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COHOMOLOGY OF DRINFELD SYMMETRIC SPACES
AND HARMONIC COCHAINS

by Yacine AÏT AMRANE

Abstract. — Let K be a non-archimedean local field. This article gives an ex-
plicit isomorphism between the dual of the special representation of GLn+1(K) and
the space of harmonic cochains defined on the Bruhat-Tits building of GLn+1(K),
in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of
P. Schneider and U. Stuhler [9], that there exists a GLn+1(K)-equivariant isomor-
phism between the cohomology group of the Drinfeld symmetric space and the
space of harmonic cochains.

Résumé. — Soit K un corps local non-archimédien. Ce papier donne un isomor-
phisme explicite entre le dual de la représentation spéciale de GLn+1(K) et l’espace
des cocycles harmoniques définis sur l’immeuble de Bruhat-Tits de GLn+1(K), au
sens de E. de Shalit [11]. Nous déduisons, en appliquant les résultats d’un papier de
P. Schneider et U. Stuhler [9], qu’il existe un isomorphisme GLn+1(K)-équivariant
entre le groupe de cohomologie de l’espace symétrique de Drinfeld et l’espace des
cocycles harmoniques.

Introduction

Let K be a non-archimedean local field, i.e. a finite extension of Qp or
Fp((t)). Let n be a fixed natural number. Let G̃ denote GLn+1(K), let
P̃ be its upper triangular Borel subgroup, and let S denote the set of
fundamental reflexions si, 1 6 i 6 n, in the linear Weyl group W of G̃. Let
∆ = {1, . . . , n}. For each subset I of ∆, let P̃I be the parabolic subgroup
of G̃ generated by P̃ and the reflexions si, i ∈ I.

Let M be a commutative ring on which G̃ acts trivially. For any I ⊆ ∆,
we denote by C

∞
(G̃/P̃I ,M) the space of locally constant functions on

G̃/P̃I with values in M . The action of G̃ on C
∞

(G̃/P̃I ,M) comes from

Keywords: Drinfeld symmetric spaces, cohomology, Bruhat-Tits buildings, harmonic
cochains, special representations.
Math. classification: 22E50, 20E42.



562 Yacine AÏT AMRANE

left translations on G̃/P̃I . For any integer k, 0 6 k 6 n, if Jk denotes the
subset {1, . . . , n − k} of ∆, the k-special representation of G̃ is defined to
be the M [G̃]-module:

Spk(M) =
C
∞

(G̃/P̃Jk
,M)∑n

j=n−k+1 C
∞(G̃/P̃Jk∪{j},M)

.

In case k = n, we get the ordinary Steinberg representation Spn(M) =
Stn(M).

The n-dimensional Drinfeld symmetric space over K is the complement
Ω(n+1) in Pn of the union of all the K-rational hyperplanes. The group G̃

acts on Ω(n+1).
The symmetric space Ω(n+1) has been introduced by Drinfeld, [6], who

showed that it is endowed with a structure of a rigid analytic variety. In the
one dimensional case (n = 1) when K is of positive characteristic p > 0,
Drinfeld computed the first étale cohomology group of Ω(2) and proved that
there are G̃-isomorphisms:

(0.1) H
1

et(Ω
(2) ⊗K C, L) ∼= Hom(St

1
(Z), L) ∼= Harm 1,1(Z, L)

where C is the completion of an algebraic closure of K, L a finite abelian
group whose order is prime to p, and Harm 1,1(Z, L) is the space of L-
valued harmonic cochains defined on the oriented (or pointed) edges of the
Bruhat-Tits tree. ([6], see also [8]).

In their paper [9], P. Schneider and U. Stuhler generalized the first iso-
morphism in (0.1) to the case of any characteristic of the base field and to
any dimension. Indeed, they studied the cohomology groups of Ω(n+1) for
any cohomology theory satisfying certain natural axioms. They proved the
existence of a canonical G̃-equivariant isomorphism, cf. [9, §4, Cor.17]):

(0.2) SS : H•(Ω(n+1),F) ∼= HomZ(Sp•(Z), L)

where F is a complex of sheaves on the category of smooth separated rigid
analytic varieties over K equipped with a suitable Grothendieck topology,
and L is the cohomology of the point H0(Spec(K),F).

If K is of characteristic zero, the isomorphism of Schneider and Stuhler
above, applied to rigid De-Rham cohomology, gives a G̃-isomorphism

(0.3) SSdR : H•
dR(Ω(n+1)) '−→ HomZ(Sp•(Z), K).

Let M be a commutative ring as above. Let L be an M -module on
which G̃ acts linearly. For each k, 0 6 k 6 n, denote by Harm k(M,L)
the space of L-valued harmonic cochains defined over the free M -module
generated by the pointed k-cells of the Bruhat-Tits building associated

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 563

to G̃, see def. 2.1. In zero characteristic, E. de Shalit, who introduced in
[11] the notion of harmonic cochains we use here, proved that there is a
G̃-equivariant isomorphism:

(0.4) dS : H•
dR(Ω(n+1)) '−→ Harm •(Z,K).

This isomorphism, together with the isomorphism (0.3), gives a G̃-equiva-
riant isomorphism in characteristic zero:

(0.5) SSdR ◦ dS−1 : Harm •(Z,K) '−→ HomZ(Sp•(Z), K).

In this paper, we shall construct explicitly, for K of arbitrary charac-
teristic, the isomorphism (0.5) above between the harmonic cochain spaces
and the K-dual spaces of the special representations.

The main result in this paper is the following theorem which generalizes
also the isomorphism of Drinfeld mentioned above, to arbitrary n:

Theorem 0.1. — 3.3 Let K be a non-archimedean local field of arbi-
trary characteristic. Let M and L be as above. Then, for each k, 0 6 k 6 n,
there is an explicit G̃-equivariant isomorphism:

Harm k(M,L) ∼= HomM (Spk(M), L).

As a corollary, together with the isomorphism (0.2) above we obtain the
following:

Corollary 0.2. — Let K be a non-archimedean local field of arbitrary
characteristic. Let F and L be as in the situation of the isomorphism (0.2),
and as in [9]. For any k, 0 6 k 6 n, we have the following G̃-equivariant
isomorphism:

Hk(Ω(n+1),F) ∼= Harm k(Z, L).

In particular, in the case of étale cohomology, this isomorphism allows us
to express the étale cohomology groups of Ω(n+1) in terms of harmonic
cochains which are of combinatorial nature.

TOME 56 (2006), FASCICULE 3



564 Yacine AÏT AMRANE

Let us summarize the G̃-isomorphisms we have seen so far by the follow-
ing commutative diagrams:

K of any characteristic char(K) = 0

HomZ(Spk(Z), L)

Hk(Ω(n+1),F)

SS

66nnnnnnnnnnnn

Cor.
((PPPPPPPPPPPP

Harm k(Z, L)

Th.3.3

OO HomZ(Spk(Z), K)

Hk
dR(Ω(n+1))

SSdR

hhRRRRRRRRRRRRR

dS
vvlllllllllllll

Harm k(Z, K)

SSdR◦dS−1

OO

where L = H0(Spec(K),F) we have K = H0
dR(Spec(K)).

The results of this paper were announced without proofs in [2]. The
reader will find more detailed proofs in [1].

Here is the plan of this article. We use the notations introduced above.
In the first section we give some preliminaries about the Bruhat-Tits

building associated to G̃. For each I ⊆ ∆, let BI be the standard parahoric
subgroup of G̃ generated by the upper Iwahori subgroup of G̃ and the
fundamental reflexions si, i ∈ I. By the Bruhat decomposition, there is
a correspondence between the double classes in the affine Weyl group W

of G̃ and the Bruhat cells in G̃. By the Iwasawa decomposition and with
techniques inspired from Bourbaki [4], we prove that there is a canonical
one-to-one correspondence between the double classes in the linear Weyl
group W and the Iwasawa cells in G̃. By these correspondences and by
using decompositions in the Weyl group W into double classes modulo
special subgroups, we deduce decompositions of certain subsets of G̃ into
a disjoint union of Bruhat and Iwasawa cells respectively.

In the second section, we recall the definition of harmonic cochains given
by E. de Shalit. We also recall the relationship, given by P. Schneider and
U. Stuhler, in [9], between the special representations and the parahoric
subgroups. Next, we define, for each I ⊆ ∆, a subset CI of G̃ which is a
product of standard parahoric subgroups. Finally, by using the Iwasawa de-
composition, we prove that the characteristic functions of the open compact
subsets CI P̃Jk

/P̃Jk
of G̃/P̃Jk

, I ⊆ ∆, viewed in Spk(M), have properties
that are close to those of harmonic cochains.

In section 3, we prove the main theorem which gives an explicit isomor-
phism between duals of the special representations and harmonic cochain
spaces. In this isomorphism, the characteristic functions of the subsets

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 565

CI P̃Jk
/P̃Jk

correspond to the standard cells σI pointed at the fundamen-
tal vertex, stabilized by the standard parahoric subgroups BI (under the
action of G̃ on its Bruhat-Tits building).

1. Bruhat-Tits building and decompositions in G̃

1.1. Bruhat-Tits building

>From now on, K will be a non-archimedean local field, O its valuation
ring, π a uniformizing parameter and κ the residue field of K. We denote
by G̃ the K-valued points of the connected reductive linear algebraic group
GLn+1.

For general properties of buildings, see [5] and [7]. An introduction to
the Bruhat-Tits building of G̃ with pointed cells is given in [11].

The Bruhat-Tits building (pointed cells). Let V be the standard
vector spaceKn+1. A lattice in V is a free O-submodule Λ of V of rank n+1.
The Bruhat-Tits building of G̃ may be described as a simplicial complex
I whose vertices are the dilation classes of lattices. More precisely, two
lattices Λ and Λ′ are in the same class if Λ′ = λΛ for some λ ∈ K

∗
. The

class of Λ is a vertex v and is denoted v = [Λ]. For k, 0 6 k 6 n, a k-cell σ
in I is a set of k + 1 vertices {[Λ0], [Λ1], . . . , [Λk]} such that:

(1.1) · · · ) Λ0 ) Λ1 ) · · · ) Λk ) πΛ0 ) · · ·

Notice that there is an obvious cyclic ordering (mod. (k+1)) on the vertices
of σ.

A pointed k-cell of I is a pair (σ, v) consisting of a k-cell σ together with
a distinguished vertex v of σ. Notice, therefore, that in the case of a pointed
cell (σ, v) there is a precise ordering on the vertices. If v = [Λ0] we write:

(1.2) (σ, v) = (Λ0 ) Λ1 ) · · · ) Λk ) πΛ0).

For each k, 0 6 k 6 n, let Îk be the set of pointed k-cells of I.
The action of G̃. For a fixed basis of the vector space V , the action of

G̃ on V is given by the matrix product ug−1 where u ∈ V is considered as
a line matrix with respect to the basis of V . This action induces an action
of G̃ on the vertex set of the building I by g.v = [Λg−1]. Thus, G̃ acts on
the cells by acting on their vertices.

The type of a pointed cell. (cf. [11, § 1.1].) Let σ = (Λ0 ) Λ1 ) · · · )
Λk ) πΛ0) ∈ Îk be a pointed k-cell. The type of σ is defined as follows:

t(σ) = (d1, . . . , dk+1)

TOME 56 (2006), FASCICULE 3



566 Yacine AÏT AMRANE

where di = dimκ Λi−1/Λi for each i = 1, . . . , k+1 (here, we suppose Λk+1 =
πΛ0). The type of a pointed k-cell is preserved by the action of G̃. Indeed,
the action of G̃ preserves the dimension of the κ-vector spaces Λi−1/Λi.

The standard cells. Let {u1, . . . , un+1} be the standard basis of V =
Kn+1. Consider, for each i = 0 . . . n, the vertex vo

i = [Λ
o

i ] represented by
the lattice:

Λ
o

i = πOu1 ⊕ · · · ⊕ πOui ⊕Oui+1 ⊕ · · · ⊕Oun+1.

Since the Λ
o

i , 0 6 i 6 n, satisfy (1.1), we have an n-cell σ∅={vo
0, v

o
1, . . . , v

o
n}

called the fundamental chamber of I.
Now, once and for all, fix ∆ = {1, . . . , n}. For each I ⊆ ∆ such that

∆− I = {i1 < · · · < ik}, we have a k-cell

(1.3) σI = {vo
0, v

o
i1 , . . . , v

o
ik
}.

The σI , I ⊆ ∆, are called the standard cells of the Bruhat-Tits building
I. These cells are the faces of the fundamental chamber σ∅ having vo

0 as
vertex, called the fundamental vertex of I.

We denote by T̃ the standard maximal torus of G̃ of diagonal matrices
and by Ñ its normalizer in G̃. Since the Weyl group W = Ñ/T̃ of G̃ with
respect to T̃ is isomorphic to the permutation group Sn+1, W is generated
by the set S = {si, i ∈ ∆} of the reflexions si which correspond to the
transpositions (i, i+ 1) ∈ Sn+1. We have the following lemma:

Lemma 1.1. — Let yi, 0 6 i 6 n, be the diagonal matrix

yi = diag(

i times︷ ︸︸ ︷
1, . . . , 1, π, . . . , π)

and let wi = (sisi+1 · · · sn)(si−1si · · · sn−1) · · · (s1s2 · · · sn−i+1) ∈ W . We
have:

(σ∅, vo
i ) = yiwi(σ∅, vo

0).

If (σ, vo
ij

) = (vo
ij
, . . . , vo

ik
, vo

i0
, vo

i1
, . . . , vo

ij−1
) is a face of the pointed chamber

(σ∅, vo
ij

), where 0 6 i0 < i1 < · · · < ik 6 n and 0 6 j 6 k, then

(σ, vo
ij

) = yijwij (σÎij

, vo
0)

where ∆ − Îij
= {ij+1 − ij < · · · < ik − ij < n + 1 + i0 − ij < · · · <

n+ 1 + ij−1 − ij}.

Proof. — The vertices of the fundamental chamber are vo
l = [Λ

o

l ]. We
can easily check that the representants Λ

o

l of these vertices satisfy:

Λ
o

l yiwi =
{

Λ
o

n+1+l−i if 0 6 l 6 i− 1
Λ

o

l−iπ if i 6 l 6 n.

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 567

Therefore, by taking into account the way in which G̃ acts on the vertices
of I, it follows that:

w−1
i y−1

i vo
l =

{
vo

n+1+l−i if 0 6 l 6 i− 1
vo

l−i if i 6 l 6 n,

hence w−1
i y−1

i (σ∅, vo
i ) = (σ∅, vo

0) and, if (σ, vo
ij

) and Îij are as in the lemma,
we have w−1

ij
y−1

ij
(σ, vo

ij
) = (σ

Îij

, vo
0). �

Since the action of G̃ is transitive on the chambers of I, the lemma
above shows that G̃ acts transitively on the pointed k-cells of a given type.
Furthermore, if we denote by tI the type of the pointed standard k-cell
(σI , v

o
0) and by Îk,tI the set of all pointed k-cells of type tI , we have Îk =∐

I⊆∆ Îk,tI , where the disjoint union is taken over the subsets I ⊆ ∆ such
that ∆ − I is of cardinal k. Notice, therefore, that for k fixed, there are
exactly ( n

k ) types of pointed k-cells.

Remark 1.2. — For each I ⊆ ∆, let BI be the pointwise stabilizer in
G̃ of the standard cell σI , or equivalentely the stabilizer of the pointed
standard cell (σI , v

o
0). The first assertion of the lemma 1.1 shows that, for

every i, 0 6 i 6 n, we have

(1.4) yiwiB = Byiwi,

where B = B∅.

1.2. Bruhat and Iwasawa decomposition in G̃

1.2.1. The Bruhat decomposition

The parabolic subgroups of G̃. Let P̃ be the upper triangular Borel
subgroup of G̃. A parabolic subgroup of G̃ is a closed subgroup which
contains a Borel subgroup. The subgroups which contain P̃ are said to be
special; these subgroups are completely determined by the subsets I of ∆.
Indeed, if for each I ⊆ ∆, we let WI be the subgroup of W generated by
the si, i ∈ I, it has been shown that the subset

P̃I = P̃WI P̃ (:= P̃ ÑI P̃ where ÑI ⊆ Ñ is such that ÑI/T̃ = WI)

is a subgroup of G̃ containing P̃ , and that every subgroup of G̃ containing
P̃ is a certain P̃I for I ⊆ ∆. Note that P̃ = P̃∅.

The parahoric subgroups of G̃. For each I ⊆ ∆, we denote by B
◦

I

the open compact subgroup of G̃(O) which is the inverse image of the

TOME 56 (2006), FASCICULE 3



568 Yacine AÏT AMRANE

standard parabolic subgroup P̃I(κ) of G̃(κ) by the map “reduction mod.
π’: G̃(O) → G̃(κ). The parahoric subgroups of G̃ are the conjugates in G̃

of the B
◦

I , I ⊆ ∆. Note that we have BI = B
◦

IK
∗.

The Bruhat decomposition. Let us recall, for each I ⊆ ∆, the follow-
ing Bruhat decomposition (cf. [5, ch. V], [4] or [7]):
(1.5)

BI = BWIB =
∐

w∈WI

BwB resp. P̃I = P̃WI P̃ =
∐

w∈WI

P̃wP̃ .

As a consequence of the Bruhat decomposition, we obtain the following
proposition:

Proposition 1.3. — Let I1, I2 ⊆ ∆. The map which to WI1wWI2 as-
sociates BI1wBI2 for w ∈W is a one-to-one correspondence:

WI1\W/WI2

∼−→ BI1\G̃(O)K
∗
/BI2 .

Proof. — cf. [4, ch. IV, § 2.5, rem. 2]. �

1.2.2. The Iwasawa decomposition

In the following, we shall use the same techniques as in [4, ch. IV, § 2,2]
and use the generalized Iwasawa decomposition (see for example [7, th.
17.6]):

(1.6) G̃ =
∐

w∈W

BwP̃

to prove theorem 1.7 below, which gives an analogous result to the propo-
sition 1.3.

Lemma 1.4. — Let w ∈W and j ∈ ∆. We have the following inclusions:
1. wP̃sj ⊆ BwP̃∪BwsjP̃

2. sjBw ⊆ BwP̃∪BsjwP̃ .

Proof. — Indeed, by putting B′ = w−1Bw in the first inclusion (resp.
P̃ ′ = wP̃w−1 in the second inclusion) we have to show:

P̃ sj ⊆ B′P̃ ∪B′sjP̃ (resp. sjB ⊆ BP̃ ′ ∪BsjP̃
′).

The canonical basis of Kn+1 being {u1, . . . , un+1}, let G̃j be the subgroup
of G̃ consisting of the elements which fix the ui for i 6= j, j + 1 and which
fix the plane spanned by uj and uj+1. Put G̃j(O) = G̃j ∩ G̃(O). So (cf. [4,
ch.IV, §2.2]), we have G̃j(k)P̃ (k) = P̃ (k)G̃j(k) for any base field k, hence,
for k = K (resp. k = κ) we get G̃jP̃ = P̃ G̃j (resp. G̃j(O)B = BG̃j(O), by

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 569

lifting the equality G̃j(κ)P̃ (κ) = P̃ (κ)G̃j(κ) to G̃(O) and multiplying then
by K∗). Therefore, it’s enough to prove:

G̃j ⊆ (B′ ∩ G̃j)(P̃ ∩ G̃j) ∪ (B′ ∩ G̃j)sj(P̃ ∩ G̃j)

(resp. G̃j ⊆ (B ∩ G̃j)(P̃ ′ ∩ G̃j) ∪ (B ∩ G̃j)sj(P̃ ′ ∩ G̃j) ).

By identifying G̃j with GL2, the proof may be completed as in [loc. cit.],
except that we use the Iwasawa decomposition instead of the Bruhat de-
composition. �

Corollary 1.5. — Let u1, . . . , ud ∈ S and w ∈W . We have:
1. wP̃u1 . . . ud ⊆

⋃
(l1,...,lp)

Bwul1 . . . ulp P̃

2. u1 . . . udBw ⊆
⋃

(l1,...,lp)

Bul1 . . . ulpwP̃

where (l1, . . . , lp) runs through the increasing sequenses (including the
empty sequence) in [[1, d]].

Proof. — Induct on d and use the lemma 1.4 above (see also [4, ch. IV,
§ 2, lem. 1]). �

Corollary 1.6. — Let I1, I2 ⊆ ∆. For each w∈W , we have BI1wP̃I2 =
BWI1wWI2 P̃ .

Proof. — Let I1, I2 and w be as above. Let w′ = u′1 · · ·u′d1
∈ WI1 and

w′′ = u′′1 · · ·u′′d2
∈WI2 . We have:

Bw′B.BwP̃ .P̃w′′P̃ = Bu′1 · · ·u′d1
BwP̃u′′1 · · ·u′′d2

P̃ ,

therefore, the corollary 1.5 gives Bw′B.BwP̃ .P̃w′′P̃ ⊆ BWI1wWI2 P̃ , and
if we take the union as w′ and w′′ run through WI1 and WI2 respectively,
one obtains:

BI1wP̃I2 ⊆ BWI1wWI2 P̃ .

The other inclusion is obvious. �

Theorem 1.7. — Let I1, I2 ⊆ ∆. The map W → BI1\G̃/P̃I2 which to
w associates BI1wP̃I2 , induces a one-to-one map:

WI1\W/WI2

∼−→ BI1\G̃/P̃I2 .

Proof. — The generalized Iwasawa decomposition (1.6) shows that the
map w 7→ BwP̃ is bĳective from W on the set B\G̃/P̃ , so, by the corollary
1.6, the surjective map W

∼−→ B\G̃/P̃ � BI1\G̃/P̃I2 induces the following
surjective map:

WI1\W/WI2 −→ BI1\G̃/P̃I2 .

TOME 56 (2006), FASCICULE 3



570 Yacine AÏT AMRANE

In order to prove that this map is injective, it is enough to prove the
following property:

for anyw,w′∈W, BI1wP̃I2=BI1w
′P̃I2 , if and only if,WI1wWI2 =WI1w

′WI2 .

Indeed, suppose BI1wP̃I2∩BI1w
′P̃I2 6= ∅, so there exist b ∈ B◦

I1
and p ∈ P̃I2

with bwp = w′. This implies p = w−1b−1w′ ∈ G̃(O)∩ P̃I2 ⊆ BI2 and hence
BI1wBI2 ∩ BI1w

′BI2 6= ∅ which, by Proposition 1.3, gives WI1wWI2 =
WI1w

′WI2 . �

Remark 1.8. — Let I1, I2 ⊆ ∆. Recall (see [4, ch. IV, § 2.5, prop. 2]),
that for Bruhat cells, we have a similar formula to the formula in the
corollary 1.6, that is:

(1.7) BI1wBI2 = BWI1wWI2B.

Now, let I1, I2 ⊆ ∆ such that for each i ∈ I1, j ∈ I2, we have |i− j| > 2
(which gives sisj = sjsi). Then, since every element in WI1 commutes with
every element in WI2 , we get:

WI1∪I2 = WI1 .WI2 = WI2 .WI1 .

The equality (1.7), for w = 1, gives then:

(1.8) BI1∪I2 = BI1 .BI2 = BI2 .BI1 .

Notice also that, for each I ⊆ ∆, one gets (see also [9, lem. 14 (ii), § 4]):

(1.9) BI P̃I = BP̃I = BI P̃ .

1.2.3. Decomposition in the Weyl group W

For each r, r′ ∈ ∆ = {1, . . . , n} such that r 6 r′ + 1, we set wr′

r =
srsr+1 . . . sr′ , (wr′

r′+1 =1). Using the Coxeter relations in the Weyl group W :

(1.10)


s2l = 1 for l = 1, . . . , n
sl1sl2 = sl2sl1 for 1 6 l1 < l2 − 1 6 n− 1
slsl+1sl = sl+1slsl+1 for l = 1, . . . , n− 1,

it is easy to show that we have:
(1.11)

slw
r′

r = wr′

r sl−1 for every r, r′ and l such that r + 1 6 l 6 r′ 6 n.

In all what follows, for any integers a and b such that a 6 b + 1, we
denote by [[a, b]] the set of all integers j such that a 6 j 6 b. It is the empty
set in the case a = b+ 1.
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Proposition 1.9. — Let k be an integer such that 1 6 k 6 n. Let
w ∈W . Then:

(1) (1.] For each integer j such that n − k + 2 6 j 6 n, we have the
decompositions:

BwBJk∪{j} = BwBJk
qBwsjBJk

and BwP̃Jk∪{j} = BwP̃Jk
qBwsjP̃Jk

.

2. For j = n− k + 1, we have the following decompositions:

BwBJk∪{n−k+1} =
∐

r∈[[1,n−k+2]]

Bwwn−k+1
r BJk

and

BwP̃Jk∪{n−k+1} =
∐

r∈[[1,n−k+2]]

Bwwn−k+1
r P̃Jk

.

Proof. — We use proposition 1.7 and theorem 1.3 to conclude respec-
tively the first and the second decomposition in 1., and also in 2., from the
decomposition into left cosets in W .

1. It is easy to check that the sets WJk
and sjWJk

are the only different
left cosets in WJk∪{j} modulo WJk

since we have n− k + 2 6 j 6 n.
2. To prove that the only left cosets in WJk∪{n−k+1} modulo WJk

are
the wn−k+1

r WJk
, with 1 6 r 6 n− k+2, it suffices to prove more generally

that for any a1 such that 1 6 a1 6 n− k + 2 we have the property:

A1 : For each w ∈W[[a1,n−k+1]], there is an r ∈ [[a1, n− k + 2]] so that

wWJk
= wn−k+1

r WJk
.

We do this by induction on the length l(w) of w in W[[a1,n−k+1]], where
the length is defined with respect to the generators S. If l(w) = 0 then
w = 1, so the equality in A1 holds trivially with r = n − k + 2. Now let
w ∈W[[a1,n−k+1]] be such that l(w) = d+1. Therefore, if ι ∈ [[a1, n− k+1]]
is such that l(sιw) = d, by induction, there is an r ∈ [[a1, n − k + 2]] so
that: wWJk

= sιsιwWJk
= sιw

n−k+1
r WJk

. To complete the proof of A1,
we study several cases depending on ι and r:

• ι 6 r − 2: the elements sι and wn−k+1
r commute and sι ∈ WJk

.
Therefore,

sιw
n−k+1
r WJk

= wn−k+1
r sιWJk

= wn−k+1
r WJk

.

• ι = r − 1 (resp. ι = r): we have:

sιw
n−k+1
r WJk

= wn−k+1
r−1 WJk

(resp. sιw
n−k+1
r WJk

= wn−k+1
r+1 WJk

).
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• r + 1 6 ι 6 n− k + 1: by (1.11) we have sιw
n−k+1
r = wn−k+1

r sι−1,
and since r 6 ι− 1 6 n− k then sι−1 ∈WJk

. Therefore,

sιw
n−k+1
r WJk

= wn−k+1
r sι−1WJk

= wn−k+1
r WJk

.

To prove that the left cosets wn−k+1
r WJk

, 1 6 r 6 n− k + 2, are different
will be done more generally in the proof of the next proposition. �

Proposition 1.10. — Let k, 1 6 k 6 n. Let a1, . . . , ak be such that
1 6 a1 6 · · · 6 ak. Assume, furthermore, that aι 6 n − k + ι + 1 for any
ι = 1, . . . , k. We have the decompositions:

B[[ak,n]] · · ·B[[a1,n−k+1]]BJk
=

∐
(r1,...,rk)

Bwn
rk
· · ·wn−k+1

r1
BJk

and
B[[ak,n]] · · ·B[[a1,n−k+1]]P̃Jk

=
∐

(r1,...,rk)

Bwn
rk
· · ·wn−k+1

r1
P̃Jk

where (r1, . . . , rk) runs through the set
∏k

ι=1[[aι, n− k + ι+ 1]].

Proof. — As above, by Proposition 1.7 and Theorem 1.3, it’s enough to
prove that one has the following decomposition:

(1.12) W[[ak,n]] · · ·W[[a1,n−k+1]]WJk
=

∐
(r1,...,rk)

wn
rk
· · ·wn−k+1

r1
WJk

with (r1, . . . , rk) running through the set
∏k

ι=1[[aι, n− k + ι+ 1]].
To prove the equality, it suffices to prove by induction on m that, for

m = 1, . . . , k, the following holds:

Am : for each w ∈W[[am,n−k+m]]

and each (r1, . . . , rm−1) ∈
m−1∏
ι=1

[[aι, n− k + ι+ 1]],

there is an (r′1, . . . , r
′
m)∈

m∏
ι=1

[[aι, n−k+ι+1]] so that we have an equality:

wwn−k+m−1
rm−1

· · ·wn−k+1
r1

WJk
= wn−k+m

r′m
· · ·wn−k+1

r′1
WJk

.

The proof of A1 is above. Assume that Am holds for m 6 k − 1 and let
us show Am+1. We have to prove that for any w ∈ W[[am+1,n−k+m+1]] and
any (r1, . . . , rm) ∈

∏m
ι=1[[aι, n − k + ι + 1]], there exists (r′1, . . . , r

′
m+1) ∈∏m+1

ι=1 [[aι, n− k + ι+ 1]] so that:

(1.13) wwn−k+m
rm

· · ·wn−k+1
r1

WJk
= wn−k+m+1

r′
m+1

· · ·wn−k+1
r′1

WJk
.

We prove (1.13) by induction on the length l(w) of w ∈W[[am+1,n−k+m+1]].
If l(w) = 0 then w = 1 and (1.13) holds trivially. Assume that (1.13) is
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true when l(w) = d. Let w ∈ W[[am+1,n−k+m+1]] be such that l(w) = d+ 1.
Therefore, if j ∈ [[am+1, n−k+m+1]] is such that l(sjw) = d, there exists
(r′1, . . . , r

′
m+1) in

∏m+1
ι=1 [[aι, n− k + ι+ 1]], by the induction hypothesis, so

that:

sjww
n−k+m
rm

· · ·wn−k+1
r1

WJk
= wn−k+m+1

r′
m+1

· · ·wn−k+1
r′1

WJk

and hence

(1.14) wwn−k+m
rm

· · ·wn−k+1
r1

WJk
= sjw

n−k+m+1
r′

m+1
· · ·wn−k+1

r′1
WJk

.

There are several cases depending on j and r′m+1:

• am+1 6 j 6 r′m+1 − 2 6 n − k + m: we have sjw
n−k+m+1
r′

m+1
=

wn−k+m+1
r′

m+1
sj . Since sjw

n−k+m
r′m

∈W[[am,n−k+m]], by induction (Am),

there exists (r′′1 , . . . , r
′′
m) in

∏m
ι=1[[aι, n− k + ι+ 1]] such that:

sjw
n−k+m
r′m

· · ·wn−k+1
r′1

WJk
= wn−k+m

r′′m
· · ·wn−k+1

r′′1
WJk

.

• j = r′m+1 − 1: we have sjw
n−k+m+1
r′

m+1
= wn−k+m+1

r′
m+1−1 .

• j = r′m+1 6 n− k +m+ 1: we have sjw
n−k+m+1
r′

m+1
= wn−k+m+1

r′
m+1+1 .

• am+1 + 1 6 r′m+1 + 1 6 j 6 n− k+m+ 1: we have sjw
n−k+m+1
r′

m+1
=

wn−k+m+1
r′

m+1
sj−1. Since am 6 am+1 6 j − 1 6 n − k + m, we have

sj−1w
n−k+m
r′m

∈ W[[am,n−k+m]] and in the same way as in the first
case, one gets:

sj−1w
n−k+m
r′m

· · ·wn−k+1
r′1

WJk
= wn−k+m

r′′m
· · ·wn−k+1

r′′1
WJk

.

Thus, together with (1.14), there exists (r′′1 , . . . , r
′′
m+1) in

∏m+1
ι=1 [[aι, n−k+

ι+ 1]] such that:

wwn−k+m
rm

· · ·wn−k+1
r1

WJk
= wn−k+m+1

r′′
m+1

wn−k+m
r′′m

· · ·wn−k+1
r′′1

WJk
.

This completes the proof of (1.13) and also the proof of Am, 1 6 m 6 k.
Let us prove now that the union in (1.12) is a disjoint union. Deny and

assume that there are two different elements (r1, . . . , rk) and (r′1, . . . , r
′
k)

in
∏k

ι=1[[aι, n− k + ι+ 1]] such that:

wn
rk
· · ·wn−k+1

r1
WJk

= wn
r′

k
· · ·wn−k+1

r′1
WJk

.

Put j0 = max{j, 1 6 j 6 k | rj 6= r′j}, without loss of generality
we can even assume rj0 > r′j0 . Therefore, since wn−k+j0−1

rj0−1
· · ·wn−k+1

r1
∈
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W[[1,n−k+j0−1]], by multiplying the formula above by (wn
rk
· · ·wn−k+j0

rj0
)−1

on the left and by W[[1,n−k+j0−1]] on the right, we get:

W[[1,n−k+j0−1]] = (wn−k+j0
rj0

)−1wn−k+j0
r′

j0
W[[1,n−k+j0−1]],

hence (wn−k+j0
rj0

)−1wn−k+j0
r′

j0
∈ W[[1,n−k+j0−1]]. As we assumed rj0 > r′j0 , it

follows by (1.11):

(wn−k+j0
rj0

)−1wn−k+j0
r′

j0
= wn−k+j0−1

r′
j0

sn−k+j0(w
n−k+j0−1
rj0−1 )−1.

As wn−k+j0−1
r′

j0
, (wn−k+j0−1

rj0−1 )−1 ∈ W[[1,n−k+j0−1]], this implies that sn−k+j0

lies in W[[1,n−k+j0−1]], a contradiction. �

2. Harmonic cochains and special representations

Through all this section, we fix a commutative ring M and an M -module
L. Assume that G̃ acts trivially on M and that L is endowed with an M -
linear G̃-action.

2.1. Harmonic cochains

This paragraph concerns some technical lemmas which will be useful to
prove the main theorem below (Theorem 3.3). Recall that Îk denotes the
set of pointed k-cells of the Bruhat-Tits building, see §1.1. From now on,
we sometimes denote by σ a pointed cell (σ, v) when it is clear that it is
pointed and which vertex is distinguished.

Let us recall the definition of harmonic cochains given by E. de Shalit
([11, def. 3.1]).

Definition 2.1. — Let k be an integer such that 0 6 k 6 n. A k-
harmonic cochain with values in the M -module L is a homomorphism h ∈
HomM (M [Îk], L) which satisfies the following conditions:
(HC1) If σ=(v0, v1, . . . ,vk)∈ Îk is a k-pointed cell and if σ′=(v1, . . . ,vk, v0)
is the same cell but pointed at v1, see §1.1, then

h(σ) = (−1)kh(σ′).

(HC2) Fix a pointed (k − 1)-cell η ∈ Îk−1, fix a type t of pointed k-cells,
and consider the set B(η, t) = {σ ∈ Îk; η < σ and t(σ) = t}. Then∑

σ∈B(η,t)

h(σ) = 0.
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(HC3) Let k > 1. Fix σ = (Λ0 ) Λ1 ) · · · ) Λk ) πΛ0) ∈ Îk and fix
an index 0 6 j 6 k. Let C(σ, j) be the collection of all σ′ = (Λ′0 ) Λ′1 )
· · · ) Λ′k ) πΛ′0) ∈ Îk for which Λ′i = Λi if i 6= j, Λj ⊇ Λ′j ) Λj+1 and
dimκ Λ′j/Λj+1 = 1. Then

h(σ) =
∑

σ′∈C(σ,j)

h(σ′).

(HC4) Let σ = (v0, v1, . . . , vk+1) ∈ Îk+1. Let σj = (v0, . . . , v̂j , . . . , vk+1) ∈
Îk. Then

k∑
j=0

(−1)jh(σj) = 0.

For any k, 0 6 k 6 n, we denote by Harm k(M,L) the space of k-
harmonic cochains with values in the M -module L. In case k = 0, the
condition (HC4) shows that

(2.1) Harm 0(M,L) ∼= L.

The action of G̃. The action of G̃ on Harm k(M,L) is induced from its
natural action on HomM (M [Îk], L), namely (g.h)(σ) = g.h(g−1σ) for any
h ∈ Harm k(M,L), any g ∈ G̃, and any σ ∈ Îk.

To shorten notation, for I ⊆ ∆, r′ ∈ ∆ and r ∈ I ∪ {r′}, set Ir′

r =
(I ∪ {r′})− {r}.

Lemma 2.2. — Let I ⊆ ∆ such that ∆ − I = {i1 < · · · < ik} and let
j such that 1 6 j 6 k. Let h ∈ HomM (M [Îk], L) satisfy the condition
(HC3). Then:

1. If l is such that j + 1 6 l 6 k, then for each σ ∈ C(σI∪{ij}, l − 1)
there is gσ

l ∈ G̃, so that we have the following:

∑
σ∈B(σI∪{ij},tI)

h(σ) =
∑

σ∈C(σI∪{ij},l−1)

 ∑
σ′∈B(σ

I
il
il+1−1

∪{ij}
,t

I
il
il+1−1

)

h(gσ
l .σ

′)

 .

2. For j = l, there is an integer m such that

∑
σ∈B(σI∪{ij},tI)

h(σ) = m

 ∑
σ′∈B(σt

I
ij
ij+1−1

∪{ij+1−1}
,t

I
ij
ij+1−1

)

h(σ′)

 .
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Proof. — First, let l be such that j 6 l 6 k. Since h satisfies the condition
(HC3), it follows

(2.2)
∑

σ∈B(σI∪{ij},tI)

h(σ) =
∑

σ∈B(σI∪{ij},tI)

∑
σ′∈C(σ,l)

h(σ′).

Now, let us prove the two assertions of the corollary:
1. Assume that j + 1 6 l 6 k. It is not difficult to show that we have:

(2.3)
∐

σ∈B(σI∪{ij},tI)

C(σ, l) =
∐

σ∈C(σI∪{ij},l−1)

B(σ, t
I

il
il+1−1

).

Combining this with (2.2) we get

(2.4)
∑

σ∈B(σI∪{ij},tI)

h(σ) =
∑

σ∈C(σI∪{ij},l−1)

∑
σ′∈B(σ,t

I
il
il+1−1

)

h(σ′).

The action of G̃ being transitive on the set of pointed cells of a given type,
for each σ∈C(σI∪{ij}, l−1) there is gσ

l ∈G̃ so that σ=gσ
l (σ

I
il
il+1−1∪{ij}

, vo
0),

which implies B(σ, t
I

il
il+1−1

) = gσ
l .B(σ

I
il
il+1−1∪{ij}

, t
I

il
il+1−1

). Consequently

(2.4) can be written as follows

∑
σ∈B(σI∪{ij},tI)

h(σ) =
∑

σ∈C(σI∪{ij},l−1)

 ∑
σ′∈B(σ

I
il
il+1−1

∪{ij}
,t

I
il
il+1−1

)

h(gσ
l .σ

′)

 .

2. Assume that l = j. This assertion being trivial if ij+1 = ij + 1 we can
suppose ij+1 − ij > 2. It is not difficult to show that we have the following
equality by using the definition of the different sets involved:

(2.5)
⋃

σ∈B(σI∪{ij},tI)

C(σ, j) = B(σI∪{ij}, tIij
ij+1−1

).

Note that for each σ′ ∈ B(σI∪{ij}, tIij
ij+1−1

), there is exactly m distinct cells

σ ∈ B(σI∪{ij}, tI) so that σ′ ∈ C(σ, j). In total, with (2.2), we get

∑
σ∈B(σI∪{ij},tI)

h(σ) = m

 ∑
σ′∈B(σI∪{ij},t

I
ij
ij+1−1

)

h(σ′)

 .

Now, to complete the proof notice that we have the obvious equality I ∪
{ij} = I

ij

ij+1−1 ∪ {ij+1 − 1}. �

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGY OF DRINFELD SYMMETRIC SPACES 577

Lemma 2.3. — Let I ⊆ ∆ with ∆− I = {i1 < · · · < ik} and let j be an
integer such that 1 6 j 6 k. Then

1. B(σI∪{ij}, tI) = BI∪{ij}.(σI , v
o
0).

2. C(σI , j) = BI .(σI
ij
ij+1−1

, vo
0).

Proof. — In both equalities, we prove that the left hand side set is con-
tained in the right hand side set. The inverse inclusions are obvious.

1. Let σ ∈ B(σI∪{ij}, tI). Since t(σ) = tI and since the action of G̃ is
transitive on the pointed cells of a given type, there exists b ∈ G̃ such
that σ = b.(σI , v

o
0). Therefore, (σI∪{ij}, v

o
0) and b(σI∪{ij}, v

o
0) are pointed

faces of the same cell σ. Being also of the same type, we necessarily have
(σI∪{ij}, v

o
0) = b.(σI∪{ij}, v

o
0). Hence b ∈ BI∪{ij}.

2. Let σ ∈ C(σI , j), then, σ = (vo
0,. . ., v

o
ij−1

, vij+1−1, v
o
ij+1

,. . ., vo
ik
) is the

pointed cell obtained from (σI , v
o
0) by replacing the vertex vo

ij
=[Λ0

ij
] by an-

other vertex vij+1−1 =[Λij+1−1] with Λij+1−1 (Λ0
ij

and dimκ(Λij+1−1/Λ0
ij+1

)
= 1. We have:

t(σ) = t
I

ij
ij+1−1

.

On the other hand, the pointed (k + 1)-cell

σ′ = (vo
0, . . . , v

o
ij−1

, vo
ij
, vij+1−1, v

o
ij+1

, . . . , vo
ik

)

lies in B(σI , tI\{ij+1−1}), thus, by (1) above, there exists b ∈ BI such that
σ′ = b.(σI\{ij+1−1}, v

o
0). Acting b−1 on the following obvious relation:

(σI∪{ij}, v
o
0) < σ < σ′ = b.(σI\{ij+1−1}, v

o
0)

we obtain
(σI∪{ij}, v

o
0) < b−1σ < (σI\{ij+1−1}, v

o
0).

Since t(b−1σ) = t(σ) = t
I

ij
ij+1−1

, this clearly forces b−1σ = (σ
I

ij
ij+1−1

, vo
0).

�

2.2. Special representations

Let X be a locally compact space. We denote by C
∞

(X,M) (resp.
C
∞

c (X,M)) the set of locally constant functions on X with values in M

(resp. those which, moreover, are compactly supported). Notice that if X
is compact then we have:

C
∞

c (X,M) = C
∞

(X,M).
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The sets C
∞

(X,M) and C
∞

c (X,M) are naturally endowed with M -module
structures. Recall, cf. [3, lemma 4], that if X is locally compact, metrizable
and totally discontinuous space then:

(2.6) C
∞

c (X,M) = C
∞

c (X,Z)⊗Z M.

The group G̃ is a locally compact topological group with topological
structure induced from the topology of the non-archimedean field K. We
know, that for any I ⊆ ∆, the homogeneous space G̃/P̃I is compact with
respect to the quotient topology.

The action of G̃. For any I ⊆ ∆, the action of G̃ on C
∞

(G̃/P̃I ,M) and
C
∞

c (G̃/BI ,M) is induced by its action by left translations on respectively
G̃/P̃I and G̃/BI .

Let I ⊆ ∆. For any subset H of G̃, we denote by χ
HP̃I

∈C∞
(G̃/P̃I ,M)

(resp. χHBI
∈ C∞

c (G̃/BI ,M)) the characteristic function of HP̃I/P̃I (resp.
HBI/BI).

Proposition 2.4. — (P. Schneider and U. Stuhler) The M [G̃]-module
C
∞

(G̃/P̃I ,M) is generated by the characteristic function χ
BI P̃I

.

Proof. — See [9, §4, prop. 8’ and cor. 9’] and use (2.6) above. �

Remark 2.5. — For any I1 ⊆ I2 ⊆ ∆, we have natural commutative
diagrams of M [G̃]-monomorphisms

C
∞

(G̃/P̃ , M)
↗ ↖

C
∞

(G̃/P̃I2 , M) → C
∞

(G̃/P̃I1 , M)

and
C
∞
c (G̃/B, M)
↗ ↖

C
∞
c (G̃/BI2 , M) → C

∞
c (G̃/BI1 , M).

Definition 2.6. — Let k be an integer with 0 6 k 6 n and let Jk be the
subset [[1, n−k]] of ∆. A k-special representation of G̃ is the M [G̃]-module:

Spk(M) =
C
∞

(G̃/P̃Jk
,M)∑n

j=n−k+1 C
∞(G̃/P̃Jk∪{j},M)

.

In case k = n, this is the ordinary Steinberg representation. Notice also
that, in case k = 0, this is the trivial representation:

(2.7) Sp0(M) ∼= M.

Relation to the parahoric groups. In order to interpret the special
representation Spk(M) in terms of parahoric subgroups, we recall, following
[9, §4], that we have a surjective map:

H : C
∞

c (G̃/B, M) −→ C
∞

(G̃/P̃ , M)
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defined by H(ϕ) =
∑

g∈G̃/B

ϕ(g)g.χ
BP̃

. Recall also that this map induces,

for any I ⊆ ∆, a surjective map:

HI : C
∞

c (G̃/BI , M) −→ C
∞

(G̃/P̃I , M)

whose kernel is the M [G̃]-submodule of C
∞

c (G̃/BI , M) generated by the
functions χByiBI

− χBI
, 0 6 i 6 n, and where yi is the diagonal matrix

introduced in lemma 1.1. This leads to the following proposition:

Proposition 2.7. — For any k, 0 6 k 6 n, we have a canonical iso-
morphism of M [G̃]-modules

HJk
:
C
∞

c (G̃/BJk
,M)

RJk

∼= Spk(M),

where RJk
is the M [G̃]-submodule of C∞

c (G̃/BJk
,M) generated by the

functions χBJk
sjBJk

+χBJk
, n−k+1 6 j 6 n, and the functions χByiBJk

−
χBJk

, 0 6 i 6 n.

2.3. Harmonic cochains and special representations

2.3.1. Definition of new sets CI of G̃.

For each I ⊆ ∆, for each r′1, . . . , r
′
m ∈ ∆ and each r1, . . . , rm ∈ I ∪

{r′1, . . . , r′m}, we set:

I
r′1,...,r′m
r1,...,rm = (I ∪ {r′1, . . . , r′m})− {r1, . . . , rm}.

Let us fix an integer k such that 1 6 k 6 n and denote again Jk the
subset [[1, n− k]] of ∆.

Let I ⊆ ∆ be such that ∆− I = {i1 < · · · < ik}. For every m = 1, . . . , k,
we necessarily have im 6 n− k +m, therefore the integers i1, . . . , im lie in
the subset Jk ∪ {n − k + 1, . . . , n − k +m} = [[1, n − k +m]] of ∆. Hence,
for any m = 1, . . . , k, if we put i0 = 0, one can see easily that we have:

(2.8) Jk
n−k+1,...,n−k+m

i1 ,..., im
=

(
m∐

ι=1

[[iι−1 + 1, iι − 1]]

)
q [[im + 1, n− k +m]].

Moreover, if we putm = k in this formula, we can see that Jk
n−k+1,...,n

i1, ...,ik
=I.

Now, if I ⊆ ∆ is such that ∆− I = {i1 < · · · < ik}, we write:
(2.9)
C
◦

I =B
◦

Jk
n−k+1,...,n

i1 ,...,ik

· · ·B
◦

Jk
n−k+1

i1

B
◦

Jk
and CI =BJk

n−k+1,...,n
i1 ,...,ik

· · ·BJk
n−k+1

i1
BJk

.
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The set C
◦

I is compact open in G̃ and we clearly have CI = C
◦

IK
∗, see

§1.2.1. Hence, the set CI P̃Jk
/P̃Jk

= C
◦

I P̃Jk
/P̃Jk

is compact open in the
homogeneous space G̃/P̃Jk

.

Theorem 2.8. — If for each I ⊆ ∆ such that ∆− I = {i1 < · · · < ik},
we define CI =

∏k
ι=1[[iι + 1, n − k + ι + 1]], then we have the following

decompositions:

χCI
=
∑
r∈CI

χBwn
rk
···wn−k+1

r1 BJk
and χ

CI P̃Jk

=
∑
r∈CI

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

,

where r denote the k-tuple (r1, . . . , rk).

Proof. — For any m = 1, . . . , k, the expression (2.8) above shows that
Jk

n−k+1,...,n−k+m
i1 ,..., im

decomposes as a union of intervals which satisfy pairwise
the hypothesis of the assertion (1.8) given in Remark 1.8. Thus, an easy
induction on m by using assertion (1.8) proves that we have:

(2.10) CI = B[[ik+1,n]] · · ·B[[i1+1,n−k+1]]BJk
.

Next, since we have BJk
P̃Jk

= BP̃Jk
which is given by the assertion (1.9)

of the same remark, we conclude from (2.10) that we also have:

(2.11) CI P̃Jk
= B[[ik+1,n]] · · ·B[[i1+1,n−k+1]]P̃Jk

.

Finally, by Proposition 1.10, we deduce from (2.10) and (2.11) the following
respective decompositions

CI =
∐

r∈CI

Bwn
rk
· · ·wn−k+1

r1
BJk

and CI P̃Jk
=
∐

r∈CI

Bwn
rk
· · ·wn−k+1

r1
P̃Jk

,

and the theorem follows. �

For convenience, we will call CI the index set associated to the decom-
position of CI .

2.3.2. About vanishing in Spk(M).

The propositions below give a method which allows us to know whether
certain elements vanish in Spk(M).

Proposition 2.9. — Let w ∈ W and w′ ∈ W[[n−k+2,n]] (In case k = n,
consider w′ ∈W ). We have:

χBwBJk
− (−1)l(w′)χBww′BJk

∈
n∑

j=n−k+1

C
∞

c (G̃/BJk∪{j}, M)
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and

χ
BwP̃Jk

− (−1)l(w′)χ
Bww′P̃Jk

∈
n∑

j=n−k+1

C
∞

(G̃/P̃Jk∪{j}, M).

Proof. — We prove the second assertion. Let u1, . . . , ud ∈ S such that
w′ = u1 · · ·ud is a reduced expression (d = l(w′)). We have:

χ
BwP̃Jk

− (−1)d χ
Bww′P̃Jk

=
d∑

r=1

(−1)r−1(χ
Bwu1···ur−1P̃Jk

+ χ
Bwu1···urP̃Jk

).

The expression w′ = u1 · · ·ud being reduced and since w′ ∈W[[n−k+2,n]], we
deduce that for each r = 1, . . . , d, there is an integer j such that n−k+2 6
j 6 n (in case k = n, j is such that 1 6 j 6 n) and ur = sj . Thus, by
Proposition 1.9, we have:

χ
Bwu1···ur−1P̃Jk

+χ
Bwu1···urP̃Jk

= χ
Bwu1···ur−1P̃Jk∪{j}

∈C
∞

(G̃/P̃Jk∪{j}, M).

The proof of the first assertion is similar. �

Proposition 2.10. — Let w,w′ ∈ W and let a, b be two integers such
that 1 6 a 6 b 6 n. Suppose furthermore that we have sbw

′ = w′sb′ , where
b′ is an integer such that n− k + 2 6 b′ 6 n. Then

∑
(r1,r2)

χBwwb
r2

wb−1
r1 w′BJk

=
b−a∑
l=0

b−l∑
r=a

χBwwb
rwb−1

b−l
w′BJk∪{b′}

∈C
∞

c (G̃/BJk∪{b′},M),

and also

∑
(r1,r2)

χ
Bwwb

r2
wb−1

r1 w′P̃Jk

=
b−a∑
l=0

b−l∑
r=a

χ
Bwwb

rwb−1
b−l

w′P̃Jk∪{b′}
∈C

∞
(G̃/P̃Jk∪{b′},M)

where the pair (r1, r2) runs through the set [[a, b]]× [[a, b+ 1]].

Proof. — First, if we put b = a + m, by induction on m > 0 we prove
easily that the set [[a, b]] × [[a, b + 1]] decomposes into a disjoint union as
follows:

[[a, b]]× [[a, b+ 1]] =
b−a∐
l=0

(
[[a, b− l]]× {b− l + 1} q {b− l} × [[a, b− l]]

)
.
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Now, let us prove the second formula of the proposition. Since (r1, r2) runs
through [[a, b]]× [[a, b+ 1]], from the decomposition above we get:∑

(r1,r2)

χ
Bwwb

r2
wb−1

r1 w′P̃Jk

=
b−a∑
l=0

( b−l∑
r1=a

χ
Bwwb

b−l+1wb−1
r1 w′P̃Jk

+
b−l∑

r2=a

χ
Bwwb

r2
wb−1

b−l
w′P̃Jk

)
.

On the other hand, by using the formula (1.11) together with the hypothesis
of the proposition, we obtain:

wb
b−l+1w

b−1
r1

w′ = wb
b−l+1w

b
r1
sbw

′ = wb
r1
wb−1

b−l sbw
′ = wb

r1
wb−1

b−l w
′sb′ .

By replacing in the first sum the right hand side of the equality above, we
obtain:∑
(r1,r2)

χ
Bwwb

r2
wb−1

r1 w′P̃Jk

=
b−a∑
l=0

b−l∑
r=a

(χ
Bwwb

rwb−1
b−l

w′sb′ P̃Jk

+ χ
Bwwb

rwb−1
b−l

w′P̃Jk

).

Finally, since n− k + 2 6 b′ 6 n, by Proposition 1.9, we have

χ
Bwwb

rwb−1
b−l

w′sb′ P̃Jk

+ χ
Bwwb

rwb−1
b−l

w′P̃Jk

= χ
Bwwb

rwb−1
b−l

w′P̃Jk∪{b′}
.

The proof of the first formula is similar. �

2.3.3. Harmonicity in Spk(M)

The following proposition and its corollary below show that the charac-
teristic functions χCI

and χ
CI P̃Jk

have properties that are somehow similar
to those of harmonic cochains. First, we will need the following technical
lemma:

Lemma 2.11. — Let i be an integer such that 0 6 i 6 n. Let r1, · · · , rk
be integers such that for each j = 1, · · · , k, we have 1 6 rj 6 n−k+j+1−i.
Then

(2.12) wiw
n
rk
· · ·wn−k+1

r1
= wn

rk+i · · ·wn−k+1
r1+i wn−k

i · · ·wn−i+1−k
1 ,

where wi = wn
i w

n−1
i−1 · · ·w

n−i+1
1 (cf. lemma 1.1).

Proof. — Let us first prove that, if a, a′, b, b′ are integers satisfying 1 6
a 6 a′ 6 b 6 b′ 6 n, we have the equality:

(2.13) wb
aw

b′

a′ = wb′

a′+1w
b−1
a .
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Indeed, we can write wb
a = wa′

a w
b
a′+1. On the other hand, by using the

formula (1.11), we get wb
a′+1w

b′

a′ = wb′

a′w
b−1
a′ . Thus, the left hand side of the

equality (2.13) can be written as follows:

(2.14) wb
aw

b′

a′ = wa′

a w
b′

a′w
b−1
a′ .

Since we have wa′

a w
b′

a′ = wa′−1
a wb′

a′+1 = wb′

a′+1w
a′−1
a and wa′−1

a wb−1
a′ = wb−1

a ,
substituting these into (2.14) we get (2.13).

Now, in order to establish the formula (2.12) in the lemma, apply the
identity (2.13) with wb

a = wn−i+1
1 and wb′

a′ = wn−k+j
rj

for each j = k, . . . , 1,
and in that order. Next, proceed in the same way with wb

a = wn−i+ι
ι for

ι = 2, . . . , i respectively. �

Proposition 2.12. — Let I ⊆ ∆ with ∆ − I = {i1 < · · · < ik}. Let
ik+1 be such that ik � ik+1 6 n+ 1 and let Î1 ⊆ ∆ be such that

∆− Î1 = {i2−i1 < · · · < ik−i1 < ik+1−i1}.

In Spk(M), we have the equalities (the first equality is seen in Spk(M)
through the isomorphism HJk

given by Proposition 2.7):

1. χCI
=
∑
r∈C0

I

χBwn
rk
···wn−k+1

r1 BJk
+

k−1∑
t=1

(−1)k−t−1
∑

r∈Ct,k−t−1
I

χBwn
rk
···wn−k+1

r1 BJk
+
∑
r∈Ck

I

χBwn
rk
···wn−k+1

r1 BJk
.

2. χ
CI P̃Jk

=
∑
r∈C0

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

+
k−1∑
t=1

(−1)k−t−1
∑

r∈Ct,k−t−1
I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

+
∑
r∈Ck

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

.

3. yi1wi1χC
Î1

P̃Jk

= (−1)k
∑
r∈C0

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

where we have set C0
I =

k∏
ι=1

[[iι + 1, iι+1]] , Ck
I =

(
k−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)
× [[ik+1 + 1, n+ 1]], and for each t such that 1 6 t 6 k − 1 we have set

Ct,k−t−1
I =

(
t−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)

×

(
k−1∏
ι=t

[[iι+1 + 1, n− k + ι+ 1]]

)
× [[ik + 1, ik+1]].
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Proof. — The proofs of (1) and (2) are similar, we will prove (1) and (3).
1. In fact, it’s enough to prove that the equality holds in C

∞

c (G̃/BJk
,M)

modulo the M [G̃]-submodule
∑n

j=n−k+1 C
∞

c (G̃/BJk∪{j},M). Recall that
for any I ⊆ ∆, to the subset CI of G̃ we have associated a set CI so that
we have the following decomposition (cf. Theorem 2.8):

χCI
=
∑
r∈CI

χBwn
rk
···wn−k+1

r1 BJk
.

On the other hand, if C0
I and Ck

I are as in the statement of this proposition
and if for each t = 1, . . . , k − 1, we put

Ct
I =

(
t−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)
× [[it+1 + 1, n− k + t+ 1]]

×

(
k∏

ι=t+1

[[iι + 1, iι+1]]

)
,

then it is not difficult to show that CI is a disjoint union of the Ct
I , 0 6 t 6 k.

Hence:

(2.15) χCI
=

k∑
t=0

∑
r∈Ct

I

χBwn
rk
···wn−k+1

r1 BJk
.

Now, let t be such that 1 6 t 6 k − 1. For each t′ = 0, . . . , k − t− 2, put:

Ct,t′

I =

(
t−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)
×

t+t′∏
ι=t

[[iι+1 + 1, n− k + ι+ 1]]


×[[it+t′+1 + 1, n− k + t+ t′ + 2]]×

(
k∏

ι=t+t′+2

[[iι + 1, iι+1]]

)
,

and for t′ = n− k − 1, let Ct,n−k−1
I as in the statement of the proposition.

Also, for each t′ = 0, . . . , k − t− 1, put:

Dt,t′

I =

(
t−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)
×

t+t′∏
ι=t

[[iι+1 + 1, n− k + ι+1]]


×

(
k∏

ι=t+t′+1

[[iι + 1, iι+1]]

)
,
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and for t′ = k−t, let Dt,k−t
I = ∅. Notice that the interval which corresponds

to ι = t+ t′ + 1 in Ct,t′

I can be decomposed as follows:

[[it+t′+1 + 1, n− k + t+ t′ + 2]] = [[it+t′+1 + 1, it+t′+2]]

q [[it+t′+2 + 1, n− k + t+ t′ + 2]],

therefore, for each t′, 0 6 t′ 6 k − t − 1, we have Ct,t′

I = Dt,t′

I q Dt,t′+1
I .

Consider the alternating sum over t′ as follows:

k−t−1∑
t′=0

(−1)t′
∑

r∈Ct,t′
I

χBwn
rk
···wn−k+1

r1 BJk

=
k−t−1∑
t′=0

(−1)t′
∑

r∈Dt,t′
I

qDt,t′+1
I

χBwn
rk
···wn−k+1

r1 BJk
.

In the right hand side of this equality, we see that all the sums over the
Dt,t′

I , t′ = 1, . . . , k− t−1, cancel each other. What remains is the sum over
Dt,0

I = Ct
I and the sum over Dt,k−t

I = ∅. Therefore we get:

(2.16)
∑
r∈Ct

I

χBwn
rk
···wn−k+1

r1 BJk
=

k−t−1∑
t′=0

(−1)t′
∑

r∈Ct,t′
I

χBwn
rk
···wn−k+1

r1 BJk
.

Notice that in Ct,t′

I , for each t′ = 0, . . . k − t − 2, the two intervals which
correspond to the indices t + t′ and t + t′ + 1 are of the form of those in
Proposition 2.10 with a = it+t′+1 + 1 and b = n − k + t + t′ + 1, and if
we put w′ = wn−k+t+t′−1

rt+t′−1
· · ·wn−k+1

r1
, it is clear that we have sbw

′ = w′sb.
Therefore, in Spk(M), we have (for each t = 1, . . . , k − 1):∑

r∈Ct
I

χBwn
rk
···wn−k+1

r1 BJk
= (−1)k−t−1

∑
r∈Ct,k−t−1

I

χBwn
rk
···wn−k+1

r1 BJk
.

Finally, substituting this into (2.15) establishes the formula.

3. Set C0

Î1
=
∏k

ι=1[[iι− i1 +1, iι+1− i1]], and for each t such that 1 6 t 6 k,

Ct

Î1
=

(
t−1∏
ι=1

[[iι+1 −i1 + 1, n− k + ι+ 1]]

)
× [[it − i1 + 1, n− k + t+ 1]]

×

(
k∏

ι=t+1

[[iι − i1 + 1, iι+1 − i1]]

)
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and

Dt

Î1
=

t−1∏
ι=1

[[iι+1 − i1 + 1, n− k + ι+ 1]]×
k∏

ι=t

[[iι − i1 + 1, iι+1 − i1]] .

We proceed as in the proof of the formula (2.16) above. Notice that for
each t = 1, . . . , k, we have Ct

Î1
= Dt

Î1
qDt+1

Î1
. Therefore by considering the

following alternating sum:

k∑
t=1

(−1)k−t
∑

r∈Ct

Î1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

,

all the sums over the Dt

Î1
cancel each other, except the sum over D1

Î1
= C0

Î1

and the sum over Dk+1

Î1
= C

Î1
. The alternating sum above gives then:

(−1)k−1
∑

r∈C0

Î1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

+
∑

r∈C
Î1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

.

Next, the two expressions above being equal, by taking the sum over C0

Î1

to the other side of the equality, we get:

∑
r∈C

Î1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

=
k∑

t=0

(−1)k−t
∑

r∈Ct

Î1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

.

By Theorem 2.8, the left hand side of this equality corresponds to the
decomposition of the characteristic function χ

C
Î1

P̃Jk

. Therefore, by acting

with the element yi1wi1 , we get:

(2.17) yi1wi1χC
Î1

P̃Jk

=
k∑

t=0

(−1)k−t
∑

r∈Ct

Î1

yi1wi1χBwn
rk
···wn−k+1

r1 P̃Jk

.

In this equality (2.17), for each t = 1, . . . , k, the sum over Ct

Î1
is trivial

in Spk(M). Indeed, when t = 1 this follows from Proposition 1.9.(2) and
when t is such that 2 6 t 6 k this follows from Proposition 2.10. Thus, in
Spk(M), we have the equality:

(2.18) yi1wi1χC
Î1

P̃Jk

= (−1)k
∑

r∈C0

Î1

yi1wi1χBwn
rk
···wn−k+1

r1 P̃Jk

.
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Finally, by (1.4) and since T̃ is a normal subgroup of Ñ (hence, for each
w ∈W , there is y ∈ T̃ ⊆ P̃Jk

such that yi1w = wy), we have:

yi1wi1Bw
n
rk
· · ·wn−k+1

r1
P̃Jk

= Bwi1w
n
rk
· · ·wn−k+1

r1
P̃Jk

.

Therefore, by Lemma 2.11, for any r ∈ C0

Î1
we have:

yi1wi1Bw
n
rk
· · ·wn−k+1

r1
P̃Jk

= Bwn
rk+i · · ·wn−k+1

r1+i P̃Jk
.

We conclude:∑
r∈C0

Î1

yi1wi1χBwn
rk
···wn−k+1

r1 P̃Jk

=
∑
r∈C0

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

.

This, with (2.18), completes the proof. �

Corollary 2.13. — Let I, ik+1 and Î1 as in the proposition above.
Assume that ik+1 = n+ 1. Then, in Spk(M) we have the identity

χ
CI P̃Jk

= (−1)kyi1wi1χC
Î1

P̃Jk

.

Proof. — Under the assumption ik+1 = n+1, in the proposition 2.12 we
have Ck

I = ∅ and for each t = 1, . . . , k − 1

Ct,k−t−1
I =

(
t−1∏
ι=1

[[iι+1, n−k+ι+1]]

)
×

(
k−1∏
ι=t

[[iι+1+1, n−k+ι+1]]

)
×[[ik+1, n+1]],

on the other hand, we can write:∑
r∈Ct,k−t−1

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

=
∑

(r1,...,rk−2)

∑
(rk−1,rk)

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

where (r1, . . . , rk−2) runs through the set (
∏t−1

ι=1[[iι + 1, n − k + ι + 1]]) ×
(
∏k−2

ι=t [[iι+1+1, n−k+ι+1]]), and where the pair (rk−1, rk) runs through the
cartesian product of the two last intervals of Ct,k−t−1

I , i.e. [[ik +1, n]]× [[ik +
1, n+1]]. Thus, for each (r1, . . . , rk−2), by applying Proposition 2.10 to the
pair (rk−1, rk) (it is clear that, if w′ = wn−2

rk−2
. . . wn−k+1

r1
, then snw

′ = w′sn),
we deduce that∑

(rk−1,rk)

χ
Bwn

rk
...wn−k+1

r1 P̃Jk

∈ C
∞

(G̃/P̃Jk∪{n}, M),

then for any t = 1, . . . , k − 1, we have:∑
r∈Ct,k−t−1

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

∈
n∑

j=n−k+1

C
∞

(G̃/P̃Jk∪{j}, M).
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Consequently, from the second formula in Proposition 2.12, it follows that
in Spk(M) we have the equality:

χ
CI P̃Jk

=
∑
r∈C0

I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

which we have just proved when k > 1 and which is obvious for k = 1,
the sets Ct,k−t−1

I being empty. By combining this with the third formula in
Proposition 2.12, we obtain the equality in the corollary. �

3. Main theorem

The two propositions that follow are in preparation for the proof of The-
orem 3.3.

Proposition 3.1. — Let 1 6 k 6 n. Let ϕ ∈ HomM (Spk(M), L). The
map hϕ ∈ HomM (M [Îk], L) defined by hϕ(g(σI , v

o
0)) = ϕ(gχ

CI P̃Jk

) for any

g ∈ G̃ and any I ⊆ ∆ such that |∆ − I| = k, satisfies the harmonicity
conditions.

Proof. — Since G̃ acts transitively on the pointed cells of a given type,
we only need to show that hϕ satisfies the conditions of harmonicity on the
standard pointed cells.
(HC1) Let I ⊆ ∆ be such that ∆ − I = {i1 < · · · < ik}. Let Î1 be such
that ∆ − Î1 = {i2 − i1 < · · · < ik − i1 < n + 1 − i1}. By Lemma 1.1 we
have (σI , v

o
i1

) = yi1wi1(σÎ1
, vo

0), and by Corollary 2.13 we have:

ϕ(χ
CI P̃Jk

) = (−1)kϕ(yi1wi1χC
Î1

P̃Jk

).

Therefore,
hϕ(σI , v

o
0) = (−1)khϕ(σI , v

o
i1).

Since we will need (HC3) in order to prove (HC2), we will first prove
(HC3).
(HC3) First, notice that if (σ, v0) = (v0, v1 . . . , vk) ∈ Îk, since hϕ satisfies
(HC1), we have:

(3.1) hϕ(σ, v0) = (−1)(j+1)khϕ(σ, vj+1).

Notice also that for each integer j, 0 6 j 6 k, we have a bĳective corre-
spondence:

(3.2) C((σ, v0), j)
∼−→ C((σ, vj+1), k),
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which sends the pointed cell (σ′, v0) (or (σ′, v′0) in case j = 0) to the pointed
cell (σ′, vj+1). Thus, by (3.1) and (3.2), we have:

(3.3)
∑

σ′∈C((σ,v0),j)

hϕ(σ′) = (−1)(j+1)k
∑

σ′∈C((σ,vj+1),k)

hϕ(σ′).

Now, because of this formula, we need only to prove that hϕ satisfies (HC3)
in case j = k. That is, if I ⊆ ∆ is such that ∆ − I = {i1 < · · · < ik}, we
have to prove: ∑

σ∈C((σI ,vo
0),k)

hϕ(σ) = hϕ(σI , v
o
0).

By the second point of Lemma 2.3 and by the definition of hϕ it suffices to
prove that we have:

(3.4)
∐

b∈BIB
I

ik
n

/B
I

ik
in

bC
I

ik
n
P̃Jk

= BICI
ik
n
P̃Jk

= CI P̃Jk
.

Both equalities are obvious (for the second equality see the definition of CI).
The union is disjoint. Indeed, take b ∈ BI such that bC

I
ik
n
P̃Jk

∩C
I

ik
n
P̃Jk

6= ∅.
By the formula (2.11) in the proof of Theorem 2.8, for each ι = 1, . . . k− 1,
there exist bι, b′ι ∈ B[[iι+1,n−k+ι]] ⊆ K

∗
G̃(O) and p ∈ P̃Jk

such that

bbk−1 . . . b1 = b′k−1 . . . b
′
1p.

This implies p ∈ K∗
G̃(O)∩ P̃Jk

= BJk
and hence b=b′k−1. . . b

′
1pb

−1
1 . . . b−1

k−1

∈ BI′ , where I ′ is the subset of ∆ defined as follows:

I ′ = Jk ∪
k−1⋃
ι=0

[[iι + 1, n− k + ι]].

But, since n /∈ I ′ then I ∩ I ′ ⊆ Iik
n . We therefore have b ∈ B

I
ik
n

.
(HC2) Let I ⊆ ∆ be such that ∆ − I = {i1 < · · · < ik}. Since hϕ

satisfies the condition (HC3) proved above, we can apply lemma 2.2. By
this lemma, together with (HC1), we need only to consider the case ik = n.
Therefore we have to prove: ∑

σ∈B((σI∪{n},vo
0),tI)

hϕ(σ) = 0.

By the first point of Lemma 2.3 and by the definition of hϕ it suffices to
show that in Spk(M) we have:

(3.5)
∑

b∈BI∪{n}/BI

bχ
CI P̃Jk

= 0.
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First, notice that we have the following obvious equality. Similar argu-
ments as in the proof of (3.4) show that the union in the right hand side is
disjoint:

(3.6) BI∪{n}CI P̃Jk
=

∐
b∈BI∪{n}/BI

bCI P̃Jk
.

On the other hand, if we proceed similarly as in the proof of Theorem 2.8
and by using Proposition 1.10, we show that we have the decomposition:

(3.7) BI∪{n}CI P̃Jk
=
∐

r∈Cn
I

Bwn
rk
wn−1

rk−1
· · ·wn−k+1

r1
P̃Jk

where Cn
I =

(
k−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]

)
× [[ik−1 + 1, n + 1]]. Therefore,

combining (3.6) with (3.7) we get:∑
b∈BI∪{n}/BI

χ
bCI P̃Jk

=
∑

r∈Cn
I

χ
Bwn

rk
wn−1

rk−1
···wn−k+1

r1 P̃Jk

.

Finally since the pair (rk−1, rk) runs through the set [[ik−1 + 1, n]] ×
[[ik−1 + 1, n+ 1]] it follows from Proposition 2.10 (or from Proposition 1.9
in case k = 1) that we have:∑

b∈BI∪{n}/BI

χ
bCI P̃Jk

∈ C
∞

(G̃/P̃Jk∪{n}, M).

This finishes the proof of (3.5).
(HC4) Let I ⊆ ∆ be such that ∆ − I = {i1 < · · · < ik}. Assume ik < n

and let ik+1 be such that ik < ik+1 6 n. We have to show that:

k+1∑
j=0

(−1)jhϕ(vo
0, v

o
i1 , . . . , v̂

o
ij
, . . . , vo

ik+1
) = 0.

Let Î1 ⊆ ∆ be such that ∆− Î1 = {i2−i1 < · · · < ik+1−i1}, cf. Lemma 1.1.
By this lemma and by the definition of hϕ, it suffices to prove that in
Spk(M) we have:

(3.8) yi1wi1χC
Î1

P̃Jk

+
k+1∑
j=1

(−1)jχ
C

I
ij
ik+1

P̃Jk

= 0.
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Recall that, for each j = 1, . . . , k+1, the index set which corresponds to the
decomposition of the characteristic function χ

C
I

ij
ik+1

P̃Jk

is (cf. Theorem 2.8):

C
I

ij
ik+1

=
j−1∏
ι=1

[[iι + 1, n− k + ι+ 1]]×
k∏

ι=j

[[iι+1 + 1, n− k + ι+ 1]].

By combining the identities (2) and (3) in Proposition 2.12, and since we
have C

I
ik
ik+1

= Ck
I and C

I
ik+1
ik+1

= CI , we obtain:

yi1wi1χC
Î1

P̃Jk

+ (−1)kχ
C

I
ik
ik+1

P̃Jk

+ (−1)k+1χ
CI P̃Jk

=
k−1∑
j=1

(−1)j
∑

r∈Cj,k−j−1
I

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

.

Substituting this into (3.8) we conclude that:

yi1wi1χC
Î1

P̃Jk

+
k+1∑
j=1

(−1)jχ
C

I
ij
ik+1

P̃Jk

=
k−1∑
j=1

(−1)j
∑

r∈D
I

ij
ik+1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

,

where we have set D
I

ij
ik+1

= C
I

ij
ik+1

q Cj,n−j−1
I . Now, it remains to show

that the right hand side in the equality above is trivial in Spk(M). It is
easy to see that we have:

D
I

ij
ik+1

=
( j−1∏

ι=1

[[iι+1, n−k+ι+1]]
)
×
( k−1∏

ι=j

[[iι+1+1, n−k+ι+1]]
)
× [[ik + 1, n+ 1]].

Notice that the cartesian product of the two last intervals in D
I

ij
ik+1

is

[[ik + 1, n]] × [[ik + 1, n + 1]]. Thus, we can check easily that we can ap-
ply Proposition 2.10 (or Proposition 1.9 in case k = 1) to conclude the
following: ∑

r∈D
I

ij
ik+1

χ
Bwn

rk
···wn−k+1

r1 P̃Jk

∈ C
∞

(G̃/P̃Jk∪{n}, M).

This completes the proof of the assertion (3.8). �

The proof of the following proposition has been inspired by case k = n

which was treated by P. Schneider and J. Teitelbaum, see [10, page 401,
Lemma 10]. The computations are much more complicated for general k,
1 6 k 6 n.
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Proposition 3.2. — Let h ∈ Harm k(M,L). The map ψh∈HomM (C
∞

c

(G̃/BJk
, M), L) defined by ψh(gχBJk

) = h(g(σJk
, vo

0)), for any g ∈ G̃,
vanishes on the M [G̃]-submodule RJk

of C
∞

c (G̃/BJk
,M) generated by the

functions χBJk
sjBJk

+χBJk
, n−k+1 6 j 6 n, and the functions χByiBJk

−
χBJk

, 0 6 i 6 n.

Proof. — Let j be such that n− k+ 1 6 j 6 n. Since h is harmonic and
then satisfies the condition (HC2), we conclude that:

ψh(χBJk∪{j}) =
∑

b∈BJk∪{j}/BJk

ψh(bχBJk
) =

∑
b∈BJk∪{j}/BJk

h(b(σJk
, vo

0)) = 0.

Therefore ψh is trivial on theM [G̃]-submodule
∑n

j=n−k+1C
∞

c (G̃/BJk∪{j},M)
of C

∞

c (G̃/BJk
,M). Let us show that ψh vanishes on the functions χByiBJk

−
χBJk

, 0 6 i 6 n. Since h satisfies (HC3), for any I ⊆ ∆ such that |∆−I| =
k, we have:

(3.9) ψh(g.χCI
) = h(g(σI , v

o
0)).

On the other hand, if wi is as in Lemma 1.1, the assertion (1.4) given in
the following Remark 1.2 says that yiwi normalizes B, thus:

(3.10) χByiBJk
= χByiwiw

−1
i

BJk
= yiwi.χBw−1

i
BJk

.

Now, there are two cases depending on i:

• 0 6 i 6 n− k + 1: observe that w−1
i decomposes in two factors as follows:

w−1
i = (wn

n−i+1 · · ·wn−k+1
n−k−i+2).(w

n−k
n−k−i+1 · · ·w

i
1)

and that the second factor wn−k
n−k−i+1 · · ·wi

1 lies in WJk
and hence in BJk

.
Thus, we have:

Bw−1
i BJk

= Bwn
n−i+1 · · ·wn−k+1

n−k−i+2BJk
.

So, if for each ι, 1 6 ι 6 k+ 1, we consider iι = n− k− i+ ι, and if I ⊆ ∆
is such that ∆− I = {i1 < · · · < ik}, we clearly have:

χBw−1
i

BJk
=
∑
r∈C0

I

χBwn
rk
···wn−k+1

r1 BJk
,
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with C0
I =
∏k

ι=1[[iι+1, iι+1]]. Since ψh vanishes on
∑n

j=n−k+1C
∞

c (G̃/BJk∪{j},

M), by the first assertion of Proposition 2.12, we conclude that ψh satisfies:

(3.11)

ψh(χBw−1
i

BJk
) = ψh

(
χCI

− χC
I

ik
ik+1

−
k−1∑
t=1

(−1)k−t−1

∑
r∈C t,k−t−1

I

χBwn
rk
···wn−k+1

r1 BJk

)
.

On the other hand, since h satisfies (HC4), we have:
k+1∑
j=0

(−1)jh(vo
0, v

o
i1 , . . . , v̂

o
ij
, . . . , vo

ik+1
) = 0.

Therefore, if Î1 ⊆ ∆ is such that ∆ − Î1 = {i2 − i1 < · · · < ik+1 − i1},
we have (vo

i1
, . . . , vo

ik+1
) = yi1wi1(σÎ1

, vo
0) and, by (3.9), the identity above

gives:

(3.12) ψh(yi1wi1χC
Î1

) +
k+1∑
t=1

(−1)tψh(χC
I

it
ik+1

) = 0.

Combining (3.11) with (3.12) we conclude that:

ψh(χBw−1
i

BJk
) = ψh

(
(−1)kyi1wi1χC

Î1

+
k−1∑
t=1

(−1)k−t
∑

r∈D
I

it
ik+1

χBwn
rk
···wn−k+1

r1 BJk

)
,

where we have set D
I

it
ik+1

= C
I

it
ik+1

q C t,k−t−1
I , and where C

I
it
ik+1

is the

index set associated to the decomposition of C
I

it
ik+1

(see Theorem 2.8). By

Proposition 2.10, for each t = 1, . . . , k − 1, ψh vanishes on the sum over
D

I
it
ik+1

. Therefore:

ψh(χBw−1
i

BJk
) = (−1)kψh(yi1wi1χC

Î1

)

and hence, by (3.10), we have:

ψh(χByiBJk
) = (−1)kψh(yiwiyi1wi1χC

Î1

).

Recall that we have set i1 = n − k − i + 1, therefore yiwiyi1wi1CÎ1
=

yn−k+1wn−k+1CÎ1
, and hence:

(3.13) ψh(χByiBJk
) = (−1)kψh(yn−k+1wn−k+1χC

Î1

).

TOME 56 (2006), FASCICULE 3



594 Yacine AÏT AMRANE

Finally, since h satisfies (HC1), we have h(σJk
, vo

n−k+1) = (−1)kh(σJk
, vo

0).
Thus, by Lemma 1.1 and by (3.9) we get:

(3.14) ψh(yn−k+1wn−k+1χC
(Ĵk)1

) = (−1)kψh(χBJk
),

where (Ĵk)1 ⊆ ∆ is such that ∆ − (Ĵk)1 = {1 < 2 < · · · < k}. Note that
Î1 = (Ĵk)1, therefore by combining (3.13) with (3.14) we get ψh(χByiBJk

) =
ψh(χBJk

).
• n− k + 2 6 i 6 n: simple calculation shows that we have w−1

i = ww′

with

w= w2n−k−i+1
n−i+1 · · ·wn−k+2

2 wn−k+1
1 and w′= wn

2n−k−i+2 · · ·wi+1
n−k+3w

i
n−k+2.

Notice that w′ ∈ W[[n−k+2,n]] and that l(w) = (n − i + 1)(k − 1) (mod 2).
Thus, since ψh vanishes on

∑n
j=n−k+1 C

∞

c (G̃/BJk∪{j},M), by Proposi-
tion 2.9 we have:
(3.15)
ψh(χBw−1

i
BJk

) = (−1)(n−i+1)(k−1)ψh(χBw2n−k−i+1
n−i+1 ···wn−k+2

2 wn−k+1
1 BJk

).

Next, if we consider I ⊆ ∆ such that ∆− I = {i1 < · · · < ik} with the iι,
1 6 ι 6 k, defined as follows:

iι =
{
ι si 1 6 ι 6 n− i+ 1,
n− k + ι si n− i+ 2 6 ι 6 n,

then, we have the identity:

(3.16) ψh(χCI
) = (−1)n−i+1ψh(χBw2n−k−i+1

n−i+1 ···wn−k+2
2 wn−k+1

1 BJk
).

Indeed, since ψh vanishes on
∑n

j=n−k+1 C
∞

c (G̃/BJk∪{j}, M), by Proposi-
tion 1.9 we have:

ψh(χBw2n−k−i+1
n−i+1 ···wn−k+2

2 wn−k+1
1 BJk

)

= −ψh

(
n−k+2∑
r1=2

χBw2n−k−i+1
n−i+1 ···wn−k+2

2 wn−k+1
r1 BJk

)
,

and by Proposition 2.10 with (r1, r2) running through [[2, n−k+2]]×[[2, n−
k + 3]], we conclude that the right hand side in the equality above is equal
to:

ψh

(
n−k+3∑
r2=3

n−k+2∑
r1=2

χBw2n−k−i+1
n−i+1 ···wn−k+3

3 wn−k+2
r2 wn−k+1

r1 BJk

)
.
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Consequently, we have the identity:

ψh(χBw2n−k−i+1
n−i+1 ···wn−k+2

2 wn−k+1
1 BJk

)

= (−1)2ψh

(
n−k+3∑
r2=3

n−k+2∑
r1=2

χBw2n−k−i+1
n−i+1 ···wn−k+3

3 wn−k+2
r2 wn−k+1

r1 BJk

)
.

By repeating this process and using Proposition 2.10 successively with the
pairs (r2, r3), (r3, r4), . . ., (rn−i, rn−i+1) running through the sets [[3, n −
k + 3]]× [[3, n− k + 4]], [[4, n− k + 4]]× [[4, n− k + 5]], . . . , [[n− i+ 1, 2n−
k − i+ 1]]× [[n− i+ 1, 2n− k − i+ 2]] respectively, we get:

ψh(χBw2n−k−i+1
n−i+1 ···wn−k+2

2 wn−k+1
1 BJk

)

= (−1)n−i+1ψh

(
2n−k−i+2∑

rn−i+1=n−i+2

· · ·
n−k+3∑
r2=3

n−k+2∑
r1=2

χBw2n−k−i+1
rn−i+1 ···wn−k+2

r2 wn−k+1
r1 BJk

)
.

Notice that the expression in the right hand side above defined by the
sums over the rι is nothing else than the decomposition of χCI

given in
Theorem 2.8. This proves (3.16).

Finally, combining (3.15) with (3.16) we get

ψh(χBw−1
i

BJk
) = (−1)(n−i+1)kψh(χCI

),

therefore, by using (3.10), we deduce:

(3.17) ψh(χByiBJk
) = (−1)(n−i+1)kψh(yiwiχCI

).

On the other hand, h being harmonic, by (HC1) we have:

(3.18) h(σJk
, vo

i ) = (−1)(n−i+1)kh(σJk
, vo

0).

>From Lemma 1.1, we have (σJk
, vo

i ) = yiwi(σ(Ĵk)i
, vo

0) where (Ĵk)i is
nothing else than I. This, with (3.18), gives:

h(yiwi(σI , v
o
0)) = (−1)(n−i+1)kh(σJk

, vo
0),

and, by (3.9), we deduce:

(3.19) ψh(yiwiχCI
) = (−1)(n−i+1)kψh(χBJk

).

Thus, combining (3.17) with (3.19) we get ψh(χByiBJk
) = ψh(χBJk

). �

Theorem 3.3. — For any k, 0 6 k 6 n, there is an M [G̃]-isomorphism

HomM (Spk(M), L) ∼= Harm k(M,L).
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Proof. — For k = 0, by (2.7) and (2.1), both sides of the isomorphism
of this theorem are canonically isomorphic to L. Now, let k, 1 6 k 6 n.
By Proposition 3.1, the map which to ϕ associates hϕ gives a well defined
M -homomorphism

Hk : HomM (Spk(M), L) → Harm k(M,L).

This homomorphism is clearly G̃-equivariant. On the other hand, we have
a well defined M [G̃]-homomorphism:

Φk : Harm k(M,L) −→ HomM (Spk(M), L)

which sends an harmonic cochain h to ϕh defined by ϕh(gχ
BJk

P̃Jk

) =

h(g(σJk
, vo

0)) for any g ∈ G̃. Indeed, it is easy to check that Φk = H̃−1
Jk
◦Ψk,

where the M [G̃]-homomorphism

Ψk : Harm k(M,L) −→ HomM (C
∞

c (G̃/BJk
, M)/RJk

, L)

which to h associates ψh is given by Proposition 3.2, and H̃Jk
is the M [G̃]-

isomorphism

H̃Jk
: HomM (Spk(M), L) ∼−→ HomM (C

∞

c (G̃/BJk
, M)/RJk

, L),

dual to the isomorphism HJk
given by Proposition 2.7.

Let us prove that Φk and Hk are inverse to each other. Let h ∈ Harm k

(M,L) and let hϕh
be its image by Hk ◦ Φk. We have hϕh

(σJk
, vo

0) =
ϕh(χ

BJk
P̃Jk

) = h(σJk
, vo

0). As we have hϕh
∈ Harm k(M,L), this proves

that h = hϕh
, by the property (HC3).

On the other hand, if ϕ ∈ HomM (Spk(M), L) and if ϕhϕ is its image by
Φk ◦Hk, then we have ϕhϕ

(χ
BJk

P̃Jk

) = hϕ(σJk
, vo

0) = ϕ(χ
BJk

P̃Jk

). We are
done. �
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