
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Jian SONG & Steve ZELDITCH

Convergence of Bergman geodesics on CP1

Tome 57, no 7 (2007), p. 2209-2237.

<http://aif.cedram.org/item?id=AIF_2007__57_7_2209_0>

© Association des Annales de l’institut Fourier, 2007, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2007__57_7_2209_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
57, 7 (2007) 2209-2237

CONVERGENCE OF BERGMAN GEODESICS ON CP1

by Jian SONG & Steve ZELDITCH (*)

Abstract. — The space H of Kähler metrics in a fixed Kähler class on a
projective Kähler manifold X is an infinite dimensional symmetric space whose
geodesics ωt are solutions of a homogeneous complex Monge-Ampère equation in
A × X, where A ⊂ C is an annulus. Phong-Sturm have proven that the Monge-
Ampère geodesic of Kähler potentials ϕ(t, z) of ωt may be approximated in a
weak C0 sense by geodesics ϕN (t, z) of the finite dimensional symmetric space of
Bergman metrics of height N . In this article we prove that ϕN (t, z) → ϕ(t, z) in
C2([0, 1]×X) in the case of toric Kähler metrics on X = CP1.

Résumé. — L’espace H des métriques de Kähler dans une classe donnée sur
une variété projective kählérienne X est un espace symétrique de dimension infinie
dont les géodésiques ωt sont des solutions d’une équation Monge-Ampère complexe
homogène sur A×X, ou A = {z ∈ C : e−1 < |z| < 1} . Phong-Sturm ont prouvé que
les géodésiques Monge-Ampère des potentiels kählériens ϕ(t, z) de ωt peuvent être
approximées dans un sens faible C0 par géodésiques ϕN (t, z) de l’espace symétrique
de métriques de Bergman de hauteur N . Le but de cet article est de prouver que
ϕN (t, z) → ϕ(t, z) dans C2([0, 1] × X) dans le cas des métriques toriques sur
X = CP1.

1. Introduction

This article is concerned with geodesics in spaces of Hermitian metrics
of positive curvature on an ample line bundle L → X over a Kähler man-
ifold. Stimulated by a recent article of Phong-Sturm [19], we study the
convergence as N → ∞ of geodesics on the finite dimensional symmetric
spaces HN of Bergman metrics of “height N” to Monge-Ampère geodesics
on the full infinite dimensional symmetric space H of C∞ metrics of posi-
tive curvature. Our main result is C2 convergence of Bergman geodesics to

Keywords: Bergman metric, Monge-Ampère equation, Bergman-Szegö kernel, toric met-
ric, Kähler potential, symplectic potential.
Math. classification: 53C55.
(*) Research supported in part by National Science Foundation grants DMS-0604805
and DMS-0603850.



2210 Jian SONG & Steve ZELDITCH

Monge-Ampère geodesics in the case of toric (i.e. S1-invariant) metrics on
CP1. Although such metrics constitute the simplest case of toric Kähler
metrics, the CP1 case already exhibits much of the complexity of general
toric varieties for the approximation problem studied here. The general
case will be studied in [25].

The convergence problem raised by Phong-Sturm [19] (see also Arezzo-
Tian [2] and Donaldson [10], Corollary 5) belongs to the intensively studied
program initiated by Yau [28] of relating the algebro-geometric issue of sta-
bility to the analytic issue of existence of canonical metrics on holomorphic
line bundles. In this program, metrics in HN have a simple description in
terms of algebraic geometry, while metrics in H are “transcendental”. The
approximation of transcendental objects in H by “rational” objects in HN

lies at the heart of this program.
The reasons for studying Monge-Ampère geodesics were laid out by Don-

aldson in [9] (see also Mabuchi [18] and Semmes [20]). Formally, H = GC\G
where G is the group of Hamiltonian symplectic diffeomorphisms of (X,ω);
here ω ∈ H is a fixed Kähler form. The geodesics of H should therefore cor-
respond to orbits of one-parameter subgroups of GC. Such one parameter
subgroups should be important by analogy to finite dimensional settings,
where the Hilbert-Mumford criterion relates stability of (X,L) to weights
of one-parameter subgroups. Unfortunately, the infinite dimensional group
G does not admit a true complexification. But Monge-Ampère geodesics
are well-defined, and they provide a useful replacement for “one parameter
subgroups of GC”.

The existence, uniqueness and regularity of such geodesics is connected to
existence and uniqueness of metrics of constant scalar curvature. Donaldson
asked [11] if there exist smooth Monge-Ampère geodesics between any pair
of metrics h0, h1 ∈ H. The work of Chen [7] shows the existence of a
unique C1,1 geodesic ht joining h0 to h1. The improved regularity of the
Monge-Ampère geodesics, due to and Chen-Tian [6], is sufficient to prove
uniqueness of extremal metrics. In the case of toric varieties, the much
stronger result is known that the geodesic between any two metrics is C∞

[15]. In fact, the Monge-Ampère equation can be linearized by the Legendre
transform and the symmetric space is flat.

But in general, solutions of the Monge-Ampère equation are difficult
to analyze. The remarkable suggestion of Phong-Sturm [19] and Arrezo-
Tian [2] is to study solutions of the homogeneous Monge-Ampère equation
by means of “algebro-geometric approximations”. It has been proved by
Phong-Sturm [19] (see also [3]) that Bergman geodesics, which are orbits of
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one-parameter subgroups of GL(dN +1,C) between two Bergman metrics,
converge uniformly to a given Monge-Ampère geodesic for a general ample
line bundle over a Kähler manifold.

The question we take up in this article and in [25] is whether Bergman
geodesics converge to Monge-Ampère geodesics in a stronger sense. Con-
vergence in C2 is especially interesting since it implies that the curvatures
and moments maps for the metrics along the Bergman geodesic converge
to those along the Monge-Ampère geodesics. In this article and in the sub-
sequent article [25], we study this problem for toric hermitian line bundles
over toric Kähler manifolds. In this setting, the Kähler potentials ϕN (t, z)
of the Bergman metrics along the geodesic have relatively explicit formu-
lae (see 1.8) resembling the free energy of a discrete quantum statistical
mechanical model. Convergence in C0 of the Kähler potential as N → ∞
is analogous to uniform convergence of the free energy in the thermody-
namic limit, while convergence of derivatives is related to absence of phase
transitions (cf. [13], II.6).

To state our results, we will need some notation. Let L → X be an
ample holomorphic line bundle and denote by H0(X,LN ) the holomorphic
sections of the N th power LN → X of L. Given a basis SN = {S0, . . . , SdN

}
we define the associated holomorphic embedding

(1.1) ΦSN
: X → CPdN , ΦS(z) = [S0(z), . . . , SdN

(z)].

We define the space of Bergman metrics by

HN =
{ 1
N

Φ∗
SN
ωFS | SN is a basis of H0(X,LN )

}
,

where ωFS is the Fubini-Study metric on CPdN . Since U(dN + 1) is the
isometry group of ωFS , HN is the symmetric space GL(dN +1,C)/U(dN +
1,C).

Metrics in HN are defined by an essentially algebro-geometric construc-
tion and are somewhat analogous to rational numbers. A basic fact is that
the union

∞⋃
N=1

HN ⊂ H

of Bergman metrics is dense in the C∞ topology in the space H of all C∞

Kähler metrics in a fixed Kähler class [ω] (see [26, 30]) of positive curvature.
Indeed, for each N we have a map

SN : H → HN , h→ hN = (Φ∗
SN
hFS)1/N ,

SN (h) = an orthonormal basis for h.
(1.2)

TOME 57 (2007), FASCICULE 7



2212 Jian SONG & Steve ZELDITCH

The metric hN is independent of the choice of orthonormal basis, and hN →
h in C∞.

Now let us compare Monge-Ampère geodesics and Bergman geodesics.
We let h0, h1 be any two hermitian metrics on L in the class H and write
hϕ = e−ϕh relative to a fixed metric h with curvature form ω = Ric(h).
Thus, we have an isomorphism

(1.3) H =
{
ϕ ∈ C∞(X) | ωϕ = ω +

√
−1∂∂ϕ > 0

}
.

We may then identify the tangent space TϕH at ϕ ∈ H with C∞(X). We
define a Riemannian metric on H as follows: let ϕ ∈ H and let ψ ∈ TϕH '
C∞(X) and define

(1.4) ‖ψ‖2ϕ =
∫

X

|ψ|2 ωn
ϕ.

With this Riemannian metric, H is an infinite dimensional negatively
curved symmetric space. By [18, 21, 20, 9], the geodesics of H in this
metric are the paths ϕt which satisfy the equation

(1.5) ϕ̈− |∂ϕ̇|2ωϕ
= 0.

This may be interpreted as a Monge-Ampère equation [21, 9].
Geodesics in HN with respect to the symmetric space metric are given by

one-parameter subgroups etA of GL(dN +1,C). That is, let h0, h1 ∈ H and

σ ∈ GL(dN + 1,C) be the change of basis matrix defined by σ ·Ŝ
(0)

= Ŝ
(1)

,

where Ŝ
(0)

= SN (h0) and Ŝ
(1)

= SN (h1). Without loss of generality, we
may assume that σ is diagonal with entries eλ0 , . . . , eλdN for some λj ∈ R.

Let Ŝ
(t)

= σt ·Ŝ
(0)

where σt is diagonal with entries eλjt. We fix a smooth
hermitian metric h ∈ H and define

h
Ŝ

(t)(z) =
1(∣∣Ŝ(t)∣∣2)1/N

,

hN (t, z) = h
Ŝ

(t)(z) = h(z)e−ϕN (t,z).

Then hN (t, ·) is the smooth geodesic in GL(dN +1,C)/U(dN +1,C) joining
hN (0, ·) to hN (1, ·). Explicitly, we have

(1.6) ϕN (t, z) =
1
N

log

(
dN∑
j=0

e2λjt|Ŝ(0)
j |2hN (z)

)
.

Thus, the problem is the convergence of hN (t, ·) → h(t, ·) or equivalently
of ϕN (t, ·) → ϕ(t, ·). The following general result is proved in [19].

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE OF BERGMAN GEODESICS ON CP1 2213

Theorem 1.1. — The Bergman geodesics uniformly converge to the
Monge-Ampère geodesic in the sense that

(1.7) ϕt(z) = lim
k→∞

[
sup
N>k

ϕN (t, ·)
]∗

(z),

where, for any bounded function f : [0, 1]×X → R, the upper envelope of
f is defined by f∗(x0) = limε→0 sup|x−x0|<ε f(x).

As mentioned above, our goal here and in [25] is to study the degree of
convergence of these geodesics in the case of toric hermitian metrics on a
toric line bundle L → X. We define the space HT to be the subspace of
H of hermitian metrics for which ϕ is invariant under the underlying real
torus T = (S1)n action.

In the case of CP1, we may assume L = O(1) and an orthogonal basis
{SN

α } of holomorphic sections of LN = O(N) is given in an affine chart by
the monomials zNα, Nα = 0, . . . , N . A toric hermitian metric is entirely en-
coded in the set of L2 squared norms QN

h (α) = ||zNα||2hN of the monomials
with respect to powers hN of the Hermitian metric h (cf. Definition 2.2).
Then (1.6) takes the form

(1.8) ϕN (t, z) =
1
N

log

 ∑
α∈ 1

N Z∩[0,1]

|zNα|2h0

(QN
h0

(α))1−t(QN
h1

(α))t

 .

If we write |z|2 = eρ, we see the resemblance to the free energy of a quantum
statistical model with states parameterized by lattice points in [0, N ] [13]
(§7). The main result of this article is:

Theorem 1.2. — On CP1, the Bergman geodesics converge to the toric
Monge-Ampère geodesic,

(1.9) lim
N→∞

ϕN (t, z) = ϕt(z),

uniformly in the C2 topology on [0, 1]×CP1.

A natural question is whether the convergence is uniform in higher Ck

spaces. We have no reason to doubt this, but our proofs are based on
explicit calculation of two derivatives and analysis of the asymptotics of the
resulting expressions. The expressions become rather complicated when one
takes three or higher derivatives, and it becomes quite messy to check if they
converge uniformly. As will be seen in the proof, most of the complications
concern the joint asymptotics in the (N,α) parameters of the norming
constants QN

h (α) near the boundary of the “moment polytope” [0, 1]. The
essential simplification in CP1 over higher dimensional toric varieties is

TOME 57 (2007), FASCICULE 7
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that the approach to the boundary is much simpler for an interval than for
the possible convex Delzant polytopes in higher dimensions. Otherwise, the
case of CP1 already exhibits much of the complexity of the general case.
In [25], we study the C2 convergence problem in all dimensions.

Our analysis of the norming constants builds on the work of [23], and
may have an independent interest, since the norming constants determine
a toric metric. For instance, in [8] and elsewhere, numerical methods for
approximating extremal Kähler metrics on toric varieties are also based on
the study of norming constants. It would be interesting to generalize the
results on norming constants to higher dimensions. The subsequent arti-
cle [25] involves quantities which are in a sense dual to norming constants
and does not directly provide information on norming constants.

Finally, we thank the referee for some corrections and improvements.
As the referee points out, there are interesting connections between the
calculations of this article and those of [3]. Our methods can be adapted
to the slightly different situation of that article in the toric case, and we
hope to present the details elsewhere.

2. Preliminaries

Although we primarily study CP1 in this article, we set the scene for
toric varieties in arbitrary dimensions. Let (X,ω, τ) be a compact toric
manifold of complex dimension n and

τ : Tn → Diff(X,ω)

an effective Hamilton action of the standard real n-torus T = (S1)n. Let π
be the moment map associated to the toric Kähler metric ω

(2.1) π : X → Rn.

The image P of π is a Delzant polytope, defined by a set of linear inequal-
ities given by

〈x, vr〉 > λr, r = 1, . . . , d,

where vr is an inward-pointing normal to the r-th (n− 1)-dimensional face
of P . Define the affine functions lr : Rn → R by

lr(x) = 〈x, vr〉 − λr.

Fix a toric polarization L on X with [L] = [ω]. Let

ANNALES DE L’INSTITUT FOURIER
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H = {h | h is a smooth T -invariant hermitian metric on L

such that Ric(h) > 0}.

Fix h ∈ H and let ω = Ric(h), then

H ∼= {ϕ ∈ C∞(X) | ϕ is T -invariant and ωϕ = ω +
√
−1∂∂ϕ > 0}.

Hence the hermitian metric hϕ ∈ H and the ω-plurisubharmonic potential
ϕ ∈ H are related by

hϕ = h0e
−ϕ.

The L2-metric on H is given by

||ψ||2ωϕ
=
∫

X

|ψ|2ωn
ϕ

for any ψ ∈ C∞(X).
For any ϕ0 and ϕ1 ∈ H, the geodesic ϕt joining ϕ0 and ϕ1 in H is defined

by

(2.2)
∂2ϕt

∂t2
= |∂ϕ̇t|2ωϕt

.

>From a complex geometric viewpoint, the complex torus (C∗)n acts on
X with an open orbit, and X may be viewed as a compactification of (C∗)n.
On the open orbit, we denote the standard holomorphic coordinates by
(z1, . . . , zn). We also define the real coordinates ρj = log |zj |2, j = 1, . . . , n.
Then a toric Kähler form has a T -invariant Kähler potential u on the orbit
defined by ω =

∑
i,j=1,...,n

√
−1 ∂2u

∂zi∂zj
dzi ∧ dzj > 0. Since u is T -invariant,

it can be considered as a function in ρ = (ρ1, . . . , ρn) on Rn and it is convex
on Rn. We then define U(ρ) = u(z) on Rn.

The Legendre transform of U defines the symplectic potential G of ω, a
convex function on P ◦. That is,

G(x) = 〈x, ρ〉 − U(ρ)

with x = ∇U(ρ) ∈ P ⊂ Rn given by the moment map. It has the same
singularities at the boundary ∂P as the symplectic reference potential

(2.3) GP (x) =
d∑

r=1

lr(x) log lr(x).

GP induces a smooth hermitian metric hP on L → X (smooth over all
of X) with Ric(hP ) =

√
−1∂∂uP on (C∗)n and uP being the Legendre

transform of GP . For background, we refer to [1, 8, 16].
The following theorem is proved by Guan [15].

TOME 57 (2007), FASCICULE 7
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Theorem 2.1. — Let ht be the smooth geodesic joining h0 and h1 ∈ H
for t ∈ [0, 1]. The corresponding symplectic potential Gt is given by

(2.4) Gt(x) = GP (x) + ft(x)

where ft is a smooth function on Rn with ∇2Gt > 0 on P ◦. Furthermore,

(2.5) ft(x) = (1− t)f0(x) + tf1(x).

Hence the geodesic of the symplectic potentials is linear. A very simple
proof (cf. [25]) is simply to push forward the energy functional defining the
Monge-Ampère geodesics to the polytope and observe that it becomes the
Euclidean energy functional there.

Definition 2.2. — For any lattice point Nα ∈ NP ∩ Zn, we let SN
α ∈

H0(X,LN ) denote the section which equals the monomial zNα on (C∗)n

in the standard affine frame. We define the L2 norm of SN
α ∈ H0(X,LN )

with respect to ht by

(2.6) QN
t (α) =

∫
X

|SN
α |2hN

t
ωn

t

where ωt = Ric(ht) and hN
t the N th-power of ht. We also define QN

P (α)
with respect to hP by

(2.7) QN
P (α) =

∫
X

|SN
α |2hN

P
ωn

P

where ωP is the toric Kähler form given by the symplectic potential GP .
The formula for QN

t (α) and QN
P (α) can be extended by real analyticity to

all α ∈ P .

Phong and Sturm [19] introduce the GL(dN +1,C) geodesics in the space
of Bergman metrics to approximate the Monge-Ampere geodesic ϕt.

Definition 2.3. — We define EN (t, z) by

(2.8) EN (t, z) =
∑

Nα∈NP∩Zn

|SN
α |2hN

t

(QN
0 (α))1−t(QN

1 (α))t
,

and the Szegö kernel ΠN with respect to ht by

(2.9) ΠN (t, z) =
∑

Nα∈NP∩Zn

|SN
α |2hN

t

QN
t (α)

.

Definition 2.4. — We also define for α ∈ P
1. the norming constants

(2.10) QN
t (α) = QN

t (α)e−NGt(α), QN
P (α) = QN

P (α)e−NGP (α),

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE OF BERGMAN GEODESICS ON CP1 2217

2. the norming constants

qN
t (α) =

QN
t (α)

QN
P (α)

,(2.11)

RN
t (α) =

qN
t (α)

(qN
0 (α))1−t(qN

1 (α))t
=

QN
t (α)

(QN
0 (α))1−t(QN

1 (α))t
,

3. the norm squares of the normalized monomial sections

(2.12) PN
α (t, z) =

|SN
α |2hN

t
(z)

QN
t (α)

.

Lemma 2.5.

(2.13) EN (t, z) =
∑

Nα∈NP∩Zn

RN
t (α)PN

α (t, z).

Proof. — Straightforward calculation shows that

qN
t (α)

(qN
0 (α))1−t(qN

1 (α))t
=

QN
t (α)

(QN
0 (α))1−t(QN

1 (α))t

= eN((1−t)G0(α)+tG1(α)−Gt(α)) QN
t (α)

(QN
0 (α))1−t(QN

1 (α))t

=
QN

t (α)
(QN

0 (α))1−t(QN
1 (α))t

.

The last equality follows from the geodesic equation

Gt(x) = (1− t)G0(x) + tG1(x).

�

3. Joint (N,α) asymptotics of the norming constants for
metrics on CP1

We first give a useful formula for the norming constants QN
t (α) (2.10)

which is valid on any toric variety, and then we use it in the case of CP1

to determine joint (N,α) asymptotics.

Lemma 3.1. — The norming constants QN
t (α) and QN

P (α) in Defini-
tion 2.4 for α ∈ P are given on any toric variety by

(3.1)
QN

t (α) = (2π)n
∫

P
e−NFt,α(x)dx

QN
P (α) = (2π)n

∫
P
e−NFP,α(x)dx,

TOME 57 (2007), FASCICULE 7
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where the phase functions Ft,α(x) and FP,α(x) are defined by

(3.2)

{
FP,α(x) = 〈x− α,∇GP (x)〉 − (GP (x)−GP (α))

Ft,α(x) = 〈x− α,∇Gt(x)〉 − (Gt(x)−Gt(α)).

Proof. — Let z = (z1, . . . , zn) ∈ (C∗)n and ρ = (ρ1, . . . , ρn) ∈ Rn with
ρj = log |zj |2 for j = 1, . . . , n. We suppose that the Kähler form for gt

is given by
∑

i,j=1,...,n

√
−1 ∂2ut

∂zi∂zj
dzi ∧ dzj , where ut(z) is the Kähler po-

tential for the toric Kähler metric gt on (C∗)n. Let Ut(ρ) = ut(z) and
πt = ∇Ut : Rn → P be the moment map associated to gt. Then the
symplectic potential Gt on P for gt is given by the following Legendre
transform

Gt(x) = 〈x, ρ〉 − Ut(ρ)

with x = ∇Ut(ρ) ∈ P ⊂ Rn. Also Ut(ρ) can be recovered from Gt(x) by
the following inverse Legendre transform

Ut(ρ) = 〈x, ρ〉 −Gt(x)

with ρ = ∇Gt(x). Also π∗t (dx1 · · · dxn) = det
(

∂2Ut

∂ρi∂ρj

)
dρ1 · · · dρn.

QN
t (α) = (

√
−1)n

∫
Cn

|z|Nαe−Nut(z)−NGt(α) det
(

∂2ut

∂zi∂zj

)
dz1 ∧ dz1∧

· · · ∧ dzn ∧ dzn

= (2π)n

∫
Rn

eN(〈α,ρ〉−Ut(ρ))−NGt(α) det
(
∂2Ut

∂ρi∂ρj

)
dρ1 · · · dρn

= (2π)n

∫
P

eN(〈α,∇Gt(x)〉−(〈x,∇Gt(x)〉−Gt(x))−Gt(α))dx1 · · · dxn

= (2π)n

∫
P

e−NFt,α(x)dx.

The same argument gives the integral formula for QN
P (α). �

We now specialize to the case of CP1, where:
• P = [0, 1] and the canonical symplectic potential equals GP (x) =

x log x+(1−x) log(1−x) (it is the symplectic potential dual to the Fubini-
Study Kähler potential);
• For α ∈ 1

N Z ∩ P ,

QN
P (α) =

(
N

Nα

)−1

and

QN
P (α) = 2π

(
N

Nα

)−1

e−N(α log α+(1−α) log(1−α)).

ANNALES DE L’INSTITUT FOURIER
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• The geodesic of the symplectic potentials Gt(x) is

Gt(x) = GP (x) + ft(x)

where ft(x) = (1− t)f0(x) + tf1(x) is a smooth function on R such that

(3.3)
d2

dx2
Gt(x) > 0.

In fact, because G′′t (x) has poles of order 1 at 0 and 1, we have:

Lemma 3.2. — There exists a constant Λ > 0 such that for any t ∈ [0, 1]
and x ∈ (0, 1)

(3.4) x(1− x)G′′t (x) > Λ, x(1− x)G′′P (x) > Λ.

We also evaluate:

(3.5)

{
FP,α(x) = −α log x− (1− α) log(1−x) + α logα+ (1−α) log(1−α),

Ft,α(x) = GP (α)−α log x−(1−α) log(1−x) + (x−α)2ft,α(x),

where ft,α(x) = − ft(x)−ft(α)−f ′t(x)(x−α)
(x−α)2 with ft,α(α) = 1

2f
′′
t (α). It is easy

to check by Taylor expansion that ft,α(x) is smooth in x and t.
We now consider the joint asymptotics in (N,α) of the norming con-

stants. Our main result, Theorem 3.4, is a comparison of the joint asymp-
totics of a metric norming constant (2.10) to the canonical norming con-
stants QN

P (α). The joint asymptotics of the latter can be derived from
known (elementary) results on binomial coefficients, and we begin by re-
calling the relevant background.

The joint asymptotics of binomial coefficients
(
N
m

)
in (N,m) and the

closely related canonical norming constants QN
P (α) have several regimes

accordingly as α belongs to an “interior region” or a “boundary region”.
First let us consider the “interior”, where α ∈ [ 1

N3/4 , 1− 1
N3/4 ]. The standard

Sterling asymptotics for factorial and binomials applies in the region and
gives

(3.6)
(
N

Nα

)
∼ 1√

2πNα(1− α)
e−N(α log α+(1−α) log(1−α),

and more precisely the asymptotics

QN
P (α) = 2π

(
N

Nα

)−1

e−NGP (α)(3.7)

= 2π
√

(2π)Nα(1− α) exp
(
O

(
1
Nα

+
1

N −Nα

))
.

We observe that the asymptotics are highly non-uniform as α→ 0 or α→ 1.
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In the left “boundary region” α ∈ [0, 1
N3/4 ], we cannot use Stirling’s

formula up to the boundary and rather use that(
N

m

)
= A(N,m)

Nm

m!
, with A = Πm−1

j=1 (1− j

N
).

Using that lnA =
∑m−1

j=1 ln(1− j
N ), and ln(1− x) ∼ −x one has

Nα−1∑
j=1

ln(1− j

k
) ∼

Nα−1∑
j=1

− j

N
∼ (Nα)2

2N
= o(1)

if Nα = o(
√
N). It follows that if (Nα) = o(

√
N), then

(
N

Nα

)
∼ NNα

(Nα)! , and
further that

2π
(
QN

P (α)
)−1

=
(
N

Nα

)
(
Nα

N
)Nα(1− Nα

N
)N−Nα

(3.8)

=
(Nα)Nα

(Nα)!
(1− 1

N
)(1− 2

N
) · · · (1− Nα

N
)(1− Nα

N
)N−Nα

= (1− (Nα)
N

)N (Nα)(Nα)

(Nα)!
(1− 1

N
)(1− 2

N
)

· · · (1− Nα

N
)(1− Nα

N
)−Nα.

We record the following:

Lemma 3.3. — There exists a constant C > 0 such that for all α ∈
[0, 1] ∩ 1

N Z

(3.9) QN
P (α) > C.

Proof. — In the interior region, (3.7) implies the lower bound QN
P (α) >

CN1/8. In the boundary region, we can continue to use Stirling’s formula
as long as Nα→∞ to obtain(

N

Nα

)
∼
(
Ne

Nα

)Nα

(2πNα)−1/2

=⇒
(
N

Nα

)(
Nα

N

)Nα

(1− Nα

N
)N−Nα ∼ (2πNα)−1/2,

so QN
P (α) → ∞ there as well. If Nα 6 K then the exact formula (3.8)

gives positive upper bound independent of N . We note that it equals 1
when α = 0. �
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We now turn to general metrics. The following comparison inequality is
the principal technical tool in the proof of C2 convergence of the geodesics
(see Definition 2.4).

Theorem 3.4. — There exists a constant C > 0 such that for all integer
N > 0, α ∈ P and t ∈ [0, 1]

(3.10)
1
C

6 qN
t (α) 6 C.

Furthermore, if we let πt and πP be the moment maps associated to the
toric Kähler metrics gt and gP and define

Ωt(α) =
(

det∇2GP (α)
det∇2Gt(α)

)1/2

,

then Ωt(α) extends to a continuous function on P and

(3.11) lim
N→∞

qN
t (α) = Ωt(α)

uniformly for α ∈ P .

Indeed, Ωt(α) =
(

det∇2Ut(π
−1
t (α))

det∇2UP (π−1
P

(α))

)1/2

is the ratio of the volume forms

of Kähler metrics gt and gP on (C∗)n, although π−1
t (α) and π−1

P (α) do not
necessarily coincide.

The following corollaries play an important role in the proof of the main
result.

Corollary 3.5. — There exists a constant C > 0 such that for all
integer N > 0, α ∈ [0, 1] and t ∈ [0, 1], the ratios R of Definition 2.4 satisfy

(3.12)
1
C

6 RN
t (α) 6 C.

Furthermore,

(3.13) lim
N→∞

RN
t (α) =

Ωt(α)
(Ω0(α))1−t(Ω1(α)t

,

uniformly for α ∈ [0, 1].

The next corollary follows immediately from Theorem 3.4 and Lem-
ma 3.3.

Corollary 3.6. — There exist C > 0 such that for all α ∈ [0, 1]∩ 1
N Z

(3.14) QN
t (α) > C.

We divide the proof of Theorem 3.4 into an analysis of norming constants
in an interior region of [0, 1] and in a boundary region.
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3.1. Interior estimates

We begin by studying QN
t (α) where α lies in the (left) “interior interval”

α ∈ [ 1
N3/4 ,

2
3 ]. It is then possible to obtain joint (N,α) asymptotics by a

complex stationary phase method. The discussion is essentially the same
for the right interior interval [ 13 , 1−

1
N3/4 ] and is omitted.

Proposition 3.7. — Let α ∈ [ 1
N3/4 ,

2
3 ] and M = Nα. Then there exist

uniformly bounded functions At,k(α) on the interior region, such that

(3.15) QN
t (α) ∼ 2π3/2α

( 1
(1−α) + αf ′′t (α))1/2(M)1/2

∞∑
k=0

At,k(α)
Mk

=
2π3/2

(G′′t (α))1/2(N)1/2

∞∑
k=0

At,k(α)
Mk

,

in the sense that for any R ∈ Z+ there exists CR > 0 such that

(3.16)

∣∣∣∣∣QN
t (α)− 2π3/2α

( 1
(1−α) + αf ′′t (α))1/2(M)1/2

R∑
k=0

At,k(α)
Mk

∣∣∣∣∣
6

CRα

( 1
(1−α) + αf ′′t (α))1/2(M)1/2

M−(R+1).

In particular, At,0 = 1.

Corollary 3.8. — Let α ∈ [ 1
N3/4 ,

2
3 ] andM = Nα. There is a complete

asymptotic expansion for large M

(3.17) qN
t (α) ∼ 1

(M(1 + α(1− α)f ′′t (α)))1/2

∞∑
k=0

Bt,k(α)
Mk

=
(
G′′P (α)
G′′t (α)

)1/2 ∞∑
k=0

Bt,k(α)
Mk

in the sense that for any R ∈ Z+ there exists CR > 0 such that

(3.18)

∣∣∣∣∣qN
t (α)− 1

(M(1 + α(1−α)f ′′t (α)))1/2

R∑
k=0

Bt,k(α)
Mk

∣∣∣∣∣ 6 CRM
−(R+1).

In particular, Bt,0 = 1 and there exists C > 0 such that

(3.19) 0 <
1
C

6 qN
t (α) 6 C.

The proof of Proposition 3.7 proceeds by a sequence of lemmas. The first
concerns the phase Ft,α (3.5).
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Lemma 3.9. — α is the only critical point of Ft,α(x) and we have

(3.20) F ′′t,α(α) = G′′t (α) > 0, (x− α)F ′t,α(x) > 0.

Proof. — Differentiating (3.2) shows that F ′t,α(x) = (x − α)G′′t (x). The
second derivative is readily obtained and it is positive by Lemma 3.2. �

Now we make a substitution of variables. Let y = x−α
α , M = Nα. We

then have

(3.21) QN
t (α) = 2πα

∫ 1
α−1

−1

e−MFt,α(y)dy

with new phase function

(3.22)
Ft,α(y) =

1
α
Ft,α(α(1 + y)), FP,α(y) =

1
α
FP,α(α(1 + y))

Ft,α(y) = −
(
log(1 + y) +

1−α
α

log
1−α−αy

1−α
+ αy2ft,α(α(1 + y))

)
.

Lemma 3.10. — The phase has the following properties:

(1) Ft,α(y) is strictly decreasing on (−1, 0) and strictly increasing on
(0, 1

α − 1) with a unique critical (minimum) point at y = 0 with
Ft,α(0) = 0.

(2) If y0 > 0, then infy>y0 F ′
t,α(y) > C(y0) > 0 where C(y0) is inde-

pendent of α, t.
(3) If y0 < 0, then infy∈[−1,y0] |F ′

t,α(y)| > C(y0) > 0 where C(y0) is
independent of α, t.

(4) The Hessian of Ft,α at y = 0 is non-degenerate and

F ′′
t,α(0) = αG′′t (α) =

1
1− α

+ αf ′′t (α) > 0.

(5) Ft,α(y) and all of its derivatives are uniformly bounded for α ∈ [0, 2
3 ]

and for y in any compact set of (−1, 1
α − 1).

Proof. — Comparing with (3.5) and Lemma 3.9 shows that

F ′
t,α(y) =

1
α

dFt,α(x)
dx

dx

dy
= F ′t,α(x) = (x− α)G′′t (x) = αyG′′t (α(1 + y))

=
x− α

x
(xG′′t (x)) =

y

1 + y
(xG′′t (x))

= − 1
1 + y

+
1− α

1− α− αy
+ 2αyft,α(α(1 + y)) + α2y2f ′t,α(α(1 + y))
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F ′′
t,α(y) = αF ′′t,α(x) = αG′′t (x) + α(x− α)G′′′t (x)

= αG′′t (α(1 + y)) + α2yG′′′t (α(1 + y))

=
1

(1 + y)2
+

α(1− α)
(1− α− αy)2

+ 2αft,α(α(1 + y))

+ (2αy + 2α2y)f ′t,α(α(1 + y)) + α2y2ft,α(α(1 + y)).

By Lemma 3.2, xG′′t (x) has a uniform positive lower bound, hence by
the formula F ′

t,α(y) = y
1+y (xG′′t (x)), F ′

t,α(y) = 0 if and only if y = 0. Also
F ′

t,α(y) < 0 on (−1, 0) and F ′
t,α(y) > 0 on (0, 1

α − 1). The same formula
implies (2)-(3) since the factor | y

1+y | then has a uniform lower bound.
Again by Lemma 3.2, G′′t (α) has poles at 0 and 1, hence αG′′t (α) is

uniformly bounded below from 0 for α ∈ [0, 2
3 ]. In particular, at the critical

point, we have (cf. Lemma 3.9),

F ′′
t,α(0) = αF ′′t,α(α) =

1
1− α

+ αf ′′t (α) = αG′′t (α) > 0.

�

Lemma 3.11. — There exist δ and C > 0 such that

(3.23)

∣∣∣∣∣∣1−
2πα

∫ 1

− 1
2
e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣ 6 Ce−δM

M
.

Proof. — By Lemma 3.10 (2), there exists Λ > 0 independent of (t, α)
such that

(3.24) Ft,α(y) > Ft,α(1) +
Λ
2

(y − 1), for y > 1.

Using also that Ft,α increases on (0, 1
2 ), we have∫ 1

α−1

1

e−MFt,α(y)dy 6
∫ 1

α−1

1

e−
Λ
2 M(y−1)−MFt,α(1)dy

6
2e−MFt,α(1)

ΛM

6
4e−M(Ft,α(1)−Ft,α( 1

2 ))

ΛM

∫ 1/2

0

e−MFt,α(y)dy

6
Ce−δM

2Mα
QN

t (α), where δ := 2 inf
y∈[ 12 ,1]

F ′
t,α(y).

In the last line we again used Lemma 3.10 (2).
By the same argument, there exists δ > 0 (independent of (t, α) so that∫ − 1

2

−1

e−MFt,α(y)dy 6
Ce−δM

2Mα
QN

t (α).
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Indeed, by Lemma 3.2 (3), Ft,α is decreasing on (−1, 0) and there exists
−Λ < 0 independent of (t, α) so that

(3.25) Ft,α(y) > Ft,α(−1
2
)− Λ

2
(y +

1
2
).

As above,∫ − 1
2

−1

e−MFt,α(y)dy 6
2e−MFt,α(− 1

2 )

ΛM

6
8e−M(Ft,α(− 1

2 )−Ft,α(− 1
4 ))

ΛM

∫ − 1
4

− 1
2

e−MFt,α(y)dy

6
Ce−δM

2Mα
QN

t (α), where δ := 2 inf
y∈[− 1

2 ,− 1
4 ]
|F ′

t,α(y)|.

The lemma is proved by combining the above inequalities and∣∣∣∣∣∣1−
2πα

∫ 1

− 1
2
e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2πα
∫ − 1

2
−1

e−MFt,α(y)dy + 2πα
∫ 1

α−1

1
e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣
6
Ce−δM

M
.

�

3.2. Proof of Proposition 3.7

We introduce a smooth cut-off function η such that η = 1 on [− 1
2 +ε, 1−ε]

for some fixed ε > 0 (independent of (t,N, α)) and with η = 0 outside
(− 1

2 , 1) and write

QN
t (α) = IN

t (α) + IIN
t (α), with IN

t (α) = 2πα
∫ 1

− 1
2

e−MFt,α(y)η(y)dy.

By Lemma 3.11, IIN
t 6 Ce−δM

2Mα QN
t (α), hence QN

t (α)
(
1 +O( e−δM

2Mα )
)

=

IN
t (α), and therefore

(3.26) QN
t (α) = IN

t (α)
(

1 +O(
e−δM

2Mα
)
)
.

We now evaluate IN
t (α) asymptotically with respect to the parameter M

by the method of complex stationary phase with non-degenerate complex
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phase functions (Theorem 7.7.5 in [17]), with α, t as parameters. Using the
evaluation of the Hessian in Lemma 3.10, we obtain

(3.27)

∣∣∣∣∣IN
t (α)− 2π3/2α

( 1
(1−α) + αf ′′t (α))1/2(M)1/2

R∑
k=0

At,k(α)
Mk

∣∣∣∣∣
6

CRα

( 1
(1−α) + αf ′′t (α))1/2(M)1/2

M−(R+1),

where the At,k(α) are obtained by applying powers of the inverse Hessian
operator

1(
1

(1−α) + αf ′′t (α)
) d2

dy2

to e−MR3(y;t,α) and R3 is the cubic remainder in the Taylor expansion
of Ft,α(y) at y = 0. The inverse Hessian is uniformly bounded above in
the interior region, so R3 is uniformly bounded with uniformly bounded
derivatives when α ∈ [0, 2

3 ] and y ∈ [− 1
2 + ε, 1 − ε] (cf. Lemma 3.10 (5).

Therefore the stationary phase coefficients and remainder are uniformly
bounded in the interior region.

The proposition follows by combining the complex stationary phase
asymptotics with (3.26). �

3.3. Boundary estimates

We now give joint asymptotic estimates of norming constants in the
boundary zone where 0 < α 6 1

N3/4 . The exclusion of α = 0 is not impor-
tant since the norming constants also equal 1 there. The main result of this
section is:

Proposition 3.12. — Assume 0 < α 6 1
N3/4 . Then we have

(3.28) qN
t (α) = 1 +O(N− 1

3 ).

The proof of Proposition 3.12 consists of a number of lemmas.
First we will localize the integral QN

t and QN
P .

Lemma 3.13. — Suppose 0 < α 6 1
N3/4 . Then there exists constants

δ, C > 0 such that

α
∫ 1

α
−1
1

αN2/3
e−αNFt,α(y)dy

QN
t (α)

6 Ce−δN1/3
,

α
∫ 1

α
−1
1

αN2/3
e−αNFP,α(y)dy

QN
P

(α)
6 Ce−δN1/3

.
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Proof. — We now localize the integral (3.21) into the subinterval
[−1, 1

αN2/3 ] by showing that the integral over [ 1
αN2/3 ,

1
α − 1] is relatively

negligible. In the boundary region, 1
αN2/3 > N1/12.

As in Lemma 3.11, there exists a uniform positive constant Λ > 0 such
that Ft,α(y) > Ft,α( 1

αN2/3 )+Λ(y− 1
αN2/3 ) on [ 1

αN2/3 ,
1
α −1] and we obtain∫ 1

α−1

1
αN2/3

e−αNFt,α(y)dy 6
C

αN
e
−αNFt,α( 1

αN2/3 )

6
C

αN
e−εN1/3

,

using the fact (cf. Lemma 3.10) that Ft,α(y) > ε(y−1)+Ft,α(1) as y →∞;
here, ε > 0 is a positive and uniform constant.

To prove that the integral over [ 1
αN2/3 ,

1
α − 1] is relatively negligible, we

give a lower bound for the integral on the whole interval [−1, 1
α −1]. In fact

a very crude lower bound suffices, so we choose a convenient subinterval.
By Lemma 3.10, F ′

t,α(y) is uniformly bounded on any compact subset of
[0, 1

α − 1] when α is the boundary region. Using that Ft,α(y) 6 Ft,α(1) +
C0(y − 1) on [1, 2] for some C0 > 0, we have∫ 1

α−1

−1

e−αNFt,α(y)dy >
∫ 2

1

e−αNFt,α(y)dy

> e−αNFt,α(1)

∫ 2

1

e−C0αN(y−1)dy

>
C

αN
e−αNFt,α(1)−C0αN

>
C

αN
e−C0N1/4

.

Therefore

α
∫ 1

α−1
1

αN2/3
e−αNFt,α(y)dy

QN
t (α)

6 Ce−εN1/3+C0N1/4
6 Ce−δN1/3

for some δ > 0. �

3.4. Proof of Proposition 3.12

By definition and the previous lemma, we have
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qN
t (α) =

QN
t (α)

QN
P (α)

=

∫ 1
αN2/3

−1 e−αNFt,α(y)dy∫ 1
αN2/3

−1 e−αNFP,α(y)dy

(1 +O(eN− 1
3 ))

=

∫ 1
αN2/3

−1 e−αNFP,α(y)+α2Ny2ft,α(α(1+y))dy∫ 1
αN2/3

−1 e−αNFP,α(y)dy

(1 +O(e−N− 1
3 ))

= (1 +O(N− 1
3 )),

where in the last line, we Taylor expand the exponential e−α2Ny2ft,α(α(1+y))

and recall that in the boundary layer, α2Ny2ft,α(α(1 + y)) = O(N− 1
3 ).

This completes the proof of Proposition 3.12.
When α = 0,

qN
t (0) =

∫ 1

0
eN log(1−x)−Nx2ft,α(x)dx∫ 1

0
eN log(1−x)dx

.

Notice that the phase is strictly decreasing on [0, 1], one can apply the
similar argument as before with the substitution y = N2/3x. We leave it
as an exercise to show qN

t (0) ∼ 1 as N →∞. �

3.5. Completion of proof of Theorem 3.4

It is easy to see in the boundary layer 0 < α 6 1
N3/4 ,

det∇2Gt(α)
det∇2GP (α)

=
1

α(1−α) + f ′′t (α)
1

α(1−α)

= 1 +O(α).

Therefore QN
t (α)

QN
P

(α)
continuously extends to P .

Consider the interior of P with 1
N3/4 6 α 6 2

3 . By Corollary 3.8, we have

qN
t (α) =

QN
t (α)

QN
P (α)

=
(

1
1 + f ′′t (α)

)1/2

+O(
1
αN

)

=
det∇2Gt(α)
det∇2GP (α)

+O(
1
αN

) =
det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/4
).
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Consider the boundary layer of P with 0 6 α 6 1
N3/4 . By Lemma 3.12,

we have

qN
t (α) =

QN
t (α)

QN
P (α)

= 1 +O(
1

N1/3
) =

det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/3
).

Therefore for any α ∈ P , we have

(3.29) qN
t (α) =

det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/4
).

This proves Theorem 3.4. �

4. Proof of the main theorem 1.2

4.1. The C0-convergence

Proposition 4.1. — There exists a constant C > 0 such that for any
z ∈ CP1

(4.1)
∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣ 6 C logN

N
.

Proof. — By Corollary 3.5, there exists a constant C > 0 such that
1
C 6 RN

t (α) 6 C for any α ∈ P . Then

1
C

6
EN (t, z)
ΠN (t, z)

6 C.

The proposition is proved by applying the Tian-Yau-Zelditch expansion [30],
which asserts that there exists a C∞ asymptotic expansion,

(4.2) ΠN (t, z) = N
(
1 +

a1(t, z)
N

+ · · ·
)
,

which may be differentiated any number of times. It obviously implies that∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣ 6 C logN

N
.

�

We note that the convergence rate is best possible. The C0 convergence
with this rate was proved for a different but related sequence of metrics
in [3]; a simple proof along the above lines for general toric Kähler manifolds
will appear in [25].
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4.2. A localization lemma

To obtain C2 convergence, we have to estimate weighted sums of PN
α (t, z)

for α ∈ P ∩ 1
N Z. The following localization lemma enables to replace the

sum of PN
α (t, z) by its partial sum for α in small neighborhoods of πt(ρ),

where ρ = log |z|2. Fix z = eρ/2+iθ ∈ X with x = πt(ρ).

Lemma 4.2. — For any δ > 0, there exist 0 < δ1 < δ, 0 < δ2 < δ, ε > 0
and C > 0 such that for any α and β ∈ [0, 1] ∩ 1

N Z with |α − x| < δ1 and
|β − x| > 2δ2, we have

(4.3)
PN

α (t, z)
PN

β (t, z)
6 Ce−εN .

Proof. — First let’s assume x ∈ (0, 1).

PN
β (t, z)
PN

α (t, z)
=
e−N((x−β)G′

t(x)−(Gt(x)−Gt(β)))

e−N((x−α)G′
t(x)−(Gt(x)−Gt(α)))

QN
t (α)

QN
t (β)

= e−N(Gt(β)−Gt(α)−G′
t(x)(β−α))Q

N
t (α)

QN
t (β)

= e−N(Gt(β)−Gt(α)−G′
t(α)(β−α))+N(G′

t(x)−G′
t(α))(β−α)Q

N
t (α)

QN
t (β)

= e−NG′′
t (γ)(β−α)2+N(G′

t(x)−G′
t(α))(β−α)Q

N
t (α)

QN
t (β)

for some γ between α and β.
Notice that G′′t is uniformly bounded below from 0 and G′t is equicon-

tinuous on [0,1]. Therefore we can choose δ1 � δ2 so that there exits ε > 0
and

e−NG′′
t (γ)(β−α)2+N(G′

t(x)−G′
t(α))(β−α) 6 e−2εN .

Also
PN

α (t, z)
PN

β (t, z)
6 Ce−εN .

When x = 0 or 1, the same estimate can be proved by similar argument
as above making use of the monotonicity of Gt. �

4.3. The C2-convergence

We now prove the main results giving bounds on two space-time deriva-
tives of ϕN (t, z). The main ingredients are the bounds of RN

t in Corol-
lary 3.5 and a comparison to derivatives of the Szegö kernel ΠN (t, z) for
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the metric φt deriving from Lemma 2.5. By (4.2) it is straightforward to
determine the derivatives of ΠN (t, z).

The following lemma is the consequence of the family version of the
Tian-Yau-Zelditch expansion.

Lemma 4.3. — We have the following uniform convergence in the C∞

topology on [0, 1]×CP1

(4.4) lim
N→∞

1
N

log ΠN (t, z) = 0.

Corollary 4.4. — All derivatives of 1
N log ΠN (t, z) + ut(z), of order

great than zero, are uniformly bounded on X.

Proof. — Although ut(z) is not a well-defined function on X, e−ut(z)

extends to a hermitian metric on the line bundle so that, by applying
global vector fields, any derivatives of ut(z) are well defined functions on
X and are uniformly bounded. �

Proposition 4.5.

(4.5) lim
N→∞

∣∣∣∣∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣∣∣∣∣

C2([0,1]×X)

= 0.

Proof. — Fix z ∈ CP1, and put x = πt(z). To prove the C2 conver-
gence of 1

N log EN (t, z) it suffices by (4.2) to prove C2 convergence for
1
N (log EN (t, z) − log ΠN (t, z)). We use Lemma 2.5 to simplify the formula
for EN (t, z).

Second order convergence in pure space derivatives.
We first consider pure space derivatives. By

∑
α and

∑
α,β , we mean∑

α∈P∩ 1
N Z and

∑
α,β∈P∩ 1

N Z. If x is in the “interior region” of [0, 1], we
may use the coordinates z = eρ/2+iθ, and

1
N

∣∣∣∣ ∂2

∂ρ2
log EN (t, z)− ∂2

∂ρ2
log ΠN (t, z)

∣∣∣∣
= N

∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)

2
(∑

αRN
t (α)PN

α (t, z)
)2
−
∑

α,β(α− β)2PN
α (t, z)PN

β (t, z)

2 (
∑

α PN
α (t, z)))2

∣∣∣∣∣
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= N

(∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

2 (
∑

α PN
α (t, z))2

)
∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)(∑
αRN

t (α)PN
α (t, z)

)2
·

(∑
α PN

α (t, z)
)2∑

α,β(α− β)2PN
α (t, z)PN

β (t, z)
− 1

∣∣∣∣∣
6

∣∣∣∣ 1
N

∂2

∂ρ2
log ΠN (t, z) +

∂2

∂ρ2
ut(z)

∣∣∣∣∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)(∑
αRN

t (α)PN
α (t, z)

)2
·

(∑
α PN

α (t, z)
)2∑

α,β(α− β)2PN
α (t, z)PN

β (t, z)
− 1

∣∣∣∣∣
6 C

∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

·
(∑

α PN
t (α, z)

)2(∑
αRN

t (α)PN
α (t, z)

)2 − 1

∣∣∣∣∣
6 C

∣∣∣∣∣
∑

α,β∈Bx(δ)(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)∑
α,β∈Bx(δ)(α− β)2PN

α (t, z)PN
β (t, z)

·

(∑
α∈Bx(δ) PN

t (α, z)
)2

(∑
α∈Bx(δ)RN

t (α)PN
α (t, z)

)2 − 1 +O
(
e−εN

)∣∣∣∣∣∣∣
6 C

(
sup

α∈Bx(δ)

RN
t (α)− inf

α∈Bx(δ)
RN

t (α)

)
+O

(
e−εN

)
for some fixed ε > 0, where Bx(δ) = {α ∈ [0, 1] ∩ 1

N Z | |α− x| < δ}.
R∞t (α) = limN→∞RN

t (α) is continuous on [0, 1] and the convergence is
uniform. Therefore for any ε′ > 0, there exists δ > 0 and sufficiently large
N ′ such that for all N > N ′

sup
α∈Bx(δ)

RN
t (α)− inf

α∈Bx(δ)
RN

t (α) 6 ε′.

In other words, for any ε′ > 0, there exists a sufficiently large N ′ such
that for all N > N ′,

1
N

∣∣∣∣ ∂2

∂ρ2
log EN (t, z)− ∂2

∂ρ2
log ΠN (t, z)

∣∣∣∣ < ε′.
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If x is close to the boundary of [0, 1], without loss of generality we fix a
holomorphic coordinate system {z} for CP1 near the north pole zN such
that z = 0 at zN . Let r = |z|. Then

1

N

∣∣∣∣ ∂2

∂r2
log EN (t, z)− ∂2

∂r2
log ΠN (t, z)

∣∣∣∣
= N

∣∣∣∣∣
∑

α,β>0
(α− β)2RN

t (α)RN
t (β)PN

α− 1
N

(t, z)PN
β− 1

N
(t, z)(∑

α
RN

t (α)PN
α (t, z)

)2
−

∑
α,β>0

(α− β)2PN
α− 1

N
(t, z)PN

β− 1
N

(t, z)(∑
α
PN

α (t, z)
)2

∣∣∣∣∣
6 C

∣∣∣∣∣∣
(∑

α,β>0
(α−β)2RN

t (α)RN
t (β)PN

α− 1
N

(t, z)PN
β− 1

N
(t, z)

)(∑
α
PN

α (t, z)
)2(∑

α,β>0
(α−β)2PN

α− 1
N

(t, z)PN
β− 1

N

(t, z)
)(∑

α
RN

t (α)PN
α (t, z)

)2 −1

∣∣∣∣∣∣.
By localizing the summand and similar argument for the interior, we can

show that for any ε′ > 0, there exists a sufficiently large N ′ such that for
all N > N ′,

1
N

∣∣∣∣ ∂2

∂r2
log EN (t, z)− ∂2

∂r2
log ΠN (t, z)

∣∣∣∣ < ε′.

Second order convergence in pure time derivatives.
We now consider time derivatives. Let Gi(x) = GP (x)+fi(x), for i = 0, 1.

Let ft(x) = (1− t)f0(x) + tf1(x) and ∂
∂tft(x) = v(x) = f1(x)− f0(x). Also

Ut(ρ) = ut(z). By Legendre transform, Ut(ρ) = xρ−Gt(x) with ρ = G′t(x)
and x = U ′t(ρ). Calculate

∂

∂t
Ut(ρ) = ẋρ− ∂

∂t
Gt(x)−G′t(x)ẋ = − ∂

∂t
Gt(x) = −v(x)

and
∂2

∂t2
Ut(ρ) = −v′(x)ẋ = (v′(x))2U ′′t (ρ) = (v′(x))2

∂2

∂ρ2
ut(z).

Straightforward calculation shows that

1

N

∂

∂t
log EN (t, z) +

∂

∂t
ut(z) =

1

N

∑
α

log
QN

0 (α)

QN
1 (α)

RN
t (α)PN

α (t, z)∑
α
RN

t (α)PN
α (t, z)

=
1

N

∑
α

(
−Nv(α) + log

qN
0 (α)

qN
1 (α)

)
RN

t (α)PN
α (t, z)∑

α
RN

t (α)PN
α (t, z)
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and

1

N

∂2

∂t2
log EN (t, z) +

∂2

∂t2
ut(z)

= N

∑
α,β

(
(v(α)− v(β)) + 1

N
log

qN
0 (β)qN

1 (α)

qN
0 (α)qN

1 (β)

)2

RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)

2
(∑

α
RN

t (α)PN
α (t, z)

)2
= IN

1 (t, z) + IN
2 (t, z) + IN

3 (t, z).

IN
1 (t, z)

= N

∑
α,β

(v(α)− v(β))2RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)

2
(∑

α
RN

t (α)PN
α (t, z)

)2
∼ N

∑
α,β∈Bx(δ)

(α− β)2
(

v(α)−v(β)
α−β

)2
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)

2
(∑

α
RN

t (α)PN
α (t, z)

)2
∼ N(v′(x))2

∑
α,β∈Bx(δ)

(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)

2
(∑

α
RN

t (α)PN
α (t, z)

)2
+ N

∑
α,β∈Bx(δ)

(α−β)2
((

v(α)−v(β)
α−β

)2
−(v′(x))2

)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)

2
(∑

α
RN

t (α)PN
α (t, z!

)2
∼

(
(v′(x))2 + sup

α6=β∈Bx(δ)

((
v(α)− v(β)

α− β

)2

− (v′(x))2

))
·
(

1

N

∂2

∂ρ2
log EN (t, z) +

∂2

∂ρ2
ut(z)

)
∼ (v′(x))2

∂2

∂ρ2
ut(z) =

∂2

∂t2
ut(z)

as δ → 0.

Therefore limN→∞ IN
1 (t, z) = ∂2

∂t2ut(z).

IN
2 (t, z)

=

∑
α,β

(v(α)− v(β)) log
qN
0 (β)qN

1 (α)

qN
0 (α)qN

1 (β)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)(∑

α
RN

t (α)PN
α (t, z)

)2
∼

∑
α,β∈Bx(δ)

(v(α)− v(β)) log
qN
0 (β)qN

1 (α)

qN
0 (α)qN

1 (β)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)(∑

α
RN

t (α)PN
α (t, z)

)2
∼ 0

as δ → 0.

Therefore limN→∞ IN
2 (t, z) = 0.
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IN
3 (t, z) =

1
N

∑
α,β

(
log qN

0 (β)qN
1 (α)

qN
0 (α)qN

1 (β)

)2

RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)(∑
αRN

t (α)PN
α (t, z)

)2
∼ 0.

Therefore limN→∞ IN
3 (t, z) = 0.

We conclude from the above calculation that

lim
N→∞

∂2

∂t2
log EN (t, z) = 0.

By a similar argument, which we leave to the reader, the mixed space-
time derivatives of log EN (t, z) also uniformly converges to 0. Therefore
1
N log EN (t, z) has bounded second derivatives and 1

N log EN (t, z) converges
in C2 to 0. �

We now conclude the proof of the main result:
Proof of Theorem 1.2. — Notice that ϕN (t, ·) − ϕt(·) = 1

N log EN (t, ·).
Therefore Theorem 1.2 is proved. �

4.4. Final remarks and questions

We conclude with some questions:
• Limits on the degree of convergence of ϕN (t, z) → ϕ(t, z) are related

to the distribution of complex zeros of the holomorphic extension
of EN

t . In the toric case, in the coordinates x = eρ, EN
t is a positive

real polynomial of a real variable. As observed by Lee-Yang in the
context of partition functions of statistical mechanical models, the
degree of convergence of 1

N log EN
t to its limit is related to the limit

distribution of the complex zeros of EN
t along the real domain. For

a modern study of complex zeros of partition functions with refer-
ences to the literature, see [4]. It would be interesting to study the
complex zeros in the case of toric varieties.

• The formula for EN
t (z) in Lemma 2.5 exhibits this function as

the value on the diagonal of a Toeplitz type operator with mul-
tiplier RN

t (α). More precisely, it is the Berezin lower symbol of
the Toeplitz type operator. For background we refer to [22]. The
question whether it is a Toeplitz operator in any standard sense is
essentially the same question as to the existence of asymptotics of
EN

t (z) and joint asymptotics of RN
t (α). When this multiplier is a
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symbol, the sum has the general form of a Bernstein polynomial in
the sense of [29] and admits a complete asymptotic expansion. It
would be very helpful if there exists a more “abstract” approach to
this Toeplitz operator by constructing its Toeplitz symbol instead of
its Berezin symbol. The leading order Toeplitz symbol is calculated
in Corollary 3.5.
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