PETER LOEB
BERTRAM WALSH

The equivalence of Harnack’s principle and Harnack’s inequality in the axiomatic system of Brelot

<http://www.numdam.org/item?id=AIF_1965__15_2_597_0>
THE EQUIVALENCE OF HARNACK’S PRINCIPLE
AND HARNACK’S INEQUALITY
IN THE AXIOMATIC SYSTEM OF BRELOT
by PETER A. LOEB (1) AND BERTRAM WALSH (2)

During the last ten years, Marcel Brelot [2] and others have investigated elliptic differential equations in an abstract setting, a setting in which the Harnack principle is assumed to be valid. When necessary, the Harnack principle has been replaced by another axiom which establishes a form of the Harnack inequality. In 1964, Gabriel Mokobodzki showed that the two axioms are equivalent when the underlying space has a countable base for its topology (see [1], pp. 16-18). We shall show that this restriction is unnecessary. First we recall some basic definitions.

Let W be a locally compact Hausdorff space which is connected and locally connected but not compact. Let \(\mathcal{H} \) be a class of real-valued continuous functions with open domains in W such that for each open set \(\Omega \subseteq W \) the set \(\mathcal{H}_\Omega \), (consisting of all functions in \(\mathcal{H} \)) with domains equal to \(\Omega \), is a real vector space. An open subset \(\Omega \) of W is said to be regular for \(\mathcal{H} \) or regular iff its closure in W is compact and for every continuous real-valued function \(f \) defined on \(\partial \Omega \) there is a unique continuous function \(h \) defined on \(\overline{\Omega} \) such that

\[
h|_{\partial \Omega} = f, \quad h|_\Omega \in \mathcal{H}, \quad \text{and} \quad h \geq 0 \quad \text{if} \quad f \geq 0.
\]

Moreover, the class \(\mathcal{H} \) is called a harmonic class on W if it satisfies the following three axioms which are due to Brelot [2]:

Axiom I. — A function \(g \) with an open domain \(\Omega \subseteq W \) is an element of \(\mathcal{H} \) if for every point \(x \in \Omega \) there is a function \(h \in \mathcal{H} \) and an open set \(\omega \) with \(x \in \omega \subseteq \Omega \) such that \(g|_\omega = h|_\omega \).

Supported by National Science Foundation research grants (1)GP-1988 and (2)GP-4563 respectively.
AXIOM II. — There is a base for the topology of W such that each set in the base is a regular region (non empty connected open set).

AXIOM III. — If \mathcal{F} is a subset of \mathcal{H}_Ω, where Ω is a region in W, and \mathcal{F} is directed by increasing order on Ω, then the upper envelope of \mathcal{F} is either identically $+\infty$ or is a function in \mathcal{H}_Ω.

It follows immediately from Axiom I that if h is in \mathcal{H}_Ω, then the restriction of h to any nonempty open subset of its domain is again in \mathcal{H}. Given Axioms I and II, Constantinescu and Cornea ([3], p. 344 and p. 378) have shown that the following axioms are equivalent to Axiom III:

AXIOM III$_1$. — If Ω is a region in W and $\{h_n\}$ is an increasing sequence of functions in \mathcal{H}_Ω, then either $\lim_{n \to \infty} h_n$ is identically $+\infty$ or $\lim_{n \to \infty} h_n$ is in \mathcal{H}_Ω.

AXIOM III$_2$. — If Ω is a region in W, K a compact subset of Ω, and x_0 a point in K, then there is a constant $M \geq 1$ such that every nonnegative function $h \in \mathcal{H}_\Omega$ satisfies the inequality

$$h(x) \leq M \cdot h(x_0)$$

at every point $x \in K$.

Given Axioms I and II, we shall show that the following axiom is equivalent to Axiom III.

AXIOM III$_3$. — If Ω is a region in W then every nonnegative function in \mathcal{H}_Ω is either identically 0 or has no zeros in Ω. Furthermore, for any point $x_0 \in \Omega$ the set

$$\Phi_{x_0} = \{h \in \mathcal{H}_\Omega : h \geq 0 \quad \text{and} \quad h(x_0) = 1\}$$

is equicontinuous at x_0.

Axiom III$_1$ is, of course, just the Harnack principle, and Axiom III$_2$ gives a « weak » Harnack inequality for \mathcal{H}_Ω. On the other hand, a consequence of Axiom III$_3$ is the fact that for any region Ω and any compact subset $K \subset \Omega$ there is a constant $M \geq 1$ such that for every nonnegative $h \in \mathcal{H}_\Omega$ and every pair of points x_1 and x_2 in K the relation

$$\frac{1}{M} \cdot h(x_1) \leq h(x_2) \leq M \cdot h(x_1)$$

(1)
holds. Moreover, for any point x in Ω and any constant $M > 1$ there is a compact neighborhood K of x in which (1) holds. Thus Axiom III$_3$ establishes a strong Harnack inequality for \mathcal{S}_Ω. Mokobodzki has established the equivalence of III$_3$ and III for the case in which the topology of W has a countable base; it is this restriction which we shall now remove.

That Axioms III and III$_3$ are equivalent follows from the

Theorem. — Let \mathcal{S} be a harmonic class and Ω be a region in W. Let x_0 be a point in Ω, and set $\Phi = \{ h \in \mathcal{S}_\Omega : h \geq 0$ and $h(x_0) = 1 \}$. Then Φ is equicontinuous at x_0.

Proof. — Let ω be a regular region and K a compact neighborhood of x_0 such that $x_0 \in K \subset \omega \subset \overline{\omega} \subset \Omega$. Each continuous function f on $\partial \omega$ has a unique extension $H(f) \in \mathcal{S}_\omega$, and for each $x \in \omega$ the mapping $f \rightarrow H(f)(x)$ from $C(\partial \omega)$ into the reals is a nonnegative Radon measure on $\partial \omega$, which we denote by ρ_x. Axiom III$_3$ (which follows from Axiom III) gives for each pair of points x_1 and x_2 in ω a constant M (depending on those points) for which $H(f)(x_1) \leq M \cdot H(f)(x_2)$, i.e.

$$\rho_{x_1} \leq M \cdot \rho_{x_2}$$

in the usual ordering of measures on $\partial \omega$. Hence all the measures $\{ \rho_x \}_{x \in \omega}$ are absolutely continuous with respect to one another, and the Radon-Nikodym density of any one with respect to any other is essentially bounded (« essentially » being unambiguous because all the measures have the same null sets). Following an idea of Mokobodzki’s, we now consider for each $x \in \omega$ the Radon-Nikodym density of ρ_x with respect to ρ_{x_0}, which we denote by g_x; each g_x is essentially bounded, and $d\rho_x = g_x \cdot d\rho_{x_0}$.

Let $A = \{ h|\omega : h \in \Phi \}$. Axiom III$_3$ states that the functions in A are uniformly bounded on $\partial \omega$, and of course they are continuous there. Thus, if S is any countably infinite subset of A, there is a function $f \in L^\infty(\rho_{x_0})$ which is an accumulation point of S with respect to the weak* topology of $L^\infty(\rho_{x_0})$ (i.e. the topology determined by $L^1(\rho_{x_0})$; see [4], p. 424). Since $L^\infty(\rho_{x_0}) \subset L^1(\rho_{x_0})$, f is also an accumulation point of S with respect to the weak topology of $L^1(\rho_{x_0})$ (i.e. the topology determined by $L^\infty(\rho_{x_0})$). Thus by the Eberlein-Šmulian theorem.
([4], p. 430), any sequence in A has a subsequence which converges weakly to an element of \(L^1(\varphi_{x_0}) \). Since each

\[g_x \in L^\infty(\varphi_{x_0}) = L^1(\varphi_{x_0})^* , \]

it follows that any sequence \(\{h_n\} \) in \(\Phi \) has a subsequence (which we may also denote by \(\{h_n\} \)) for which

\[h_n(x) = \int_{\delta_{x_0}} h_n(y) g_x(y) d\varphi_{x_0}(y) \]

converges for each \(x \in \omega \); the pointwise limit function \(h \) on \(\omega \) belongs to \(\mathcal{H}_{\omega_0} \) since it is the extension in \(\mathcal{H}_{\omega_0} \) of the weak limit (in \(L^1(\varphi_{x_0}) \)) of the sequence \(\{h_n|_{\delta\omega}\} \). By a result of R.-M. Hervé ([5], p. 432)

\[
\hat{h} = \sup_n \left(\inf_{k > n} h_n \right)
\]

where \(\hat{f}(x) = \sup_{\delta} \left(\inf_{y \in \delta} f(y) \right) \) as \(\delta \) ranges over the neighborhood system of \(x \). Thus \(\hat{h} \) is the limit of the increasing sequence of lower-semicontinuous functions \(\inf_{k > n} h_n \), and that limit is attained uniformly on the compact set \(K \). It follows that \(h_n \to \hat{h} \) uniformly on \(K \), and thus \(\Phi|K \) is relatively sequentially compact, hence relatively compact, in the uniform norm topology of \(C(K) \). So \(\Phi|K \) is equicontinuous (Arzelà; see [4], p. 266), whence \(\Phi \) is equicontinuous at the interior points of \(K \), and in particular at \(x_0 \).

BIBLIOGRAPHY

Manuscrit reçu le 23 novembre 1965.
Peter A. Loeb and B. Walsh,
Department of Mathematics,
University of California,
Los Angeles, Calif. (U.S.A.).