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EXTENSION OF HOLOMORPHIC MAPS BETWEEN
REAL HYPERSURFACES OF DIFFERENT DIMENSION

by Rasul SHAFIKOV & Kausha VERMA (*)

Abstract. — In this paper we extend the results on analytic continuation of
germs of holomorphic mappings from a real analytic hypersurface to a real algebraic
hypersurface to the case when the target hypersurface is of higher dimension than
the source. More precisely, we prove the following: Let M be a connected smooth
real analytic minimal hypersurface in Cn, M ′ be a compact strictly pseudoconvex
real algebraic hypersurface in CN , 1 < n 6 N . Suppose that f is a germ of a
holomorphic map at a point p in M and f(M) is in M ′. Then f extends as a
holomorphic map along any smooth CR-curve on M with the extension sending
M to M ′. Further, if D and D′ are smoothly bounded domains in Cn and CN

respectively, 1 < n 6 N , the boundary of D is real analytic, and the boundary of
D′ is real algebraic, and if f : D → D′ is a proper holomorphic map which admits
a smooth extension to a neighbourhood of a point p in the boundary of D, then the
map f extends continuously to the closure of D, and the extension is holomorphic
on a dense open subset of the boundary of D.

Résumé. — Dans cet article, les résultats sur le prolongement analytique des
germes d’applications holomorphes d’une hypersurface analytique réelle à une hy-
persurface algébrique réelle sont étendus au cas où la cible est une hypersurface de
dimension supérieure à celle de la source. Plus précisément, nous prouvons ce qui
suit : soit M une hypersurface lisse, connexe, analytique réelle et minimale dans
Cn, et M ′ une hypersurface compacte, strictement pseudoconvexe, et algébrique
réelle dans CN , avec 1 < n 6 N . Supposons que f soit le germe d’une application
holomorphe en un point p de M , et f(M) soit contenu dans M ′. Alors f se prolonge
à un application holomorphe le long de toute courbe CR sur M , et le prolongement
envoie M dans M ′. De plus, si D et D′ sont des domaines bornés lisses dans Cn

et CN respectivement, avec 1 < n 6 N , la frontière de D est analytique réelle,
celle de D’ est algébrique réelle, et si f : D → D′ est une application holomorphe
propre qui admet un prolongement lisse à un voisinage d’un point p de la fron-
tière de D, alors l’application f se prolonge continûment à la fermeture de D, et
le prolongement est analytique sur un sous-ensemble dense de la frontière de D.

Keywords: Holomorphic mappings, reflection Principle, boundary regularity, analytic
continuation.
Math. classification: 32H40.
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cil of Canada. K.V. was supported by DST (India) grant no.: SR/S4/MS-283/05 and
UGC-SAP-IV.



2064 Rasul SHAFIKOV & Kausha VERMA

1. Introduction

In this paper we consider the problem of analytic continuation of a germ
of a holomorphic map sending a real analytic hypersurface into another
such hypersurface in the special case when the target hypersurface is real
algebraic but of higher dimension. Our principal result is the following.

Theorem 1.1. — Let M be a connected smooth real analytic minimal
hypersurface in Cn, M ′ be a compact strictly pseudoconvex real algebraic
hypersurface in CN , 1 < n 6 N . Suppose that f is a germ of a holomorphic
map at a point p ∈ M and f(M) ⊂ M ′. Then f extends as a holomorphic
map along any smooth CR-curve on M with the extension sending M

to M ′.

We note that when M is a minimal hypersurface, then the CR-orbit of
p is all of M (see Section 2 for details), and therefore, the theorem above
gives analytic continuation of f to every point of M .

In the equidimensional case the problem of analytic continuation of a
germ of a map between real analytic hypersurfaces has attracted a lot of
attention (see, for example, [24], [35], [34], [26], [29] and [31]). This problem,
which originated in the work of Poincaré [28] (generalized later in [33] and
[1]), is related to other fundamental questions in several complex variables,
such as boundary regularity of proper holomorphic mappings, the theory
of CR maps, and classification of domains in complex spaces (for the latter
connection see [34], [26], [31], [23]).

The situation seems to be more delicate in the case of different dimen-
sions. The first result of this type is probably due to Pinchuk [25] who
proved that a germ of a holomorphic map from a strictly pseudoconvex
real analytic hypersurface M ⊂ Cn into a sphere S2N−1, 1 < n 6 N , ex-
tends holomorphically along any path on M . Just recently Diederich and
Sukhov [9] proved that the same extension holds if M is weakly pseudocon-
vex. Theorem 1.1 is a direct generalization of these results (although our
methods are quite different). Further, in the case when dim M = dim M ′,
Theorem 1.1 generalizes the result in [29], where the hypersurface M was
assumed to be essentially finite, a stronger condition than minimality. Other
related results also include various extensions obtained when both M and
M ′ are algebraic (see e.g. [16], [32], [2], [6], [36], [19] and references therein),
which state that under certain conditions a map between two real algebraic
submanifolds (or even sets) is algebraic, and therefore extends to a dense
open subset of Cn.

ANNALES DE L’INSTITUT FOURIER



EXTENSION OF HOLOMORPHIC MAPS 2065

Much like in the equidimensional case, analytic continuation can be used
to prove boundary regularity of holomorphic maps.

Theorem 1.2. — Let D and D′ be smoothly bounded domains in Cn

and CN respectively, 1 < n 6 N , ∂D is real analytic, ∂D′ is real algebraic,
and let f : D → D′ be a proper holomorphic map. Suppose there exist a
point p ∈ ∂D and a neighbourhood U of p such that f extends smoothly to
∂D ∩ U . Then the map f extends continuously to D, and the extension is
holomorphic on a dense open subset of ∂D. If D′ is strictly pseudoconvex,
then f extends holomorphically to a neighbourhood of D.

For n = N a similar result is contained in [30]. We note that without
the assumption of smooth extension of f somewhere on ∂D the conclusion
of Theorem 1.2 is false in general. Indeed, there exist proper holomorphic
maps of balls of different dimension that do not extend even continuously to
the boundary ([18], [12]), or that are continuous up to the boundary but are
not of class C2 ([11], [15]). Further, there exist proper maps f : Bn → BN

which are continuous up to the boundary, and f(S2n−1) = S2N−1, provided
that N is sufficiently large ([14]).

On the other hand, if f is known to extend smoothly to all of ∂D, then
f extends holomorphically everywhere on ∂D according to [5] and [22].
We use these results to obtain holomorphic extension of f somewhere on
the boundary of D to start analytic continuation along ∂D. Also with-
out the assumption of algebraicity, Forstnerič [13] proved that a proper
holomorphic map f : D → D′ between strictly pseudoconvex domains
D ⊂ Cn, D′ ⊂ CN , 1 < n 6 N , with real analytic boundaries which
extends smoothly to ∂D, necessarily extends holomorphically on a dense
open subset of ∂D (this was recently improved in [27] by showing that the
extension is holomorphic everywhere provided that 1 < n 6 N 6 2n).

The above stated theorems follow from a more general result asserting
a local extension of the map f as a correspondence. More precisely, the
following holds.

Theorem 1.3. — Let M (resp. M ′) be smooth hypersurfaces in Cn

(resp. CN ), 1 < n 6 N , where M is real analytic and minimal, and M ′

is compact real algebraic. Suppose Σ ⊂ M is a connected open set, and
f : Σ → M ′ is a real analytic CR map. Let b ∈ ∂Σ, and ∂Σ ∩ M be a
smooth generic submanifold. Then there exists a neighbourhood Ub ⊂ Cn

of b such that f extends to a holomorphic correspondence F : Ub → CN

with F (Ub ∩M) ⊂ M ′.

TOME 57 (2007), FASCICULE 6



2066 Rasul SHAFIKOV & Kausha VERMA

We note that in the context of Theorem 1.1 it follows that M is pseudo-
convex, however, in Theorem 1.3 neither M nor M ′ has to be pseudoconvex.
The extension given by Theorem 1.3 is guaranteed to be single valued if M ′

satisfies the property that Q′
z′ ∩M ′ = {z′} near any z′ ∈ M ′. In particular

this holds if M ′ is strictly pseudoconvex (cf. [13]).
There are no known results when a similar analytic continuation would

hold under the assumption that M ′ is merely real analytic. The problem
is not well understood even in the equidimensional case, where it is only
known that the germ of a map f : M → M ′ extends along any path on
M when both M and M ′ are strictly pseudoconvex ([24], [34]). The case
of different dimensions seems to be even more difficult.

Acknowledgment. — The authors would like to thank Prof. J. Merker
for numerous remarks concerning the first draft of the paper, in particular
for pointing out the construction of ellipsoids used in Section 4.1.

2. Preliminaries

Let M be a smooth real analytic hypersurface in Cn, n > 1, 0 ∈ M , and
U a neighbourhood of the origin. If U is sufficiently small then M ∩U can
be identified by a real analytic defining function ρ(z, z), and for every point
w ∈ U we can associate to M its so-called Segre variety in U defined as

Qw = {z ∈ U : ρ(z, w) = 0} .

Note that Segre varieties depend holomorphically on the variable w. In fact,
in a suitable neighbourhood U = ′U × Un ⊂ Cn−1 × C we have

(2.1) Qw = {z = (′z, zn) ∈ U : zn = h(′z, w)} ,

where h is a holomorphic function. From the reality condition on the defin-
ing function the following basic properties of Segre varieties follow:

(2.2) z ∈ Qw ⇔ w ∈ Qz,

(2.3) z ∈ Qz ⇔ z ∈ M,

(2.4) w ∈ M ⇔ {z ∈ U : Qw = Qz} ⊂ M.

The set Iw := {z ∈U : Qw = Qz} is itself a complex analytic subset of U .
So (2.4), in particular, implies that if M does not contain non-trivial holo-
morphic curves, then there are only finitely many points in U that have
the same Segre variety (for U sufficiently small). For the proofs of these
and other properties of Segre varieties see e.g. [10], [8] or [3].

ANNALES DE L’INSTITUT FOURIER



EXTENSION OF HOLOMORPHIC MAPS 2067

A hypersurface M is called minimal if it does not contain any germs
of complex hypersurfaces. In this case the dimension of the set Iw can be
positive (but less than n− 1) for all w ∈ M .

If f : U → U ′, U ⊂ Cn, U ′ ⊂ CN , is a holomorphic map sending a smooth
real analytic hypersurface M ⊂ U into another such hypersurface M ′ ⊂ U ′,
and U is as in (2.1), then f(z) = z′ implies f(Qz) ⊂ Q′

z′ for z close to the
origin. This invariance property of Segre varieties will play a fundamental
role in our arguments. We will also denote by ws the symmetric point of a
point w = (′w,wn) ∈ U , which is by definition the unique point defined by
Qw ∩ {z ∈ U : ′z = ′w}.

Suppose now that the hypersurface M ⊂ CN is smooth, compact, con-
nected, and defined as the zero locus of a real polynomial P (z, z). Then
we may define Segre varieties associated with M as projective algebraic
varieties in PN . Further, this can be done for every point in PN . Indeed,
let M be given as a connected component of the set defined by{

z ∈ CN : P (z, z) = 0
}

.

We can projectivize the polynomial P to define M in PN in homogeneous
coordinates

(2.5) ẑ = [ẑ0, ẑ1, . . . , ẑN ], zk =
ẑk

ẑ0
, k = 1, . . . , N,

as a connected component of the set defined by

(2.6)
{

ẑ ∈ PN : P̂ (ẑ, ẑ) = 0
}

,

where the homogeneous polynomial P̂ is defined by

P̂
(
ẑ0, . . . , ẑN , ẑ0, . . . , ẑN

)
= (ẑ0ẑ0)deg P · P

(
ẑ1

ẑ0
, . . . ,

ẑN

ẑ0
,
ẑ1

ẑ0

, . . . ,
ẑN

ẑ0

)
.

We may define now the polar of M as

(2.7) M̂ c =
{

(ẑ, ζ̂) ∈ PN × PN : P̂ (ẑ, ζ̂) = 0
}

.

Then M̂ c is a complex algebraic variety in PN ×PN . Given τ ∈ PN , we set

(2.8) Q̂τ = M̂ c ∩
{

(ẑ, ζ̂) ∈ PN × PN : ζ̂ = τ
}

.

We define the projection of Q̂τ to the first coordinate to be the Segre variety
of τ .

Recall that for domains D ⊂ Cn and D′ ⊂ CN , a holomorphic corre-
spondence F : D → D′ is a complex analytic set A ⊂ D × D′ of pure
dimension n such that the coordinate projection π : A → D is proper

TOME 57 (2007), FASCICULE 6



2068 Rasul SHAFIKOV & Kausha VERMA

(while π′ : A → D′ need not be). In this situation, there exists a system of
canonical defining functions

(2.9) ΦI(z, z′) =
∑
|J|6m

ΦIJ(z)z′J , (z, z′) ∈ D ×D′, |I| = m,

where ΦIJ(z) are holomorphic on D, and A is the set of common zeros of
the functions ΦI(z, z′). For details see, e.g. [4]. It follows that π is in fact
surjective and a finite-to-one branched covering. In particular, there exists
a complex subvariety S ⊂ D and a number m such that

F := π′ ◦ π−1 =
{
f1(z), . . . , fm(z)

}
,

where f j are distinct holomorphic maps in a neighborhood of z ∈ D r S.
The set S is called the branch locus of F . We say that the correspondence
F splits at z ∈ D if there is an open subset U 3 z and holomorphic maps
f j : U → D′, j = 1, 2, . . . ,m, that represent F . Thus F splits at every
point z ∈ D r S.

Let M be a smooth real hypersurface Cn. A smooth curve γ : [0, 1] → M

is called a CR-curve, if for t ∈ (0, 1), γ′(t) ∈ Hγ(t)(M), where Hp(M)
denotes the complex tangent space to M at a point p ∈ M . We denote
by Orb(p) the set of all points on M which can be connected with p by a
piecewise smooth CR curve. Orb(p) is called the CR orbit of p. It is well
known that for any p ∈ M , the CR-orbit Orb(p) is a CR submanifold of M

of the same CR dimension. Therefore, if M is minimal, then the CR-orbit
of any point p ∈ M contains an open neighbourhood of p in M . For a
detailed discussion of CR-orbits see e.g. [3], or a recent survey [21].

It follows from the above discussion that as a consequence of Theorem 1.1
the map f can be continued analytically to any point on M . In particular,
one can say that f extends holomorphically along any curve on M .

3. Proof of Theorem 1.3

In the proof of Theorem 1.3 we modify the approach in [29] to our situ-
ation. The strategy can be outlined as follows. Without loss of generality
we may assume that f is a holomorphic map defined in a neighbourhood of
Σ, and f(Σ) ⊂ M ′. According to [29], Prop. 5.1, there exists a dense open
subset ω of Qb with the property that for a ∈ ω, Qa∩Σ 6= ∅. Furthermore,
there exists a non-constant curve γ ⊂ Σ∩Qa with the endpoint at b. Thus
we have a choice of points ξ and a such that

(3.1) a ∈ Qb, ξ ∈ γ ⊂ Σ ∩Qa.

ANNALES DE L’INSTITUT FOURIER
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The extension of f to the point b can be proved in two steps. Suppose that
f is holomorphic in Uξ, which is some neighbourhood of ξ. Let U be a
neighbourhood of Qξ. We first show that the set A defined by

(3.2) A =
{
(w,w′) ∈ U × CN : f(Qw ∩ Uξ) ⊂ Q′

w′

}
is complex analytic with the property that A contains Γf , the graph of f ,
and the projection π : A → U is surjective. Further, A can be extended to
an analytic subset of U × PN , and we denote by π′ : A → PN the other
coordinate projection.

Secondly, we choose suitable neighbourhoods Ua and U∗ of a and Qa

respectively, and consider the set

(3.3) A∗ =
{
(w,w′) ∈ U∗ × PN : π−1(Qw ∩ Ua) ⊂ π′−1(Q′

w′)
}

.

We then show that A∗ also contains the graph of f , and its projection π∗

to the first component is also surjective. In particular, π∗(A∗) contains a
neighbourhood of b. Note that by construction the dimension of A may be
bigger than n = dim Γf . An important fact, however, is that dim A∗ = n,
regardless of the dimension of the set A. This allows us to show that f

extends locally as a holomorphic correspondence to a neighbourhood of b.

3.1. Extension along Qξ

In this subsection we show that if f is holomorphic at ξ ∈ Σ, then we
can extend the graph of f as an analytic set along Qξ. It follows from (2.2)
that there exist neighbourhoods Uξ of ξ and U of Qξ such that for any
point w ∈ U , the set Qw ∩ Uξ is non-empty. Further, Uξ and U can be
chosen such that Qw ∩ Uξ is connected for all w ∈ U . We claim that the
set defined by (3.2) is a closed complex analytic subset of U ×CN . Indeed,
the inclusion f(Qw ∩ Uξ) ⊂ Q′

w′ can be expressed (cf. [29]) as

(3.4) P ′ (f(′z, h(′z, w)), w′) = 0,

where P ′(z′, z′) is the defining polynomial of M ′, and h is the map defined
in (2.1). After conjugation this becomes a system of holomorphic equations
in w and w′. The variable ′z plays the role of a parameter here, but from the
Noetherian property of the ring of holomorphic functions, we may extract
a finite subsystem which defines A as a complex analytic set. Further, since
the equations in (3.4) are polynomials in w′, we may projectivize A. This
defines an analytic set in U×PN , which we denote again by A for simplicity.

Finally, observe that by the invariance property of Segre varieties it fol-
lows that A contains the points of the form (w, f(w)), w ∈ Uξ, and therefore

TOME 57 (2007), FASCICULE 6



2070 Rasul SHAFIKOV & Kausha VERMA

A contains the germ at ξ of the graph of f . This also shows that A is not
empty. We may consider only the irreducible components of the least di-
mension which contain Γf . Thus we may assume that dim A ≡ m > n.

3.2. Extension along Qa

Let π : A → U and π′ : A → PN be the natural projections. Since PN

is compact, and A is closed in U × PN , the projection π is proper. By
the Remmert proper mapping theorem, π(A) is a complex analytic subset
of U , which simply means that π(A) = U . For ζ ∈ A let lζπ ⊂ A be
the germ of the fibre π−1(π(ζ)) at ζ. Then for a generic point ζ ∈ A,
dim lζπ = m − n which is the smallest possible dimension of the fibre. By
the Cartan-Remmert theorem (see e.g. [17]) the set

S := {ζ ∈ A : dim lζπ > m− n}

is complex analytic, and by the Remmert proper mapping theorem π(S)
is complex-analytic in U . We note that dim π(S) < n − 1. This can be
seen as follows: if (m − n) + k is the generic dimension of the fibre over
π(S), k > 0, then dim S = dim π(S) + (m− n + k). Since dim S 6 m− 1,
dim π(S) 6 n− 1− k, and the assertion holds.

From the above considerations we conclude that π(S) does not contain
Qb ∩ U . The sets U and Uξ defined in Section 3.1 certainly depend on the
choice of ξ. However, if we vary the point ξ in Σ, then the sets defined by
(3.2) with a different choice of ξ will coincide on the overlaps and satisfy
the properties stated in Section 3.1. Hence, if a ∈ π(S)∩Qξ ∩Qb, then we
may slightly rearrange points a ∈ Qb and ξ ∈ Σ∩Qa, and repeat the above
constructions (keeping the same notation), so that a /∈ π(S).

Let Ua be a neighbourhood of the point a in U , so small that Ua ∩
π(S) = ∅. Let γ ⊂ Qa ∩ Σ be a path connecting ξ and b. We may choose
a neighbourhood U∗ of γ (including its endpoints) and Ua in such a way
that Qw ∩ Ua is non-empty and connected for any w in U∗. Consider the
set A∗ defined in (3.3).

Lemma 3.1. — 3 A∗ is a complex-analytic subset of U∗ × PN .

Proof. — Let (w0, w
′
0) ∈ A∗ be an arbitrary point. Consider π−1(Qw0 ∩

Ua). This is a complex analytic subset of A∩ (Ua×PN ). Since Ua∩π(S) =
∅, the fibres of π are of constant dimension for points in Ua. Therefore,
π−1(Qw0 ∩Ua) has constant dimension m− 1. It follows that analytic sets

ANNALES DE L’INSTITUT FOURIER
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π−1(Qw ∩ Ua) have the same dimension and vary analytically as w varies
near w0. We denote by B(X, ε) the open ε-neighbourhood of a set X.

Let q ∈ π−1(Qw0 ∩ Ua). Then there exists an affine coordinate patch
U ′ ⊂ PN , q ∈ Ua × U ′, with coordinates

(z, ζ ′) = (z1, . . . , zn, ζ ′n+1, . . . , ζ
′
n+N ) ∈ Ua × U ′,

and a choice of a coordinate plane in Ua × U ′ passing through q, which is
spanned by

(z1, z2, . . . , zn−1, ζ
′
k1

, ζ ′k2
. . . , ζ ′km−n

)

for some k1, k2, . . . km−n, such that for some εq > 0, the set π−1(Qw0 ∩
Ua) ∩ B(q, εq) can be represented as in (2.9), i.e. as the zero locus of the
functions

ΦI(z, ζ ′) =
∑

06j6mq

|J|6Mq

ΦIjJ(z1, z2, . . . , zn−1, ζ
′
k1

, ζ ′k2
. . . , ζ ′km−n

)(zn)j(ζ̃ ′)J ,

|I| 6 lq,

where ζ̃ ′ are the remaining (N − m + n) coordinates in U ′, J = (j1, . . . ,
jN−m+n), and ΦIjJ are holomorphic functions. Since π−1(Qw ∩ Ua) de-
pend anti-holomorphically on w, there exists δq > 0 and a connected open
neighbourhood Ωq ⊂ B(q, εq) of the point q, such that for |w − w0| < δq a
similar representation also holds for π−1(Qw ∩ Ua) ∩ Ωq with functions

(3.5) ΦI(z, ζ ′, w) =
∑

06j6mq

|J|6Mq

ΦIjJ(z1, . . . , zn−1, ζ
′
k1

, . . . , ζ ′km−n
, w)(zn)j(ζ̃ ′)J ,

|I| 6 lq,

where the dependence on w is holomorphic.
We claim that there exist δ > 0 and a finite collection of points qk ∈

π−1(Qw0 ∩ Ua), k = 1, 2, . . . , l such that ∪l
k=1Ωqk has a non-empty inter-

section with every irreducible component of π−1(Qw ∩ Ua), provided that
|w − w0| < δ.

To prove the claim first observe that from compactness of PN and con-
tinuity of the fibres of the projection π, it follows that given any small
ε > 0 there exists δ > 0 such that the distance between π−1(Qw ∩ Ua)
and π−1(Qw0 ∩ Ua) is less than ε whenever |w − w0| < δ. The distance in
Ua × PN can be taken with respect to the product metric of the standard
metric in Cn and the Fubini-Study metric in PN .

Denote by Sj
w the irreducible components of π−1(Qw∩Ua), j = 1, . . . , lw,

where w is a point in some small neighbourhood of w0. Choose ε1 > 0
and δ1 > 0 such that for |w − w0| < δ1, none of the components Sj

w is
entirely contained in B(∂Ua × PN , ε1). Such ε1 and δ1 exist because every

TOME 57 (2007), FASCICULE 6



2072 Rasul SHAFIKOV & Kausha VERMA

Sj
w surjectively projects onto Qw ∩Ua. Then (Ua ×PN ) r B(∂Ua ×PN , ε1)

is compact, and therefore, the open cover of the set

π−1 (Qw0 ∩ Ua) r B
(
∂Ua × PN , ε1

)
by Ωq, where q ∈ π−1(Qw0 ∩Ua), admits a finite subcover, say, Ωq1 , . . . Ωql .
Let

ε2 = min
k=1,...,l

{
sup{α > 0 : B(qk, α) ⊂ Ωqk}

}
.

Then there exists δ2 such that the distance between π−1(Qw ∩ Ua) and
π−1(Qw0 ∩ Ua) is less than ε2 whenever |w − w0| < δ2. Finally, choose
δ = min{δ1, δ2}. Then for any w with |w−w0| < δ, any component Sj

w has
a non-empty intersection with ∪kΩqk . This proves the claim.

We now show that A∗ is complex-analytic in a neighbourhood of a point
(w0, w

′
0) ∈ A∗. Choose q1, . . . ql as claimed above. We fix some qk, k ∈

{1, 2, . . . , l} and let η = w, η′ = w′. Let further G = Ωqk × {|(η, η′) −
(η0, η

′
0)| < δ} be a small neighbourhood of (qk, w0, w

′
0) in Cn

z ×CN
ζ′ ×Cn

η ×
CN

η′ . We define

X1 = {(z, ζ ′, η, η′) ∈ G : P ′(ζ ′, η′) = 0} ,

X2 =
{
(z, ζ ′, η, η′) ∈ G : Φk

I (z, ζ ′, η) = 0, |I| 6 lqk

}
,

where Φk
I (z, ζ ′, η) are holomorphic functions as defined in (3.5). Both of

these sets are complex analytic in G. Then the set of points (w,w′) for
which the inclusion

(3.6) π−1(Qw ∩ Ua) ∩ Ωqk ⊂ π′−1(Q′
w′)

holds is conjugate to the set X∗ in the (η, η′) space which is characterized
by the property that (η, η′) ∈ X∗ whenever π−1

2 (η, η′) ⊂ π−1
1 (η, η′), where

πj is the coordinate projection from Xj to the (η, η′)-space. The set X∗

can be also defined as

X∗ =
{
(η, η′) : dim π−1

2 (η, η′) = dim π−1
12 (η, η′)

}
,

where π12 : X1 ∩ X2 → Cn+N
(η,η′). Further, dim π−1

2 (η, η′) = m − 1, for all
(η, η′), and so dim π−1

12 (η, η′) 6 m− 1. Thus, X∗ = π12(X̃), where

X̃ =
{
(z, ζ ′, η, η′) ∈ X1 ∩X2 : dim l(z,ζ′,η,η′)π12 > m− 2

}
.

By the Cartan-Remmert theorem X̃ is a complex analytic subset of G.
Denote by π̃ the projection from X̃ to the space of variables

(z1, . . . , zn−1, ζ1, . . . , ζkm−n
, η, η′).
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By construction of functions in (3.5) the map π̃ is proper. Hence, by the
Remmert proper mapping theorem, π̃(X̃) is complex analytic. Finally, con-
sider the projection π(η,η′) : π̃(X̃) → (η, η′). From the construction of
the set π̃(X̃), dim π−1

(η,η′)(η, η′) = m − 1, for (η, η′) ∈ X∗. But in fact,
dim π−1

(η,η′)(π(η,η′)(x)) = m − 1, for any x ∈ π̃(X̃). Thus we may identify
X∗ with π̃(X̃) ∩ {(z1, . . . , zn−1, ζ1, . . . , ζkm−n) = const}. This proves that
the set X∗ is complex analytic. After conjugation, we may assume that the
set defining the inclusion in (3.6) is also complex analytic.

If an open set of the irreducible component Sj
w is contained in π′−1(Q′

w′)
for some w′, then by the uniqueness theorem, the whole component Sj

w

must be contained in π′−1(Q′
w′). Therefore, since ∪l

k=1Ωqk has a non-empty
intersection with every Sj

w, the system of equations defining the inclusion
(3.6), combined for k = 1, . . . , l, completely determines the inclusion in
(3.3), and therefore it defines A∗ as a complex-analytic set near (w0, w

′
0).

So far we have showed that A∗ is a local complex analytic set, i.e defined
by a system of holomorphic equations in a neighbourhood of any of its
points. To prove that A∗ is a complex-analytic subset of U∗×PN it is enough
now to show that A∗ is closed in U∗ × PN . Suppose (wj , w′j) → (w0, w′0),
as j →∞, for some sequence (wj , w′j) ∈ A∗, and suppose that (w0, w′0) ∈
Ua×PN . This means that π−1(Qwj ∩Ua) ⊂ π′−1(Q′

w′j ). Since Qwj → Qw0

and Q′
w′j → Q′

w′0 , by analyticity also π−1(Qw0 ∩ Ua) ⊂ π′−1(Q′
w′0), and

therefore (w0, w′0) ∈ A∗. This completes the proof of Lemma 3.1. �

Lemma 3.2. — The set A∗ contains the germ of the graph of f at
(ξ, f(ξ)). Further,

A∗ ∩
(
(Uξ ∩ U ∩ U∗)× PN

)
⊂ A.

Proof. — Suppose z ∈ (Uξ ∩ U ∩ U∗). We need to show that

(3.7) π−1(Qz ∩ Ua) ⊂ π′−1
(
Q′

f(z)

)
.

Let w ∈ Qz ∩ Ua be an arbitrary point, and let (w,w′) ∈ A. Then f(Qw ∩
Uξ) ⊂ Q′

w′ . In particular, since z ∈ Qw ∩Uξ, we have f(z) ∈ Q′
w′ . But this

implies w′ ∈ Q′
f(z). In other words, (w,w′) ∈ {w} × Q′

f(z). Since w′ was
an arbitrary point in A over w, we conclude that π−1(w) ⊂ π′−1

(
Q′

f(z)

)
.

Consequently, (3.7) follows, and (z, f(z)) ∈ A∗.
As for the second assertion, we observe that for (w,w′) ∈ A∗, where w is

sufficiently close to ξ, the inclusion π−1(Qw∩Ua) ⊂ π′−1(Q′
w′) is equivalent

to π−1(Qw ∩ Uξ) ⊂ π′−1(Q′
w′), because Qw ∩ U is connected. From Sec-

tion 3.1 the set A contains the germ of the graph of f near ξ, and therefore,
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the inclusion Γf ⊂ A∗ in particular implies f(Qw ∩ Uξ) ⊂ Q′
w′ , which by

definition means (w,w′) ∈ A. �

Lemma 3.2 shows that A∗ is non-empty. Also note that since PN is
compact, the projection π∗:A∗→U∗ is proper, and therefore, π∗(A∗) = U∗.
Define π′∗ : A∗ → PN .

3.3. Extension as a correspondence

Let now Ω be a small connected neighbourhood of the path γ ⊂ Qa∩M ,
which connects ξ and b, such that for any w ∈ Ω, the symmetric point ws

belongs to U∗, and let Qs
w denote the connected component of Qw ∩ U∗

which contains ws. Denote further by S∗ the set of points z ∈ U∗ for which
π∗−1(z) ⊂ A∗ does not have the generic dimension. The same argument as
at the beginning of Section 3.2 shows that S∗ is a complex analytic set of
dimension at most n−2, and so ΩrS∗ is connected. To prove the extension
of f to the point b we will need the following result.

Lemma 3.3. — For any point w ∈ Ω r S∗,

(3.8) π∗−1(Qs
w) ⊂ π′∗

−1(Q′
w′), ∀ w′ ∈ π′∗ ◦ π∗−1(w).

Proof. — Denote by Z the set of points in Ω r S∗ for which (3.8) holds.
We show that Z = Ω r S∗. For the proof we shrink Uξ so that Uξ ⊂ Ω.

Let w ∈ Uξ r S∗ be some point, and (w,w′) ∈ A∗. Note that zs = z for
any z ∈ M , and therefore, for w sufficiently close to ξ, the set Qw ∩ Uξ

coincides with Qs
w ∩ Uξ. Let z ∈ Qw ∩ Uξ be arbitrary. Then (z, z′) ∈ A∗

means π−1(Qz ∩ Ua) ⊂ π′−1(Q′
z′). For z and w sufficiently close to ξ,

Qz is connected in U , and therefore, π−1(Qz ∩ Uξ) ⊂ π′−1(Q′
z′). The last

inclusion in particular means that π−1(w) ⊂ π′−1(Q′
z′). Thus for any w′ ∈

π′ ◦ π−1(w), w′ ∈ Q′
z′ , or z′ ∈ Q′

w′ . By Lemma 3.2, A∗ is contained in A

near ξ, and it follows that for any w′ ∈ π∗′ ◦ π∗−1(w), z′ ∈ Q′
w′ . From that

(3.8) follows, and we proved that the set Z contains a small neighbourhood
of ξ.

Let Z◦ be the largest connected open set which contains ξ and is con-
tained in Z. From the above considerations, Z◦ 6= ∅. We show that if
w ∈ (Z◦ r Z◦) ∩ (Ω r S∗), then w ∈ Z◦. Let (w,w′) ∈ A∗ for some w′.
Since dim S∗ < dim Qs

w = n − 1, we may find a point α ∈ (Qs
w r S∗),

and by repeating the argument of Lemma 3.1 we may construct a complex
analytic set

(3.9) Aw =
{
{(x, x′) ∈ Uw × PN : π∗−1(Qs

x ∩ Uα) ⊂ π∗′
−1

(Q′
x′)

}
,
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where Uw and Uα are suitably chosen neighbourhoods of w and α respec-
tively. For every point x ∈ Uw ∩ Z◦, and every x′ such that (x, x′) ∈ A∗,
the inclusion in (3.9) holds. This implies

A∗ ∩
(
(Z◦ ∩ Uw)× PN

)
⊂ Aw,

and in particular, Aw is non-empty. By the uniqueness theorem, it follows
that A∗ ∩ (Uw × PN ) ⊂ Aw, and therefore, the projection from Aw to the
first component is surjective. Thus, for any x ∈ Uw, the set Qx ∩ Uα (and
therefore Qs

x) will be “mapped” by A∗ into Segre variety of a point x′,
whenever (x, x′) ∈ A∗. Hence, Uw ⊂ Z◦.

Since Ω r S∗ is connected, it follows now that Z = Ω r S∗. �

We now consider only an irreducible component of A∗ which has the
smallest dimension, and such that it contains the germ of the graph of f at
ξ. Denote for simplicity this component again by A∗. Note that Lemma 3.3
still holds for the new A∗.

Lemma 3.4. — dim A∗ = n.

Proof. — Since π∗ : A∗ → U∗ is surjective, for any z ∈ M ∩ U∗ the
set π∗−1(z) is non-empty. We show that for a given z0 ∈ Σ r S∗, the set
π∗−1(z0) is discrete near (z0, f(z0)) ∈ A∗. Indeed, by Lemma 3.3, (z, z′) ∈
A∗ r π∗−1(S∗) implies π∗−1(Qs

z) ⊂ π′∗
−1(Q′

z′). In particular this means
that π′∗(π∗−1(z)) ⊂ Q′

z′ , which implies that z′ ∈ Q′
z′ . Then from (2.3) it

follows that for any z ∈ M close to z0, and any z′ close to f(z0), the
inclusion (z, z′) ∈ A∗ implies z′ ∈ M ′. Since π′∗(π∗−1(z)) is a locally
countable union of complex analytic sets, and M ′ contains no non-trivial
germs of complex analytic varieties by [7], it follows that π∗−1(z) is discrete
near (z0, f(z0)). This means that dim A∗ = n near (z0, f(z0)). But then the
lemma follows, since dim A∗ is constant. �

To finish the proof of the theorem, we consider two cases. First, suppose
that b 6∈ S∗. Since M ′ is compact, the cluster set of f |γ(b) is well-defined.
Let b′ be a point in the cluster set of the point b. It is enough to show now
that there exist neighbourhoods Ub 3 b and U ′

b′ 3 b′ such that A∗∩Ub×U ′
b′

is a holomorphic correspondence. By construction, (b, b′) ∈ A∗, and from
the proof of Lemma 3.4 we conclude that π∗−1(b) is discrete near (b, b′).
Therefore we may choose Ub and U ′

b′ in such a way that A∗∩(Ub×∂U ′
b′) = ∅.

It follows then that π∗|A∗∩(Ub×U ′
b′

) is a proper map, and therefore,

(3.10) F := π′∗|A∗∩(Ub×U ′
b′

) ◦ π∗−1|Ub

is the desired extension of f as a holomorphic correspondence.
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Secondly, suppose b ∈ S∗. Consider a sequence of points wj ∈ (Σ∩Ω)rS∗

such that wj → b and lim f(wj) = b′ for some b′ ∈ M ′. Then

π∗−1(Qs
wj

)
⊂ π′∗

−1(
Q′

f(wj)

)
.

It follows that

(3.11) π∗−1(Qs
b

)
⊂ Q′

b′ .

Indeed, it is enough to prove this inclusion in a neighbourhood of any point
in Qs

b. Since dim S∗ < dim Qb, we may choose this point to be outside S∗.
The inclusion then follows by analyticity of the fibres of π∗ : A∗ → U∗.

As in the proof of Lemma 3.4, it follows from (3.11) that π∗−1(b) is
discrete near (b, b′), and the same argument as above shows that f extends
to a neighbourhood of b as a holomorphic correspondence.

Finally, if F is the extension of f as a correspondence, then F (M) ⊂ M ′.
The reason again is that if z ∈ M and z′ ∈ F (z), then F (Qz) ⊂ Q′

z′ by
(3.8) and (3.11), which implies z′ ∈ Q′

z′ , and by (2.3), z′ ∈ M ′.
This completes the proof of Theorem 1.3.

4. Proof of other results

4.1. Proof of Theorem 1.1

We first show that the map f can be extended holomorphically along
any smooth CR-curve γ on M , i.e. for which the tangent vector to γ at
any point is contained in the complex tangent to M . For this we use the
construction of a family of ellipsoids as it is done in [20]. We refer to this
paper for details of the construction. Let q be the first point on γ to which
f does not extend holomorphically. Near q there exists a smooth CR vector
field L such that γ is contained in an integral curve of L. By integrating L

we obtain a smooth coordinate system (t, s) ∈ R× R2n−2 on M such that
for any fixed s0 the segments (t, s0) are contained in the trajectories of L.
We may further choose a point p ∈ γ sufficiently close to q, so that f is
holomorphic near p. After a translation, assume that p = (0, 0). For ε > 0
define the family of ellipsoids on M by

(4.1) Eτ =
{
(t, s) : |t|2/τ + |s|2 < ε

}
,

where ε > 0 is so small that for some τ0 > 0 the ellipsoid Eτ0 is compactly
contained in the portion of M where f is holomorphic. Then ∂Eτ is generic
at every point except the set

Λ =
{
(0, s) : |s|2 = ε

}
.
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Let further τ1 > 0 be such that q ∈ ∂Eτ1 .
To prove that f extends holomorphically to a neighbourhood of q we

argue by contradiction. For that we assume that τ∗ is the smallest posi-
tive number such that f does not extend holomorphically to some point on
∂Eτ∗ , and assume that τ∗ < τ1. By construction, τ∗ > τ0. Also by construc-
tion, near any point b ∈ ∂Eτ∗ to which f does not extend holomorphically,
the set ∂Eτ∗ is a smooth generic submanifold of M , since the non-generic
points of ∂Eτ∗ are contained in Λ, where f is already known to be holo-
morphic. Then by Theorem 1.3 the map f extends as a correspondence F

to a neighbourhood of b.
We now show that F is single valued. Suppose w′ ∈ F (w) for w ∈ M ,

then by the invariance of Segre varieties F (Qw) ⊂ Q′
w′ , and in particular,

w′ ∈ Q′
w′ . But since M ′ is strictly pseudoconvex, in a sufficiently small

neighbourhood of w′ ∈ M ′ there exists only one point on M ′ whose Segre
variety contains w′, namely Q′

w′ itself. Thus the correspondence F splits
into several holomorphic maps, one of which by analyticity extends the
map f .

This shows that τ∗ cannot be smaller than τ1, which proves that the map
f extends holomorphically to q, and therefore along any CR-curve on M .

Finally, observe that minimality of M implies that CR-orbit of any point
on M coincides with M . Therefore, using analytic continuation along CR-
curves we obtain continuation of f to a neighbourhood of any point on M .

4.2. Proof of Theorem 1.2

By [5] and [22] it follows that smooth extension of f implies holomorphic
extension to a neighbourhood of p. Let ω ⊂ M be a open set where the
extension of f is holomorphic, and suppose b ∈ ∂ω is a point near which ∂ω

is a smooth generic manifold. Then by Theorem 1.3 the map f admits an
extension as a holomorphic correspondence F : Ub → CN , where Ub is some
neighbourhood of b. This, in particular, proves that f extends continuously
to Ub ∩ ∂D. Indeed, if q ∈ Ub ∩ ∂D, then the cluster set of q with respect
to f must be contained in the set F (q) which is finite. Since the cluster
set is connected it must reduce to a single point thereby showing that f is
continuous at q.

Further, by the splitting property of correspondences, there exists a com-
plex analytic subset S ⊂ Ub such that near any point q ∈ Ub r S, F can be
represented by a finite collection of holomorphic mappings. It follows from
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the uniqueness theorem, that for q ∈ ∂D r S one of the maps of the split-
ting must coincide with the map f defined in D. This proves holomorphic
extension of f to a dense open subset of ∂D ∩ Ub.

Let Σ be the largest subset of ∂D defined by the property that if a ∈ Σ,
then there is a neighbourhood Ua 3 a in Cn such that f extends continu-
ously to ∂D∩Ua and holomorphically past a dense open subset of ∂D∩Ua.
Then Σ is relatively open in ∂D by definition and non-empty by assump-
tion. We show that Σ does not contain any boundary points. Suppose on
the contrary that q ∈ ∂Σ = Σ r Σ. Let γ be a CR-curve passing through
q and entering Σ. Such γ exists by the minimality of M . Let p ∈ γ ∩ Σ be
close to q. We now repeat the construction of the family of ellipsoids used
in the proof of Theorem 1.1. Let Eτ be defined by (4.1) and centered at p.
Then for some τ0 > 0, Eτ0 touches ∂Σ at some point, say b (which may be
different from q). We now claim that b ∈ Σ. This will yield a contradiction
to the assumption that Σ has a nonempty boundary, thus proving the first
half of the theorem.

As in the proof of Theorem 1.3, since b ∈ ∂Eτ0 is a generic point, there
exists a dense open set ω ∈ Qb such that for a ∈ ω, Qa ∩ Eτ0 contains a
curve with the end point at b. Fix some a ∈ ω, and suppose that

(4.2) Qa ∩ Eτ0 6⊂ S,

where S is the branching locus of the correspondence F extending f . Then
we choose a point ζ ∈ (Qa ∩ Eτ0) r S, and a branch of F which gives
holomorphic extension of f near ζ. We now may repeat the proof of The-
orem 1.3 to show that f extends as a correspondence to a neighbourhood
of b. If Qa ∩ Eτ0 ⊂ S, we simply choose another point a ∈ ω so that (4.2)
holds. This proves that f extends as a correspondence to a neighbourhood
of b, and thus b ∈ Σ.

Finally, the second statement of the theorem follows immediately from
Theorem 1.1.
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