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BOUNDEDNESS FROM H1 TO L1 OF RIESZ
TRANSFORMS ON A LIE GROUP

OF EXPONENTIAL GROWTH

by Peter SJÖGREN & Maria VALLARINO (*)

Abstract. — Let G be the Lie group R2 n R+ endowed with the Riemannian
symmetric space structure. Let X0, X1, X2 be a distinguished basis of left-invariant
vector fields of the Lie algebra of G and define the Laplacian ∆ = −(X2

0 +X2
1 +X2

2 ).
In this paper we consider the first order Riesz transforms Ri = Xi∆

−1/2 and
Si = ∆−1/2Xi, for i = 0, 1, 2. We prove that the operators Ri, but not the Si,
are bounded from the Hardy space H1 to L1. We also show that the second-order
Riesz transforms Tij = Xi∆

−1Xj are bounded from H1 to L1, while the transforms
Sij = ∆−1XiXj and Rij = XiXj∆

−1, for i, j = 0, 1, 2, are not.

Résumé. — On considère le groupe de Lie G = R2 n R+ muni de la structure
Riemannienne d’espace symétrique. On choisit une base X0, X1, X2 de champs
vectoriels invariants à gauche de l’algèbre de Lie de G et on définit le Laplacien
∆ = −(X2

0 + X2
1 + X2

2 ). Dans cet article nous considérons les transformées de
Riesz du premier ordre Ri = Xi∆

−1/2 et Si = ∆−1/2Xi, avec i = 0, 1, 2. Nous
prouvons que les opérateurs Ri, mais non pas les Si, sont bornés de l’espace de
Hardy H1 à L1. Nous démontrons aussi que les transformées de Riesz du deuxième
ordre Tij = Xi∆

−1Xj sont bornées de H1 à L1, tandis que les transformées
Sij = ∆−1XiXj et Rij = XiXj∆

−1, i, j = 0, 1, 2, ne sont pas bornées.

1. Introduction

Let G be the Lie group R2 n R+ where the product rule is the following:

(x1, x2, a) · (x′1, x′2, a′) = (x1 + a x′1, x2 + a x′2, a a
′)

Keywords: Singular integrals, Riesz transforms, Hardy space, Lie groups, exponential
growth.
Math. classification: 43A80, 42B20, 42B30, 22E30.
(*) Work partially supported by the European Commission via the Network HARP,
“Harmonic analysis and related problems”.



1118 Peter SJÖGREN & Maria VALLARINO

for (x1, x2, a), (x′1, x
′
2, a

′) ∈ G. The group G is not unimodular; the right
and left Haar measures are given by

dρ(x1, x2, a) = a−1 dx1 dx2 da and dλ(x1, x2, a) = a−3 dx1 dx2 da,

respectively. The modular function is thus δ(x1, x2, a) = a−2. Throughout
this paper, unless explicitly stated, we consider the right measure ρ on G

and we denote by Lp, ‖ · ‖p and 〈·, ·〉 the Lp-space, the Lp-norm and the
L2-scalar product with respect to the measure ρ.

The group G has a Riemannian symmetric space structure, and the cor-
responding metric, which we denote by d, is that of the three-dimensional
hyperbolic half-space. The metric d is invariant under left translation and
it is given by

(1.1) cosh r(x1, x2, a) =
a+ a−1 + a−1(x2

1 + x2
2)

2
∀(x1, x2, a) ∈ G ,

where r(x1, x2, a) = d
(
(x1, x2, a), e

)
denotes the distance of the point

(x1, x2, a) from the identity e = (0, 0, 1) of G. It is easy to verify that
if r(x1, x2, a) < 1, then r(x1, x2, a) ∼ |(x1, x2, log a)|, where | · | denotes the
euclidean norm in R3. The measure of a hyperbolic ball Br, centered at the
identity and of radius r, behaves like

λ(Br) = ρ(Br) ∼

{
r3 if r < 1

e2r if r > 1 .

Thus G is a group of exponential growth. In this context, the classical
Calderón–Zygmund theory and the classical definition of the atomic Hardy
space H1 (see [8, 23]) do not apply. Recently W. Hebisch and T. Steger [17]
constructed a new Calderón–Zygmund theory which holds in some spaces
of exponential growth, in particular in the space (G, d, ρ) defined above.
The main idea is to replace the family of balls which is used in the classical
Calderón–Zygmund theory by a suitable family of parallelepipeds which we
call Calderón–Zygmund sets. The definition appears in [17] and implicitly
in [16], and reads as follows.

Definition 1.1. — A Calderón-Zygmund set is a parallelepiped R =
[b1 −L/2, b1 +L/2]× [b2 −L/2, b2 +L/2]× [ae−r, aer], where L > 0, r > 0
and a ∈ R+ are related by

e2a r 6 L < e8a r if r < 1 ,

a e2r 6 L < a e8r if r > 1 .

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H1 TO L1 OF RIESZ TRANSFORMS 1119

We let R denote the family of all Calderón–Zygmund sets, and observe
that R is invariant under left translation. Given R ∈ R, we define its dilated
set as R∗ = {x ∈ G : d(x,R) < r}. There exists a constant C0 such that
ρ(R∗) 6 C0 ρ(R) and R ⊂ B

(
(b1, b2, a), C0r

)
.

In [17] it is proved that every integrable function onG admits a Calderón–
Zygmund decomposition involving the family R, and that a new Calderón–
Zygmund theory can be developed in this context. This makes it natural to
introduce an atomic Hardy space H1 on the group G, as follows (see [24]
for details).

We define an atom as a function a in L1 such that

(i) a is supported in a Calderón–Zygmund set R;
(ii) ‖a‖∞ 6 ρ(R)−1 ;
(iii)

∫
adρ = 0 .

The atomic Hardy space is now defined in a standard way.

Definition 1.2. — The Hardy space H1 is the space of all functions f
in L1 which can be written as f =

∑
j λj aj , where aj are atoms and λj

are complex numbers such that
∑

j |λj | < ∞. We denote by ‖f‖H1 the
infimum of

∑
j |λj | over such decompositions.

The new Calderón–Zygmund theory is used to study the boundedness of
some singular integral operators related to a distinguished Laplacian on G,
which is defined as follows.

Let X0, X1, X2 denote the left-invariant vector fields

X0 = a ∂a X1 = a ∂x1 X2 = a ∂x2 ,

which span the Lie algebra g of G. The Laplacian ∆ = −(X2
0 +X2

1 +X2
2 )

is a left-invariant operator which is essentially selfadjoint on L2(ρ). Since
∆ is positive definite and one-to-one [13], its powers ∆α, α ∈ R, have
dense domains and are selfadjoint. This makes it possible to form the Riesz
transforms of the first order associated with ∆, defined by

(1.2) Ri = Xi ∆−1/2 and Si = ∆−1/2Xi, i = 0, 1, 2 ,

and the Riesz transforms of the second order, defined by

(1.3) Rij = XiXj ∆−1 and Sij = ∆−1XiXj and Tij = Xi∆−1Xj ,

for i, j = 0, 1, 2. The boundedness properties of the Riesz transforms as-
sociated with the distinguished Laplacian ∆ defined above have been con-
sidered by many authors. Actually, some results in the literature concern

TOME 58 (2008), FASCICULE 4



1120 Peter SJÖGREN & Maria VALLARINO

the Riesz transforms associated with a distinguished right-invariant Lapla-
cian ∆r, which is related to ∆ as follows. Let Xr

i , i = 0, 1, 2, be the right-
invariant vector fields on G which agree with Xi at the identity, i.e.,

Xr
0 = x1 ∂x1 + x2 ∂x2 + a ∂a Xr

1 = ∂x1 Xr
2 = ∂x2 .

It is well known that Xr
i f = (Xif̌)∨ for any f ∈ C∞(G), where f̌(x) =

f(x−1) for x ∈ G. The Laplacian ∆r = −(Xr
0 )2− (Xr

1 )2− (Xr
2 )2 is a right-

invariant operator which is essentially selfadjoint on L2(λ). We denote by
Rr

i , S
r
i , R

r
ij , S

r
ij , T

r
ij the Riesz transforms defined as above by using the

right-invariant vector fields and the right-invariant Laplacian instead of the
left-invariant ones. It is easy to see that for any f ∈ C∞c (G), ∆rf = (∆f̌)∨,

Rr
i f = (Rif̌)∨ , Sr

i f = (Sif̌)∨

and

Rr
ijf = (Rij f̌)∨ , Sr

ijf = (Sij f̌)∨ , T r
ijf = (Tij f̌)∨ .

Since f → f̌ is an isometry between Lp(λ) and Lp(ρ) for p ∈ [1,∞], results
concerning the boundedness of the right-invariant Riesz transforms with
respect to the left Haar measure λ may be reformulated in terms of the
left-invariant Riesz transforms with respect to the right Haar measure ρ.
We now summarize some results formulated in terms of the left-invariant
Riesz transforms defined by (1.2) and (1.3).

In [15, 22] G. Gaudry and P. Sjögren studied Riesz transforms of the
type X∆−1/2 and ∆−1/2X, where ∆ is a distinguished Laplacian and X

is a distinguished vector field, in the context of the group R n R+, also
known as affine group of the real line. They proved that these operators
are of weak type 1 and bounded on Lp, for 1 < p < ∞. In the sequel
we sometimes refer to their papers: even if their setting is different, their
arguments may be applied also to our context with some slight changes,
and so their results carry over.

Hebisch and Steger then proved that all the operators Ri are of weak
type 1 and bounded on Lp when 1 < p 6 2 [17, Theorem 6.4]. This result
was obtained as an application of the Calderón–Zygmund theory on the
group G.

The operators Si are bounded on L2, for i = 0, 1, 2. For i 6= 0 the
operators Si are of weak type 1 and bounded on Lp when 1 < p 6 2, while
the operator S0 is not of weak type 1 but bounded on Lp for 1 < p 6 2
(Hebisch, private communication).

Since Ri and Si are bounded on Lp for p < 2, it follows by duality that Ri

and Si are also bounded on Lp when 2 < p <∞.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H1 TO L1 OF RIESZ TRANSFORMS 1121

The second-order Riesz transforms have been studied first in [13] in the
context of the affine group of the real line, then in [14] in the general setting
of NA groups of rank 1, including the group G. The operators Tij are of
weak type 1 and bounded on Lp when 1 < p <∞. The operators Rij and
Sij are not of weak type p, for any 1 6 p <∞.

In this paper we study the H1−L1 boundedness of the Riesz transforms
on the group G. Our main results are the following:

(1) the operators Ri, i = 0, 1, 2, are bounded from H1 to L1 (Section
3);

(2) the operators Si, i = 0, 1, 2, are not bounded from H1 to L1 (Sec-
tions 4, 5);

(3) the operators Tij are bounded from H1 to L1 (Section 7);
(4) the operators Sij and Rij are not bounded from H1 to L1 (Sections

8, 9).

We remark that since the interpolation spaces between H1 and L2 for the
real interpolation method are the Lp spaces for 1 < p < 2 (see [24]), the
boundedness of Ri and Tij from H1 to L1 implies their boundedness on
Lp, for 1 < p < 2.

The Riesz operators, and in particular their boundedness on Lp and
on the Hardy space H1, have been studied on various Lie groups and
Riemannian manifolds. Many results in the literature concern “doubling
spaces”, i.e., measured metric spaces where the volume of balls satisfies the
doubling condition. In this context, the Hardy space H1 is defined as in
[8].

In the classical setting of Rn, the Riesz transforms are bounded on Lp

for 1 < p <∞, of weak type 1 and bounded on H1 [23, III.3].
For nilpotent Lie groups and first-order Riesz operators, the Lp-bounded-

ness, for 1 < p <∞, the weak type 1 and the H1-boundedness were proved
by N. Lohoué and N. Varopoulos [18]. Subsequently, this was extended to
all connected Lie groups of polynomial growth by L. Saloff-Coste [21] and
G. Alexopoulos [1].

In the setting of symmetric spaces of noncompact type, J.-P. Anker [2]
considered Riesz transforms associated with the Laplace–Beltrami opera-
tor. He proved the weak type 1 estimate for the first-order operators and
the Lp-estimates for operators of arbitrary order.

On a Riemannian manifold the Riesz transform R = ∇∆−1/2, where ∇ is
the gradient and ∆ is the Laplace–Beltrami operator, has been considered.
If the manifold has nonnegative Ricci curvature, then the Riesz transform R

is bounded on Lp, 1 < p < ∞, of weak type 1 and bounded from H1

TOME 58 (2008), FASCICULE 4



1122 Peter SJÖGREN & Maria VALLARINO

to L1 [6, 7]. Subsequently, T. Coulhon and X.T. Duong proved that on a
Riemannian manifold with the doubling property whose heat kernel verifies
an upper estimate on the diagonal, R is of weak type 1 and bounded on Lp,
for 1 < p 6 2 [9]. The connection between the Lp-boundedness of the Riesz
transform, Poincaré inequalities and heat kernel estimates is also studied
in [4, 5, 10, 11]. In Riemannian manifolds satisfying the doubling condition
and the Poincaré inequality, E. Russ [20] proved that R is bounded from
H1 to L1; then M. Marias and Russ [19] proved the boundedness on H1 of
the linearized Riesz transforms.

The previous results do not apply to our space (G, d, ρ), since it is of
exponential growth and the doubling condition fails.

Our paper is organized as follows: Section 2 contains an analysis of the
kernels of the Riesz transforms. The H1 − L1-boundedness of the opera-
tors Ri is proved in Section 3, as a consequence of a general boundedness
theorem for integral operators. In Section 4, we prove the unboundedness
from H1 to L1 of the operators S1 and S2, and in Section 5 that of S0. We
analyze the local part of the second-order Riesz transforms in Section 6,
proving that they are bounded from H1 to L1. In Section 7 we show that
the operators Tij are bounded from H1 to L1. Finally, we show that the
global part of the operators Sij and Rij are not bounded from H1 to L1

in Sections 8 and 9.

In the following, C denotes a positive, finite constant which may vary
from line to line and may depend on parameters according to the context.
Given two quantities f and g, by f ∼ g we mean that there exists a
constant C such that 1/C 6 f/g 6 C.

2. The convolution kernels of the Riesz transforms

In this section, we analyze the convolution kernels of the Riesz transforms
of the first and the second order. First recall that the definition of the
convolution of two functions f, g on G is

f ∗ g(x) =
∫

G

f(xy−1) g(y) dρ(y) ∀x ∈ G .

Let V denote the space {∆u : u ∈ C∞c (G)}. In [14] it is verified that
V is a dense subspace of L2 and that V ⊂ D(∆−1) ⊂ D(∆−1/2). For
α > 0, we denote by Uα the convolution kernel of ∆−α/2, in the sense that

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H1 TO L1 OF RIESZ TRANSFORMS 1123

∆−α/2f = f ∗ Uα for all f ∈ V . Since

∆−α/2 =
1

Γ(α/2)

∫ ∞

0

tα/2−1e−t∆ dt ,

we have that

Uα =
1

Γ(α/2)

∫ ∞

0

tα/2−1pt dt ,

where pt denotes the heat kernel of ∆. It is well known [12, Theorem 5.3,
Proposition 5.4], [3, Formula (5.7)] that

pt(x) =
1

8π3/2
δ1/2(x)

r(x)
sinh r(x)

t−3/2 e−
r2(x)

4t ∀x ∈ G ,

where r(x) denotes as before the distance of x from the identity. Hence, for
α < 3

Uα(x) =
1

Γ(α/2)
1

8π3/2
δ1/2(x)

r(x)
sinh r(x)

∫ ∞

0

tα/2−1t−3/2 e−
r2(x)

4t dt

=
1

Γ(α/2)
21−α

π3/2
δ1/2(x)

r(x)
sinh r(x)

∫ ∞

0

r(x)α−3v2−αe−v2
dv

= Cα δ
1/2(x)

rα−2(x)
sinh r(x)

∀x ∈ G .

We consider the cases α = 1 and α = 2 and get that C1 = 1
2π2 and C2 = 1

4π .
We denote by U = U1 the convolution kernel of ∆−1/2 given by

(2.1) U(x) =
1

2π2
δ1/2(x)

1
r(x) sinh r(x)

∀x ∈ G,

and by W = U2 the convolution kernel of ∆−1 given by

(2.2) W (x) =
1
4π

δ1/2(x)
1

sinh r(x)
∀x ∈ G .

Since Ri = Xi ∆−1/2, we get for all f ∈ V and x ∈ G

Rif(x) = Xi(f ∗ U)(x) =
∫
Xi,xf(xy−1)U(y) dρ(y)

= lim
ε→0

∫
r(y)>ε

Xi,xf(xy−1)U(y) dρ(y)

= − lim
ε→0

∫
r(y)>ε

Xi,yf(xy−1)U(y) dρ(y)

= lim
ε→0

∫
r(y)>ε

f(xy−1)Xi,yU(y) dρ(y) ,(2.3)

TOME 58 (2008), FASCICULE 4



1124 Peter SJÖGREN & Maria VALLARINO

where the last step follows by integration by parts, as in [22, Section 3].
Thus the convolution kernel of Ri is the distribution pv ki, where ki = XiU .
Moreover, for f ∈ V and x /∈ suppf

Rif(x) =
∫

G

f(xy) ki(y−1) dλ(y)

=
∫

G

f(y) ki(y−1x) δ(y) dρ(y)

=
∫

G

f(y)Ri(x, y) dρ(y) ,(2.4)

where Ri(·, ·) denotes the integral kernel of Ri, related to ki by

(2.5) Ri(x, y) = δ(y) ki(y−1x) ∀x, y ∈ G, x 6= y .

We now consider the operators Si. By arguing as in [15, page 246-247], it
is easy to see that if f ∈ C∞c (G), then Xif ∈ D(∆−1/2), so that Si is well
defined on C∞c (G). Moreover, for all f ∈ C∞c (G) and g ∈ V

〈Sif, g〉 = 〈∆−1/2Xif, g〉 = 〈Xif,∆−1/2g〉 = −〈f,Xi∆−1/2g〉 = −〈f,Rig〉.

Thus by (2.5) we deduce that the integral kernel of Si is given by

(2.6) Si(x, y) = −Ri(y, x) = −δ(x) ki(x−1y) ∀x, y ∈ G, x 6= y .

We now compute ki explicitly. To do so, we shall need the following simple
lemma.

Lemma 2.1. — At any point (x1, x2, a) 6= (0, 0, 1) in G, the derivatives
of r along the vector fields Xi are given by

Xir(x1, x2, a) =

{
a−a−1−a−1(x2

1+x2
2)

2 sinh r(x1,x2,a) = a−cosh r
sinh r if i = 0

xi

sinh r(x1,x2,a) if i = 1, 2 .

Proof. — It suffices to differentiate the expression

cosh r(x1, x2, a) =
a+ a−1 + a−1(x2

1 + x2
2)

2
,

with respect to Xi. For X0 = a ∂a we obtain

sinh r(x1, x2, a)X0r(x1, x2, a) = a
1− a−2 − a−2(x2

1 + x2
2)

2
,

which gives the result for i = 0. The cases of Xi = a ∂xi
, i = 1, 2, are

similar. �

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H1 TO L1 OF RIESZ TRANSFORMS 1125

By (2.1) and Lemma 2.1 for i = 1, 2 and (x1, x2, a) 6= (0, 0, 1) we get

ki(x1, x2, a) = XiU(x1, x2, a)

= − 1
2π2

a−1 sinh r + r cosh r
r2 sinh2 r

Xir(x1, x2, a)

= − 1
2π2

a−1 xi
sinh r + r cosh r

r2 sinh3 r
.(2.7)

For i = 0 and (x1, x2, a) 6= (0, 0, 1) we get

k0(x1, x2, a) = X0U(x1, x2, a)

=
1

2π2

[
− a a−2 1

r sinh r
− a−1 sinh r + r cosh r

r2 sinh2 r
X0r(x1, x2, a)

]
=

1
2π2

[
− a−1 1

r sinh r
− a−1 a− a−1 − a−1(x2

1 + x2
2)

2
sinh r + r cosh r

r2 sinh3 r

]

= −U(x1, x2, a) +
1

2π2

−1 + a−2 + a−2(x2
1 + x2

2)
2

sinh r + r cosh r
r2 sinh3 r

.

(2.8)

We now consider the second-order Riesz transforms. We shall regard
∆−1 as the operator of convolution by the kernel W . The operators Rij =
XiXj∆−1, Sij = ∆−1XiXj , Tij = Xi∆−1Xj are then properly defined on
C∞c (G), with values in C∞(G). By arguing as in [14, Lemma 6] we may
show that there exist distributions kij , `ij , gij such that for any f ∈ C∞c (G)

Rijf = f ∗ kij Sijf = f ∗ `ij Tijf = f ∗ gij .

To compute these convolution kernels, we recall some simple properties of
right- and left-invariant vector fields, which are the analogs of those proved
in [14, Section 4.2] with respect to the measure λ.

Given a vector Z in g, we here denote by Zr and Z` the right-invariant
and left-invariant vector fields on G which agree with Z at the identity,
defined by

Zrf(x) =
d

dt

∣∣∣
t=0

f
(
exp(tZ)x

)
and Z`f(x) =

d

dt

∣∣∣
t=0

f
(
x exp(tZ)

)
for any f ∈ C∞(G) and x ∈ G. It is easy to check that for any f ∈ C∞(G)

(2.9) Zrf̌ = (Z`f)∨ .

Let k be a distribution on G and f, g ∈ C∞c (G). Then

(2.10) 〈f ∗ k, g〉 = 〈k, f̌ ∗ g〉 .

TOME 58 (2008), FASCICULE 4



1126 Peter SJÖGREN & Maria VALLARINO

The left-invariant derivative Z`k of k is the distribution such that for any
g ∈ C∞c (G)

(2.11) 〈Z`k, g〉 = −〈k, Z`g〉 .

If f, g ∈ C∞c (G), then

〈Zrf, g〉 = 〈f,−Zrg〉+ Zδ(e) 〈f, g〉 .

So it is natural to define the right-invariant derivative of a distribution k

as the distribution Zrk for which

(2.12) 〈Zrk, g〉 = 〈k,−Zrg〉+ Zδ(e) 〈k, g〉 ∀g ∈ C∞c (G) .

It is easy to verify that

(2.13) Z`
(
f ∗ k

)
= f ∗ Z`k and Zr

(
f ∗ k

)
= Zrf ∗ k .

By (2.10) and (2.12) we deduce that

(2.14) Z`f ∗ k = f ∗
(
− Zrk + Zδ(e)k

)
.

Applying (2.13) we get that for any f ∈ C∞c (G)

Rijf = XiXj∆−1f = XiXj(f ∗W ) = Xi(f ∗XjW ) = f ∗XiXjW .

Thus the convolution kernel of Rij is

(2.15) kij = XiXjW ,

the derivative taken in the distribution sense. We denote by Rij(·, ·) the
integral kernel of Rij defined by Rij(x, y) = δ(y) kij(y−1x), for x 6= y.

Moreover, by (2.11) for all f, g ∈ C∞c (G)

〈Sijf, g〉 = 〈∆−1XiXjf, g〉 = 〈XiXjf,∆−1g〉

= −〈Xjf,Xi ∆−1g〉 = 〈f,Rjig〉 .

This implies that the integral kernel of Sij is given by

(2.16) Sij(x, y) = Rji(y, x) = δ(x) kji(x−1y) ∀x 6= y .

It easily follows that the convolution kernel of Sij is `ij = δǩji.
Applying (2.14), we get that for any f ∈ C∞c (G)

Tijf = Xi∆−1Xjf = Xi

(
Xjf ∗W

)
= Xjf ∗XiW = f ∗

(
−Xr

jXiW +Xjδ(e)XiW
)
.

Thus the convolution kernel of Tij is gij = −Xr
jXiW +Xjδ(e)XiW .

To avoid long computations, we do not compute explicitly the kernels of
the second-order Riesz transforms, but we shall find their behavior away
from the identity, i.e., in the complement of the unit ball B1.
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In the sequel, we shall denote byR(r) any series of the type
∑∞

k=1 cke−2kr,
where the ck are real numbers and the series is convergent for r > 1;
we denote by S(r) any function of the type 1 + R(r). These functions
may vary from occurrence to occurrence. It is easy to see that a func-
tion S(r) = 1 + R(r) may be differentiated termwise and its derivative is
S′(r) = R(r). Moreover, multiplying two functions of the type S, we obtain
a function of the same kind.

Lemma 2.1 implies that for points (x1, x2, a) ∈ B
c

1

(2.17) Xir(x1, x2, a) =

{
2xi e−r S(r) if i = 1, 2

2a e−r S(r)− S(r) if i = 0 ,

and by (2.2)

(2.18) W (x1, x2, a) =
1
2π

a−1 e−r S(r) .

Let Z3
+ be the set of m = (m0,m1,m2) in Z3 such that m1,m2 > 0 and

m0 > −1. We denote by |m| the sum m0 + m1 + m2 and by xm the
product xm1

1 xm2
2 am0 . The principal term of W is of the type xme−pr, where

|m| − p = −2. We shall study the integrability of similar expressions in an
elementary lemma, and first split B

c

1 into two parts, as follows:

G+ = {(x1, x2, a) ∈ B
c

1 : a > 1} ,

and
G− = {(x1, x2, a) ∈ B

c

1 : a < 1} .

Lemma 2.2. — Let m be in Z3
+ and p ∈ N.

(i) The function xm e−p r is integrable in G+ if and only if

(2.19) m1 +m2 − 2p < −2 and |m| − p < −2 .

(ii) The function xm e−p r is integrable in G− if and only if

(2.20) m1 +m2 − 2p < −2 and m0 + p > 0 .

Proof. — If (x1, x2, a) ∈ G+, then er ∼ a (1 + a−2 |(x1, x2)|2), so that∫
G+

am0 |x1|m1 |x2|m2 e−p r dx1 dx2
da
a

∼
∫ ∞

1

am0

∫
R2
|x1|m1 |x2|m2 a−p (1 + a−2 |(x1, x2)|2)−p dx1 dx2

da
a
.

Under the change of variables a−1(x1, x2) = (y1, y2), this transforms into
the product∫ ∞

1

a|m|−p+1 da
∫

R2
|y1|m1 |y2|m2 (1 + |(y1, y2)|2)−p dy1 dy2 .
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Here the integral in a converges if and only if |m| − p < −2. By means
of polar coordinates, the second integral is seen to converge if and only if
m1 +m2 − 2p < −2. This proves (i).

If (x1, x2, a) ∈ G−, then er ∼ a−1 (1 + |(x1, x2)|2), so that∫
G−

am0 |x1|m1 |x2|m2 e−p r dx1 dx2
da
a

∼
∫ 1

0

am0+p−1 da
∫

R2
|x1|m1 |x2|m2 (1 + |(x1, x2)|2)−p dx1 dx2 ,

and (ii) follows. �

To study the higher order derivatives of W , we start with the derivatives
along X0, X1, X2 of an expression xme−pr S(r), as above. We shall always
have

(2.21) m1 +m2 − 2p 6 −2 |m| − p 6 −2 and m0 + p > 0 ,

which does not imply the integrability of xme−pr. For many remainder
terms, we shall denote by Q(x) any finite sum of terms xne−qr R(r), where
|n| − q 6 −2, n0 + q > 0 and n1 + n2 − 2q 6 −2, so that Q(x) is integrable
in Bc

1. By (2.17) we get that in B
c

1

X1

(
xm e−pr S(r)

)
= m1 a

m0+1xm1−1
1 xm2

2 e−pr S(r)−

− p am0xm1
1 xm2

2 e−pr 2x1 e−r S(r)+

+ am0xm1
1 xm2

2 e−pr R(r) 2x1 e−r S(r)

= m1 a
m0+1xm1−1

1 xm2
2 e−pr − 2p am0xm1+1

1 xm2
2 e−(p+1)r+

+Q(x) .(2.22)

By symmetry an analogous formula holds for i = 2. From (2.17) we get

X0

(
xme−prS(r)

)
= m0a

m0xm1
1 xm2

2 e−prS(r)−

− pam0xm1
1 xm2

2 e−pr
[
2ae−rS(r)− S(r)

]
+

+ am0xm1
1 xm2

2 e−prR(r)
[
2ae−rS(r)− S(r)

]
= (m0 + p)am0xm1

1 xm2
2 e−pr − 2pam0+1xm1

1 xm2
2 e−(p+1)r+

+Q(x).(2.23)

Differentiating the expression (2.18) for W and applying (2.22) and (2.23),
we get that in B

c

1

XjW (x1, x2, a) = − 1
2π

a−1xj e−2r +Q(x) if j = 1, 2,
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and

X0W (x1, x2, a) = − 1
2π

e−2r +Q(x) .

We now differentiate W a second time, applying again (2.22) and (2.23)
and also the observation that XjQ(x) = Q(x), for i, j = 0, 1, 2. The result
is that there exist constants αij , βij ∈ R and m, n ∈ Z3

+ such that in B
c

1

kij(x) = αij x
m e−2r + βij x

n e−3r +Q(x) ,(2.24)

where βij 6= 0, |m| = 0, |n| = 1, m1 + m2 − 4 < −2, n1 + n2 − 6 < −2,
m0 + 2 > 0 and n0 + 3 > 0. This means that kij has a principal part in
B

c

1 given by at most two nonintegrable terms, while the remaining part
of the kernel is integrable. Finally, we estimate the derivative of kij along
the vector field X2. We get that, for i, j = 0, 1, 2, there exist constants
γij , ηij , σij , θij ∈ R and h, `, m, n ∈ Z3

+ such that in B
c

1

X2kij(x) = γij x
h e−2r + ηij x

` e−3r + σij x
m e−3r + θij x

n e−4r +Q(x) ,
(2.25)

where θij 6= 0, |h| = 0, |`| = |m| = 1, |n| = 2.

3. H1 − L1-boundedness of Ri

In this section we prove that the Riesz transforms Ri are bounded from
H1 to L1, for i = 0, 1, 2.

This result is a consequence of the following boundedness theorem for
integral operators. Note that the hypotheses of the following proposition
are the same as those of [17, Theorem 2.1].

Proposition 3.1. — Let T be a linear operator bounded on L2 such
that T =

∑
j∈Z Tj , where

(i) the series converges in the strong operator topology of L2;
(ii) every Tj is an integral operator with integral kernel Tj ;
(iii) there exist positive constants α,A, ε and c > 1 such that∫

G

|Tj(x, y)|
(
1 + cjd(x, y)

)ε dρ(x) 6 A ∀y ∈ G;(3.1)

∫
G

|Tj(x, y)− Tj(x, z)|dρ(x) 6 A
(
cjd(y, z)

)α ∀y, z ∈ G .(3.2)

Then T is bounded from H1 to L1.
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Proof. — We first show that there exists a constant C such that for any
atom a

(3.3) ‖Ta‖1 6 C .

Let R be the Calderón–Zygmund set supporting a, and denote by cR the
center of R and by R∗ its dilated set (defined in Section 1). We estimate
the integral of Ta on R∗ by the Cauchy–Schwarz inequality:

(3.4)
∫

R∗
|Ta|dρ 6 ‖Ta‖2 ρ(R∗)1/2

6 C |||T |||L2→L2 ‖a‖2 ρ(R)1/2 6 C |||T |||L2→L2 .

It is easy to show that from the estimates (3.1) and (3.2) it follows that

(3.5) sup
R∈R

sup
y, z∈R

∫
(R∗)c

|T (x, y)− T (x, z)|dρ(x) <∞ ,

where T is the integral kernel of T . Thus the integral of Ta on the comple-
mentary set of R∗ is estimated as follows:∫

(R∗)c

|Ta|dρ 6
∫

(R∗)c

∣∣∣ ∫
R

T (x, y) a(y) dρ(y)
∣∣∣ dρ(x)

=
∫

(R∗)c

∣∣∣ ∫
R

[T (x, y)− T (x, cR)] a(y) dρ(y)
∣∣∣ dρ(x)

6
∫

(R∗)c

∫
R

|T (x, y)− T (x, cR)| |a(y)|dρ(y) dρ(x)

=
∫

R

|a(y)|
( ∫

(R∗)c

|T (x, y)− T (x, cR)|dρ(x)
)

dρ(y)

6 ‖a‖1 sup
y∈R

∫
(R∗)c

|T (x, y)− T (x, cR)|dρ(x)

6 C .

This concludes the proof of (3.3). We shall deduce from (3.3) that T is
bounded from H1 to L1. Indeed, by [17, Theorem 2.1] T is bounded from
L1 to L1,∞. Now take a function f inH1 and suppose that f =

∑∞
j=1 λjaj is

an atomic decomposition with
∑

j |λj | ∼ ‖f‖H1 . Define fN =
∑N

j=1 λjaj .
Since fN converges to f in L1, TfN =

∑N
j=1 λjTaj converges to Tf in

L1,∞. On the other hand, by (3.3)

‖TfN −
∞∑

j=1

λjTaj‖1 6
∞∑

j=N+1

|λj | ‖Taj‖1 6 C

∞∑
j=N+1

|λj | ,
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so that TfN converges to
∑∞

j=1 λjTaj in L1. This implies that Tf =∑∞
j=1 λjTaj ∈ L1 and ‖Tf‖1 6 C ‖f‖H1 . �

We now easily obtain the following theorem.

Theorem 3.2. — The Riesz transforms Ri, for i = 0, 1, 2, are bounded
from H1 to L1.

Proof. — In the proof of [17, Theorem 6.4], it is shown that the operator
Ri satisfies the assumptions of Proposition 3.1. Thus Ri is bounded from
H1 to L1. �

4. Unboundedness of S1 and S2

In this section we prove that the Riesz transforms S1 and S2 are not
bounded from H1 to L1. To do so, we shall define an atom a on G such
that the images of a under these operators are not integrable in a region
far from the support of the atom (see Theorem 4.2).

Differentiating the expression (2.7) for k1 along the vector field X2 and
applying Lemma 2.1, we obtain that

X2k1(x1, x2, a) = − 1

2 π2
a−1 x1 X2r(x1, x2, a)

[
r2 sinh3 r(2 cosh r + r sinh r)

r4 sinh6 r
−

− (sinh r + r cosh r)(2r sinh3 r + 3r2 sinh2 r cosh r)

r4 sinh6 r

]
=

1

2 π2
a−1 x1 x2

sinh r

2 r2 cosh2 r + r2 + 2 sinh2 r + 3r sinh r cosh r

r3 sinh4 r
.

(4.1)

Lemma 4.1. — There exist regions Γ′′ ⊂ Γ′ ⊂ Γ, a positive continuous
function Φ on Γ and a positive constant C such that

(i) X2k1 > C Φ in Γ;
(ii) for any (x1, x2, a) in Γ′ and τ in [0, 1/4], the point (x1, x2, a)·(0, τ, 1)

is in Γ and

Φ
(
(x1, x2, a) · (0, τ, 1)

)
= Φ(x1, x2, a) ;

(iii)
∫
Γ′′

Φ dρ = ∞ .
Let E be the parallelepiped (−1/2, 1/2)× (−1/4, 0)× (1, 2). Then

(4.2) Γ′′ · E−1 · E ⊆ Γ′ .

Proof. — Given B, A > 1 and 0 < ε < 1 we define Γ as the region

Γ = {(x1, x2, a) ∈ G : 1− ε < x2/x1 < 1 + ε, x1 > Ba, a > A} .
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For any (x1, x2, a) in Γ we have that

a−1x2
1

2
< cosh r(x1, x2, a) < C a−1 x2

1

and r(x1, x2, a) > 1, for A and B sufficiently large. Moreover, since er <

2 cosh r < C a−1 x2
1,

r(x1, x2, a) 6 C log(a−1 x2
1) .

By the formula (4.1) it is clear that X2k1 is positive on Γ. Considering the
first term in the numerator of the last fraction in (4.1), we see that for
(x1, x2, a) in Γ

X2k1(x1, x2, a) > C a−1 x2
1

1
r cosh3 r

> C
a−1 x2

1

log(a−1 x2
1) (a−1 x2

1)3
.

We define

Φ(x1, x2, a) =
1

log(a−1 x2
1) (a−1 x2

1)2
.

The condition (i) is verified. We now define

Γ′ = {(x1, x2, a) ∈ Γ : 1− ε′ < x2/x1 < 1 + ε′, x1 > B′a} ,
Γ′′ = {(x1, x2, a) ∈ Γ : 1− ε′′ < x2/x1 < 1 + ε′′, x1 > B′′a, a > 2A} ,

where B′′ > B′ > B, 0 < ε′′ < ε′ < ε < 1 have to be chosen.
Let (x1, x2, a) be a point in Γ′ and τ in [0, 1/4]. Then (x1, x2, a)·(0, τ, 1) =

(x1, x2 + a τ, a) . It is easy to see that we may choose B′, ε′ such that
(x1, x2 + a τ, a) ∈ Γ. Moreover,

Φ
(
(x1, x2, a) · (0, τ, 1)

)
=

1
log(a−1 x2

1) (a−1 x2
1)2

= Φ(x1, x2, a) ,

as required in (ii). To prove (iii), we integrate Φ over Γ′′ and obtain∫
Γ′′

Φ dρ =
∫ ∞

2A

∫ ∞

B′′a

∫ (1+ε′′)x1

(1−ε′′)x1

1
log(a−1 x2

1) (a−1 x2
1)2

dx2 dx1
da
a

= C

∫ ∞

2A

∫ ∞

B′′a

x1

(a−1 x2
1)2 log(a−1 x2

1)
dx1

da
a

= C

∫ ∞

2A

∫ ∞

(B′′)2a

du
u2 log u

da

> C

∫ ∞

2A

1
a log a

da

= ∞ .
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Given (x1, x2, a) ∈ Γ′′ and (y1, y2, b), (z1, z2, c) ∈ E, we have

(x1, x2, a) · (y1, y2, b)−1 · (z1, z2, c)

=
(
x1 + ab−1(z1 − y1), x2 + ab−1(z2 − y2), ab−1c

)
,

where ab−1c > 2A/2 = A, and

x1 + ab−1(z1 − y1) > B′′a− ab−1 > B′′a/2 > B′ ab−1c ,

for B′′ sufficiently large. Moreover,

x2 + ab−1(z2 − y2) > x1(1− ε′′)− ab−1/4

= x1(1− ε′) + (ε′ − ε′′)x1 − ab−1/4

> x1(1− ε′) + (ε′ − ε′′)B′′a− ab−1/4

> x1(1− ε′) +
[
(ε′ − ε′′)B′′ − 1/4

]
ab−1

>
[
x1 + ab−1(z1 − y1)

]
(1− ε′) ,

if ε′′ < ε′ and B′′ is sufficiently large. In the same way, we can achieve

x2 + ab−1(z2 − y2) <
[
x1 + ab−1(z1 − y1)

]
(1 + ε′) .

Thus the point (x1, x2, a) ·(y1, y2, b)−1 ·(z1, z2, c) is in Γ′, proving (4.2). �

Theorem 4.2. — The operators S1 and S2 are not bounded from H1

to L1.

Proof. — By symmetry, it is enough to treat the case of S1. We shall
construct an atom a such that S1a does not belong to L1. Let R be the
parallelepiped

[
−e2 log 2/2, e2 log 2/2

]
×

[
−e2 log 2/2, e2 log 2/2

]
×[1/2, 2]; it

is easy to check that R is a Calderón–Zygmund set centered at the identity.
Now let E be the parallelepiped defined in Lemma 4.1, and consider the
right translate Eσ of E by the point exp(σX2) = (0, σ, 1) for some σ > 0,
i.e.,

Eσ = E · (0, σ, 1) = {(y1, y2 + b σ, b) : (y1, y2, b) ∈ E}

⊂ (−1/2, 1/2)×
(
− 1/4 + σ, 2σ

)
× (1, 2) .

With σ = 1/4, E and Eσ are disjoint and contained in R.
Let us consider the function a = ρ(R)−1

(
1E−1Eσ

)
. It is obvious that a is

supported in the Calderón–Zygmund set R and ‖a‖∞ 6 ρ(R)−1. Moreover∫
adρ = 0 and so a is an atom. We now compute S1a outside the support

TOME 58 (2008), FASCICULE 4



1134 Peter SJÖGREN & Maria VALLARINO

of a. For all x /∈ E ∪ Eσ

S1a(x) =
∫
S1(x, y) a(y) dρ(y)

= ρ(R)−1

∫
E

S1(x, y) dρ(y)− ρ(R)−1

∫
Eσ

S1(x, y) dρ(y) .

Changing variable y = v · (0, σ, 1) in the last integral, this transforms into

ρ(R)−1

∫
E

S1(x, y) dρ(y)− ρ(R)−1

∫
E

S1(x, v · (0, σ, 1)) dρ(v)

= ρ(R)−1

∫
E

[
S1(x, y)− S1

(
x, y · (0, σ, 1)

)]
dρ(y) .

By (2.6) we know that

S1(x, y)− S1

(
x, y · (0, σ, 1)

)
= δ(x)

(
− k1(x−1y) + k1(x−1y exp(σX2))

)
= δ(x)σ

d

dt

∣∣∣
t=τ(x,y)

k1

(
x−1y exp(tX2)

)
= δ(x)σX2k1

(
x−1y exp(τ(x, y)X2)

)
,

for some τ(x, y) in (0, σ). It follows that for all x /∈ E ∪ Eσ

S1a(x) = ρ(R)−1 σ δ(x)
∫

E

X2k1

(
x−1y exp(τ(x, y)X2)

)
dρ(y) .(4.3)

To prove that S1a is not in L1, we integrate |S1a| in the region E (Γ′′)−1,
where Γ′′ is the set which appears in Lemma 4.1. It is easy to check that
E (Γ′′)−1 is disjoint with E ∪ Eσ, so that we can apply (4.3) and obtain∫

E (Γ′′)−1

∣∣S1a(x)
∣∣ dρ(x)

= ρ(R)−1 σ

∫
E (Γ′′)−1

δ(x)
∣∣∣ ∫

E

X2k1

(
x−1y exp(τ(x, y)X2)

)
dρ(y)

∣∣∣ dρ(x)

= ρ(R)−1 σ

∫
Γ′′ E−1

∣∣∣ ∫
E

X2k1

(
xy exp(τ(x−1, y)X2)

)
dρ(y)

∣∣∣ dρ(x) .

If x ∈ Γ′′E−1 and y ∈ E, then xy ∈ Γ′, in view of (4.2). Since 0 <

τ(x−1, y) < σ = 1/4, by Lemma 4.1 the point xy exp(τ(x−1, y)X2) is in Γ
and

X2k1

(
xy exp(τ(x−1, y)X2)

)
> C Φ(xy exp(τ(x−1, y)X2)) = C Φ(xy) .
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Hence, applying Fubini’s theorem and using w = xy instead of x, we get∫
E (Γ′′)−1

∣∣S1a(x)
∣∣ dρ(x) > C ρ(R)−1 σ

∫
Γ′′ E−1

∫
E

Φ(xy) dρ(y) dρ(x)

= C ρ(R)−1 σ

∫
E

dρ(y)
∫

Γ′′ E−1y

Φ(w) dρ(w)

> C ρ(R)−1 σ

∫
E

dρ(y)
∫

Γ′′
Φ(w) dρ(w) .

Lemma 4.1 (iii) implies that this integral diverges. �

5. Unboundedness of S0

To prove that the operator S0 is not bounded from H1 to L1, we use the
same idea as in the previous section. The only difference is that we consider
now the derivative X0k0 in a slightly different region.

We first compute the derivative of the expression (2.8) for k0 along the
vector field X0:

X0k0(x1, x2, a) =

=
1

2π2

a−1

r sinh r
+

1
2π2

1− a−2 − a−2(x2
1 + x2

2)
2

sinh r + r cosh r
r2 sinh3 r

−

− 1
2π2

[
a−2 + a−2(x2

1 + x2
2)

] sinh r + r cosh r
r2 sinh3 r

+

+
1

2π2

−1 + a−2 + a−2(x2
1 + x2

2)
2

a− a−1 − a−1(x2
1 + x2

2)
2 sinh r

×

×
[ (2 cosh r + r sinh r)r2 sinh3 r

r4 sinh6 r
−

− (sinh r + r cosh r)(2r sinh3 r + 3 r2 sinh2 r cosh r)
r4 sinh6 r

]
=

1
2π2

a−1

r sinh r
+

1
2π2

1− 3 a−2 − 3 a−2(x2
1 + x2

2)
2

sinh r + r cosh r
r2 sinh3 r

+

+
1

2π2
a−1

[
a− a−1 − a−1(x2

1 + x2
2)

]2
4

×

× 2 r2 cosh2 +r2 + 2 sinh2 r + 3 r sinh r cosh r
r3 sinh5 r

.

(5.1)

Lemma 5.1. — There exist two regions Ω′ ⊂ Ω, a positive continuous
function Ψ on Ω and a positive constant C such that
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(i) X0k0 > C Ψ in Ω;
(ii) for any (x1, x2, a) in Ω and τ in [0, 1], the point (x1, x2, a) · (0, 0, eτ )

is in Ω and

Ψ
(
(x1, x2, a) · (0, 0, eτ )

)
> C Ψ(x1, x2, a) ;

(iii)
∫
Ω′ Ψdρ = ∞ .

Let F be the parallelepiped (−1/16, 1/16)× (−1/16, 1/16)× (1,
√

2). Then

(5.2) Ω′ · F−1 · F ⊆ Ω .

Proof. — Let A > 1 be a constant to be chosen later and define

Ω = {(x1, x2, a) ∈ G : x2
1 + x2

2 < a2/4, a > A} ,

Ω′ = {(x1, x2, a) ∈ G : x2
1 + x2

2 < a2/64, a >
√

2A} .(5.3)

For all (x1, x2, a) in Ω
a

2
< cosh r(x1, x2, a) < C a .

For A sufficiently large, r(x1, x2, a) > 1 here, and, since er 6 2 cosh r 6 C a,
we have r 6 C log a.

It is easy to show that in the region Ω all the summands which appear
in the last expression in (5.1) are positive, so that for all (x1, x2, a) in Ω

X0k0(x1, x2, a) > C
a−1

r sinh r
>

C

a2 log a
.

We define

Ψ(x1, x2, a) =
1

a2 log a
.

The condition (i) is satisfied.
Let (x1, x2, a) ∈ Ω and τ ∈ [0, 1]. It is easy to check that the point

(x1, x2, a) · (0, 0, eτ ) = (x1, x2, a eτ ) is in Ω. Moreover,

Ψ
(
(x1, x2, a) · (0, 0, eτ )

)
=

1
a2 e2τ log(a eτ )

> C
1

a2 log a
= C Ψ(x1, x2, a) ,

as claimed in (ii). To prove (iii), we integrate Ψ over Ω′ and obtain∫
Ω′

Ψdρ =
∫ ∞

√
2A

1
a2 log a

∫ ∫
x2
1+x2

26a2/64

dx1 dx2
da
a

= C

∫ ∞

√
2A

1
a log a

da

= ∞ .
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Given (x1, x2, a) ∈ Ω′ and (y1, y2, b), (z1, z2, c) ∈ F , we have that

(x1, x2, a) · (y1, y2, b)−1 · (z1, z2, c)

=
(
x1 + ab−1(z1 − y1), x2 + ab−1(z2 − y2), ab−1c

)
,

where ab−1c >
√

2A/
√

2 = A, and[
x1 + ab−1(z1 − y1)]2 +

[
x2 + ab−1(z2 − y2)]2

<
(
|x1|+ a/8)2 +

(
|x2|+ a/8)2

< 2
(
1/8 + 1/8)2 a2

< (ab−1c)2/4 .

Thus (x1, x2, a) · (y1, y2, b)−1 · (z1, z2, c) ∈ Ω, and (5.2) is proved. �

Theorem 5.2. — The operator S0 is not bounded from H1 to L1.

Proof. — Following closely the proof of Theorem 4.2, we shall construct
an atom a such that S0a does not belong to L1. With R as in that proof,
we let F be the parallelepiped defined in Lemma 5.1 and consider

Fσ = F · (0, 0, eσ) = {(y1, y2, aeσ) : (y1, y2, b) ∈ F}

=
(
− 1/16, 1/16)×

(
− 1/16, 1/16)× (eσ, eσ

√
2) .

With σ = (log 2)/2, F and Fσ are disjoint and contained in R.
Let us consider the atom a = ρ(R)−1

(
1F − 1F σ

)
. We compute S0a

outside the support of a. For all x /∈ F ∪ Fσ

S0a(x) = ρ(R)−1

∫
F

S0(x, y) dρ(y)− ρ(R)−1

∫
F σ

S0(x, y) dρ(y)

= ρ(R)−1

∫
F

[
S0(x, y)− S0

(
x, y · (0, 0, eσ)

)]
dρ(y) .

By (2.6) we know that

S0(x, y)− S0

(
x, y · (0, 0, eσ)

)
= δ(x)

(
− k0(x−1y) + k0(x−1y exp(σX0))

)
= δ(x)σ

d

dt

∣∣∣
t=τ(x,y)

k0

(
x−1y exp(tX0)

)
= δ(x)σX0k0

(
x−1y exp(τ(x, y)X0)

)
,

for some τ(x, y) in (0, σ). It follows that for all x /∈ F ∪ Fσ

S0a(x) = ρ(R)−1 σ δ(x)
∫

F

X0k0

(
x−1y exp(τ(x, y)X0)

)
dρ(y) .(5.4)
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To prove that S0a is not in L1, we integrate S0a in the region F (Ω′)−1.
It is easy to verify that F (Ω′)−1 is disjoint with F ∪ Fσ, so that we can
apply (5.4) and obtain∫

F (Ω′)−1

∣∣S0a(x)
∣∣ dρ(x) =

= ρ(R)−1 σ

∫
F (Ω′)−1

δ(x)
∣∣∣ ∫

F

X0k0

(
x−1y exp(τ(x, y)X0)

)
dρ(y)

∣∣∣ dρ(x)

= ρ(R)−1 σ

∫
Ω′ F−1

∣∣∣ ∫
F

X0k0

(
xy exp(τ(x−1, y)X0)

)
dρ(y)

∣∣∣ dρ(x) .

If x ∈ Ω′ F−1 and y ∈ F , then xy ∈ Ω, in view of (5.2). Since 0 <

τ(x−1, y) < σ < 1, by Lemma 5.1(ii) the point xy exp(τ(x−1, y)X0) is
in Ω and

X0k0

(
xy exp(τ(x−1, y)X0)

)
> C Ψ(xy exp(τ(x−1, y)X0)) > C Ψ(xy) .

As in the proof of Theorem 4.2, we get∫
F (Ω′)−1

∣∣S0a(x)
∣∣ dρ(x) > C ρ(R)−1 σ

∫
Ω′ F−1

∫
F

Ψ(xy) dρ(y) dρ(x)

= C ρ(R)−1 σ

∫
F

dρ(y)
∫

Ω′ F−1y

Ψ(w) dρ(w)

> C ρ(R)−1 σ

∫
F

dρ(y)
∫

Ω′
Ψ(w) dρ(w) .

Lemma 5.1 (iii) implies that the last integral diverges. �

6. The local parts of Tij, Sij and Rij

In this section, we study the local parts of the kernels of the second-order
Riesz transforms. We shall prove that they behave like standard Calderón–
Zygmund kernels in R3 and deduce that they correspond to operators which
are bounded from H1 to L1.

Let Ψ be a function in C∞c (S) such that 0 6 Ψ 6 1, Ψ is supported in
the ball B2 of radius 2 and Ψ = 1 on the ball B1. Define

g0
ij = gij Ψ and g∞ij = gij (1−Ψ) ,

k0
ij = kij Ψ and k∞ij = kij (1−Ψ) ,

`0ij = `ij Ψ and `∞ij = `ij (1−Ψ) ,

and let T 0
ij , T∞ij , R0

ij , R∞ij , S0
ij and S∞ij be the corresponding convolution

operators. We shall prove that the operators T 0
ij , R0

ij and S0
ij are bounded

from H1 to L1. To do so, we use the following lemma.
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Lemma 6.1. — Let T be a convolution operator which is bounded on
L2. Suppose that its kernel k is a distribution supported in the ball B2 and
given by a function in B2 \ {e}. Define

(6.1) β
(
(x1, x2, s), (y1, y2, t)

)
= δ(y1, y2, et) k

(
(y1, y2, et)−1 · (x1, x2, es)

)
for any (x1, x2, s) 6= (y1, y2, t) ∈ R3. If β satisfies the standard estimate

(6.2) |β(x,y)|+ |x− y|
[
|∇xβ(x,y)|+ |∇yβ(x,y)|

]
6 C |x− y|−3 ,

for |y| < 2A0, x 6= y, where A0 is a suitable constant, then T is bounded
from H1 to L1.

Proof. — We first verify that the operator T is of weak type 1. Via a stan-
dard Calderón-Zygmund decomposition argument, the L2-boundedness of
T and the estimate (6.2) imply that for any f ∈ L1(B1)

ρ
(
{x ∈ G : |Tf(x)| > t}

)
6
C

t
‖f‖1 ∀t > 0 .

There exists a sequence of balls Bj , centered at points xj and of radius
1, such that G =

⋃
j Bj and each point of G belongs to at most n of the

balls Bj (see [13, Lemma 8]). From the left-invariance of the operator T ,
the right-invariance of the measure and a simple application of a partition
of unity (ψj)j such that suppψj ⊆ Bj , we may deduce that for any f ∈ L1

and t > 0

ρ
(
{x ∈ G : |Tf(x)| > t}

)
6 ρ

(
{x ∈ G :

∑
j

|T (ψjf)(x)| > t}
)

6
C

t

∑
j

‖ψjf‖1 6
C

t
‖f‖1 .

The inequalities above follow by a standard argument (see [13, Lemma 7]
for the details). Thus, T is of weak type 1. As in the proof of Theorem 3.1,
the lemma will follow if we show that there exists a constant C such that
‖Tb‖1 6 C for any atom b.

Any atom b can be transformed by an appropriate left-translation into
an atom a supported in a Calderón–Zygmund set centered at the identity,
and ‖Tb‖1 = ‖Ta‖1 by the left-invariance of T . Thus, it suffices to con-
sider an atom a supported in a Calderón–Zygmund set R = [−L/2, L/2]×
[−L/2, L/2]× [e−r, er] centered at the identity. Recall that the dilated set
R∗ is defined by {x ∈ G : d(x,R) < r}. Since T is bounded on L2,

(6.3) ‖Ta‖L1(R∗) 6 ρ(R∗)1/2 |||T |||L2→L2 ‖a‖2 6 C .

Note that supp(Ta) ⊆ R ·B2 ⊆ {x ∈ S : d(x,R) < 2}.
If r > 2, then supp(Ta) ⊆ R·B2 ⊆ R∗, so that ‖Ta‖1 = ‖Ta‖L1(R∗) 6 C.
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Suppose now that r < 2. Since r(x1, x2, a) ∼ |(x1, x2, log a)| near the
identity, there exists an absolute constant A0 such that

R ⊂ {(x1, x2, a) : |(x1, x2, log a)| < A0r} = B .

Notice that B corresponds to a euclidean ball in R3. Since r < 2, ρ(B) ∼
ρ(R) ∼ r3 and, by arguing as in (6.3), we obtain that ‖Ta‖L1(2B) 6 C .

It remains to estimate the L1-norm of Ta outside 2B. Since the distri-
butional convolution of T is k, we get∫

(2B)c

|Ta(x)|dρ(x) =
∫

(2B)c

∣∣∣ ∫
B

a(y)δ(y)k(y−1x) dρ(y)
∣∣∣ dρ(x)

=
∫

(2B)c

∣∣∣ ∫
B

a(y)δ(y)
[
k(y−1x)− k(x)

]
dρ(y)

∣∣∣ dρ(x).

Rewriting this in terms of β and euclidean coordinates, we conclude

‖Ta‖L1(2B)c 6 ‖a‖∞ ×
∫
|(x1,x2,s)|>2A0r

∫
|(y1,y2,t)|<A0r∣∣β(

(x1, x2, s), (y1, y2, t)
)
− β

(
(x1, x2, s),0

)∣∣ dy1 dy2 dtdx1 dx2 ds .

If |x| > 2A0r and |y| < A0r, by (6.2) we get∣∣β(
x,y

)
− β

(
x, 0

)∣∣ 6 sup
|y′|<A0r

|∇yβ(x,y′)| |y| 6 C r |x|−4 ,

so that

‖Ta‖L1(2B)c 6 ‖a‖∞
∫
|x|>2A0r

∫
|y|<A0r

∣∣β(
x,y

)
− β

(
x, 0

)∣∣ dy dx

6 C r−3

∫
|x|>2A0r

∫
|y|<A0r

|x|−4 r dy dx

6 C .

�

Proposition 6.2. — The operators T 0
ij , R0

ij and S0
ij are bounded from

H1 to L1.

Proof. — It is enough to apply Lemma 6.1 to the operators T 0
ij , R0

ij and
S0

ij . By [14, Theorem 12] they are bounded on L2 and their kernels g0
ij , k0

ij ,
`0ij are supported in the ball B2. Let k denote one of the kernel g0

ij , k0
ij , `0ij .

We must show that the function β, given by

β
(
(x1, x2, s), (y1, y2, t)

)
= e−2t k

(
e−t(x1 − y1), e−t(x2 − y2), es−t

)
,

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H1 TO L1 OF RIESZ TRANSFORMS 1141

satisfies (6.2). By means of some elementary Taylor expansions in the vari-
able x = (x1, x2, log a) ∈ R3, one finds that near e

W (x1, x2, a) =
1
4π

1
|x|

(1 + h1 + h2 + . . .) ,

where each hj is a function of x which is homogeneous of degree j and
smooth away from 0, and the series

∑
j hj converges near 0. Termwise

differentiation is possible, and we let ∂α denotes a differentiation operator
with respect to (x1, x2, log a), of order α. Then

∂αW = h̃−1−|α| + h̃−|α| + . . . ,

with similar smooth homogeneous functions h̃j . This implies

|∂αW (x)| 6 C |x|−1−|α|

for small x, and thus

(6.4) |k(x1, x2, a)|+ |(x1, x2, log a)| |∇k(x1, x2, a)| 6 C |(x1, x2, log a)|−3

in B2 \ {e}, where ∇ denotes the gradient with respect to (x1, x2, log a).
If (y1, y2, t) is near the origin, we have∣∣β(

(x1, x2, s), (y1, y2, t)
)∣∣ 6 C

∣∣k(e−t(x1 − y1), e−t(x2 − y2), es−t
)∣∣

6 C |(e−t(x1 − y1), e−t(x2 − y2), s− t)|−3

6 C |(x1 − y1, x2 − y2, s− t)|−3 ,

and∣∣∇(x1,x2,s)β
(
(x1, x2, s), (y1, y2, t)

)∣∣ +
∣∣∇(y1,y2,t)β

(
(x1, x2, s), (y1, y2, t)

)∣∣
6 C

∣∣k(e−t(x1 − y1), e−t(x2 − y2), es−t
)∣∣+

+ C
∣∣∇k(e−t(x1 − y1), e−t(x2 − y2), es−t

)∣∣
6 C |(x1 − y1, x2 − y2, s− t)|−4 ,

and the theorem follows. �

7. Boundedness of Tij

We shall prove that the operators Tij = Xi∆−1Xj are bounded from
H1 to L1. Since we already verified the boundedness of their local parts, it
remains to consider the global parts.

In [14, Lemma 9] it is proved that the global parts of the kernels gr,∞
ij of

the right-invariant Riesz transforms T r
ij are integrable with respect to the

measure λ. Since (2.9) implies that (T r
ij f̌)∨ = Tijf for any f ∈ C∞c (G), we
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obtain that g∞ij = ǧr,∞
ij . Thus g∞ij is integrable with respect to the measure

ρ and the corresponding convolution operator T∞ij is bounded from H1

to L1.

8. Unboundedness of Sij

In this section we prove that the operators Sij are not bounded from
H1 to L1. Again it suffices to consider their global parts. To do so, we use
the same idea as in Section 4, defining an atom whose image under the
operator Sij is not integrable far from the support of the atom.

We will need to estimate some integrals of derivatives of the kernels kij .
Notice that it is enough to treat the values of (i, j) listed in the following
lemma, since the remaining cases will follow by symmetry.

Lemma 8.1. — For each pair (i, j) ∈ {(1, 1), (1, 2), (1, 0), (0, 1), (0, 0)},
there exist regions Γ′′ ⊂ Γ′ ⊂ Γ in G, a positive continuous function Φ on
Γ and positive constants C, τ such that

(i)
∣∣X2kij

∣∣ > C Φ in Γ;
(ii) for any (x1, x2, a) in Γ′ and σ in [0, τ ], the point (x1, x2, a) · (0, σ, 1)

is in Γ and

Φ
(
(x1, x2, a) · (0, σ, 1)

)
= Φ(x1, x2, a) ;

(iii)
∫
Γ′′

Φ dρ = ∞ .

Moreover, there exist constants 0 < δ < 1 and 1 < β < 2 such that the
parallelepiped E = (0, δ)× (−δ, 0)× (1, β) satisfies the condition

(8.1) Γ′′ · E−1 · E ⊆ Γ′ .

Proof. — Let us fix a pair (i, j). To simplify the notation we write k

for the kernel kij and drop the indices i, j. Because of (2.25), there exist
constants γ, η, σ, θ ∈ R and h, `, m, n ∈ Z3

+ such that for x in B
c

1

X2k(x) = γ xh e−2r + η x` e−3r + σ xm e−3r + θ xn e−4r +Q(x)

= F (x) +Q(x) ,

where F (x) is defined by the last equality. Here θ 6= 0, |h| = 0, |`| =
|m| = 1, |n| = 2. The remainder term Q(x) is as described in Section 2.
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For large a, (1.1) implies er ∼ a+ a−1(x2
1 + x2)2 and more precisely,

er = a+ a−1(x2
1 + x2

2) + a−1 − e−r

=
(
a+ a−1(x2

1 + x2
2)

) (
1 +

a−1 − e−r

a+ a−1(x2
1 + x2

2)

)
.

Inverting the last factor here and expanding, we see that for x = (x1, x2, a)
with a large

e−pr = ap (a2 + x2
1 + x2

2)
−p

(
1 +O(e−r)

)
= ap |x|−2p

(
1 +O(e−r)

)
,

where | · | denotes the euclidean norm in R3. Thus, for such x

F (x) =
θ xn a4 + |x|2

[
γ xh a2 |x|2 + η x` a3 + σ xm a3

]
|x|8

+ E(x)

=
P (x)
|x|8

+ E(x) ,

where P is a polynomial in the variables x1, x2, a, homogeneous of degree
6. Further, E(x) is a sum like F (x), but with e−(p+1)r instead of e−pr in
each term. We write P (x) = θ xn a4 + |x|2 P̃ (x), where P̃ is homogeneous
of degree 4. Notice that P is not identically 0, since the monomial xn a4

cannot equal a product θ−1 |x|2 P̃ (x). We can thus find q1, q2 > 0 with
P (q1, q2, 1) 6= 0. By continuity and homogeneity, P (x) 6= 0 also for x in a
narrow cone near the ray in the direction (q1, q2, 1), in particular for x in
the truncated cone

Γ = {(x1, x2, a) ∈ G : a > A,
∣∣x1/a− q1

∣∣ < ε,
∣∣x2/a− q2

∣∣ < ε} ,

for some small ε > 0. With A sufficiently large, this implies that in the
region Γ the quantities |E|, |Q| are much smaller than |F | and so for any
(x1, x2, a) ∈ Γ

|X2k(x1, x2, a)| > C |F (x1, x2, a)| > C
|P (x1, x2, a)|
|(x1, x2, a)|8

> C a−2 .

Defining Φ(x1, x2, a) = a−2 in Γ, we have proved (i).
We define

Γ′ = {(x1, x2, a) ∈ Γ :
∣∣x1/a− q1

∣∣ < ε/2,
∣∣x2/a− q2

∣∣ < ε/2} ,

and

Γ′′ = {(x1, x2, a) ∈ Γ : a > 2A,
∣∣x1/a− q1

∣∣ < ε/4,
∣∣x2/a− q2

∣∣ < ε/4} .

Now choose τ < ε/2 and σ ∈ [0, τ ], and let (x1, x2, a) be in Γ′. Then
(x1, x2, a) · (0, σ, 1) = (x1, x2 + aσ, a). We have that

∣∣x1/a− q1
∣∣ < ε/2 < ε

and ∣∣(x2 + aσ)/a− q2
∣∣ < ∣∣x2/a− q2

∣∣ + σ < ε/2 + τ < ε .
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Thus (x1, x2 + aσ, a) ∈ Γ and Φ
(
(x1, x2, a) · (0, σ, 1)

)
= a−2 = Φ(x1, x2, a).

To prove (iii), it suffices to note that∫
Γ′′
a−2 dx2 dx1

da
a

> C

∫ ∞

2A

a−2 a2 da
a

= ∞ .

Aiming at (8.1) we take points (x1, x2, a) ∈ Γ′′ and (y1, y2, b), (z1, z2, c) ∈ E
and consider (x1, x2, a) · (y1, y2, b)−1 · (z1, z2, c) = (x1 + ab−1(z1 − y1), x2 +
ab−1(z2 − y2), ab−1c). Obviously, ab−1c > 2A/β > 2A/2 = A. Moreover,∣∣∣x1 + ab−1(z1 − y1)

ab−1c
− q1

∣∣∣ 6
∣∣∣ x1

ab−1c
− q1

∣∣∣ +
|z1 − y1|

c

6
x1

a

∣∣∣b/c− 1
∣∣∣ +

∣∣∣x1

a
− q1

∣∣∣ + δ

6 2q1 |β − 1|+ ε/4 + δ

< ε/2 ,

for δ sufficiently small and β sufficiently close to 1. In a similar way, we can
achieve ∣∣∣x2 + ab−1(z2 − y2)

ab−1c
− q2

∣∣∣ < ε/2 ,

so that (x1, x2, a) · (y1, y2, b)−1 · (z1, z2, c) ∈ Γ′, proving (8.1). �

Theorem 8.2. — The operators Sij , for i, j = 0, 1, 2, are not bounded
from H1 to L1.

Proof. — As remarked above, we need only consider the operators S11,
S21,S10,S01,S00.

We argue as in the proof of Theorem 4.2. This time by (2.16) for all
σ > 0 and x, y ∈ G, with x 6= y and x 6= y · (0, σ, 1)

Sij(x, y)− Sij

(
x, y · (0, σ, 1)

)
= δ(x)σX2kji

(
x−1y exp(τ(x, y)X2)

)
,

(8.2)

where 0 < τ(x, y) < σ and Sij denotes the integral kernel of the operator
Sij .

As in the proof of Theorem 4.2 one constructs an atom a such that∫
Sij(·, y)a(y) dρ(y) does not belong to L1: it suffices to apply (8.2) and

Lemma 8.1. We omit the details. �

9. Unboundedness of Rij

In this section we prove that the operators Rij are not bounded from
H1 to L1, and it suffices to consider their global parts. The proof of the
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unboundedness of R∞ij is different from the previous cases. We shall now
construct a sequence of functions in H1 such that their images under the
operator R∞ij lie in L1 but have large L1-norms. To do so, we first analyze
the kernels k∞ij .

Lemma 9.1. — For any i, j = 0, 1, 2, there exists a splitting k∞ij = k1
ij +

k2
ij + k3

ij such that

(i) k1
ij = k∞ij χ{(x1,x2,a)∈G: a61} is integrable;

(ii) k2
ij is supported in the region {(x1, x2, a) ∈ Bc

1 : a > 1} and is
integrable;

(iii) k3
ij is supported in the region {(x1, x2, a) ∈ Bc

1 : a > 1} and for
any f ∈ L1

f ∗ k3
ij(x1, x2, a) = [ψa ∗R2 h](x1, x2) ∀(x1, x2, a) ∈ G ,

where h(x1, x2) =
∫∞
0
f(x1, x2, a) da/a, ψ is a continuous function

on R2 such that |ψ(x1, x2)| 6 C (1 + |(x1, x2)|)−3 for some C, and
ψa(x1, x2) = a−2ψ(a−1x1, a

−1x2) for a > 0.

Proof. — We fix a pair (i, j) and drop the indices i, j on the kernels. By
(2.24) there exist constants α, β and m, n ∈ Z3 such that in Bc

1

k∞(x) = αxm e−2r + β xn e−3r +Q(x) ,

where Q is integrable, β > 0, |m| = 0, |n| = 1 and

m0 + 2 > 0 n0 + 3 > 0

m1 +m2 − 4 < −2 and n1 + n2 − 6 < −2 .(9.1)

We define k1 = k∞ χ{(x1,x2,a)∈G: a61}. By (9.1) and Lemma 2.2(ii), k1 is
integrable.

We now consider the region {(x1, x2, a) ∈ Bc
1 : a > 1}. There we may

approximate e−r by 1/(2 cosh r) and cosh r by a
(
1 +

∣∣a−1(x1, x2)
∣∣2). Es-

timating the errors, we can write the principal terms in the expression for
k∞ above as

αxm e−2r + β xn e−3r

= αa|m|
(
a−1x1

)m1
(
a−1x2

)m2 1
4a2(1 + |a−1(x1, x2)|2)2

+ β a|n|
(
a−1x1

)n1
(
a−1x2

)n2 1
8a3(1 + |a−1(x1, x2)|2)3

+ q(x)

= a−2ψ
(
a−1(x1, x2)

)
+ q(x) ,
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where

ψ(x1, x2) = α
xm1

1 xm2
2

4(1 + |(x1, x2)|2)2
+ β

xn1
1 xn2

2

8(1 + |(x1, x2)|2)3

and
q(x) = O

(
xme−3r + xne−4r

)
.

By Lemma 2.2(i) and (9.1), q is integrable in the region where a > 1, and
|ψ(x1, x2)| 6 C (1 + |(x1, x2)|)−3.

Define k3(x1, x2, a) = a−2ψ
(
a−1(x1, x2)

)
χ{(x1,x2,a)∈Bc

1 : a>1} and k2 =
k∞ − k3 − k1. Then

k2(x1, x2, a) = Q(x) + q(x) ,

and so k2 is integrable, which proves (ii).
Given a function f in L1, we obtain

f ∗ k3(x1, x2, a) =

=
∫ ∞

0

∫ ∫
R2
f(x1 − ab−1y1, x2 − ab−1y2, ab

−1) b−2 ψ(b−1y1, b
−1y2)

dy1 dy2 db/b

=
∫ ∞

0

∫ ∫
R2
f(x1 − az1, x2 − az2, ab

−1)ψ(z1, z2) dz1 dz2 db/b

=
∫ ∫

R2
a−2 ψ(a−1v1, a

−1v2)
∫ ∞

0

f(x1 − v1, x2 − v2, c) dc/cdv1 dv2

=
[
ψa ∗R2 h

]
(x1, x2) ,

which proves (iii). �

We remark that in [14, Section 7], the analog of Lemma 9.1 was proved
for the operators Rr

ij = Xr
i X

r
j (∆r)−1. We could also deduce Lemma 9.1

from that result.
We shall need the following technical lemma, which shows how to con-

struct functions in H1(G) from functions in H1(R2).

Lemma 9.2. — For any function h in H1(R2), there exists a function f
in H1(G) such that ‖f‖H1(G) 6 ‖h‖H1(R2) and

h(x1, x2) =
∫ ∞

0

f(x1, x2, a)
da
a
.

Proof. — Let h be in H1(R2). Take a decomposition of h as
∑

j λjbj ,
where λj ∈ C,

∑
j |λj | < ∞ and bj are atoms in R2. The atom bj is

supported in a square Qj of side Lj , and
∫
bj = 0 and ‖bj‖∞ 6 L−2

j . We
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choose rj > 0 such that either rj < 1 and e2 rj 6 Lj < e8 rj or rj > 1 and
e2rj 6 Lj < e8rj . Define

aj(x1, x2, a) =
1
2
r−1
j χ[e−rj ,erj ](a) bj(x1, x2) .

The functions aj are atoms in G supported in the Calderón–Zygmund sets
Rj = Qj × [e−rj , erj ]. Now define f =

∑
j λjaj . It is easy to check that f

is H1(G) and has the required properties. �

We now concentrate on the part of the kernel which is not integrable,
i.e., k3

ij .

Lemma 9.3. — The operator f 7→ f ∗k3
ij is not bounded from H1 to L1.

Proof. — The proof will follow those of [13, Lemmata 13, 14]. We will
define a sequence of functions hN in the Hardy space H1(R2) such that
‖ψa ∗ hN‖1/‖hN‖H1(R2) is large. From Lemma 9.2, we then obtain a se-
quence of functions fN in H1(G) such that ‖fN ∗ k3

ij‖1/‖fN‖H1 is not uni-
formly bounded.

Let φ be a C∞-function in R2 supported in [−1, 1] × [−1, 1] such that∫
φ = 0, and ψ ∗R2 φ(0, 0) 6= 0. Let L > 1 and let N be the greatest natural

number with N < logL. Let p, q be large natural numbers to be chosen
later. Define

(9.2) hN =
N∑

n=0

∑
k∈Z2, |ki|<(2qnL−1)/p

±φnk ,

where the signs will be chosen later and

φnk(x1, x2) = φ(2qnx1 − pk1, 2qnx2 − pk2).

Let n and k be as in the double sum. Since suppφ ⊂ [−1, 1] × [−1, 1], we
conclude

suppφnk ⊂ [2−nq(pk1− 1), 2−nq(pk1 + 1)]× [2−nq(pk2− 1), 2−nq(pk2 + 1)] .

It follows that hN is supported in [−L,L]× [−L,L].
Claim 1. One can choose p, q and t > 0 independently of N so that for

all sign choices in (9.2)

ρ({(x1, x2, a) : |ψa ∗ hN (x1, x2)| > t}) > C N L2 .

Claim 2. The signs in (9.2) can be chosen so that ‖hN‖2 6 C
√
N L.

Proof of Claim 1. Since ψ ∗R2 φ(0, 0) 6= 0, there exists a positive δ such
that

∣∣ψa ∗R2 φ(x1, x2)
∣∣ > δ for (x1, x2, a) in a neighbourhood U of (0, 0, 1)
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in R2 ×R+ = G. We can take U contained in [−1, 1]× [−1, 1]× [1/2, 2]. It
follows that

(9.3)
∣∣ψa ∗R2 φnk(x1, x2)

∣∣ > δ if (x1, x2, a) ∈ Unk ,

where Unk = {(x1, x2, a) : (2qnx1 − pk1, 2qnx2 − pk2, 2qna) ∈ U}. The sets
Unk are mutually disjoint and ρ(Unk) = 2−2qnρ(U).

Now fix 0 6 m 6 N , ` ∈ Z2 such that |`i| < (2qmL − 1)/p and take
(x1, x2, a) ∈ Um`. By (9.3), in the sum

N∑
n=0

∑
k∈Z2, |ki|<(2qnL−1)/p

±ψa ∗ φnk(x1, x2) ,

the term with n = m, k = ` is greater than δ in absolute value. The other
terms are much smaller; more precisely, we can choose p, q such that

(9.4)
∑ ∑

(n,k) 6=(m,l)

|ψa ∗ φnk(x1, x2)
∣∣ 6 δ/2 .

The proof of (9.4) is the same as [13, Proof of Claim 1, page 277], and we
omit it.

This means that

{(x1, x2, a) : |ψa ∗ hN (x1, x2, a)| > δ/2} ⊇
N⋃

n=0

⋃
k∈Z2,|ki|6(2qnL−1)/p

Unk .

Thus, choosing t = δ/2,

ρ({(x1, x2, a) : |ψa ∗ hN (x1, x2, a)| > t}) >
N∑

n=0

∑
k∈Z2, |ki|<(2qnL−1)/p

ρ(Unk)

> C ρ(U)
N∑

n=0

2−2qn(2qnL− 1)2

> C N L2 .

Proof of Claim 2. This proof follows the idea of [13, Proof of Claim 2, page
279]. On the set of all sign choices in (9.2), consider the probability measure
which makes the signs into independent Bernoulli variables. Denote by E
the corresponding expectation. Then

E|hN |2(x) =
∑
n,k

|φnk(x)|2

=
N∑

n=0

∑
k∈Z2, |ki|<(2qnL−1)/p

|φ(2qnx1 − pk1, 2qnx2 − pk2)|2
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and ∫
E|hN (x1, x2)|2 dx1 dx2

6 C

N∑
n=0

∑
k∈Z2, |ki|<(2qnL−1)/p

2−2nq

6 C N L2 .

Thus E‖hN‖2 6 C
√
N L, and Claim 2 follows.

If we choose p, q and the signs in (9.2) as in Claim 1 and 2, the function
hN will be a multiple of a (1, 2)-atom in R2 (see [8]). Indeed, it is supported
in [−L,L]×[−L,L], with integral zero, and ‖hN‖2 6 C

√
N L. In particular,

hN is in H1(R2) and ‖hN‖H1(R2) 6 C L2
√
N .

By Lemma 9.2, there exists fN inH1(G) such that ‖fN‖H1(G) 6 C L2
√
N

and

hN (x1, x2) =
∫ ∞

0

fN (x1, x2, a)
da
a
.

Thus by Lemma 9.1 and Claim 1,

‖fN ∗ k3
ij‖1 =

∫ ∞

0

∫
R2
|ψa ∗ hN (x1, x2, a)|dρ(x1, x2, a)

> t ρ({(x1, x2, a) : |ψa ∗ hN (x1, x2, a)| > t})

> C N L2 .

This shows that ‖fN ∗ k3
ij‖1/‖fN‖H1(G) is not uniformly bounded, proving

the lemma. �

Theorem 9.4. — The operators R∞ij , for i = 0, 1, 2, are not bounded
from H1 to L1.

Proof. — This is a direct consequence of Lemmata 9.1 and 9.3. �
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