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A SPECTRAL PALEY-WIENER THEOREM FOR THE
HEISENBERG GROUP AND A SUPPORT THEOREM

FOR THE TWISTED SPHERICAL MEANS ON Cn

by E. K. NARAYANAN & S. THANGAVELU

Dedicated to Prof. U. B. Tewari on his sixtieth birthday

Abstract. — We prove a spectral Paley-Wiener theorem for the Heisenberg
group by means of a support theorem for the twisted spherical means on Cn. If
f(z)e

1
4 |z|2 is a Schwartz class function we show that f is supported in a ball of

radius B in Cn if and only if f ×µr(z) = 0 for r > B + |z| for all z ∈ Cn. This is an
analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When
n = 1 we show that the two conditions f × µr(z) = µr × f(z) = 0 for r > B + |z|
imply a support theorem for a large class of functions with exponential growth.
Surprisingly enough,this latter result does not generalize to higher dimensions.

Résumé. — Nous prouvons un théorème de Paley-Wiener spectral pour le
groupe d’Heisenberg en utilisant un théorème du support pour les moyennes sphé-
riques tordues sur Cn. Si f(z)e

1
4 |z|2 est une fonction dans la classe de Schwartz nous

montrons que f a un support dans une boule de Cn de rayon B si et seulement si
f×µr(z) = 0 pour r > B+ |z| et pour tout z ∈ Cn. C’est un analogue du théorème
du support prouvé dans les contextes euclidiens et hyperboliques par Helgason.
Lorsque n = 1 nous montrons que les deux conditions f × µr(z) = µr × f(z) = 0
pour r > B + |z| impliquent un théorème du support pour une grande classe de
fonctions à croissance exponentielle. Il est surprenant de constater que ce dernier
résultat ne se généralise pas aux dimensions supérieures.

1. Introduction

The main result of this paper has its origin in a long paper of Strichartz
[10] where he has given a new interpretation of harmonic analysis as spectral

Keywords: Spectral Paley-Wiener theorem, twisted spherical means, special Hermite
operator, Laguerre functions, support theorem, spherical harmonics.
Math. classification: 43A85, 53C65, 44A35.



460 E. K. NARAYANAN & S. THANGAVELU

theory of Laplacians. The starting point is the spectral decomposition of a
Laplacian ∆ written in the form

f =
∫ ∞

0

Pλf dλ

where Pλf are projections of f into the eigenspaces of ∆ corresponding to
the eigenvalues λ. In most cases of interest which include Euclidean spaces
and Riemannian symmetric spaces associated to Lie groups, the operators
Pλf are given by convolution with spherical functions. In [10] Strichartz has
investigated how properties of f are translated into properties of Pλf. One
such result is the so called spectral Paley-Wiener theorem which charac-
terizes compactly supported functions in terms of properties of Pλf. Many
works have been dedicated to this topic, see for example the papers by
Bray [2], [3].

Our main concern in this paper is a spectral Paley-Wiener theorem
for the Heisenberg group. To state our results let us quickly set up the
notation:- details will be given in later sections. Let Hn be the Heisenberg
group which as a manifold is Cn × R with the group law

(z, t)(w, s) = (z + w, t+ s+
1
2

Im z· w̄).

On Hn we consider the spectral resolution of the subLaplacian L given by

f = (2π)−n−1
∞∑

k=0

(∫ ∞

−∞
f ∗ eλ

k |λ|n dλ
)
.

Here
eλ
k(z, t) = eiλtϕλ

k(z) = eiλtϕk(
√
|λ|z)

where

ϕk(z) = Ln−1
k (

1
2
|z|2)e− 1

4 |z|
2

are the Laguerre functions of type (n − 1). The functions f ∗ eλ
k(z, t) are

generalized eigenfunctions of L associated to the point ((2k + n)|λ|, λ) on
the Heisenberg fan which is the spectrum of L, see [13]. We are interested
in characterizing functions f(z, t) which are supported in {(z, t) : |z| 6
B, t ∈ R} in terms of properties of f ∗ eλ

k .

When n = 1, the following result can be found in [13] (see Theorem
2.4.1). To state the result we need some notation. Let ∆+ψ(k) = ψ(k +
1)− ψ(k), ∆−ψ(k) = ψ(k)− ψ(k − 1) be the forward and backward finite
difference operators. We let

∆ψ(k) = k∆+∆−ψ(k) + n∆+ψ(k)

ANNALES DE L’INSTITUT FOURIER



SPECTRAL PALEY-WIENER THEOREM FOR THE HEISENBERG GROUP 461

to stand for a second order finite difference operator (not to be confused
with Laplacian). Using powers of ∆ we define certain sequence spaces. For
each j > 0 we let l2j to stand for all sequences ψ = (ψ(k)) for which

‖ψ‖2,j =
( ∞∑

k=0

|∆jψ(k)|2
) 1

2
<∞.

Given a continuous integrable function f on Hn, define fm(z, t) = zmf(z, t)
or z̄mf(z, t) depending on m ∈ Z is nonnegative or negative. We let

ψm(k) = ψm(k, z, t, λ) = fm ∗ eλ
k(z, t).

Finally, let Lp,q(Hn), 1 6 p <∞, 1 6 q 6 2, consists of functions for which

‖f‖p
p,q =

∫
Cn

(∫
R
|f(z, t)|q dt

) p
q

dz <∞.

With these notations the following theorem was proved in [13].

Theorem 1.1. — A function f ∈ Lp,q(Hn), 1 6 p < ∞, 1 6 q 6 2 is
supported in {(z, t) : |z| 6 B, t ∈ R} if and only if for every m and j > 0
the sequence (ψm(k)) = ψm ∈ l2j and

‖ψm‖2,j 6 Cm |λ|j−1 2−j (B + |z|)2j .

Here Cm is a constant depending only on m.

An examination of the proof of this result shows that the condition on
the functions fm have been introduced for technical reasons and one is
naturally led to the conjecture that the theorem is true with conditions
only on f ∗ eλ

k . In the Euclidean and symmetric space cases the condition
is only on Pλf. We show in this paper that this conjecture is true once we
assume certain decay conditions on f. Here is our main result:

Theorem 1.2. — Let f ∈ Lp,q(Hn), 1 6 p <∞, 1 6 q 6 2 is such that
fλ(z)e

1
4 |λ||z|

2
is a Schwartz class function on Cn for every λ ∈ R. Then f

is supported in {(z, t) : |z| 6 B, t ∈ R} if and only if for every j > 0 the
sequence ψλ = (ψλ(k)) where ψλ(k) = f ∗ eλ

k(z, t) belongs to l2j and

‖ψλ‖2,j 6 C(
1
2
|λ|)j (B + |z|)2j .

In the above theorem fλ(z) stands for the partial inverse Fourier trans-
form of f(z, t) in the t variable. The above theorem is essentially a theorem
for the z variable and so we can assume λ = 1. Then we are led to charac-
terizing compactly supported functions on Cn in terms of properties of the
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462 E. K. NARAYANAN & S. THANGAVELU

spectral projections f → f × ϕk where

f × ϕk(z) =
∫

Cn

f(z − w)e
i
2 Im(z·w̄)ϕk(w) dw

is the twisted convolution of f with ϕk. As in [13] everything is then reduced
to the following support theorem for twisted spherical means. Let µr stand
for the normalized surface measure on the sphere Sr = {z ∈ Cn : |z| = r}.
Define

f × µr(z) =
∫
|w|=r

f(z − w)e
i
2 Im(z·w̄)dµr(w).

Without the exponential factor we have the ordinary spherical means f ∗µr

which has been studied by several authors, see [2], [4] and [5]. For a support
theorem for the spherical means we refer to [2] and [5]. Here we have the
following support theorem for the twisted spherical means.

Theorem 1.3. — Let f be a function on Cn such that f(z)e
1
4 |z|

2
is in

the Schwartz class. Then f is supported in |z| 6 B if and only if f×µr(z) =
0 for r > B + |z| for every z ∈ Cn.

A proof of this theorem is given in section 3. Note that the function f

is assumed to have enough decay. Even in the Euclidean case the support
theorem for the spherical means does not hold true without some decay
assumption on f as can be seen from [5]. However when n = 1 we can
greatly relax the condition on f.

Theorem 1.4. — Let f be a locally integrable function on C such that

|f(z)| 6 C e
1
4 (1−ε)|z|2

for some ε > 0. Then f is supported in |z| 6 B if and only if f × µr(z) =
µr × f(z) = 0 for r > B + |z| for every z ∈ C.

Note that we have allowed f to have growth as opposed to the decay in
the previous theorem. It turns out that this result is not true when n > 2.
A counter example for n = 2 is given in section 4.

2. Preliminaries

On the Heisenberg group Hn we consider the left invariant vector fields

Xj =
∂

∂xj
− 1

2
yj
∂

∂t
, Yj =

∂

∂yj
+

1
2
xj
∂

∂t
j = 1, 2, . . . n,

ANNALES DE L’INSTITUT FOURIER



SPECTRAL PALEY-WIENER THEOREM FOR THE HEISENBERG GROUP 463

and T = ∂
∂t . They form a basis for the Heisenberg Lie algebra. The sub-

Laplacian L which plays the role of the Laplacian for the subelliptic realm
is defined by

(2.1) L = −
n∑

j=1

(X2
j + Y 2

j ).

The functions eλ
k defined in the introduction are eigenfunctions of L with

eigenvalues (2k + n)|λ| and the spectral resolution of L is written as

(2.2) f(z, t) = (2π)−n−1
∞∑

k=0

∫ ∞

−∞
f ∗ eλ

k(z, t)|λ|n dλ.

We let µr stand for the normalized surface measure on {z ∈ Cn : |z| = r}
which is also considered as a measure on {(z, 0) : |z| = r} ⊂ Hn. The
spherical means of a function f on Hn are defined by

(2.3) f ∗ µr(z, t) =
∫
|w|=r

f((z, t)(−w, 0)) dµr(w).

The spherical means f ∗ µr is given by the expansion

f ∗ µr(z, t) = (2π)−n−1
∞∑

k=0

k!(n− 1)!
(k + n− 1)!

∫ ∞

−∞
eλ
k(r, 0) f ∗ eλ

k(z, t) |λ|n dλ

where eλ
k(r, 0) = eλ

k(w, 0) with |w| = r. This follows from the fact that
eλ
k(z, t) are spherical functions on Hn, see [13]. The above gives the relation

between spherical means f ∗µr and the spectral projections f ∗eλ
k . This has

been used in [13] in the proof of Theorem 1.1. The same argument shows
that in order to prove Theorem 1.2 we only need to prove Theorem 1.3.

A simple calculation shows that∫ ∞

−∞
f ∗ µr ∗ (z, t) eiλt dt =

∫
|w|=r

fλ(z − w)e
iλ
2 Im(z·w̄) dµr(w)

where fλ is the inverse Fourier transform of f in the t variable. Defining
the λ-twisted convolution of F and G by

F ∗λ G(z) =
∫

Cn

F (z − w) G(w) e
iλ
2 Im(z·w̄) dw

the above means
(f ∗ µr)λ(z) = fλ ∗λ µr(z).

This reduction allows us to concentrate on twisted spherical means fλ ∗λ

µr(z) rather than f ∗ µr and a scaling argument reduces everything to the
case λ = 1. In this case we simply write F ×G instead of F ∗1 G and call
it the twisted convolution.

TOME 56 (2006), FASCICULE 2



464 E. K. NARAYANAN & S. THANGAVELU

The vector fields Xj and Yj on Hn give rise to the complex vector fields
Xj ± iYj and applying them to functions of the form f(z, t) = e−itF (z) we
are led to the vector fields

Zj =
∂

∂zj
+

1
2
z̄j , Zj =

∂

∂z̄j
− 1

2
zj , j = 1, 2, . . . , n.

These 2n vector fields together with the identity generate an algebra which
is isomorphic to the (2n+1) dimensional Heisenberg algebra. This algebra
plays for the twisted convolution on Cn a role analogous to that of the Lie
algebra of left invariant vector fields on a Lie group. In fact it is easy to
verify that

(2.4) Zj(f × g) = f × Zjg, Zj(f × g) = f × Zjg.

The special Hermite operator A also called the twisted Laplacian is defined
by

A = −1
2

n∑
j=1

(ZjZj + ZjZj).

This is related to the subLaplacian by

L(e−itf(z)) = e−itAf(z).

An easy calculation shows that L can be written in the form

(2.5) A = −∆z +
1
4
|z|2 − iN

where N =
∑n

j=1 (yj
∂

∂xj
− xj

∂
∂yj

) is the infinitesimal rotation operator.
The spectral decomposition of A is given by the special Hermite expansion
which can be put in the compact form

f(z) = (2π)−n
∞∑

k=0

f × ϕk(z).

The operators f → f × ϕk are the spectral projections and we have

A(f × ϕk) = (2k + n)f × ϕk.

For more details we refer to [12].

Lemma 2.1. — For f ∈ L2(Cn) we have the expansion

f × µr(z) = (2π)−n
∞∑

k=0

k!(n− 1)!
(k + n− 1)!

ϕk(r) f × ϕk(z)

where ϕk(r) stands for Ln−1
k ( 1

2r
2) e−

1
4 r2
.

ANNALES DE L’INSTITUT FOURIER
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Proof. — See Theorem 2.4.4, page 84 of [13]. �

Lemma 2.2. — Let f(z) =
∑∞

k=0 ckϕk(z) be a smooth compactly sup-
ported radial function on Cn. Then for every N > 0 there exists a positive
constant CN such that

|ck| 6 CN (1 + k)−N .

Proof. — Using the fact that Aϕk = (2k + n)ϕk and applying the oper-
ator A repeatedly we have,

ANf(z) =
∑

(2k + n)Nckϕk(z)

which yields, by the orthogonality of ϕk’s

‖ANf‖22 = C
∑

(2k + n)2N |ck|2
k! (n− 1)!
(k + n− 1)!

<∞

which finishes the proof. �

We require several results from the theory of bigraded spherical harmon-
ics. For each pair of non-negative integers p and q let Ppq be the space of
all polynomials P in z and z̄ of the form

P (z) =
∑
|α|=p

∑
|β|=q

cαβ zαz̄β .

Let Hpq = {P ∈ Ppq : ∆P = 0} where ∆ is the standard Laplacian on Cn.

Elements of Hpq are called bigraded solid harmonics on Cn. As polynomials
in Hpq are homogeneous they are determined by their values on the unit
sphere S2n−1. We shall identify Hpq with its restriction to the unit sphere.
Then L2(S2n−1) is the orthogonal direct sum of Hpq as p and q range
over all non-negative integers. Given a continuous function f on Cn we can
expand the function f(rω) where r > 0 and ω ∈ S2n−1 in terms of spherical
harmonics

f(rω) =
∑

p

∑
q

d(p,q)∑
j=1

f j
pq(r) S

j
pq(ω)

where {Sj
pq} form an orthonormal basis for the space Hpq and d(p, q) is the

dimension of Hpq. It is well known that the natural action of the unitary
group U(n) on the spaces Hpq is irreducible. If τ ∈ U(n), the invariance of
Hpq implies

Si
pq(τ

−1z) =
d(p,q)∑
j=0

tpq
ij (τ) Sj

pq(z)

where τ → tpq
ij (τ) are the matrix entries of the above representation.

TOME 56 (2006), FASCICULE 2



466 E. K. NARAYANAN & S. THANGAVELU

We associate with each function f ∈ Lloc(BR) the Fourier series

(2.6) f(z) =
∑
p,q

d(p,q)∑
j=1

f j
pq(|z|) Sj

pq(ω),

where ω = z
|z| . Using the orthogonality of the matrix entries, we have

(2.7) f j
pq(|z|) Si

pq(ω) = d(p, q)
∫

U(n)

f(τ−1z)tp,q
ij (τ) dτ

for 1 6 i, j 6 d(p, q).
For B > 0, let us denote by VB the class of continuous functions f

satisfying the condition f × µr(z) = 0 whenever r > |z|+B.

Lemma 2.3. — Suppose f ∈ VB . Then

f j
pq(|z|)Ypq(ω) ∈ VB for any Ypq ∈ Hpq.

Proof. — From (2.7) we have

f j
pq(|z|)Si

pq(ω) ∈ VB .

Since i is arbitrary, the lemma follows. �

We shall also need the following Hecke-Bochner type identity.

Lemma 2.4. — Let f ∈ L1(Cn) be of the form f = Pg where g is radial
and P ∈ Hpq is a solid harmonic. Then

f × ϕk(z) = (2π)−n P (z)g × ϕn+p+q−1
k−p (ξ)

where

ϕn+p+q−1
k (ξ) = Ln+p+q−1

k (
1
2
|ξ|2)e− 1

4 |ξ|
2
, ξ ∈ Cn+p+q, |ξ| = |z|

and the convolution on the right is on Cn+p+q.

For a proof see [14], page 70.

3. A support theorem for twisted spherical means

In this section we prove Theorem 1.3. First we show that each (p, 0) co-
efficient of the function f satisfies an appropriate confluent hypergeometric
equation in the exterior of a ball. Then we use the decay condition to show
that these coefficients must vanish.

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.1. — Let Am be the special Hermite operator on Cm and p

be a fixed non negative integer. Let g be a radial function on Cm which
satisfies the equation

Amg(z) = λg(z) if |z| > B

for some λ ∈ {2j+m−2p : j = 0, 1, . . . , (p−1)}. If g(z)e
1
4 |z|

2
is a Schwartz

class function then g has to vanish for |z| > B.

Proof. — As g is radial we have Ng = 0 where N is the rotation operator
(see(2.2)). Now it is well known that the equation (see[1] for eg., p. 365–366)

(−∆ +
1
4
|z|2)g = λg

can be reduced to a confluent hypergeometric equation using appropriate
change of variables. Hence g can be written as a linear combination of two
confluent hyper geometric functions whose asymptotics (see [7], p. 254–259)
are not compatible with the decay condition on g. This forces g to vanish
for |z| > B. �

Now assume that f satisfies the hypothesis in Theorem 1.3 and consider
the expansion

(3.1) f × µr(z) =
∞∑

k=0

k!(n− 1)!
(k + n− 1)!

ϕk(r) f × ϕk(z)

which is zero for all r > B + |z|. Here ϕk(r) = Ln−1
k ( 1

2r
2)e−

1
4 r2
.

Viewing the above as a radial function in r, we have by Lemma 2.2

(3.2) |f × ϕk(z)| 6 CN (z) (1 + k)−N for every N > 0.

Rewriting (3.1) as

(3.3) f × µ√2s(z) e
1
2 s =

∞∑
k=0

k!(n− 1)!
(k + n− 1)!

f × ϕk(z) Ln−1
k (s),

differentiating p times with respect to the variable s and using the identity
d
dtL

α
k (t) = −Lα+1

k−1 (t) (see [11]) we obtain
∞∑

k=p

k!(n− 1)!
(k + n− 1)!

f × ϕk(z) Ln+p−1
k−p (s) = 0

for
√

2s > B+|z| (differentiating inside the summation is justified by(3.2)).
By Lemma 2.3 we may replace f with any of the terms in the spherical

harmonic expansion. Let gP be such a term where g is radial and P ∈ Hp0

TOME 56 (2006), FASCICULE 2



468 E. K. NARAYANAN & S. THANGAVELU

is a solid bigraded spherical harmonic. Then an application of Lemma 2.4
gives
(3.4)
∞∑

k=0

(
Π(p−1)

j=0 (2k + 2p− 2j)
) k!(n+ p− 1)!

(k + n+ p− 1)!
ϕn+p−1

k (r)g × ϕn+p−1
k (ξ) = 0

for r > B + |ξ| on Cn+p. We rewrite this as

(3.5)
(
Π(p−1)

j=0 (An+p − (2j + n− p))g
)
× µn+p

r (ξ) = 0

for r > B+ |ξ| where µn+p
r is the normalized surface measure on the sphere

of radius r in Cn+p and An+p is the special Hermite operator on Cn+p.

Notice that
(
Π(p−1)

j=0 (Ln+p − (2j + n − p))g
)

is a radial function. Hence
evaluating the above at origin we obtain

(3.6)
(
Π(p−1)

j=0 (Ln+p − (2j + n− p))g
)
(ξ) = 0

for |ξ| > B. Now using induction and the decay assumption in the hypoth-
esis of Theorem 1.3, along with Lemma 3.1 we finish the proof.

Next we show that the (p, q) coefficients of f too must vanish for |z| > B.

This is done by reducing it to the already done (p, 0) case by means of
differential operators. Let Wj = ∂

∂z̄j
+ 1

2zj =
(

∂
∂xj

+ i ∂
∂yj

)
+ 1

2 (xj + iyj).
Then a simple computation shows that Wj(f × µr) = Wjf × µr. So if
f ∈ VB is smooth then Wjf also belongs to VB .

Now let h(|z|) be one of the (p, q) coefficients of f in the spherical har-
monic expansion. Then by Lemma 2.3 we have

g(z) = h(|z|) z
p
1 z̄2

q

|z|p+q
∈ VB .

By the above remark we have W2g ∈ VB . A simple calculation shows that
W2g is given by

zp
1 z̄2

q−1|z2|2

|z|p+q+1

(
h
′
(s)− (p+ q)

s
h(s) +

s

2
h(s)

)
+

2q
s
h(s)

zp
1 z̄2

q−1

|z|p+q−1

where s = |z|. Projecting the function zp
1 z̄2

q−1|z2|2

|z|p+q+1 to the span of zp
1 z̄2

q−1

|z|p+q−1

and using Lemma 2.3 again we obtain that the function

(3.7)
[ 1
(n+ p+ q − 1)

(
h
′
(s)− (p+ q)

s
h(s) +

s

2
h(s)

)
+

2q
s
h(s)

] zp
1 z̄2

q−1

|z|p+q−1

belongs to the class VB .

We claim that each (p, q) coefficient of f must be of the form e−
s2
4 P ( 1

s ),
where P ( 1

s ) is a polynomial in s and 1
sr for r rational if s > B. To prove
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this claim, first assume q = 1. Then the above gives

(3.8)
[ 1
(n+ p)

(
h
′
(s)− (p+ 1)

s
h(s) +

s

2
h(s)

)
+

2
s
h(s)

] zp
1

|z|p
∈ VB .

Notice that the assumptions on the original function f hold true for the
above function as well. Hence from what we have seen for (p, 0) coefficients
it follows that(3.8) should vanish for s > B. Solving the linear differential
equation we obtain that h is of the claimed form. A simple induction now
proves the claim fully.

Finally the decay assumption on the function f implies that all spheri-
cal harmonic coefficients decay in a similar manner which forces all these
terms to be zero outside a ball of radius B. This completes the proof of
Theorem 1.3.

Remark. — Notice that the condition f(z)e
1
4 |z|

2
is not translation in-

variant and so the smoothness assumption on the function f was neces-
sary. However, if we assume a slightly stronger condition, namely that
|f(z)| 6 C e−( 1

4+ε)|z|2 , then we may convolve f on the right with a ra-
dial approximate identity and obtain the same result. These type of rapid
decay conditions are natural for the study of twisted spherical means as
can be seen from the earlier works (see[1] [6] and [9]).

4. Twisted spherical means on C

This section is devoted to a proof Theorem 1.4. Convolving f on the right
with a compactly supported radial approximate identity and reducing ε we
may assume that f is smooth. As f̄ × µr = µr × f it follows that f̄ ∈ VB

as well. Consequently we may assume that f is real valued. Our aim is to
show that z̄nf(z) ∈ VB for all n > 0, following the method of Helgason,
using Green’s formula (see [5] p. 107–108).

We have

f × µr(z) =
∫
|w|=r

f(z + w) e−
i
2 Im zw̄ dµr(w) = 0 for r > |z|+B.

Therefore,∫
r1<|w|<r2

f(z + w) e−
i
2 Im zw̄ dw = 0 if r2 > r1 > B + |z|.

Applying the operator ∂ = ∂
∂x − i ∂

∂y with respect to z = x+ iy we have∫
r1<|w|<r2

∂f(z+w)e−
i
2 Im zw̄ +

∫
r1<|w|<r2

f(z+w)e−
i
2 Im zw̄(−1

2
w̄) dw = 0
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for r2 > r1 > B + |z|. Hence

(4.1)
∫

r1<|w|<r2

∂w

(
f(z + w)e−

i
2 Im zw̄

)
dw

=
1
2

∫
r1<|w|<r2

w̄ f(z + w) e−
i
2 Im zw̄ dw.

Using Green’s formula on left hand side of(4.1) we have∫
|w|=r2

w̄ f(z+w) e−
i
2 Im zw̄dµr2(w)−

∫
|w|=r1

w̄ f(z+w) e−
i
2 Im zw̄ dµr2(w)

=
1
2

∫
r1<|w|<r2

w̄ f(z + w) e−
i
2 Im zw̄ dw.

Let g(z) = z̄f(z). Then the above implies

g × µt(z)− g × µs(z) =
1
2

∫ t

s

g × µr(z) rdr

for t > s > B + |z|. This, in turn, implies that

(4.2) g × µt(z) = C(z) e
t2
4 for t > B + |z|.

But notice that g also satisfies the growth condition assumed on f which
gives us the estimate, for a fixed z,

|g × µt(z)| 6 C e(
1
4−δ)t2

for some 0 < δ < ε. Comparing this estimate with(4.2) we conclude that
g × µt(z) = 0 for t > B + |z|. Thus we have proved that if f is in the class
VB so is g(z) = z̄f(z). Repeating, we have z̄nf(z) ∈ VB for all n ∈ N.

Evaluating the means of z̄nf(z) at origin we have

(4.3)
∫
|w|=r

w̄nf(w)dµr(w) = 0 for r > B.

Since f is real valued, taking complex conjugate in(4.3) we also have

(4.4)
∫
|w|=r

wnf(w)dµr(w) = 0 for r > B.

Now(4.3) and (4.4) clearly implies that f(z) vanishes for |z| > B. This
completes the proof of Theorem 1.4.

Next we show by an example that this result does not generalize to higher
dimensions. We shall construct a function h(z) on C2 which has exponential
decay at infinity and satisfies

h× µr(z) = µr × h(z) = 0 for r > |z|.
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We make use of a result of Epstein and Kliener on the spherical means on
Rd in the proof. Let us briefly recall their result.

For a function f on Rd we have the spherical harmonic expansion

f(x) = f(ρω) =
∞∑

k=0

dk∑
l=1

akl(ρ) Y l
k(ω)

where ρ = |x| and {Y l
k(ω) : l = 1, 2, . . . , dk} is an orthonormal basis for

the space Vk of homogeneous harmonic polynomials of degree k restricted
to the unit sphere. For each k the space Vk is invariant under the action of
SO(d). When d = 2m for some m, it is invariant under the the action of
the unitary group U(m) as well, and under this action of U(m) the space
Vk breaks up into an orthogonal direct sum of Hpq’s where p+ q = k.

Let σr stand for the normalized surface measure on the sphere of radius r
centered at the origin contained in Rd. The main result in[4] is the following:

Theorem 4.1. — A continuous function f on Rd satisfies

f ∗ σr(x) = 0 for r > |x|+B for all x ∈ Rd

if and only if

akl(ρ) =
k−1∑
i=0

αi
klρ

k−d−2i, αi
kl ∈ C,

for all k > 0, 1 6 l 6 dk, and a0(ρ) = 0 whenever ρ > B.

We shall also need another result on the spaces Hpq whose proof may be
found in [8]. The space Hpq ·Hrs is defined to be the vector space of finite
sums

∑
figi with fi ∈ Hpq and gi ∈ Hrs. For non-negative integers p, q, r, s

define
ν = ν(p, q, r, s) = min(p, s) + min(r, q).

Lemma 4.2. —Hpq.Hrs ⊂
∑ν

j=0 H(p+r−j)(q+s−j) where ν = ν(p, q, r, s).

Our example has the following simple form. Define h on C2 as

h(z) = e−
1
4 |z|

2 z1z̄2
|z|6

.

We first prove that h× µr(z) = 0 for r > |z|. Since µr × h = h̄× µr and h̄

is of the same form it follows that h satisfies both the conditions.
Now,

h× µr(z) =
∫
|w|=r

(z1 + w1)(z̄2 + w̄2)
|z + w|6

e−
1
4 |z+w|2 e−

i
2 Im z·w̄dµr(w).
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Expanding the term |z + w|2 and simplifying we see that it is enough to
consider the integral∫

|w|=r

e−
z·w̄
2

(z1 + w1)(z̄2 + w̄2)
|z + w|6

dµr(w).

Expanding the exponential factor, we are led to terms of the form∫
|w|=r

(z1 + w1)(z̄2 + w̄2)
|z + w|6

w̄1
α1w̄2

α2 dµr(w) where α1, α2 ∈ N ∪ {0}.

Writing w̄1 = (z̄1 + w̄1 − z̄1) etc. and expanding again we see that it is
enough to consider terms of the form∫
|w|=r

(z1 + w1)(z̄1 + w̄1)β1(z̄2 + w̄2)1+β2

|z + w|6
dµr(w) where β1, β2 ∈ N ∪ {0}.

Let g(z) = (z1z̄1β1 z̄2
1+β2)/(|z|6), then we need to show that g ∗ µr(z) = 0

for r > |z| where ∗ stands for the Euclidean convolution. Writing

P (z) = z1z̄1
β1 z̄2

1+β2 = (z1z̄21+β2)z̄1β1

and using Lemma 4.2 we have P (z) = P0(z) + |z|2P1(z) if β1 > 1 where
P0 is a solid harmonic of degree 2 + β1 + β2 and P1 is of degree β1 + β2. If
β1 = 0 then P (z) belongs to H1(1+β2). Now it is a matter of easy verification
using Theorem 4.1 that each such term satisfies the convolution equation
we want. This finishes the proof.

Remark. — Though the different behaviour of twisted spherical means
in dimension one and higher dimensions is in sharp contrast with the known
cases, namely, the Euclidean and symmetric spaces, it has a simple expla-
nation. A close examination of Theorem 1.4 shows that the convolution
conditions imply that the function f is orthogonal to holomorphic and
anti-holomorphic monomials on any sphere of radius greater than B cen-
tered at the origin. When the dimension is one this implies that the function
vanishes outside the ball of radius B while for the higher dimensional case
this is clearly not sufficient.

Acknowledgement. — The authors wish to thank the referee who made
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