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RAABE’S FORMULA FOR p-ADIC GAMMA
AND ZETA FUNCTIONS

by Henri COHEN & Eduardo FRIEDMAN (*)

Abstract. — The classical Raabe formula computes a definite integral of the
logarithm of Euler’s Γ-function. We compute p-adic integrals of the p-adic log Γ-
functions, both Diamond’s and Morita’s, and show that each of these functions is
uniquely characterized by its difference equation and p-adic Raabe formula. We
also prove a Raabe-type formula for p-adic Hurwitz zeta functions.

Résumé. — La formule de Raabe classique donne la valeur de l’intégrale de
la fonction log gamma d’Euler sur un intervalle de longueur 1. Nous calculons des
intégrales p-adiques analogues pour les fonctions log gamma p-adiques de Diamond
et de Morita, et nous montrons que chacune de ces fonctions est caractérisée de
manière unique par son équation fonctionnelle et sa formule de Raabe p-adique.
Nous démontrons aussi une formule de type Raabe pour les fonctions zêta de
Hurwitz p-adiques.

1. Introduction

Some 30 years ago Diamond [2] defined a p-adic analogue Log ΓD(x) of
Euler’s classical function log Γ(x). It takes values in the completion Cp of
the algebraic closure of the p-adic field Qp and is defined for x ∈ Cp − Zp

[8, §60], where Zp ⊂ Qp denotes the ring of p-adic integers. We recall the
definition of Log ΓD(x) in (1.18) below, but the most important feature of
Log ΓD(x) is its difference equation

(1.1) Log ΓD(x + 1)− Log ΓD(x) = logp x, (x ∈ Cp − Zp),

where logp on the right denotes the Iwasawa p-adic logarithm (so logp p = 0).
Diamond’s Log ΓD(x) is not the logarithm of any function, but our no-

tation is meant to recall the analogy with the classical log Γ function and

Keywords: p-adic gamma function, p-adic zeta function, Raabe’s formula.
Math. classification: Primary 11S80; Secondary 11S40.
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364 Henri COHEN & Eduardo FRIEDMAN

with Morita’s [4] [8, §35] alternative p-adic analogue Log ΓM(x), which we
define in (1.14) below. Morita’s function has for domain the p-adic integers
Zp, satisfies the modified difference equation

(1.2) Log ΓM(x + 1)− Log ΓM(x) =

{
logp x if x ∈ Z∗p,
0 if x ∈ pZp,

and is actually the Iwasawa logarithm of Morita’s Γp(x) [7, §7.1] [8, §58].
Morita’s Log ΓM, being continuous and having domain Zp, is uniquely de-

termined by Log ΓM(1) = 0 and by its difference equation (1.2). Diamond’s
Log ΓD, on the other hand, is far from being characterized by its differ-
ence equation (1.1), as there are many non-constant continuous periodic
functions on Cp − Zp.(1)

In this paper we compute a Volkenborn integral of Log ΓD in terms of its
derivative (Log ΓD)′, and show that this integral formula and the difference
equation characterize Log ΓD.

Theorem. — Diamond’s Log ΓD satisfies

(1.3)
∫

Zp

Log ΓD(x+ t) dt = (x−1)(Log ΓD)′(x)−x+
1
2
, (x ∈ Cp−Zp).

It is the unique strictly differentiable function f : Cp −Zp → Cp satisfying
the difference equation

(1.4) f(x + 1)− f(x) = logp x

and the Volkenborn integro-differential equation

(1.5)
∫

Zp

f(x + t) dt = (x− 1)f ′(x)− x +
1
2
.

We prove slightly more. Namely, the uniqueness statement above also
holds if we replace Cp−Zp by Qp−Zp, or by any subset D ⊂ Cp−Zp such
that x ∈ D and t ∈ Zp imply x + t ∈ D.

Recall that the Volkenborn integral of a function g : Zp→Cp is defined by

(1.6)
∫

Zp

g(t) dt := lim
n→∞

1
pn

pn−1∑
j=0

g(j),

(1) For instance, h(x+1) = h(x) for all x ∈ Cp if we take h(x) := 1 for |x|p 6 1, h(x) :=

‖x‖p for |x|p > 1. Here |x|p denotes the usual absolute value on Cp, and ‖x‖p is the
embedding of this value into Cp obtained by choosing an injective homomorphism of pQ

into C∗
p [7, p. 147].
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RAABE’S FORMULA FOR p-ADIC GAMMA AND ZETA FUNCTIONS 365

and that this limits exists if g is strictly differentiable on Zp [7, p. 264],
[8, p. 167]. A function g : X → Cp is strictly differentiable on a subset
X ⊂ Cp (assumed not to have isolated points) if at all points a ∈ X

(1.7) lim
(x,y)→(a,a)

g(x)− g(y)
x− y

exists, the limit being restricted to x, y ∈ X, x 6= y [7, p. 221].
There are several characterizations of the classical function log Γ(x), the

most famous one being the 1922 Bohr-Mollerup theorem [1, p. 35] stating
that log

(
Γ(x)

)
is the unique convex function on (0,∞) satisfying F (1) = 0

and

(1.8) F (x + 1)− F (x) = log(x).

In the p-adic domain the above theorem is the first characterization of
Log ΓD known to the authors.

The uniqueness part of the theorem is actually very easy, as p-adic func-
tions satisfying both a difference equation and a linear integro-differential
equation are highly restricted.

Proposition. — Let D ⊂ Cp be any subset of Cp such that x ∈ D

and t ∈ Zp imply x + t ∈ D, let f : D → Cp and g : D → Cp be strictly
differentiable and n times differentiable on D for some n > 1. Suppose
finally that F = f and F = g are solutions of the difference equation

(1.9) F (x + 1)− F (x) = b0(x), (x ∈ D)

and of the n-th order Volkenborn integro-differential equation

(1.10)
∫

Zp

F (x + t) dt = b1(x) + a0(x)F (x) +
n∑

j=1

aj(x)F (j)(x), (x ∈ D)

for some arbitrary functions aj : D → Cp and bk : D → Cp (0 6 j 6 n,

0 6 k 6 1). Then f(x) = g(x) for all x ∈ D such that a0(x) 6= 1.

We prove the theorem and proposition above in §2.
As a corollary of the proposition we see that the Volkenborn integral∫

Zp
f(x + t) dt together with the difference f(x + 1)− f(x) uniquely char-

acterize f .

Corollary. — Suppose D ⊂ Cp is as above and that w : D → Cp and
v : D → Cp are arbitrary p-adic functions on D. Then there is at most one
strictly differentiable function f : D → Cp satisfying both

(1.11) f(x+1)−f(x) = w(x) and
∫

Zp

f(x+ t) dt = v(x), (x ∈ D).

TOME 58 (2008), FASCICULE 1



366 Henri COHEN & Eduardo FRIEDMAN

More precisely, an “integration by parts” (see Lemma 2.1) shows that

(1.12) f(x) = v(x) +
∫

Zp

(t + 1)w(x + t)dt, (x ∈ D).

We note that f(x + 1)− f(x) = w(x) implies that w(x) is strictly differ-
entiable on D, so that the above Volkenborn integral is defined.

We turn next to Morita’s p-adic Γ-function ΓM : Zp → Z∗p (usually
denoted Γp). For positive integers n [4] [7, pp. 368, 385] [8, §35] it is defined
as

ΓM(n) = (−1)n
∏

16j<n
p-j

j.

Being a continuous function on Zp, ΓM is characterized by ΓM(1) = −1
and

(1.13)
ΓM(x + 1)

ΓM(x)
=

{
−x if x ∈ Z∗p,
−1 if x ∈ pZp.

In §2 we prove a p-adic Raabe formula for the Iwasawa logarithm Log ΓM

of ΓM

(1.14) Log ΓM(x) := logp ΓM(x).

Namely,

(1.15)
∫

Zp

Log ΓM(x + t) dt = (x− 1)(Log ΓM)′(x)− x +
⌈

x

p

⌉
,

where
⌈

x
p

⌉
is the p-adic limit of the usual integer ceiling function

⌈
xn

p

⌉
as

xn → x through xn ∈ Z. Actually, Log ΓM(x) is given by a power series
convergent on the open disk

{
x ∈ Cp

∣∣ |x|p < 1
}

[7, p. 376], but we have
not investigated how the above formula might extend beyond x ∈ Zp.

Taking x = 1 in (1.15) we find

(1.16)
∫

Zp

Log ΓM(1 + t) dt = 0.

It is easy to see that the difference equation (1.2) and the Raabe formula
(1.15) uniquely characterize Log ΓM among all continuous functions on Zp.
In fact, the single integral (1.16) suffices to fix the constant left undeter-
mined by the difference equation.

The p-adic integrals
∫

Zp
Log ΓD(x + t) dt and

∫
Zp

Log ΓM(x + t) dt are
analogues of Raabe’s 1843 formula [6, p. 89]

(1.17)
∫ 1

0

log
(

Γ(x + t)√
2π

)
dt = x log x− x, (x > 0).

ANNALES DE L’INSTITUT FOURIER
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Although Raabe’s formula has largely been ignored, an extension of it to
higher Γ-functions [3] was recently used to simplify work of Barnes and
Shintani on these functions. The p-adic Raabe formulas proved here give
another indication that Raabe-type formulas may be more than a curiosity.

J. Diamond [2] defined his function as the Volkenborn integral

(1.18) Log ΓD(x) :=
∫

Zp

(
(x + t) logp(x + t)− (x + t)

)
dt.

The appearance above of the p-adic analogue of the x log x− x in Raabe’s
formula (1.17) is no coincidence [8, §58]. If a classical (continuously differ-
entiable) function f satisfies a difference equation

(1.19) f(x + 1)− f(x) = g(x),

then its “Raabe” integral

G(x) :=
∫ 1

0

f(x + t) dt

is connected to a p-adic version fp of f as follows. Notice first that G′(x) =
g(x), so G determines the difference equation. If G has a (strictly differ-
entiable) p-adic version Gp, then gp(x) := G′

p(x) is a p-adic version of
g(x) = G′(x). If we set

(1.20) fp(x) :=
∫

Zp

Gp(x + t) dt,

then fp satisfies

(1.21) fp(x + 1)− fp(x) = gp(x).

The function fp(x) is thus a good canditate for a p-adic version of f(x),
for it satisfies the difference equation (1.21), in analogy with (1.19).

Raabe’s classical formula (1.17) is related to the integral formula (see §3)

(1.22)
∫ 1

0

ζ(s, x + t) dt =
x1−s

s− 1
, (Re(x) > 0, s ∈ C, s 6= 1)

for the Hurwitz zeta function

(1.23) ζ(s, x) :=
∞∑

n=0

1
(n + x)s

, (Re(x) > 0, Re(s) > 1).

The Hurwitz zeta function has an analytic s-continuation to s = 0 and
satisfies Lerch’s formula [1, p. 17]

(1.24) log
(

Γ(x)√
2π

)
=

∂ζ

∂s
(0, x).

TOME 58 (2008), FASCICULE 1



368 Henri COHEN & Eduardo FRIEDMAN

One easily deduces Raabe’s original formula (1.17) from Lerch’s and (1.22).
In §3 we prove Raabe-type formulas for the p-adic Hurwitz zeta functions,
which like Log ΓD and Log ΓM also come in two varieties according to the
domain. In §2 and §3 we also apply our p-adic Raabe formula character-
izations to give quick proofs of some basic properties of p-adic log Γ and
p-adic Hurwitz zeta functions.

2. p-adic Raabe formulas

Throughout this section D ⊂ Cp is a an arbitrary subset closed under
x → x+ t for t ∈ Zp and x ∈ D. In particular, D could be Cp−Zp, Qp−Zp

or Zp. Suppose f : D → Cp is strictly differentiable on D (see (1.7)), so
that for fixed x ∈ D the function t → f(x + t) is strictly differentiable on
Zp. The Volkenborn integral

(2.1) F (x) :=
∫

Zp

f(x + t) dt, (x ∈ D)

is then defined and satisfies [7, p. 265]

(2.2) F (x + 1)− F (x) = f ′(x).

We shall need to cite a result allowing us to differentiate F . Call a function
f : D → Cp twice strictly differentiable on D if it admits a second order
expansion

(2.3) f(x) = f(y) + (x− y)α(y) + (x− y)2β(x, y), (x, y ∈ D),

where α and β are continuous functions from D×D to Cp [7, p. 224]. Then
F in (2.1) and f ′ are strictly differentiable and [7, pp. 223, 268]

(2.4) F ′(x) :=
∫

Zp

f ′(x + t) dt, (x ∈ D).

We shall need a kind of integration by parts formula.

Lemma 2.1. — Suppose f : D → Cp is such that w(x) := f(x+1)−f(x)
is strictly differentiable on D. Then the Volkenborn integral

∫
Zp

f(x + t) dt

exists for any x ∈ D and is given by

(2.5)
∫

Zp

f(x + t) dt = f(x)−
∫

Zp

(t + 1)w(x + t) dt, (x ∈ D).

ANNALES DE L’INSTITUT FOURIER



RAABE’S FORMULA FOR p-ADIC GAMMA AND ZETA FUNCTIONS 369

Proof. — Note that t → (t + 1)w(x + t) is strictly differentiable on Zp,
being a product of two such functions, so the Volkenborn integral on the
right-hand side above is defined. Also note the telescoping sum

f(x + j) = f(x) +
j−1∑
k=0

w(x + k), (j > 0, j ∈ Z).

Hence,

1
pn

pn−1∑
j=0

f(x + j) = f(x) +
1
pn

pn−1∑
j=0

j−1∑
k=0

w(x + k)

= f(x) +
1
pn

pn−2∑
k=0

(pn − 1− k)w(x + k)

= f(x) +
1
pn

pn−1∑
k=0

(pn − 1− k)w(x + k)

= f(x) +
pn−1∑
k=0

w(x + k)− 1
pn

pn−1∑
k=0

(k + 1)w(x + k).

The lemma follows on taking limn→∞ above, noting that

lim
n→∞

pn−1∑
k=0

w(x + k) =
(

lim
n→∞

pn

)(
lim

n→∞

1
pn

pn−1∑
k=0

w(x + k)
)

= 0,

since w is assumed strictly differentiable. �

Formula (1.12) and the corollary in §1 follow from the lemma just proved.
The next lemma will lead us to p-adic Raabe formulas.

Lemma 2.2. — Suppose G : D → Cp is twice strictly differentiable
(see (2.3)), and for x ∈ D, set F (x) :=

∫
Zp

G(x + t) dt. Then∫
Zp

F (x + t) dt = F (x) + (x− 1)F ′(x)−
∫

Zp

(x + t)G′(x + t) dt, (x ∈ D).

Proof. — Using the previous lemma and (2.2) we find∫
Zp

F (x + t) dt = F (x)−
∫

Zp

(t + 1)G′(x + t) dt

= F (x) + (x− 1)
∫

Zp

G′(x + t) dt−
∫

Zp

(x + t)G′(x + t) dt,

whence the lemma follows from (2.4). �

TOME 58 (2008), FASCICULE 1



370 Henri COHEN & Eduardo FRIEDMAN

Diamond’s Log ΓD is defined by

(2.6) Log ΓD(x) :=
∫

Zp

(
(x + t) logp(x + t)− (x + t)

)
dt, (x ∈ Cp −Zp),

where logp is the Iwasawa p-adic logarithm [8, §60]. We can now prove a
p-adic Raabe formula.

Proposition 2.3.∫
Zp

Log ΓD(x + t) dt = (x− 1)(Log ΓD)′(x)− x +
1
2
, (x ∈ Cp − Zp).

Proof. — For x ∈ Cp − {0}, let G(x) := x logp(x) − x. Then one checks
that G is twice strictly differentiable on Cp−{0} and that G′(x) = logp(x).
From Lemma 2.2 and (2.6),∫

Zp

Log ΓD(x + t) dt

= Log ΓD(x) + (x− 1)(Log ΓD)′(x)−
∫

Zp

(x + t) logp(x + t) dt

= (x− 1)(Log ΓD)′(x)−
∫

Zp

(x + t) dt

= (x− 1)(Log ΓD)′(x)− x−
∫

Zp

t dt.

The proposition follows since∫
Zp

t dt = lim
n→∞

1
pn

pn−1∑
j=0

j = lim
n→∞

pn − 1
2

= −1
2
.

�

We now prove a Raabe formula for Morita’s Log ΓM.

Proposition 2.4.∫
Zp

Log ΓM(x + t) dt = (x− 1)(Log ΓM)′(x)− x +
⌈

x

p

⌉
, (x ∈ Zp),

where
⌈

x
p

⌉
is the p-adic ceiling function defined after (1.15).

Proof. — We first prove the Volkenborn integral representation [8, p. 177]

(2.7) Log ΓM(x) =
∫

Zp

χZ∗p
(x+t)

(
(x+t) logp(x+t)−(x+t)

)
dt, (x ∈ Zp)

where χZ∗p
denotes the characteristic function of Z∗p. Indeed, using (1.14),

(1.2) and (2.2) we find that both sides of (2.7) satisfy the same difference

ANNALES DE L’INSTITUT FOURIER
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equation, hence differ by a constant c for all x ∈ Zp. Since Log ΓM(0) =
Log ΓM(1) = 0, taking x = 0 we find

(2.8) c =
∫

Zp

χZ∗p
(t)(t logp(t)− t) dt.

Now, for any odd strictly differentiable function f on Zp we have [7, p. 269]∫
Zp

f(t) dt = −f ′(0)
2

.

Since the integrand in (2.8) is odd and vanishes identically in a neighbor-
hood of 0, we find c = 0.

Having established the integral representation (2.7), the proof of Propo-
sition 2.4 now follows exactly that of Proposition 2.3, except that at the
end we must show

(2.9)
∫

Zp

(x + t) · χZ∗p
(x + t) dt = x−

⌈
x

p

⌉
, (x ∈ Zp).

To prove this it suffices to take x a positive integer (see [7, pp. 230, 265]
for a metric on the space of strictly differentiable functions which makes
the Volkenborn integral

∫
Zp

f(t) dt into a continuous function of the inte-
grand f). We calculate∫

Zp

(x + t) · χZ∗p
(x + t) dt

= lim
n→∞

1
pn

∑
06j<pn

p-(x+j)

(x + j)

= lim
n→∞

1
pn

∑
06j<pn

(x + j)− lim
n→∞

1
pn

∑
06j<pn

p|(x+j)

(x + j)

= x + lim
n→∞

1
pn

∑
06j<pn

j − lim
n→∞

1
pn

∑
x6k<x+pn

p|k

k

= x− 1
2
− lim

n→∞

1
pn

∑
d x

pe6`<d x
pe+pn−1

p` = x−
⌈

x

p

⌉
,

as claimed. �

To complete the proof of the theorem given in §1, it only remains to
establish the uniqueness claimed in the proposition in §1. Let h(x) :=
f(x)−g(x) be the difference of two functions, both satisfying the difference

TOME 58 (2008), FASCICULE 1
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and integro-differential equations (1.9) and (1.10). Thus, h(x + 1) = h(x)
and

(2.10)
∫

Zp

h(x + t) dt = a0(x)h(x) +
n∑

j=1

aj(x)h(j)(x)

for all x ∈ D. Using h(x + k) = h(x) for any non-negative integer k and
the definition of the Volkenborn integral, we find

∫
Zp

h(x + t) dt = h(x).
Since h(x + pn) = h(x) for any integer n > 0, we also find that h′(x) = 0
for all x ∈ D. Hence all higher derivatives h(j)(x) also vanish. The integro-
differential equation (2.10) then simplifies to h(x) = a0(x)h(x), whence the
proposition in §1.

The characterization of Log ΓD by its difference equation and Raabe
formula can be used to give quick proofs of some known properties of p-
adic log Γ functions, such as the following [8, pp. 182–183] [7, p. 369].

Proposition 2.5.

Log ΓD(1− x) = −Log ΓD(x), (x ∈ Cp − Zp).(2.11)

Log ΓM(x) =
∑

06j6pN−1
p-(x+j)

Log ΓD

(x + j

pN

)
,(2.12)

(x ∈ Zp, N = 1, 2, 3, · · · ).
Log ΓM(1− x) = −Log ΓM(x), (x ∈ Zp).(2.13)

Proof. — Let f(x) := −Log ΓD(1 − x). A direct calculation using
logp(−x) = logp x shows that f satisfies the same difference equation (1.4)
as Log ΓD(x). Recalling the general property [7, p. 268]∫

Zp

g(t) dt =
∫

Zp

g(−1− t) dt,

where g : Zp → Cp is any strictly differentiable function, we have∫
Zp

f(x + t) dt = −
∫

Zp

Log ΓD(1− x− t) dt = −
∫

Zp

Log ΓD(2− x + t) dt.

This last integral can be evaluated using the Raabe formula in Proposi-
tion 2.3, after which a routine calculation shows that f satisfies the integro-
differential equation (1.5). Hence f = Log ΓD, as claimed in (2.11).

We now prove (2.12). Quite generally, given f : Cp − Zp → Cp we can
define g : Zp → Cp by

g(x) :=
∑

06j6pN−1
p-(x+j)

f
(x + j

pN

)
.
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RAABE’S FORMULA FOR p-ADIC GAMMA AND ZETA FUNCTIONS 373

Then

g(x + 1)− g(x) =

f
(
1 +

x

pN

)
− f

( x

pN

)
if x ∈ Z∗p,

0 if x ∈ pZp.

Since logp

(
x

pN

)
= logp(x), we see that the right-hand side of (2.12) satisfies

the same difference equation as Log ΓM(x). It also vanishes at x = 0 since

Log ΓD

( j

pN

)
= −Log ΓD

(pN − j

pN

)
(1 6 j 6 pN − 1).

Hence both sides of (2.12) coincide.
To prove (2.13), take N = 1 in (2.12) and calculate

Log ΓM(1− x) =
∑

06k<p
p-(1−x+k)

Log ΓD

(
1− x + k

p

)

=
∑

06j<p
p-(1−x+(p−1−j))

Log ΓD

(
1− x + (p− 1− j)

p

)

=
∑

06j<p
p-(x+j))

Log ΓD

(
1− x + j

p

)

= −
∑

06j<p
p-(x+j))

Log ΓD

(
x + j

p

)
= −Log ΓM(x).

�

3. Raabe formulas for p-adic Hurwitz zeta functions

Before passing to the p-adic domain, we take a quick look at the classical
Hurwitz zeta function

(3.1) ζ(s, x) :=
∞∑

n=0

1
(n + x)s

, (Re(x) > 0, Re(s) > 1).

The difference equation

ζ(s, x + 1)− ζ(s, x) = −x−s

follows immediately from the series (3.1) defining ζ(s, x). Differentiating
this same series we obtain

(3.2)
∂ζ

∂x
(s, x) = −s

∞∑
n=0

1
(n + x)s+1

= −sζ(s + 1, x).
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Hence

(3.3)
∫ 1

0

ζ(s, x + t) dt =
ζ(s− 1, x + 1)− ζ(s− 1, x)

1− s
=

x1−s

s− 1
,

where in the last step we used the difference equation. In this section we
give a p-adic version of this Raabe-type formula.

Define the Washington-Hurwitz p-adic zeta function [9] [10, §5.2] by
(3.4)

ζD(s, x) =
1

s− 1

∫
Zp

ωD(x+t)〈x+t〉1−s dt, (x ∈ Qp−Zp, s ∈ Zp, s 6= 1),

where ωD : Q∗
p → Q∗

p is the unique multiplicative extension of the Teich-
müller character ω from Z∗p to Q∗

p such that ωD(p) = p, and 〈x〉 := x/ωD(x).
Notice that for x ∈ Qp − Zp and t ∈ Zp,

ωD(x + t) = ωD(x) ωD(1 + x−1t) = ωD(x),

except for p = 2 (in which case we need x ∈ Q2 − 1
2Z2). Thus the term

ωD(x + t) in (3.4) could be pulled out of the integral at the expense of
making special provisos for p = 2. Washington’s original definition did
not have the factor ωD(x + t) in (3.4), but we have inserted it to simplify
formulas.

From (3.4) and (2.2) it follows that ζD satisfies the difference equation

(3.5) ζD(s, x + 1)− ζD(s, x) = −〈x〉−s.

This is just as expected from the classical Raabe-type formula (3.3) (cf.the
general principle in the paragraph containing (1.19)).

We now prove a Raabe formula for ζD.

Proposition 3.1.∫
Zp

ζD(s, x + t) dt = s ζD(s, x) + (x− 1)
∂

∂x
ζD(s, x),

(x ∈ Qp − Zp, s ∈ Zp, s 6= 1).

Proof. — Using Lemma 2.2 with G(x) = ωD(x)〈x〉1−s/(s− 1) we find∫
Zp

ζD(s, x + t) dt

= ζD(s, x) + (x− 1)
∂

∂x
ζD(s, x) +

∫
Zp

(x + t) 〈x + t〉−sdt

= ζD(s, x) + (x− 1)
∂

∂x
ζD(s, x) +

∫
Zp

ωD(x + t) 〈x + t〉1−sdt

= ζD(s, x) + (x− 1)
∂

∂x
ζD(s, x) + (s− 1) ζD(s, x).

�
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It is easy to see from Proposition 3.1 and the proposition in §1 that
x → ζD(s, x) is the unique strictly differentiable function f : Qp−Zp → Cp

satisfying the difference equation

f(x + 1)− f(x) = −〈x〉−s

and the integro-differential equation∫
Zp

f(x + t) dt = sf(x) + (x− 1)f ′(x).

We now turn to the Morita-Hurwitz p-adic zeta function [5]

(3.6) ζM(s, x) :=
1

s− 1

∫
Zp

ωM(x + t)〈x + t〉1−s dt (x, s ∈ Zp, s 6= 1),

where ωM : Zp → Zp is the unique multiplicative extension of the Teich-
müller character ω from Z∗p to Zp such that ωM(p) = 0.(2)

Morita’s ζM satisfies the difference equation

(3.7) ζM(s, x + 1)− ζM(s, x) =

{
−〈x〉−s if x ∈ Z∗p,
0 if x ∈ pZp,

and the Raabe formula

(3.8)
∫

Zp

ζM(s, x + t) dt = (x− 1)
∂ ζM

∂x
+ s ζM(s, x).

The proofs follow the corresponding ones for Washington’s ζD.
Just as we did for p-adic log Γ functions, the characterization of p-adic

Hurwitz zeta functions by their difference equations and Raabe-type for-
mulas allows us to easily prove some of their main properties, which we
certainly believe to be known even if we have so far failed to locate them
in the literature.

Proposition 3.2.

ζD(s, 1− x) = − ζD(s, x), (x ∈ Qp − Zp, s ∈ Zp, s 6= 1).(3.9)

ζM(s, x) =
∑

06j6pN−1
p-(x+j)

ζD

(
s,

x + j

pN

)
,(3.10)

(s, x ∈ Zp, s 6= 1, N = 1, 2, 3, · · · ).
ζM(s, 1− x) = − ζM(s, x), (s, x ∈ Zp, s 6= 1).(3.11)

(2) Actually, the singularity at s = 1 in (3.6) is only apparent, but for the sake of brevity
we shall not deal with s = 1.
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Proof. — Just as in the proof of Proposition 2.5, to prove (3.9) it suffices
to show that f(x) = fs(x) := − ζD(s, 1− x) satisfies

f(x + 1)− f(x) = −〈x〉−s

and

(3.12)
∫

Zp

f(x + t) dt = sf(x) + (x− 1)f ′(x).

To check the difference equation all we need use is 〈−x〉 = 〈x〉 and the
difference equation for ζD(s, x). The integro-differential equation (3.12) is
verified just as in the proof of Proposition 2.5.

The proofs of (3.10) and (3.11) follow exactly along the lines of the proofs
of (2.12) and (2.13), using parity in (3.6) to show ζM(S, 0) = 0 �
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