2 −

∂2

∂w2
j

)
.

In particular, the operator depends only on the products ajbj , not
on aj and bj individually. Note that D̃r,a,b represents m uncoupled
harmonic oscillators.

(ii) Suppose q ∈ C∞(Rm) is periodic with respect to Zm. For c =
(c1, . . . , cm) ∈ Zm and for µ = (µ1, . . . , µm) ∈ Rn, define qr,c,µ ∈
C∞(Rm) by

qr,c,µ(s) = q

(
s1 + µ1 −

c1

r1
, . . . , sm + µm − cm

rm

)
.

Since q is periodic, qr,c,µ depends only on the coset of c in (r1Z ×
· · ·× rmZ)\Zm. As q is real-valued, Dr,a,b + qr,c,µ is essentially self-
adjoint with respect to the standard L2-inner product. Its spectrum
is real and discrete. Let S(q, r, a, b, µ) denote the join of the spectra
of the operators Dr,a,b + qr,c,µ as c varies over the right coset space
(r1Z× · · · × rmZ)\Zm.

Theorem 3.4. — Let a, b, r, α, µ and ν be as in Notation 3.1, and let
M = Ma,b and Lr be the corresponding rectangular torus and line bundle
as in Notation 3.1. Let q ∈ C∞(Rm) be periodic with respect to Zm.

(1) Define Q ∈ C∞(M) by Q(u, v) = q(u). Then the spectrum
Specα(Q;Lr) coincides with S(q, r, a, b, ν) as defined in Notation 3.3.

(2) Define Q ∈ C∞(M) by Q(u, v) = q(v). Then Specα(Q;Lr) coincides
with S(q, r, b, a, µ).

Before proving the theorem, we give several applications.

Corollary 3.5. — Let M be a rectangular 2-dimensional torus for
which the side lengths a and b are distinct positive integers. Let L be
any line bundle over M with nondegenerate Chern class. Then for each
translation invariant connection ∇ on L, there exist pairs of noncongruent
potentials Q1 and Q2 on M such that Spec(Q1;L,∇) = Spec(Q2;L,∇).
The potentials may be chosen to be real analytic.

Proof of Corollary 3.5. — By Remark 3.2, it suffices to consider the
line bundles Lr given in Notation 3.1, where we allow r to be an arbitrary
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nonzero integer. Fix r and α. Let q ∈ C∞(R) be periodic with period 1
ar ,

and let q1(s) = q(s − ν) and q2(s) = q̃(s − µ) where q̃(s) = q( b
as). Define

Q1(u, v) = q1(u) and Q2(u, v) = q2(v). We show that Specα(Q1;Lr) =
Specα(Q2;Lr).

In the notation of 3.3(ii), we have that (q1)r,c,ν = q and (q2)r,c,µ = q̃

for all c ∈ Z due to the periodicity condition on q. By Theorem 3.4, the
spectrum of ∆+Q1 is given by S(q, r, a, b, ν), which is equal to the join of r

copies of the spectrum of Dr,a,b + q. By the change of variables in Notation
3.3(ii), the spectrum of ∆ + Q1 is thus equal to the join of r copies of the

spectrum of D̃r,a,b + g where g(s) = q

(√
b
as

)
. Again by Theorem 3.4,

the spectrum of ∆ + Q2 is equal to S(q̃, r, b, a, µ), which is in turn equal
to the join of r copies of the spectrum of Dr,b,a + q̃. By the change of

variables w =
√

b
as, the operator Dr,b,a + q̃ is carried to D̃r,a,b + g, since

q̃
(√

a
b w
)

= q
(

b
a

√
a
b w
)

= q

(√
b
aw

)
= g(w). This proves the isospectrality

statement. Since a 6= b, it is clear that the potentials Q1 and Q2 are not
congruent. The corollary follows. �

Remark 3.6. — For 2m-dimensional rectangular tori given as in Nota-
tion 3.1 with aj

bj
rational and not equal to one for all j, a similar proof shows

that for each r = (r1, . . . , rm) and each translation invariant connection ∇
on Lr, there exist pairs of (analytic) noncongruent potentials on M such
that Spec(Q1;L,∇) = Spec(Q2;L,∇).

Corollary 3.7. — In the setting of Theorem 3.4, suppose that Q is
the zero potential. Then the spectrum Specα(Q;L) is independent of α. We
will refer to this common spectrum as the spectrum of the line bundle L.

The corollary is immediate from Theorem 3.4 and the fact that
S(q, r, a, b, µ) depends on µ only through q.

Corollary 3.8. — For every even integer n > 4, there exist an n-
dimensional rectangular flat torus M and a pair of isospectral (in the sense
of Corollary 3.7), topologically distinct, line bundles over M . The Chern
classes of these bundles have different invariant factors.

Proof of Corollary 3.8. — For an example in dimension n = 2m, choose
a so that a1 = a2 = . . . = am and let b = (1, 2, 1, . . . , 1). Set r =
(1, 4, 1, . . . , 1) and r′ = (2, 2, 1, . . . , 1). Since r1

b1
= r′2

b2
and r2

b2
= r′1

b1
, we

see from Theorem 3.4 (with Q = 0) and from the definition of Dr,a,b in
Notation 3.3 that the line bundles Lr and Lr′ over M are isospectral. �

TOME 58 (2008), FASCICULE 7



2468 C.S. GORDON, P. GUERINI, T. KAPPELER & D.L. WEBB

Corollary 3.9. — In every even dimension 2m, m > 1, there exist
pairs of nonisometric rectangular tori M and M ′ such that for every choice
of r = (r1, . . . , rm) as in Notation 3.1, the corresponding line bundles Lr

and L′r over M and M ′, respectively, have the same spectrum in the sense
of Corollary 3.7. In the case of two-dimensional rectangular tori M , the
spectrum of a nontrivial line bundle over M depends only on the area of
the torus and the Chern number of the bundle.

Proof of Corollary 3.9. — We use the notation of 3.1. Choose m-tuples a,
b, a′ and b′ of positive real numbers in such a way that ajbj = a′jb

′
j for every

j = 1, . . . ,m. Let M = Ma,b and M ′ = Ma′,b′ . Choose r arbitrarily subject
only to the condition r1| . . . |rm and let Lr and L′r be the corresponding line
bundles over M and M ′ respectively. From the expression D̃r,a,b in Notation
3.3(ii) and by Theorem 3.4, with Q = 0, we see that Lr and L′r have the
same spectrum. In particular, in the two-dimensional case, (writing a = a1

and b = b1), the spectrum of the line bundle Lr over M depends only on
ab and r. Since ab is the area of the torus and r the Chern number of the
line bundle, the final statement of the corollary follows. (Here we allow r

to take on negative as well as positive values; see Remark 3.2.) �

We now turn to the proof of Theorem 3.4.

Proof. —
(1) We use the notation of 3.1. As in Notation 2.24, smooth sections of the
line bundle Lr may be identified with elements of the space of Γ-periodic
complex-valued smooth functions on N satisfying

(3.2) f(u, v, t) = e−2πi tf(u, v, 0).

Let Uj , respectively Vj , denote the left-invariant vector field on N whose
value at the identity is ∂

∂uj
, respectively, ∂

∂vj
, and let Z = ∂

∂t . (Note that Z

is also left-invariant.) By Example 2.26 and Equation (2.22), the Laplacian
∆ϕD+α with respect to the connection ∇D + 2πiα on Lr is given by

∆ϕD+α = −
m∑

j=1

(
1
a2

j

(Uj − µjZ)2 +
1
b2
j

(Vj − νjZ)2
)

.

The integral curve of Uj (respectively, Vj) through the identity element of
N is given by exp(sUj) = (sej , 0, 0) (respectively, exp(sVj) = (0, sej , 0)),
where ej is the jth standard basis vector of Rm.

Left-invariant vector fields are defined as derivatives of right translations
(i.e., Xf(p) = d

dt

∣∣
t=0

f(p exp(tX)) for p ∈ N), so we can understand the
action of the Laplacian on the smooth sections of Lr by analyzing the
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right action of N on the larger space K of square integrable sections. As
will be explained below, it is well known that this right action is unitarily
equivalent to the direct sum of r1 · · · rm copies of the action τ of N on
L2(Rm) given by

(3.3) (τ(u, v, t)g)(w) = e
−2πi (t+

∑m

j=1
rjwjvj)g(w + u).

This action of N on L2(Rm) gives rise to an infinitesimal action of the Lie
algebra n of N ; this action satisfies τ∗(Uj)g = ∂g

∂wj
, τ∗(Vj)g = −2πirjwjg,

and τ∗(Z)g = −2πig. Thus, under this equivalence, the Laplacian associ-
ated with the distinguished connection ∇D is carried to the operator Dr,a,b

defined in Notation 3.3. (Later in the proof, we will also construct an in-
tertwining map between Dr,a,b and ∆ϕD+α for each α.)

We will make the equivalence between the action of N on K and the
action τ of N on L2(Rm) precise in order to see its effect on the Schrödinger
operator ∆ + Q. The presentation below of this equivalence was shown to
the first author by E. N. Wilson during preparation of the article [7].

In order to avoid cumbersome notation, we will carry out the proof in
the case m = 1. For the general case, the reader may simply replace rkv

by
∑m

j=1 rjkjvj , replace c + rk by (c1 + r1k1, . . . , cm + rmkm), replace Z
by Zm, etc.

Let f ∈ K. By Equation (3.2) and Γ-periodicity, we have

(3.4) f(u, v, t) = f(u + k, v + l, t + rkv) = e−2πi rkvf(u + k, v + l, t)

for all k, l ∈ Z. In particular, f is periodic with respect to Z in v and we
may perform a Fourier decomposition in the v variable:

(3.5) f(u, v, t) =
∑
c∈Z

f̂c(u)e−2πi cve−2πit.

(We are writing f̂c rather than f̂−c here for notational convenience.)
By Equation (3.4), we see that

f̂c+rk(u) = f̂c(u + k)

for all k ∈ Z. Thus choosing a representative c of each coset c of rZ in Z,
we may write

f(u, v, t) =
∑

c∈rZ\Z

fc(u, v, t)

where
fc(u, v, t) = e−2πi t

∑
k∈Z

f̂c(u + k)e−2πi (c+rk)v.
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Each of the functions fc on N is Γ-invariant. Thus we obtain a decompo-
sition

(3.6) K =
⊕

c∈rZ\Z

Kc

where Kc = {fc : f ∈ K}. (In the case of a 2m-dimensional torus, rZ\Z is
replaced by (r1Z× · · · × rmZ)\Zm. In particular, the index set in the right
hand side of Equation (3.6) has order r1 . . . rm.)

For f ∈ K, the square of the L2 norm of f as a section of the bundle Lr

is given by

ab
∑
c∈Z

∫ 1

0

|f̂c|2(x) dx = ab
∑

c∈rZ\Z

∫
R
|f̂c|2(x) dx.

Thus for each coset c, we obtain a unitary isomorphism Tc : Kc → L2(R)
given by

Tc(f) =
√

abf̂c

where c is an arbitrary but fixed choice of coset representative.
Let ρ denote the right action of N on K. We have

(ρ(u′, v′, t′)f)(u, v, t) = f(u + u′, v + v′, t + t′ + ruv′)

and thus the Fourier coefficients of ρ(u′, v′, t′)f are given by

(ρ(u′, v′, t′)f )̂ c = e−2πi[t′+(ru+c)v′]f̂c(u + u′).

In particular, the right action leaves each subspace Kc-invariant. Moreover,
Tc intertwines the right action ρ on Kc with the action η of N on L2(R)
given by η(u′, v′, t′)g(w) = e−2πi[t′+(rw+c)v′]g(w + u′). For each c as above,
define Sc : L2(R) → L2(R) by

Sc(g)(w) = gr,c(w) = g
(
w − c

r

)
.

Then Sc ◦ Tc intertwines the right action ρ on Kc with the action τ given
in Equation (3.3) and carries the distinguished Laplacian ∆ on Kc to the
operator Dr,a,b on L2(R).

We next construct an intertwining operator between the actions of
∆ϕD+α acting on Kc and Dr,a,b acting on L2(R). Define Pα : L2(R) →
L2(R) by

(3.7) Pα(g)(w) = e2πiµwg(w + ν).

(In case m > 1, then µw is replaced by µ · w.) Then we have

(3.8) Pα ◦ τ(u, v, t) = σ(u, v, t) ◦ Pα
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where

(3.9) σ(u, v, t)g(w) = e−2πi(t+µu+νv+rwv)g(w + u).

Thus Pα ◦Sc ◦Tc intertwines the right action ρ of N on Kc with the action
σ of N on L2(R). An elementary computation shows that σ∗(∆ϕD+α) =
Dr,a,b; i.e., Pα ◦ Sc ◦ Tc intertwines ∆ϕD+α with Dr,a,b.

Note that multiplication by the potential function Q (given as in part
(i) of the theorem by Q(u, v) = q(u)) carries K to itself, leaves each Kc

invariant, and satisfies, for f ∈ K, (Qf )̂c(u) = q(u)f̂c(u). Hence Tc(Qf) =
qTcf . We thus have Pα ◦Sc ◦Tc(Qf) = qr,c,νPα ◦Sc ◦Tc(f). It follows that
Pα ◦ Sc ◦ Tc intertwines the Schrödinger operator ∆ϕD+α + Q on Kc with
the operator Dr,a,b + qr,c,ν on L2(R). This completes the proof of (1).

(2) The asymmetry between the roles of u and v above is due to our choice
of coordinates on N . We have been denoting elements of N as (u, v, t).
To avoid confusion as we introduce new coordinates, we will temporarily
write (u, v, t)1 for (u, v, t). Define new coordinates by setting (u, v, t)2 =
(u, v,−t + ruv)1. An elementary computation using Equation (3.1) shows
that

(u, v, t)2(u′, v′, t′)2 = (u + u′, v + v′, t + t′ + rvu′)2.

Observe that the discrete subgroup Γ of N given by all elements with integer
coordinates (u, v, t)1 still consists precisely of the points whose coordinates
(u, v, t)2 are integers. However, in the new coordinates, we have for k, l ∈ Z,

(k, 0, 0)2(u, v, t)2 = (u + k, v, t)2

and
(0, l, 0)2(u, v, t)2 = (u, v + l, t + rlu)2.

Thus the left Γ-invariant functions are periodic in u rather than in v. The
integral curves of U and V through the identity element of N are given by
exactly the same expression in the new coordinates as in the old.

The function space K is given in our new coordinates by those left Γ-
invariant functions on N satisfying f((u, v, t)2) = e2πitf((u, v, 0)2). Write
K = {f : f ∈ K}, where f denotes the complex conjugate, and define
B : K → K by f 7→ f . Note that the actions of the Schrödinger operator
∆ϕD+α + Q = −( 1

a2 (U − µZ)2 + 1
b2 (V − νZ)2) + Q on K and K are inter-

twined by B since Q is real-valued and ∆ϕD+α is a real operator. Thus we
may consider K rather than K. Since K consists of Γ-invariant functions
satisfying f((u, v, t)2) = e−2πitf((u, v, 0)2), the computation of the spec-
trum is now identical to that carried out in part (i) except that the roles
of u and v are switched. Thus (ii) follows. �
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4. Positive inverse spectral results on tori

In this section we prove positive inverse spectral results, including The-
orem 1.2, Theorem 1.3, and additional results concerning the odd part of
the potential.

Let L be a line bundle over the torus M = L\R2m for which all the
invariant factors r1, . . . , rm of the Chern class are equal to one. Let Ω be
the translation-invariant 2-form representing the Chern class of L. We may
view Ω as a bilinear form on R2m. Recall that Ω(x, y) = ex(y)− ey(x) (see
Notation 2.4). Let L′ be the lattice in R2m dual to L, i.e., L′ = {λ ∈ R2m :
λ · l ∈ Z for all l ∈ L}. Define a linear isomorphism S : R2m → R2m by
S(u)·x = Ω(u, x) for all x ∈ R2m. Since Ω takes integer values on L×L, the
map S carries L (injectively) into L′. The fact that the invariant factors of
Ω are all equal to one implies that S(L) = L′, thus S gives an isomorphism
between the lattices L and L′.

The proof of Theorem 1.2 relies on the following result, due to Guillemin
[10] in the case m = 1 and α = 0. For a proof with m arbitrary, see
Appendix C.

Proposition 4.1. — Let L → M be a line bundle over M = L\R2m

with Chern invariant factors r1 = · · · = rm = 1 and assume that L has
nondegenerate length spectrum. Let α ∈ R2m. For l ∈ L \ {0}, set

Wα
l := e−2πiα·l

∫
F

dx e2πiΩ(x,l)

∫ |l|

0

dτ Q

(
x− τ

l

|l|

)
(Here F is a fundamental domain for L\R2m.) Then Wα

l + Wα
−l is an

invariant of Specα(Q;L) for every l ∈ L \ {0}. (See Notation 2.21.)

Corollary 4.2. — Express a potential Q in its Fourier series

(4.1) Q(x) =
∑
γ∈L′

cγe2πiγ·x.

Under the hypothesis of Proposition 4.1, for each nonzero λ ∈ L′, the
expression

e−2πiα·lcλ + e2πiα·lc−λ,

where l = S−1(λ), is an invariant of Specα(Q;L).

Proof of Corollary 4.2. — Let λ ∈ L′ and let l = S−1(λ), so that
Ω(l, x) = λ · x for all x ∈ R2m. Then

Wα
l = e−2πiα·l

∫
F

dx e−2πiλ·x
∫ |l|

0

dτ

∑
γ∈L′

cγe2πiγ·xe−2πiτγ· l
|l|


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= e−2πiα·l
∑
γ∈L′

cγ

∫
F

dx e−2πi(λ−γ)·x
∫ |l|

0

dτ
(
e−2πiτγ· l

|l|

)
Since the first integral in each term of the latter sum vanishes when γ 6= λ

and since λ · l = Ω(l, l) = 0, we thus have Wα
l = |l| vol(F)e−2πiα·lcλ and

thus
Wα

l + Wα
−l = |l| vol(F)

(
e−2πiα·lcλ + e2πiα·lc−λ

)
.

The corollary follows. �

Proposition 4.3. — [5] Let L be a line bundle over the torus M , let
∇ be an arbitrary connection on L, and let ∆ be the associated Lapla-
cian. Then

∫
M

Q(x) dx and
∫

M
Q2(x) dx are spectral invariants of the

Schrödinger operator ∆ + Q.

In particular, the spectrum determines the coefficient c0 in the Fourier
expansion (4.1) of Q.

Proof of Proposition 4.3. — This result follows immediately from the
heat asymptotics computed by P. Gilkey in [5]. Indeed, Gilkey considered an
arbitrary second order operator D on a vector bundle V over a Riemannian
manifold M such that the leading symbol of D is the metric tensor. In his
notation, D = D∇ − E , where D∇ is the Laplacian associated with the
unique connection on V for which D∇ − D is a zeroth order operator.
In our case, D is the Schrödinger operator ∆ + Q, D∇ = ∆, and E =
−Q. Consider the asymptotics of the trace of the heat kernel eQ of the
Schrödinger operator ∆ + Q as t → 0+:

eQ(t, x, x) =
1

(4πt)n/2
(1 + tu1(x) + t2u2(x) + o(t2)).

The integral
∫

M
ui(x) dx is a spectral invariant of ∆ + Q for each i. By

Theorem 4.3 in [5] and the fact that M is flat, we have u1 = E = −Q;
hence

∫
M

Q(x) dx is a spectral invariant of ∆ + Q. Next u2 = 1
2Q2 − 1

6∆Q

plus terms depending only on the curvature of the connection. Thus by the
Divergence Theorem, the L2 norm of Q is a spectral invariant. �

Proof of Theorem 1.2. —
(a) By hypothesis, the connection ∇ is translation-invariant and weakly

Z2-invariant. By Proposition 2.16 and our standing hypothesis that
g = 0 (cf Remark 2.19(ii)), ∇ = ∇D +2πiα with α(L) ⊂ 1

2Z. Hence
for l ∈ L, we have e2πiα·l = e−2πiα·l, and thus by Corollary 4.2,
cγ + c−γ is a spectral invariant of ∆ϕD+α +Q for all 0 6= γ ∈ L′. So
is c0 by Proposition 4.3. Thus the even part Q+ of Q is spectrally
determined by ∆ϕD+α + Q.
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(b) By (a) and Proposition 4.3, the spectrum of ∆ϕD+α +Q determines
the L2 norms of both Q and of the even part of Q, and hence it
determines whether Q is even. Thus (b) follows from (a). �

Remark 4.4. — Theorem 1.2 together with Proposition 4.3 show that,
under the hypotheses of Theorem 1.2, the L2 norm of the odd part Q− =
1
2 (Q− Q̌) of Q is a spectral invariant of the Schrödinger operator ∆ + Q.

Proof of Theorem 1.3. — When one drops the assumption that L has
nondegenerate length spectrum, then the spectral invariant Wα

l + Wα
−l in

Proposition 4.1 is replaced by ∑
|l|=d

Wα
l

for each length d appearing in |L|. Thus from the computation in Corollary
4.2, we obtain the following invariant of Specα(Q;L) for each such d:

(4.2) V α
d :=

∑
l∈L,|l|=d

e−2πiα·lcS(l).

Since the mapping S : L → L′ is invertible, we need only show that for
each d, we can recover the individual Fourier coefficients cS(l) from the
expressions V α

d by varying the choices of α.
Given d, let ±l1, . . . ,±lk be all the lattice vectors of norm d. We need to

choose α1, . . . , α2k so that the matrix e−2πiα1·l1 e2πiα1·l1 · · · e−2πiα1·lk e2πiα1·lk

...
...

...
...

e−2πiα2k·l1 e2πiα2k·l1 · · · e−2πiα2k·lk e2πiα2k·lk


is nonsingular. Choose α1 = 0 and choose α2 subject only to the genericity
condition that the entries in the second row of the matrix are all distinct.
Then by choosing αj = (j − 1)α2 for j = 2, . . . , 2k, the determinant of
the matrix above is a nonzero Vandermonde determinant. The theorem
follows. �

Remark 4.5. — In the special case that the length spectrum is nonde-
generate, then one needs only two Bloch spectra, Specα(Q;L) and
Specβ(Q;L) to determine Q, where α and β are chosen subject only to
the condition that (α− β) · l is irrational for all l ∈ L. Indeed, in that case
the matrix [

e−2πiα·l e2πiα·l

e−2πiβ·l e2πiβ·l

]
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is invertible for every l, so the spectral invariants Wα
l +Wα

−l and W β
l +W β

−l

determine S(±l) for each l.
This result fits nicely with results of the third author [11] concerning a

discrete version of the Schrödinger equation on a 2-dimensional torus. There
it was shown that, generically, the periodic spectrum does not determine
the Bloch spectrum of Q but, again generically, two spectra Specα(Q) and
Specβ(Q) do.

Remark 4.6. — Theorem 1.3 contrasts with spectral results for the
Schrödinger operator on trivial line bundles over tori. (See Remark 2.23 for
notation.) In the case of a trivial bundle, we have the following: (i) Given
any smooth real potential Q, then Q and Q̌ necessarily have the same
classical Bloch spectrum. (Indeed, given a smooth function f : Rn → C
satisfying (∆ + Q)f = µf and the Bloch condition f(x + l) = e−2πiα·lf(x)
for all l ∈ L, let g := f̌ be the complex conjugate of f̌ . Then g satisfies
(∆ + Q̌)g = µg and g(x + l) = e−2πiα·lg(x) for all l ∈ L.) Moreover, (ii)
Eskin, Ralston and Trubowitz [4], Theorem 6.2, proved that if Q is a real
analytic potential on a torus with nondegenerate length spectrum, then the
spectrum of the Schrödinger operator ∆ + Q acting on periodic functions
determines the classical Bloch spectrum of Q. See also G. Eskin [3] and
Gordon Kappeler [6] for related results.

Theorem 1.3 shows that (i) always fails in the setting of line bundles L

with Chern invariant factors r1 = · · · = rm = 1. Also by Remark 2.19(v), Q

and Q̌ are isospectral with respect to the distinguished connection (and in
fact, with respect to any weakly Z2-invariant connection). Thus (ii) also
fails. However, we do have that Specα(Q) = Spec−α(Q̌) for all α; in-
deed the map g → ǧ of C∞(Rn) intertwines the Schrödinger operators
∆ϕD+α + Q and ∆ϕD−α + Q̌. Thus the result (ii) above of Eskin, Ral-
ston, and Trubowitz suggests the following question: Under the hypotheses
of Theorem 1.2, let P and Q be real analytic potentials on M such that
Spec0(P ;L) = Spec0(Q;L). Must it be the case that for each α ∈ Rn,
either Specα(P ;L) = Specα(Q;L) or Specα(P ;L) = Spec−α(Q;L)? If
the answer is yes, then Theorem 1.3 would imply for real analytic po-
tentials Q on even-dimensional tori with nondegenerate length spectrum
that Iso(Q;L;∇D) =

{
Q, Q̌

}
without any assumptions on the parity of Q.

It seems likely that Iso(Q;L,∇D) =
{
Q, Q̌

}
for generic smooth poten-

tials Q. This remains an open problem.

Finally, we give an extension of Theorem 1.2 in the case of a 2-dimensional
torus:
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Notation 4.7. — Denote by S the set of maximal elements in the dual
lattice L′ of L, i.e. the set of elements λ in L′ such that {λ · l | l ∈ L} = Z.
Let S+ ⊂ S be a subset with the property that for any λ ∈ S, λ or −λ is
an element of S+ but not both. Then the Fourier decomposition of Q

(4.3) Q(x) = c0 +
∑

γ∈L′,γ 6=0

cγe2iπγ·x

can be written as (see [4])

(4.4) Q(x) = c0 +
∑

λ∈S+

Qλ(λ · x)

where Qλ is the one dimensional potential

(4.5) Qλ(s) :=
∑

k∈Z\{0}

ckλe2πiks.

Note that if Q± are the even and odd parts of the potential Q, then
(Q±)λ = (Qλ)± for all λ ∈ L′.

Lemma 4.8. — Assume that the torus M is two-dimensional. Let λ ∈
S+ and let l = S−1(λ), so that Ω(l, x) = λ ·x for all x. Let Q be any smooth
potential of mean zero (i.e., the Fourier coefficient c0 of Q vanishes). Then
for 0 6= k ∈ Z, we have∫ |kl|

0

dτ Q

(
x− τ

l

|l|

)
= |kl|Qλ(λ · x).

Proof of Lemma 4.8. — We have λ · l = Ω(l, l) = 0 since Ω is skew-
symmetric. Since M is two-dimensional, it follows that for 0 6= γ ∈ L′, we
have γ ·l = 0 only when γ is a multiple of λ. Thus, with cγ , γ ∈ L′, denoting
the Fourier coefficients of Q, we have∫ |kl|

0

dτ Q

(
x− τ

l

|l|

)
=
∑
γ∈L′

e2πiγ·xcγ

∫ |kl|

0

dτ e−2πiτγ· l
|l|

=
∑

0 6=j∈Z
|kl| e2πijλ·xcjλ = |kl|Qλ(λ · x).

�

Theorem 4.9. — Assume that M is a 2-dimensional torus with nonde-
generate length spectrum and L → M is a line bundle with Chern invariant
factor r1 = 1. Then the squares of the odd parts of the 1-dimensional po-
tentials Qλ defined in Notation 4.7 are spectral invariants of ∆D + Q; i.e.,
for any P ∈ Iso(Q;L,∇D) and any λ ∈ S+, (P−

λ )2 = (Q−
λ )2.
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Proof. — Fix λ ∈ S+ and let l = S−1(λ). By Theorem C.5 in Appendix
C, for every j ∈ Z \ {0}, the expression C2,jl, given as in Theorem C.9, is
a spectral invariant. (Here we are letting the element jl ∈ L play the role
of l in Theorems C.5 and C.9.) By Lemma C.7 and the assumption that
the connection is the distinguished one, the function a0 appearing in the
expression in Theorem C.9 is given by a0(|jl| , x + jl,− l

|l| ) = εjle
2πiex(jl),

where εjl = e−πiejl(jl) = ±1. Since Ω(x, y) = ex(y)−ey(x), we have for any
l ∈ L \ {0} that C2,jl is a constant multiple of

(4.6)
∫
F

dx e2πiΩ(x,jl)

(∫ |jl|

0

dτQ−
(

x− τ
l

|l|

))2

.

Since l = S−1(λ), we have Ω(x, jl) = −jλ · x. Thus by Equation (4.6),
Lemma 4.8 and the fact that odd potentials always have mean zero, the
following expression is a spectral invariant for each j:

(4.7) |jl|2
∫
F

dx e−2πijλ·x(Q−
λ (λ · x))2

Writing
(
Q−

λ (λ · x)
)2

=
∑

j∈Z bjλe2πijλ·x, the spectral invariance of the
expression (4.7) implies that the bjλ, for 0 6= j ∈ Z, are spectral invariants.
Thus the function h(x) := (Q−

λ (λ ·x))2−b0,λ is spectrally determined. Note
that h(0) = b0,λ since Q−

λ is an odd function. Thus b0,λ is also a spectral
invariant and hence so is the function (Q−

λ (λ · x))2. This completes the
proof of Theorem 4.9. �

Corollary 4.10. — Assume that M is a 2-dimensional torus with non-
degenerate length spectrum and L → M is a line bundle with Chern invari-
ant factor r1 = 1. If {Qt}t∈[0,ε] is any continuous family of smooth mutually
isospectral potentials on M with respect to the distinguished connection,
then Qt = Q0 for all t; i.e., within the space of smooth potentials, there
are no nontrivial continuous isospectral deformations.

Proof. — By Theorem 1.2, we have Q+
t = Q+

0 for all t, and by Theorem
4.9, for each λ ∈ S+ and x ∈ M , we have

(4.8) (Qt)−λ (λ · x) = ±(Q0)−λ (λ · x)

for all t (where a priori the sign may depend on x and t). In particular, the
functions (Qt)−λ (λ · x) and (Q0)−λ (λ · x) have the same zeroes for all t. By
continuity of the map t → (Qt)−λ (λ · x) and Equation (4.8), it follows that
(Qt)−λ (λ · x) = (Q0)−λ (λ · x) for all t, x, λ and thus that Qt = Q0. �
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Corollary 4.11. — Assume that M is a 2-dimensional torus with non-
degenerate length spectrum and L → M is a line bundle with Chern invari-
ant factor r1 = 1. Suppose that the odd part Q− of Q is a 1-dimensional
potential, i.e., there exists λ ∈ S+ such that Q−(x) = Q−

λ (λ · x). Let
P ∈ Iso(Q;L,∇D). Then
(i) P−(x) = P−

λ (λ · x) and (P−)2 = (Q−)2.
(ii) If Q− and P− are real analytic, then P = Q or P = Q̌.

Proof. — The first statement follows from Theorem 4.9. For the second
statement, since P− and Q− are both real analytic and (P−)2 = (Q−)2,
we have P− = ±Q−. By Theorem 1.2, we also have P+ = Q+ and thus
either P = Q or P = Q̌ = Q+ −Q−. �

In contrast, for the rectangular two-dimensional tori considered in The-
orem 1.1, the examples of L-isospectral, noncongruent potentials include
real analytic odd one-dimensional potentials.

Appendices

Throughout these appendices, we use the notation of Subsection 2B. In
particular, L is a fixed Hermitian line bundle over the torus M , ∇ is a
connection on L compatible with the Hermitian structure, ϕ is the 1-form
on Rn associated with ∇ as in Definition 2.7, and ∆ϕ is the associated
Laplacian, given as in Proposition 2.20. We are following closely the con-
structions developed in [4], adapting them to the case of non-trivial line
bundles.

While we are interested primarily in translation-invariant connections, we
make no assumption on the connection in Appendices A-C, except where
specified at the end of Appendix C.

Appendix A. Wave kernel on Rn

Consider the wave equation on R × Rn, n > 2, with smooth potential
Q : Rn → R

(A.1) (�ϕ + Q(x))u(t, x) = 0 (x ∈ Rn, t ∈ R)

with initial conditions

(A.2) u(0, x) = u0(x); ∂tu(0, x) = 0,
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where u0 ∈ C∞(R× Rn, C) and

(A.3) �ϕ =
∂2

∂t2
+ ∆ϕ.

Denote by K(t, x, y) the distributional wave kernel and K(t) the wave
operator corresponding to (A.1) and (A.2); i.e., for any choice of u0, the
function

u(t, x) = (K(t)u0)(x) :=
∫

Rn

K(t, x, y)u0(y)dy

solves (A.1) - (A.2). The operator K(t) can be written as the sum of two
integral operators 1

2 (K+(t) + K−(t)) where K± has a symbol of the form
1

(2π)n eiS±a± with S± = S±(t, x, y, ζ) denoting the phase function of K±

and a± = a±(t, x, ζ) its amplitude. (Here t ∈ R and x, y, ζ ∈ Rn.) As
S±(t, x, y, ζ) only depends on the principal symbol of ∆ϕ + Q, which is
independent of ϕ and Q, S± are the corresponding phase functions for the
free wave equation on Rn, i.e.

S±(t, x, y, ζ) = (x− y) · ζ ± t |ζ| .

Thus

(K±(t)u0)(x) =
1

(2π)n

∫
Rn

dζ

∫
Rn

dy ei(x−y)·ζ±it|ζ|a±(t, x, ζ)u0(y).

The amplitudes a± satisfy the following estimates: for any choice of multi-
indices α = (αj)16j6n, β = (βj)16j6n and any choice of R > 0 and T > 0,
there exists a constant Cα,β = Cα,β(R, T ) such that for any ζ ∈ Rn,

sup
06t6T, |x|<R

∣∣∣∂α
x ∂β

ζ a±(t, x, ζ)
∣∣∣ 6 Cα,β(1 + |ζ|)−|β|

where |β| = β1 + · · · + βn. Moreover they satisfy the initial conditions
a±(0, x, ζ) = 1.

Following [13] (see [4] for the case ϕ ≡ 0), we approximate K±(t) by

(A.4) (KN
± (t)u0)(x) =

1
(2π)n

∫
Rn

dζ

∫
Rn

dy ei(x−y)·ζ±it|ζ|

× (a±0 + · · ·+ a±N )(t, x, ζ)χ(|ζ|)u0(y)

where a±j = a±j (t, x, ζ) is positive-homogeneous of degree −j in ζ, i.e. ∀c >

0, t > 0, x ∈ Rn, ζ ∈ Rn, a±j (t, x, cζ) = c−ja±j (t, x, ζ), and a±j satisfies the
initial conditions

(A.5) a±0 (0, x, ζ) = 1 and a±j (0, x, ζ) = 0 (1 6 j 6 N).
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Here χ(r) is a smooth cut-off function of the form

(A.6) χ(r) =
{

0 for −∞ < r 6 1/2
1 for 1 6 r < ∞.

The functions a±j (t, x, ζ) are determined inductively by solving transport
equations. For any given M > 0 we will choose the integer N > 0 so large
that the integral operators K̃±(t) defined by

(A.7) (�ϕ + Q) KN
± (t)u0 = K̃±(t)u0,

have CM kernels. Indeed, (�ϕ + Q) KN
± (t)u0(x) equals

1
(2π)n

∫
Rn

dζ

∫
Rn

dy (�ϕ + Q(x))

×
(
ei(x−y)·ζ±it|ζ|(a±0 + · · ·+ a±N )(t, x, ζ)

)
χ(|ζ|)u0(y)

where �ϕ is computed with respect to the variables t and x. By Proposition
2.20, using the notation ϕ|x established in Remark 2.8,

�ϕ · ei(x−y)·ζ±it|ζ|

=
(
4πϕ|x(ζ) + 4π2

∣∣ϕ|x∣∣2 − 2πidiv(ϕ#)(x)
)

ei(x−y)·ζ±it|ζ|.

Further, one has the product formula

(A.8) �ϕ(AB) = (�ϕA)B + A(�ϕB)− 4π2 |ϕ|2 AB + 2
∂A

∂t

∂B

∂t

− 2 grad A · gradB + 2πiAB div(ϕ#)

Hence

(�ϕ + Q(x))
(
ei(x−y)·ζ±it|ζ|(a±0 + · · ·+ a±N )(t, x, ζ)

)
= ei(x−y)·ζ±it|ζ|

(
4πϕ|x(ζ)± 2i |ζ| ∂

∂t
− 2iζ · grad+ (�ϕ + Q(x))

)
· (a±0 + · · ·+ a±N )(t, x, ζ)

= ei(x−y)·ζ±it|ζ|
[(

4πϕ|x(ζ)a±0 (t, x, ζ)± 2i |ζ| ∂a±0
∂t

(t, x, ζ)− 2iζ · grad a±0 (t, x, ζ)
)

+
N∑

j=1

(
4πϕ|x(ζ) a±j (t, x, ζ)± 2i |ζ|

∂a±j
∂t

(t, x, ζ)− 2iζ · grad a±j (t, x, ζ)

+ (�ϕ + Q(x)) a±j−1(t, x, ζ)
)

+ (�ϕ + Q(x)) a±N (t, x, ζ)
]
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where grad a±j (t, x, ζ) refers to the gradient with respect to x. Thus we are
led to the transport equations
(A.9) 4πϕ|x(ζ)a±0 (t, x, ζ)± 2i |ζ| ∂a±0

∂t
(t, x, ζ)− 2iζ · grad a±0 (t, x, ζ) = 0

a±0 (0, x, ζ) = 1

and for 1 6 j 6 N ,
(A.10)

4πϕ|x(ζ) a±j (t, x, ζ)± 2i |ζ|
∂a±j
∂t

(t, x, ζ)− 2iζ · grad a±j (t, x, ζ)

= − (�ϕ + Q(x)) a±j−1(t, x, ζ)
a±j (0, x, ζ) = 0

Note that the solution a+
0 (t, x, ζ) of (A.9) with + has the property that

a+
0 (−t, x, ζ) satisfies (A.9) with −. By uniqueness, it then follows that

a−0 (t, x, ζ) = a+
0 (−t, x, ζ). As a consequence, �ϕa+

0 (−t, x, ζ)= �ϕa−0 (t, x, ζ)
and hence by the same argument, Equation (A.10) implies that a−1 (t, x, ζ) =
a+
1 (−t, x, ζ) and, by induction, that a−j (t, x, ζ) = a+

j (−t, x, ζ) for any j > 0.
Hence, for any j > 0,

(A.11)
∂

∂t

∣∣∣∣
t=0

(
a+

j (t, x, ζ) + a−j (t, x, ζ)
)

= 0

Equation (A.7) is then satisfied with the kernel of the integral operator
K̃±(t) given by
(A.12)

K̃±(t, x, y) :=
1

(2π)n

∫
Rn

dζ ei(x−y)·ζ±it|ζ| ((�ϕ + Q(x)) a±N (t, x, ζ)
)
χ(|ζ|).

As a±N is positive-homogeneous of degree −N in ζ, so is (�ϕ + Q) a±N .
Hence, for each of K̃±, it follows that the integral in (A.12) is convergent
for N > n + 1 and, given any M , there exists N > n + 1 so that it is a CM

function of x and y, as required.

We are now able to check the accuracy of the approximation of K by
KN := 1

2 (KN
+ + KN

− ). Since

d

dt

∣∣∣∣
t=0

[
KN (t)u0

]
(x)

=
1
2

1
(2π)n

∫
Rn

dζ

∫
Rn

dyei(x−y)·ζ
N∑

j=0

(
∂

∂t
a+

j +
∂

∂t
a−j

)
(0, x, ζ)χ(|ζ|)u0(y),
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Equation (A.11) implies that

(A.13)
∂

∂t

∣∣∣∣
t=0

KN (t)u0 = 0.

Moreover, by (A.5)

KN (0)u0(x) =
1

(2π)n

∫
Rn

dζ

∫
Rn

dyei(x−y)·ζχ(|ζ|)u0(y).

Hence, with û0 denoting the Fourier transform of u0,

KN (0)u0(x)

=
1

(2π)n

∫
Rn

dζ eix·ζ û0(ζ) +
1

(2π)n

∫
Rn

dζ

∫
Rn

dyei(x−y)·ζ(χ(|ζ|)− 1)u0(y)

= u0(x) +
1

(2π)n

∫
Rn

dζ

∫
Rn

dyei(x−y)·ζ(χ(|ζ|)− 1)u0(y),

by the inverse Fourier transform theorem in L2(Rn). Thus

(A.14) KN (0)u0 = u0 + KN
0 u0

where KN
0 is an integral operator with a smooth kernel.

Denoting by KN the difference KN − K, we are led to the following
Cauchy problem

(A.15)



(�ϕ + Q) KN (t)u0 = K̃(t)u0

KN (0)u0 = KN
0 u0

∂

∂t

∣∣∣∣
t=0

KN (t)u0 = 0,

where K̃(t) = 1
2 (K̃+ + K̃−) has a CM kernel for a given M , provided N is

sufficiently large, and where KN
0 has a smooth kernel. By regularity theory

for solutions of (A.15), KN (t) is an integral operator with a CM ′
kernel, for

any given M ′, provided N is large enough. This will be useful in Appendix
C (see the proof of Proposition C.2).

We now solve (A.9) and (A.10). As we will only need the a+
j ’s we compute

only these coefficients. Let

(A.16) aj = a+
j |R+×Rn×Sn−1 .

Since a+
j (t, x, ζ) is positive-homogeneous in ζ, it suffices to solve for the

functions aj . Dividing (A.9) by 2i and restricting to R+ ×Rn × Sn−1, one
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gets

(A.17)
{

∂a0
∂t (t, x, ω)− ω · grad a0(t, x, ω)− 2πiϕ|x(ω) a0(t, x, ω) = 0

a0(0, x, ω) = 1

Lemma A.1. — Equation (A.17) has the following solution

(A.18) a0(t, x, ω) = exp
(

2πi

∫ t

0

ϕ|(x+τω)(ω) dτ

)
.

The function a0 is smooth in all its arguments.

Proof. — First note that if h ∈ C∞(Rn), then for fixed ω, the func-
tion g(t, x) = exp

(
2πi

∫ t

0
h(x + τω)dτ

)
satisfies (with grad denoting the

gradient with respect to x):

ω · grad g(t, x) = g(t, x)2πi

∫ t

0

ω · grad(h)(x + τω) dτ

= g(t, x)2πi

∫ t

0

∂

∂τ
h(x + τω) dτ

= g(t, x) 2πi h(x + tω)− g(t, x) 2πi h(x)

=
∂g

∂t
(t, x)− 2πih(x)g(t, x).

Moreover g(0, x) = 1. Let h(t, x) = ϕ|(x+τω)(ω) (again viewing ω as arbi-
trary but fixed) to see that the function defined in Equation (A.18) satisfies
(A.17). �

Similarly, dividing (A.10) by 2i, we obtain in view of (A.16)
(A.19)

∂aj

∂t
(t, x, ω)− ω · grad aj(t, x, ω)− 2πiϕ|x(ω) aj(t, x, ω)

=
i

2
(�ϕ + Q(x)) aj−1(t, x, ω)

aj(0, x, ω) = 0

We solve (A.19) by the method of variation of constants. First for 0 6 j 6
N , define fj : R+ × Rn × Sn−1 → R by

(A.20) fj(t, x, ω) =
aj(t, x, ω)
a0(t, x, ω)

.

By (A.17) and (A.20), we may rewrite the system (A.19) for 1 6 j 6 N as

(A.21)


∂fj

∂t
− ω · grad fj =

i

2a0
(�ϕ + Q) a0 fj−1

fj(0, x, ω) = 0.
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To solve (A.21) we notice that

d

dt
fj(t, x− ωt, ω) =

(
∂fj

∂t
− ω · grad fj

)
(t, x− ωt, ω).

Hence

fj(t, x− ωt, ω) =
i

2

∫ t

0

(
�ϕ(a0fj−1)

a0
+ Qfj−1

)
(τ, x− τω, ω)dτ

or

(A.22) fj(t, x, ω) =
i

2

∫ t

0

(
�ϕ(a0fj−1)

a0
+ Qfj−1

)
(τ, x + (t− τ)ω, ω)dτ.

Inductively, one proves that fj is smooth in all its arguments.
As f0 ≡ 1, formula (A.22) leads for j = 1 to the decomposition

(A.23) f1 = f1,0 + f1,1

of f1, where

(A.24) f1,0(t, x, ω) :=
i

2

∫ t

0

�ϕa0

a0
(τ, x + (t− τ)ω, ω)dτ

and
(A.25)

f1,1(t, x, ω) :=
i

2

∫ t

0

Q(x + (t− τ)ω)dτ
change of variable=

i

2

∫ t

0

Q(x + τω)dτ.

Note that f1,0 is independent of Q whereas f1,1 is linear in Q.
Equations (A.20) and (A.23) yield a decomposition for a1:

(A.26) a1 = a1,0 + a1,1

where for j = 1, 0,

(A.27) a1,j := a0f1,j .

Similarly, one has

(A.28) f2 = f2,0 + f2,1 + f2,2

and

(A.29) a2 = a2,0 + a2,1 + a2,2

where a2,j := a0f2,j (∀j = 0, 1, 2) and

(A.30) f2,0(t, x, ω) :=
i

2

∫ t

0

(
�ϕ(a0f1,0)

a0

)
(τ, x + (t− τ)ω, ω)dτ,

(A.31) f2,1(t, x, ω) =
i

2

∫ t

0

(
�ϕ(a0f1,1)

a0
+ Qf1,0

)
(τ, x + (t− τ)ω, ω)dτ
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and

(A.32) f2,2(t, x, ω) =
i

2

∫ t

0

Qf1,1(τ, x + (t− τ)ω, ω)dτ.

Substituting (A.25) into (A.32) and changing variables, we obtain
(A.33)

f2,2(t, x, ω) = −1
4

∫ t

0

[
Q(x + (t− τ)ω)

∫ τ

0

Q(x + (t− s)ω)ds

]
dτ

= −1
4

∫ t

0

1
2

d

dτ

(∫ τ

0

Q(x + (t− s)ω)ds

)2

dτ

= −1
8

(∫ t

0

Q(x + (t− τ)ω)dτ

)2

= −1
8

(∫ t

0

Q(x + τω)dτ

)2

Appendix B. Wave kernel acting on sections of a line
bundle

In this appendix we show how to construct the wave kernel acting on
sections of the complex line bundle L over the n-dimensional torus M =
L\Rn, n > 2, from the wave kernel on Rn constructed in Appendix A.

Recall that sections of L → M may be viewed equivalently as functions
f : Rn → C satisfying Equation (2.6) for all l ∈ L, where el is defined as
in Notation 2.4.

We introduce the following distributional kernel

(B.1) KL(t, x, y) :=
∑
l∈L

e−2πiel(x)K(t, x + l, y),

where K(t, x, y) denotes the wave kernel on Rn introduced in the previous
section. For any section u0 of L, again viewed as a function u0 : Rn → C
satisying Equation (2.6), define

(B.2)

u(t, x) :=
∫
F KL(t, x, y)u0(y)dy

=
∑
l∈L

e−2πiel(x)
∫
F K(t, x + l, y)u0(y)dy,

where F denotes a fixed fundamental domain of the action of L on Rn. By
a standard domain of dependence argument the sum in (B.2) is finite for
any given x and t.
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We claim that u(t, x) satisfies (A.1) - (A.2) as well as (2.6), i.e., one has
the following:

Proposition B.1. — For any x ∈ Rn, t > 0,
(i) (�ϕ + Q)(x) · u(t, x) = 0
(ii) u(0, x) = u0(x); ut(0, x) = 0
(iii) u(t, x + l) = e2πiel(x)u(t, x) for all l ∈ L.

Proof. —
(i) The group L acts on C∞(R+×Rn, C) by (l.v)(t, x) = e2πiel(x)v(t, x−

l). By Remark 2.19, this action commutes with ∆ϕ and hence with
the Schrödinger operator (�ϕ + Q). Assertion (i) follows.

(ii) Letting t approach 0 in
∑
l∈L

e−2πiel(x)
∫
F K(t, x + l, y)u0(y)dy, one

gets by (B.2) that for any x ∈ Rn,

u(0, x) =
∑
l∈L

e−2πiel(x)

∫
F

δx+l(y) u0(y) dy = e−2πielx (x)u0(x + lx)

where δ denotes the Dirac delta function and lx is the unique ele-
ment in L such that x + lx ∈ F . Since u0(x + lx) = e2πielx (x)u0(x),
one thus obtains u(0, x) = u0(x). Moreover, as ∂

∂t

∣∣
t=0

K ≡ 0, one
has

∂u

∂t
(0, x) =

∑
l∈L

e−2πiel(x)

∫
F

∂

∂t

∣∣∣∣
t=0

K(t, x + l, y) u0(y) dy = 0.

(iii) This is immediate since u is invariant under the action of L defined
in (i). �

Appendix C. Expansion of the wave trace at singularities

In this appendix, we analyze the singularities of the wave trace WL. This
is a distribution in the variable t which when applied to f ∈ C∞

0 (R) is given
by

(C.1) 〈WL, f〉 =
∫
F

dx

∫
R

dt f(t)KL(t, x, x)

where F again denotes a fixed fundamental domain of the action of L on
Rn invariant under the Z2-action.

Eskin, Ralston and Trubowitz [4] analyzed the singularities of the wave
trace in the case of trivial line bundles over tori (i.e., for the Schrödinger
operator acting on smooth functions on the torus). We will use the same
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approach in our setting. We continue to assume throughout this section
that n > 2.

In view of Proposition B.1, we have

(C.2) 〈WL, f〉 =
∫
F

dx

∫
R

dt f(t)
∑
l∈L

e−2πiel(x)K(t, x + l, x),

where by a standard domain of dependence argument, the sum in (C.2) is
finite for any x ∈ Rn and t > 0. Hence

(C.3) 〈WL, f〉 =
∫
F

dx
∑
l∈L

e−2πiel(x)

∫
R

dt f(t)K(t, x + l, x),

where the sum is again finite, as f has compact support.
The singular support of the distribution WL is given by the set

{|l| : l ∈ L}. The contributions to the singularity of WL at t = |d|, d ∈
L − {0}, come from

(C.4)
∫
F

dx
∑

l∈L,|l|=|d|

e−2πiel(x)K(t, x + l, x).

For d ∈ L\{0}, let β|d| be a smooth, compactly supported function on R
such that β|d|(t) = 1 for t near |d|, supp(β|d|) ⊂ R+, and supp(β|d|)∩ |L| =
{|d|}. Then the singular support of the distribution β|d|WL is given by
{± |d|}. Hence, by (C.4) and the assumption that L\Rn has nondegenerate
length spectrum, the Fourier transform β̂|d|WL of β|d|WL with respect to
time t satisfies
(C.5)
β̂|d|WL(η)

η→+∞
=

∑
l=±d

∫
Fdx

∫
Rdt e−itηβ|d|(t)e−2πiel(x)K(t, x + l, x) + O(η−∞).

Definition C.1. — For l ∈ L \ {0}, x ∈ Rn, ω ∈ Sn−1 and k any
nonnegative integer, set

(C.6) bk,l,β(x, ω) =
k∑

j=0

(
n− 1− j

k − j

) (
i
∂

∂t

)k−j
∣∣∣∣∣
t=ω·l

β|l|(t)aj(t, x+ l,−ω)

and let

(C.7) bk,l(x, ω) =
k∑

j=0

(
n− 1− j

k − j

) (
i
∂

∂t

)k−j
∣∣∣∣∣
t=ω·l

aj(t, x + l,−ω).

(To review the notion of the binomial coefficients
(−m

r

)
when m and r are

positive, see Equation (D.2) in Appendix D.)
In particular,

(C.8) b0,l(x, ω) = a0(ω · l, x + l,−ω)
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For any integer R > 1, set

(C.9) Jl,R(η) :=
1

(2π)n−1

R+n−2∑
k=0

ηn−1−k

∫
F

dx e−2πiel(x)

×
∫

Sn−1
+ (l)

dvolω e−iηω·lbk,l,β(x, ω)

where dvolω is the volume form on Sn−1 and

Sn−1
+ (l) :=

{
ω ∈ Sn−1 | ω · l > 0

}
.

Proposition C.2. — Assume that L\Rn has nondegenerate length spec-
trum. Then for any R > 1,

β̂|d|WL(η)
η→+∞

=
1
2
(Jd,R(η) + J−d,R(η)) + O(η−R)

The proof of Proposition C.2 can be found in Appendix D.

To get an asymptotic expansion of Jl,R (l = ±d) we use the method of
stationary phase. Note that the map

Sn−1
+ (l) → R

ω 7→ −ω · l

has ω = l
|l| as the unique critical point and that this point is a minimum.

Thus the asymptotic expansion as η → +∞ of the integral∫
Sn−1

+ (l)
e−iηω·lbk,l,β(x, ω)dvolω is related to the behavior of bk,l,β(x, ω) with

ω restricted to an arbitrarily small neighborhood of this point. Since β|l|(ω ·
l) is identically one for ω in some neighborhood U of l

|l| in Sn−1, we have
bk,l(x, ω) = bk,l,β(x, ω) when ω ∈ U . Thus in computing the asymptotic
expansion, we may work with the functions bk,l rather than bk,l,β .

We can give explicit Morse coordinates on the open hemisphere Sn−1
+ (l).

First, let (y1, . . . , yn) be the standard rectangular coordinates on Rn, ro-
tated so that the coordinates of l

|l| are (0, . . . , 0, 1). Define coordinates
z = (z1, . . . , zn−1) on Sn−1

+ (l) by setting

(z1, . . . , zn−1) =
√

2
1 + yn

(y1, . . . , yn−1).

These coordinates map Sn−1
+ (l) onto a ball of radius

√
2 about the origin

in Rn−1 and carry l
|l| to 0. We will denote by ω(z) the point in Sn−1

+ (l)
with coordinates z.

Lemma C.3. — Let z = (z1, . . . , zn−1) be the coordinate chart on Sn−1
+ (l)

defined above. Then:
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(i) ω(z) · l = |l| (1− |z|2 /2) where |z|2 = z2
1 + · · ·+ z2

n−1;
(ii) Letting v(z) dz1∧· · ·∧dzn−1 be the expression for the volume form

of Sn−1 with respect to these coordinates, then v(0) = 1.

Lemma C.3 says that z = (z1, . . . , zn−1) are Morse coordinates for the
functional ω 7→ −ω · l

|l| .

Proof of Lemma C.3. — For ω = (y1, . . . , yn) ∈ Sn−1
+ (l), we have ω · l =

|l| yn. Since y2
1 + · · · + y2

n−1 = 1 − y2
n, we have |z|2 = 2(1 − yn) and thus

yn = 1− |z|2
2 . Statement (i) follows.

With respect to the “standard” coordinates (y1, . . . , yn−1) on Sn−1
+ , the

volume form is given by 1
yn

dy1 ∧ · · · ∧ dyn−1. Since zj =
√

2
1+yn

yj , we have
dzj = dyj when z = 0 (and yn = 1). Thus (ii) follows. �

Define the functions b̃k,l(x, z) by

(C.10) b̃k,l(x, z) = bk,l(x, ω(z))v(z)

where v(z) is given as in Lemma C.3(ii). In view of Lemma C.3 (ii),
b̃k,l(x, 0) = bk,l(x, l/ |l|) for any k, x.

By the method of stationary phase (see, e.g., [9] pp. 19-24), one then
gets for l = ±d and any given integer M > 1,∫

Sn−1
+ (l)

dvolω e−iηω·lbk,l,β(x, ω)

η→+∞
=

e−iη|l|

η
n−1

2

M−1∑
s=0

(2π)
n−1

2 ei π
4 (n−1)

s! |l|s+
n−1

2 (2i)s

1
ηs

∆s
z|z=0 b̃k,l(x, z) + O

(
1

ηM+ n−1
2

)
,

where ∆z := ∂2

∂z2
1
+ · · ·+ ∂2

∂z2
n−1

. (Here we are using the fact that bk,l,β = bk,l

on a neighborhood of t = |l|.) This leads to

Jl,R(η)
η→+∞

=
e−iη|l|

(2π)n−1

R−1+[ n
2 ]∑

k+s=0

1

ηk+s−n−1
2

×
∫
F

dx e−2πiel(x) (2π)
n−1

2 ei π
4 (n−1)

s! |l|s+
n−1

2 (2i)s
∆s

z |z=0 b̃k,l(x, z) + O

(
1

ηR

)
where k and s are understood to be nonnegative integers. For m > 0, define

(C.11) Cm(x, l) :=
m∑

j=0

1
j!

(
1

2i |l|

)j

e−2πiel(x)∆j
z|z=0 b̃m−j,l(x, z).

By setting m = k + s in the asymptotic expansion above, we obtain:
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Proposition C.4. — For l = ±d,

Jl,R(η)
η→+∞

=
(2π)

−n+1
2 ei π

4 (n−1)

|l|
n−1

2

e−iη|l|

×
R−1+[ n

2 ]∑
m=0

1

ηm−n−1
2

∫
F

Cm(x, l) dx + O

(
1

ηR

)
.

Theorem C.5. — Assume that L has nondegenerate length spectrum.
Then for any m > 0 and any l ∈ L \ {0}, the expression Cm,l given by

(C.12) Cm,l :=
∫
F

Cm(x, l)dx +
∫
F

Cm(−x,−l)dx

is a spectral invariant of ∆ϕ + Q.

The theorem follows from Propositions C.2 and C.4 and the fact that
the fundamental domain F was chosen to be Z2-invariant.

Proposition C.6. — For l ∈ L, we have in the notation of (C.11) that

C1(x, l) = g(x, l) +
i

2
e−2πiel(x)a0

(
|l| , x + l,− l

|l|

)∫ |l|

0

Q

(
x− τ

l

|l|

)
dτ

where g(x, l) is a function independent of Q.

Proof. — By Definition C.8 and Lemma A.1, b0,l is independent of Q.
Thus, by (C.11), there exists a function g1(x, l) which does not depend on
Q such that

C1(x, l) = g1(x, l) + e−2πiel(x)b1,l

(
x,

l

|l|

)
.

Hence, by Definition C.1 and Equations (A.20), (A.23), (A.24), and (A.25),
there exists a function g(x, l) independent of Q such that

C1(x, l) = g(x, l)+
i

2
e−2πiel(x)a0

(
|l| , x + l,− l

|l|

)∫ |l|

0

Q

(
x + l − τ

l

|l|

)
dτ

The proposition follows since Q is L-periodic. �

We now assume that n is even, say n = 2m, and that the Chern class
of L → M is nondegenerate. By Remark 2.14 and Proposition 2.16, we
may express the connection for the bundle L → M as a smooth real-valued
1-form ϕ on Rn of the form

(C.13) ϕ = ϕD + α + d?µ

where ϕD is the connection form of the distinguished connection, α is a
harmonic 1-form, and µ is the pullback to Rn of a smooth 2-form on M .

ANNALES DE L’INSTITUT FOURIER



INVERSE SPECTRAL RESULTS 2491

For any nonzero vector l ∈ L, write

(C.14) Gl : R2m → C, x 7→ exp

[
−2πi

|l|

∫ |l|

0

d?µ|(
x−τ l

|l|

)(l) dτ

]
.

Lemma C.7. — Given ϕ as in Equation (C.13), define a0 as in Lemma
A.1. For any x ∈ R2m and l ∈ L, we have

a0(|l| , x + l,−l/ |l|) = ±e2πi(ex(l)−α(l))Gl(x)

where the sign is given by eiπel(l).

Proof. — By Lemma A.1, we have

(C.15) a0

(
|l| , x + l,− l

|l|

)
= exp

[
−2πi

|l|

∫ |l|

0

ϕ|(
x+l−τ l

|l|

)(l)dτ

]
.

Denote the right hand side of Equation (C.15) by Iϕ. By Equation (C.13),
we have

(C.16) a0

(
|l| , x + l,− l

|l|
dτ

)
= IϕDIαId?µ.

Recall that for w ∈ Rn, we have ϕD|w(l) = −ew(l); in particular, ϕD

depends linearly on w. Thus ϕD|(
x+l−τ l

|l|

)(l) = −ex(l) +
(

τ−|l|
|l|2

)
el(l) and

IϕD = e2πiex(l) exp

[
−2πiel(l)

|l|2
∫ |l|

0

(τ − |l|) dτ

]
= e2πiex(l)eπiel(l)

= ±e2πiex(l),

where the last equality uses the fact that el(l) ∈ Z for all l ∈ L.
Next, the harmonic 1-form α may be viewed as a linear functional on

Rn, and we have
Iα = e−2πiα(l).

Finally, since µ is the pull-back of a 2-form on M , it is L-periodic. Hence

Id∗µ = Gl(x).

The lemma thus follows from Equation (C.16). �

Proof of Proposition 4.1. — In the notation of Proposition C.6, let

C̃1(x, l) =
2
i
(C1(x, l)− g(x, l))

= e−2πiel(x)a0

(
|l| , x + l,− l

|l|

)∫ |l|

0

Q

(
x− τ

l

|l|

)
dτ.
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Since g(x, l) is independent of Q, Theorem C.5 implies that
∫
F (C̃1(x, l) +

C̃1(x, l)) dx is a spectral invariant of ∆ϕ + Q. In the setting of Proposition
4.1, ϕ = ϕD + α. Thus by Lemma C.7,

a0(|l|, x + l,−l/|l|) = ±e2πi(ex(l)−α(l)),

and hence e−2πiel(x)a0

(
|l| , x + l,− l

|l|

)
=±e2πiΩ(x,l)e−2πiα·l, where we used

the fact that Ω(x, l) = ex(l) − el(x) (cf (2.1)). Thus Wα
l , as defined in

Proposition 4.1, is precisely
∫
F C̃1(x, l) dx. The proposition now follows

from Theorem C.5. �

In the remainder of this appendix, we assume that the connection ∇ is
Z2-invariant in order to obtain the expression for C2,l used in the proof
of Theorem 4.9. While we are especially interested in the distinguished
connection, i.e., the unique Z2-invariant connection that is also translation
invariant, the results below are stated for any Z2-invariant connection, not
necessarily translation invariant.

Proposition C.8. — Assume that the connection ∇ is Z2-invariant.
Then for any t > 0, x ∈ Rn and ω ∈ Sn−1,

(i) a0(t,−x,−ω) = a0(t, x, ω).
(ii) If in addition Q is even, one has for any j > 1, fj(t,−x,−ω) =

fj(t, x, ω).

Proof. — Statement (i) follows from formula (A.18) and Definition 2.12.
Statement (ii) follows from an induction argument using (A.22), Remark
2.19, and statement (i). �

Theorem C.9. — Assume that L has nondegenerate length spectrum
and that the connection is Z2-invariant. Let Q− denote the odd part of Q;
i.e., Q− = 1

2 (Q− Q̌).Then in the notation of Theorem C.5,

C2,l = −1
4

∫
F

dxe−2πiel(x)a0

(
|l| , x + l,− l

|l|

)(∫ |l|

0

dτQ−
(

x− τ
l

|l|

))2

+ terms which do not involve Q−.

Proof. — In view of (C.11), one has

(C.17) C2(x, l) =
2∑

j=0

1
j!

(
1

2i |l|

)j

Bj(x, l)

where

(C.18) Bj(x, l) := e−2πiel(x)∆j
z|z=0 b̃2−j,l(x, z).
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Given any function F (x, l), write F+(x, l) = 1
2 (F (x, l) + F (−x,−l)). We

have by Equation (C.12) that

(C.19) C2,l = 2
∫
F

C+
2 (x, l)dx =

2∑
j=0

2
j!

(
1

2i |l|

)j ∫
F

B+
j (x, l)dx.

In the following, a function of any or all of the variables x ∈ Rn, l ∈ L
and ω ∈ Sn−1 will be said to be even (respectively, odd) if it remains
unchanged (respectively, is changed into its negative) when all the variables
are replaced by their negatives. Note that in this sense, the function (x, l) 7→
e−2πiel(x) is even. By Proposition C.8, the function (x, ω) 7→ a0(t, x, ω) is
also even for any fixed t ∈ R. Hence by Remark 2.19, the map (x, ω) 7→
f1,0(t, x, ω) defined in (A.24) is even as well.

The functions Bj in (C.18) are given as follows:
• j = 0: Using (C.7) with k = 2 along with (A.26), (A.29), and the fact
that a1,0 and a2,0 are independent of Q (cf. (A.20), (A.24) and (A.30)), we
have
(C.20)

B0(x, l) = e−2πiel(x)

[
a2,2

(
|l| , x + l,− l

|l|

)
+ a2,1

(
|l| , x + l,− l

|l|

)
+i(n− 2)

∂

∂t

∣∣∣∣
t=|l|

a1,1

(
t, x + l,− l

|l|

)]
+ terms independent of Q.

• j = 1: By (C.7), (A.20), (A.23), (A.24), and (A.27),

(C.21) B1(x, l) = e−2πiel(x)∆z |z=0 a1,1(ω · l, x + l,−ω(z))v(z)

+ terms independent of Q

with v(z) as in Lemma C.3.
• j = 2: By (C.8), (A.18), and (C.18), B2(x, l) is independent of Q.

We will show below that Q− contributes to C2,l only through the first
term in B+

0 (x, l) (the term involving a2,2). Assuming this statement for
now, we examine the dependence on Q of the first term in the expression
for B0(x, l),

Write A2,2(x, l)= a2,2

(
|l| , x + l,− l

|l|

)
and A0(x, l) = a0

(
|l| , x + l,− l

|l|

)
.

By (A.18), (A.20) and (A.33) we have

(C.22) A2,2(x, l) = −1
8
A0(x, l)

(∫ |l|

0

Q

(
x− τ

l

|l|

)
dτ

)2

.
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Since A0(x, l) = A0(−x,−l), we have

A+
2,2(x, l) = −1

8
A0(x, l)

(∫ |l|

0

Q−
(

x− τ
l

|l|

)
dτ

)2

+ . . .

where . . . is independent of Q−. Since el(x) = e−l(−x), the theorem then
follows from Equations (C.19) and (C.20).

It remains only to show that Q− does not contribute to C2,l through
B+

1 (x, l) nor through the other terms in B+
0 (x, l).

By (A.18), (A.20) and (A.31),

a2,1(t, x + l,−ω)

=
i

2
a0(t, x + l,−ω)

∫ t

0

(
�ϕ(a0f1,1)

a0
+ Qf1,0

)
(τ, x + l − (t− τ)ω,−ω)dτ.

By (A.18) and (A.24), a0 and f1,0 are independent of Q, while by (A.25),
f1,1 depends linearly on Q. Moreover, for each fixed t, the functions (x, ω) 7→
a0(t, x, ω) and (x, ω) 7→ f1,0(t, x, ω) are both even. Thus a2,1(t, x+ l,−ω)+
a2,1(t,−x − l, ω) is independent of Q−. Thus Q− does not contribute to
B+

0 (x, l) through a2,1.
We next show that Q− will not contribute to C2,l through a1,1. At this

stage, it is simpler to prove the stronger statement that Q− does not con-
tribute to the whole sum Jl,R + J−l,R through a1,1. We come back to the
expression for Jl,R +J−l,R obtained before using the method of stationnary
phase. By (C.9), for any l 6= 0,

Jl,R(η) + J−l,R(η)

=
1

(2π)n−1

R+n−2∑
k=0

ηn−1−k

∫
F

dx e−2πiel(x)

∫
Sn−1

+ (l)

dvolω e−iηω·lbk,l,β(x, ω)

+
1

(2π)n−1

R+n−2∑
k=0

ηn−1−k

∫
F

dx e2πiel(x)

∫
Sn−1

+ (−l)

dvolω eiηω·lbk,−l,β(x, ω).

After changing x into −x and ω into −ω in the second sum and taking into
account that F was chosen to be symmetric, one gets

(C.23) Jl,R(η) + J−l,R(η) =
1

(2π)n−1

R+n−2∑
k=0

ηn−1−k

∫
F

dx e−2πiel(x)

×
∫

Sn−1
+ (l)

dvolω e−iηω·l[bk,l,β(x, ω) + bk,−l,β(−x,−ω)].
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By (A.25) and the fact that Q is periodic,

a1,1(t, x + l,−ω) =
i

2
a0(t, x + l,−ω)

∫ t

0

Q(x− τω)dτ.

Thus

a−1,1(t, x + l,−ω) =
i

2
a0(t, x + l,−ω)

∫ t

0

Q−(x− τω)dτ

where a−1,1(t, x, ω) := 1
2 (a1,1(t, x, ω)− a1,1,(t,−x,−ω)) for all t ∈ R, x ∈

Rn, ω ∈ Sn−1. In view of (C.6) and (C.23), we have to show that for any
s > 0,

(x, l, ω) 7→ ∂s

∂ts

∣∣∣∣
t=ω·l

a−1,1(t, x + l,−ω)

is odd.
As the map (x, l, ω) 7→ a0(t, x + l,−ω) is even for any t ∈ R, it suffices

to prove that for any s > 0, the function g(s) given by

g(s)(x, l, ω) =
∂s

∂ts

∣∣∣∣
t=ω·l

∫ t

0

Q−(x− uω)du

is odd. Write

h(x,ω)(t) =
∫ t

0

Q−(x− uω)du.

Then h(−x,−ω)(t) = −h(x,ω)(t) for all t, so all the t-derivatives also satisfy
h

(s)
(−x,−ω)(t) = −h

(s)
(x,ω)(t) for all t. We thus have

g(s)(x, l, ω) = h
(s)
(x,ω)(ω · l) = −h

(s)
(−x,−ω)(ω · l) = −g(s)(−x,−l,−ω).

I.e., g(s) is odd, thus completing the proof of Theorem C.9. �

Appendix D. Proof of Proposition C.2

In this appendix we prove Proposition C.2 stated in Appendix C.
We fix d ∈ L and write β for β|d|.
Recall from Appendix A that K = 1

2 (K+ + K−). We first prove that
the contribution of K− to β̂WL(η) is O(η−∞) as η → +∞. Indeed, as
the symbol of K−(t, x + l, x) is given by eil·ζ−it|ζ|a−(t, x + l, ζ) (see the
beginning of Appendix C), the sum∑

l=±d

∫
F

dx

∫
R

dt e−itηβ(t)K−(t, x + l, x)e−2πiel(x)
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equals
1

(2π)n

∑
l=±d

∫
F

dx

∫
R

dt e−itηβ(t)e−2πiel(x)

∫
Rn

dζ eil·ζ−it|ζ|a−(t, x + l, ζ)

=
1

(2π)n

∑
l=±d

∫
F

dx

∫
Rn

dζ eil·ζe−2πiel(x)

∫
R

dt β(t)a−(t, x + l, ζ)e−it(η+|ζ|),

which, by integrations by parts with respect to t, is O(η−∞) when η → +∞.
Thus it suffices to consider K+.

By the construction of KN
+ (see Equation (A.4)) and regularity results

for the Cauchy problem for the operator �ϕ + Q, we obtain for any l ∈ L
the following property: for any R ∈ N there exists NR ∈ N such that for
any N > NR one can find gR,N ∈ CR(R×Rn×Rn) with the property that∫

F
dx

∫
R

dt e−itηβ(t)K+(t, x + l, x)e−2πiel(x)

=
∫
F

dx

∫
R

dt e−itηβ(t)KN
+ (t, x + l, x)e−2πiel(x)

+
∫
F

dx

∫
R

dt e−itηβ(t)gR,N (t, x + l, x)e−2πiel(x).

It follows that for any R ∈ N there exists NR ∈ N such that for any
N > NR,

β̂WL(η)
η→+∞

=
∑

l=±d

1
2

∫
F

dx

∫
R
dt e−itηβ(t)KN

+ (t, x + l, x)e−2πiel(x)+ O(η−R)

η→+∞
=

∑
l=±d

1
2

1
(2π)n

∫
F

dx

∫
Rn

dζ

∫
R

dt e−itηe−2πiel(x)eil·ζ+it|ζ|

×
N∑

j=0

β(t)a+
j (t, x + l, ζ)χ(|ζ|) + O(η−R)

Hence

(D.1) β̂WL(η)
η→+∞

=
1
2
(Id(η) + I−d(η)) + O(η−R)

where, using Notation (A.16) and the fact that a+
j (t, x, ζ) is positive-homo-

geneous of degree −j in ζ, Il(η) is given by

1
(2π)n

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω

∫
R+

dρρn−1χ(ρ)eiρω·l

×
∫

R
dt e−it(η−ρ)β(t)

N∑
j=0

aj(t, x + l, ω)
ρj

.
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with N > NR. Denoting by β̂aj the Fourier transform of βaj with respect
to the variable t, we then obtain for l = ±d,

Il(η) =
1

(2π)n

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω

×
N∑

j=0

∫
R

dρ ρn−1−jχ(ρ)eiρω·lβ̂aj(η − ρ, x + l, ω)

where we used the fact that χ(ρ) = 0 for ρ 6 1
2 (see (A.6)). Setting τ :=

η − ρ, we have

Il(η) =
1

(2π)n

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω eiηω·l

×
N∑

j=0

∫
R

dτ e−iτω·l(η − τ)n−1−jχ(η − τ)β̂aj(τ, x + l, ω).

Note that the integral with respect to τ in the latter expression is actually
an integral over the interval ]−∞, η − 1/2], as supp(χ) ⊂ [1/2,+∞[.

In order to expand the expression (η− τ)n−1−j , recall that the binomial
coefficients

(−m
k

)
are defined when m and k are positive by

(D.2)
(
−m

k

)
=
−m(−m− 1) . . . (−m− k + 1)

k!
= (−1)k

(
m + k − 1

k

)

and that
(−m

0

)
= 1. For p a negative integer, the power series expansion

for (a + b)p = ap(1 + b
a )p is then given by the binomial expansion

(D.3) (a + b)p =
∞∑

k=0

(
p

k

)
ap−kbk.

Interpreting
(

p
k

)
to be zero when p is a nonnegative integer and k > p, then

the expansion (D.3) is valid for all integers p.
Since η ± τ is the symbol of the differential operator η ± i d

dt , we define
the operator (η ± i d

dt )
p by

(D.4)
(

η ± i
d

dt

)p

=
∞∑

k=0

(
p

k

)
ηp−k

(
±i

d

dt

)k

.
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We then have the following expression for Il(η):

(D.5)
1

(2π)n

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω eiηω·l

×
N∑

j=0

(
η − i

d

dt

)n−1−j
∣∣∣∣∣
t=ω·l

∫
R

dτ e−iτtχ(η − τ)β̂aj(τ, x + l, ω).

For f ∈ C∞
0 (R), Equation (D.4) implies that

(D.6)
(

η ± i
d

dt

)n−1−j

(f)

=
R+n−2−j∑

r=0

(
n− 1− j

r

)
ηn−1−j−r

(
±i

d

dt

)r

(f) + O(η−R)

when η → +∞.
As β ∈ C∞

0 (R), the Fourier transform of β(·)aj(·, x + l, ω) is in S(R) for
any x ∈ Rn, l ∈ L and ω ∈ Sn−1. It follows that for any integer k > 1
there exists a constant C = C(k, l) > 0 such that for any τ ∈ R, x ∈ F ,
and ω ∈ Sn−1,

|τ |k−1
∣∣∣β̂aj(τ, x + l, ω)

∣∣∣ 6 C.

Thus for any r ∈ N and l = ±d, it follows from the fact that χ(s) = 1 for
s > 1 (see A.6) that

dr

dtr

∣∣∣∣
t=ω·l

∫
R

dτ e−iτt(1− χ(η − τ))β̂aj(τ, x + l, ω)

definition of χ
=

dr

dtr

∣∣∣∣
t=ω·l

∫ +∞

η−1

dτ e−iτt(1− χ(η − τ))β̂aj(τ, x + l, ω)

η→+∞
= O(η−∞)

uniformly in x ∈ F and ω ∈ Sn−1. Hence, in view of (D.5), Il(η) admits
for η → +∞ the asymptotic expansion

1
(2π)n

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω eiηω·l

×
N∑

j=0

(
η − i

d

dt

)n−1−j
∣∣∣∣∣
t=ω·l

∫
R

dτ e−iτtβ̂aj(τ, x + l, ω) + O(η−∞).
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The integral 1
2π

∫
R dτ eiτtβ̂aj(τ, x+ l, ω) is the inverse Fourier transform of

β̂aj . Hence for η → +∞, Il(η) equals

1
(2π)n−1

∫
F

dx e−2πiel(x)

∫
Sn−1

dvolω eiηω·l

×
N∑

j=0

(
η − i

d

dt

)n−1−j
∣∣∣∣∣
t=ω·l

β(−t)aj(−t, x + l, ω) + O(η−∞)

or, changing t into −t and ω into −ω, this equals

1
(2π)n−1

∫
F

dx e−2πiel(x)

∫
Sn−1

+ (l)

dvolω e−iηω·l

×
N∑

j=0

(
η + i

d

dt

)n−1−j
∣∣∣∣∣
t=ω·l

β(t)aj(t, x + l,−ω) + O(η−∞)

(we integrate on Sn−1
+ (l) instead of Sn−1 because supp(β) ⊂ R+).

In Equation (D.6), make the change of index k = j + r to obtain(
η ± i

d

dt

)n−1−j

(f) =
R+n−2∑

k=j

(
n− 1− j

k − j

)
ηn−1−k

(
±i

d

dt

)k−j

(f) + O(η−R).

Denote by gj the function t 7→ β(t)aj(t, x + l,−ω) (with x, l and ω being
fixed). By interchanging the order of summation, we have for any integer
R such that N > R + n− 2,

N∑
j=0

(
η + i

d

dt

)n−1−j
∣∣∣∣∣
t=ω·l

gj(t)

η→+∞
=

R+n−2∑
k=0

k∑
j=0

(
n− 1− j

k − j

)
ηn−1−k

(
i
d

dt

)k−j
∣∣∣∣∣
t=ω·l

gj(t) + O(η−R)

where the error term is uniform in x ∈ F and ω ∈ Sn−1. Thus

(D.7) Il(η)
η→+∞

=
1

(2π)n−1

∫
F

dx e−2πiel(x)

∫
Sn−1

+ (l)

dvolω e−iηω·l

×
R+n−2∑

k=0

bk,l,β(x, ω)ηn−1−k + O(η−R),

where bk,l,β(x, ω) is given in Definition C.1. Proposition C.2 now follows
from Equations (D.1) and (D.7) .
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