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THE CHERN CHARACTER
FOR LIE-RINEHART ALGEBRAS

by Helge MAAKESTAD

0. Introduction.

Classical Galois theory setting up a one to one correspondence
between intermediate field-extensions of a Galois extension E ⊆ F and
subgroups of the Galois group Gal(F/E) was generalized by N. Jacobson in
[12] to give a Galois-correspondence for purely inseparable field-extensions
k ⊆ K of exponent one of a field k of characteristic p > 0. This is a one
to one correspondence between intermediate fields and p − K/k-sub-Lie
algebras of Derk(K). Jacobsons p−K/k-Lie algebra is the characteristic p
version of a structure called a Lie-Rinehart algebra.

For an arbitrary k-algebra A, there exists the notion of a (k,A)-Lie-
Rinehart algebra: it is a k-Lie algebra and A-module g with a map of k-Lie
algebras and A-modules α : g→ Derk(A), i.e a Lie-algebra acting on A in
terms of vector fields. There exists the notion of a g-connection ∇ on an
A-module W : this is an action

∇ : g→ Endk(W )

Keywords: Lie-Rinehart algebra, connections, algebraic stacks, differential graded alge-
bras, Grothendieck rings, Chern characters, de Rham cohomology, Lie-Rinehart coho-
mology, Jacobson Galois correspondence.
Math. classification: 14C17, 19E15, 14L15.
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generalizing the notion of a covariant derivation. There exists a complex
C•(g,W,∇) – the Lie-Rinehart complex – generalizing simultaneously the
algebraic de Rham complex of A and the Chevalley-Eilenberg complex of
g. The main result of this paper is the following (see Theorem 2.12): There
exists a ring homomorphism

chg : K0(g)→ H∗(g, A)

from the Grothendieck ring K0(g) to the cohomology ring H∗(g, A).
Here K0(g) is the Grothendieck ring of locally free A-modules with a g-
connection and H∗(g, A) is the Lie-Rinehart cohomology of A with respect
to g. We prove furthermore in Theorem 3.10 that the Chern character from
Theorem 2.12 is independent with respect to choice of g-connection. This
generalizes the construction of the classical Chern character (see Corollary
3.11.) Note that J. Huebschmann has in [10] considered a Chern-Weil con-
struction in a similar situation, and it would be interesting to relate the
construction in [10] to the construction in this note.

The notion of a (k,A)-Lie-Rinehart algebra is closely related to the
notion of a groupoid in schemes. One constructs from a groupoid in schemes
a Lie-Rinehart algebra in the same way as one constructs the Lie algebra
from a group scheme. Much of the theory for group schemes and Lie
algebras can be generalized to this new situation.

Lie-Rinehart algebras appear in topology and knot theory: T. Kohno
has in [13] computed the Alexander polynomial of an irreducible plane
curve C in C2 using the logarithmic deRham complex Ω•C2(∗C) which is
just the standard complex where we let g be the Lie algebra of derivations
preserving the ideal of C in C2.

Groupoids and Lie-Rinehart algebras appear in the theory of motives:
Let T be a Tannakian category over a field F of characteristic zero, and
let ω be a fiber functor over the algebraic closure F of F . Then Aut⊗(ω) is
represented by a groupoid S/S0 and there exists an equivalence of categories

T ∼= Rep(S/S0),

(see [21]).

The paper is organized as follows: In the first section we define and
sum up various general properties of Lie-Rinehart algebras, connections
and the Lie-Rinehart complex. In the second section we prove existence of
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the Chern character. In the third section we prove that the Chern character
is independent with respect to choice of connection.

1. Lie-Rinehart algebras, connections
and the Lie-Rinehart complex.

In this section we introduce objects in the theory of modules on Lie-
Rinehart algebras and state some general facts on the following: Let A
be a commutative ring over a field k. Let furthermore g be an (k,A)-Lie-
Rinehart algebra and let (W,∇) be a g-module. We introduce the Lie-
Rinehart complex C•(g,W,∇). If ∇ is flat, C•(g,W,∇) is a DG-module,
hence H•(g,W,∇) is a graded left H•(g, A)-module.

DEFINITION 1.1. — Let A be a commutative k-algebra where k is a

commutative ring. A (k,A)-Lie-Rinehart algebra on A is a k-Lie algebra

and an A-module g with a map α : g → Derk(A) satisfying the following

properties:

α(aδ) = aα(δ)(1.1.1)

α([δ, η]) = [α(δ), α(η)](1.1.2)

[δ, aη] = a[δ, η] + α(δ)(a)η(1.1.3)

for all a ∈ A and δ, η ∈ g. LetW be an A-module. A g-connection ∇ onW ,

is an A-linear map ∇ : g→ Endk(W ) which satisfies the Leibniz-property,

i.e.

∇(δ)(aw) = a∇(δ)(w) + α(δ)(a)w

for all a ∈ A and w ∈ W . The g-connection ∇ is flat if it is a map of Lie

algebras. If ∇ is flat, we say that the pair (W,∇) is a g-module.

When it is clear from the context the notion Lie-Rinehart algebra
will be use instead of (k,A)-Lie-Rinehart algebra. A Lie-Rinehart algebra
is also referred to as a a Lie-Cartan pair or a foliation.

DEFINITION 1.2. — Let A be a k-algebra, g a Lie-Rinehart algebra

and (W,∇) an A-module with a g-connection. Define a sequence of A-

modules C̃•(g,W,∇) and k-linear differentials d• in the following way: Let

C̃p(g,W,∇) = Homk(∧pg,W ) where ∧pg is wedge product over A. Define

differentials

dp : C̃p(g,W,∇)→ C̃p+1(g,W,∇)

TOME 55 (2005), FASCICULE 7
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by

(dpψ)(δ1 ∧ · · · ∧ δp+1) =
p+1∑
i=1

(−1)i+1∇δiψ(δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp+1)

(1.2.1) +
∑

1�i<j�p+1

(−1)i+jψ([δi, δj ] ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp+1).

Put C̃0 = W and define d0(w)(δ) = ∇(δ)(w). Let R∇ = d1 ◦ d0 be the

curvature of the connection ∇.

Notice that R∇(δ ∧ η) = [∇δ,∇η] − ∇[δ,η] hence W is a g-module
if and only if the curvature is zero. Note also: if the connection ∇ is flat
and A = k, the sequence of modules and differentials defined in 1.2 is just
the ordinary Chevalley-Eilenberg complex of the representation W for the
k-Lie algebra g.

LEMMA 1.3. — Let g be a Lie-Rinehart algebra and let (W,∇) be

a g-connection. Consider the sequence of modules from definition 1.2,

C̃•(g,W,∇). Then for all p � 0 the following holds:

(dp+1 ◦ dp)(δ1 ∧ · · · ∧ δp+2)

=
∑

1�i<j�p+2

(−1)i+j+1R∇(δi ∧ δj)(δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp+2).

Furthermore the maps dp induce maps

dp : HomA(∧pg,W )→ HomA(∧p+1g,W )

i.e dpφ(aw) = adpφ(x).

Proof. — Standard fact. �

DEFINITION 1.4. — Define the Lie-Rinehart complex C•(g,W,∇) as

follows:

Cp(g,W,∇) = HomA(∧pg,W ),

with differentials

dp : HomA(∧pg,W )→ HomA(∧p+1g,W )

ANNALES DE L’INSTITUT FOURIER
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defined by equation 1.2.1. Put C0 = W and define d0(w)(δ) = ∇(δ)(w).
Let R∇ = d1 ◦d0 be the curvature of the connection ∇. Then from Lemma

1.3 it follows that we get a sequence of maps of k-vector spaces.

The Lie-Rinehart complex is sometimes referred to as the Chevalley-

Hochschild complex. We see from Lemma 1.3 that C•(g,W,∇) is a complex
if and only if the curvature R∇ is zero, hence if the curvature R∇ is zero,
we get well defined cohomology spaces.

DEFINITION 1.5. — Assume g is a Lie-Rinehart algebra and (W,∇) is

a a flat g-connection ∇. We define the cohmology of (W,∇) as follows:

Hp(g,W,∇) = Hp(C•(g,W,∇)),

where C•(g,W,∇) is the Lie-Rinehart complex.

The maps dp from 1.4 are k-linear, hence the abelian groups
Hp(g,W,∇) are k-vector spaces. Note furthermore that the cohomology
H∗(g, A,∇) depends on the choice of connection ∇ : g→ Endk(A).

If the ring A is a smooth k-algebra of finite type, i.e the module
of differentials Ω1

A is locally free of finite rank, it follows that the Lie-
Rinehart complex is isomorphic to the algebraic de Rham complex, hence
the Lie-Rinehart complex generalizes simultaneously the algebraic de Rham
complex and the Chevalley-Eilenberg complex.

PROPOSITION 1.6. — Let A be a k-algebra and g a Lie-Rinehart

algebra. Let furthermore (W,∇1) and (W,∇2) be A-modules with g-

connections. There exists an exterior-product

C∗(g,W )⊗A C∗(g,W ′)→ C∗(g,W ⊗AW ′)

with the following property:

(1.6.1) d(xy) = d(x)y + (−1)pxd(y),

for all elements x in HomA(∧pg,W ) and y in HomA(∧qg,W ).

Proof. — Standard fact. �

Recall some general definitions and standard facts on DG-algebras
(for a reference see [25]). A DG-algebra B∗ = ⊕p�0B

p is a graded
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associative algebra equipped with a graded derivation d of degree 1. If we
do not require d2 = 0 we say that B∗ is a quasi-differential graded algebra.
We can define the cohomology H∗(B∗) of B∗ and it follows that H∗(B∗) is
a graded associative k-algebra. If B∗ is graded commutative, so is H∗(B∗).
A graded left B∗-module M∗ = ⊕p�0M

p is a differential graded module if
it is equipped with a graded derivation of degree one with d2 = 0. We say
that M∗ is a quasi-differential graded module if we do not require d2 = 0.
It follows that H∗(M∗) is a graded left H∗(B∗)-module. If we are given
two DG-algebras B∗ and E∗ over a field k, then a map of DG-algebras, is
just a map φ∗ : B∗ → E∗ of graded associative algebras, commuting with
the differentials. One easily verifies that such a map φ∗ induces a map of
graded associative algebras H(φ∗) : H∗(B∗) → H∗(E∗). Also, given two
DG-modules M∗ and N∗ on a DG-algebra B∗, a map of DG-modules, is a
map ψ∗ :M∗ → N∗ commuting with the differentials. It is trivial to check
that such a map ψ∗ induces a map H(ψ∗) : H∗(M∗) → H∗(N∗) of graded
H∗(B∗)-modules.

PROPOSITION 1.7. — Let A be a k-algebra, g a Lie-Rinehart alge-

bra. Let furthermore (W,∇) be an A-module with a g-connection. Then

C∗(g, A) is a DG-algebra and C∗(g,W ) is a quasi-DG-module on C∗(g, A).
If W is a g-module, then C∗(g,W ) is a DG-module, hence H∗(g, A) is a

graded associative k-algebra and H∗(g,W ) is in a natural way a graded left

module on H∗(g, A).

Proof. — This follows from the previous discussion and Proposition
1.6. �

PROPOSITION 1.8. — Let A be a k-algebra, and g an Lie-Rinehart

algebra. Let furthermore (W,∇) be a g-connection. The connection ∇
induces a connection ad∇ on EndA(W ), hence C∗(g,EndA(W )) becomes

in a natural way a quasi-DG-algebra. If W is a g-module, C∗(g,EndA(W ))
is DG-algebra.

Proof. — This follows from the previous discussion. �

2. A construction of the Chern character.

This section contains proofs of the following results: Let k be a field
of characteristic zero, and let A be a k-algebra. Let furthermore g be an
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(k,A)-Lie-Rinehart algebra, and (W,∇) be a g-connection wich is of finite
presentation as an A-module. There exists a Chern character chg(W ) in
H∗(g|U ,OU ) where U is the open subset of Spec(A) where W is locally
free. We apply this to prove the existence of a ring homomorphism

chg : K0(g)→ H∗(g, A)

where K0(g) is the Grothendieck ring of locally free A-modules with a g-
connection.

Recall briefly classical Chern-Weil theory: Let A be a k-algebra, where
k is a field of characteristic 0, and let E be a locally free A-module. Any
connection

∇ : E → Ω1
A ⊗ E

gives rise to a connection

ad∇ : EndA(E)→ Ω1
A ⊗ EndA(E),

and we get
Rk∇ ∈ Ω2k

A ⊗ EndA(E).

Since E is locally free there exists a trace map tr : EndA(E) → A and we
get Chern-classes

chk(E,∇) ∈ H2k
DR(A).

This construction defines a group-homomorphism

chA : K0(A)→ H∗DR(A).

THEOREM 2.1. — The map chA : K0(A) → H∗DR(A) is a ring-

homomorphism.

Proof. — See Theorem 8.1.7 in [16]. �

Notice the following: If ∇ and ∇′ are two g-connections on an A-
module A, where g is an Lie-Rinehart algebra, then the difference ∇−∇′
is an element of the module HomA(g,EndA(W )). We express this by saying
that the set of g-connections onW form a principal homogeneous space (or
a torsor) on HomA(g,EndA(W )). This means that given a g-connection
∇ on W , any other connection ∇′ can be obtained from ∇ by adding an
element φ from HomA(g,EndA(W )), that is ∇′ = ∇+ φ for a unique φ.

TOME 55 (2005), FASCICULE 7
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LEMMA 2.2. — Let A be a k-algebra, g a Lie-Rinehart algebra and

W a g-connection which is free as an A-module. The trace map

tr∗ : C∗(g,EndA(W ))→ C∗(g, A)

is a morphism of complexes.

Proof. — The only thing we have to prove is that for all p � 0 we
have commutative diagrams

Cp(g,EndA(W )) dp−−−→ Cp+1(g,EndA(W ))� tr

� tr

Cp(g, A) dp−−−→ Cp+1(g, A).

We may assume that we have chosen a basis {ei} for W as an A-module
and we can write W = ⊕ni=1Aei. Then in this basis we have a connection
∇′δi(

∑
aiei) =

∑
α(δi)(ai)ei, and one verifies that R∇′ = 0, hence the

connection∇′ is integrable. The connection∇ which defines the g-structure
structure on W can now be written in a unique way as ∇ = ∇′ + φ, where
φ is an element of HomA(g,EndA(W )), since g-connections are a torsor
on HomA(g,EndA(W )). The induced connection ad∇ on EndA(W ) then
becomes

ad∇ = [∇,−] = [∇′ + φ,−] = [∇′,−] + [φ,−].

The rest is straightforward calculation: Let ψ be an element of
Cp(g,EndA(W )) = HomA(∧pg,EndA(W )). Put also ω = δ1 ∧ · · · ∧ δp+1,
ω(i) = δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δp+1 for 1 � i � p + 1, and ω(i, j) =
[δi, δj ] ∧ δ1 ∧ · · · ∧ δ̂i ∧ · · · ∧ δ̂j ∧ · · · ∧ δp+1.

Then we have that

tr((dpψ)(ω))

= tr

(
p+1∑
i=1

(−1)i+1ad∇δiψ(ω(i))

)
+ tr


 ∑

1�i<j�p+1

(−1)i+jψ(ω(i, j))




= tr

(
p+1∑
i=1

(−1)i+1[∇′δi , ψ(ω(i))]

)
+ tr

(
p+1∑
i=1

(−1)i+1[φ(δi), ψ(ω(i))]

)

+ tr


 ∑

1�i<j�p+1

(−1)i+jψ(ω(i, j))
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= tr

(
p+1∑
i=1

(−1)i+1(α(δi)(ψ(ω(i)))kl)

)
+ tr


∑
i<j

(−1)i+jψ(ω(i, j))




=
p+1∑
i=1

(−1)i+1tr(α(δi)(ψ(ω(i))kl)) +
∑
i<j

(−1)i+jtr(ψ(ω(i, j)))

=
p+1∑
i=1

(−1)i+1α(δi)(tr(ψ(ω(i)))) +
∑
i<j

(−1)i+j(tr ◦ ψ)(ω(i, j))

= dp(tr ◦ ψ)(ω)

and we see that tr ◦ dp = dp ◦ tr and we have proved the assertion. �

COROLLARY 2.3. — Assume x∗ is an element of C∗(g,EndA(W )) with

the property that d∗(x∗) = 0, then tr∗(x∗) gives rise to a cohomology-class

tr∗(x∗) in H∗(g, A).

Proof. — We show that d∗(tr∗(x∗)) = 0: For all p � 0 we have
commutative diagrams

Cp(g,EndA(W )) dp−−−→ Cp+1(g,EndA(W ))� tr

� tr

Cp(g, A) dp−−−→ Cp+1(g, A)

by lemma 2.2. We see that dp(trp(xp) = tr(dp(xp)) = tr(0) = 0, hence
we have that d∗(tr∗(x∗)) = 0 and we get a well-defined cohomology-class
tr∗(x∗) in H∗(g, A). �

Given a g-connection W , where g is an Lie-Rinehart algebra, one
verifies that the curvature R∇ is an element of HomA(g ∧ g,EndA(W )) =
C2(g,EndA(W )).

LEMMA 2.4 (The Bianchi identity). — Let A be a k-algebra, g a Lie-

Rinehart algebra, and W a g-connection. Then d2(R∇) = 0.

Proof. — This is straightforward calculation: Let

ω = α ∧ β ∧ γ

be an element of ∧3g. Then we see that

d2R∇(α ∧ β ∧ γ)

TOME 55 (2005), FASCICULE 7
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= ad∇αR∇(β ∧ γ)− ad∇βR∇(α ∧ γ) + ad∇γR∇(α ∧ β)

−R∇([α, β] ∧ γ) +R∇([α, γ] ∧ β)−R∇([β, α] ∧ α)

= ∇αR∇(β ∧ γ)−R∇(β ∧ γ)∇α
− (∇βR∇(α ∧ γ)−R∇(α ∧ γ)∇β) +∇γR∇(α ∧ β)−R∇(α ∧ β)∇γ
− ([∇[α,β],∇γ ]−∇[[α,β],γ]) + [∇[α,γ],∇β ]−∇[[α,γ],β]

− ([∇[β,γ],∇α]−∇[[β,γ],α])

= [∇α, [∇β ,∇γ ]] + [∇β , [∇γ ,∇α]] + [∇γ , [∇α,∇β ]]

+∇[[α,β],γ] +∇[[β,γ],α] +∇[[γ,α],β]

+ [∇β ,∇[α,γ]]− [∇α,∇[β,γ]]

− [∇γ ,∇[α,β]]

− [∇[α,β],∇γ ] + [∇[α,γ],∇β ]− [∇[β,γ],∇α] = 0

and we have proved the assertion. �

PROPOSITION 2.5. — Let A be a k-algebra, g a Lie-Rinehart algebra

and (W,∇) be a g-connection. Let furthermore R∇ be the curvature of ∇.

Then d2n(Rn∇) = 0 for all n � 1.

Proof. — We prove this by induction on n: By lemma 2.4 we see that
the lemma is true for n = 1. Assume it is true for n = k. We see that

d(Rk+1
∇ ) = d(Rk∇ ∧R∇) = d(Rk∇) ∧R∇ + (−1)2kRk∇ ∧ d(R∇)

and d(Rk∇) ∧R∇ + (−1)2kRk∇ ∧ d(R∇) is zero by the induction hypothesis
and lemma 2.4, and we have proved the assertion. �

Let in the following A be a k-algebra, where k is a field of char-
acteristic 0. Let g be a Lie-Rinehart algebra and (W,∇) a g-connection,
where W is an A-module of finite presentation. Let exp(R∇) be defined as∑
n�0

1
n!R

n
∇. Consider the open set U ⊆ SpecA where W is locally free,

which exists since W is of finite presentation. By lemma 2.2 we have trace
maps

tr∗ : Cp(gp,EndAp
(Wp))→ C∗(gp, Ap)

defined for all p in U , since W |U is locally free, and these maps glue to give
a map of sheaves of complexes

tr∗ : C∗(g|U ,EndOU (W |U ))→ C∗(g|U ,OU ).

ANNALES DE L’INSTITUT FOURIER
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We have that R∇|U is an element of C2(g|U ,EndOU (W |U )) and we obtain
an element exp(R∇|U ) in C∗(g|U ,EndOU (W |U )). By lemma 2.2 we see that
the element d∗(exp(R∇|U )) equals zero, since it vanishes when we localize
at all prime-ideals p in U . Consider the element x∗ = tr∗(exp(R∇|U )),
which lives in C∗(g|U ,OU ).

THEOREM 2.6. — The following holde: d∗(x∗) = 0. Hence x∗ defines

a cohomology-class in H∗(g|U ,OU ).

Proof. — It follows from corollary 2.3 that d∗(x∗) = 0, since we have
already seen that d∗(exp(R∇)) = 0, hence we get a cohomology class as
claimed. �

DEFINITION 2.7. — Let A be a k-algebra where k is a field of char-

acteristic 0 and let g be an Lie-Rinehart algebra. Let furthermore W be a

g-connection, where W is an A-module of finite presentation. We let the

element chg(W,∇) = x∗ in H∗(g|U ,OU ) from theorem 2.6 be the Chern
character of the g-connection (W,∇).

By theorem 2.6 the class chg(W,∇) in H∗(g|U ,OU ) is an invariant of
the pair (W,∇). Given any k-algebra A, where k is a field of characteristic 0,
and g an Lie-Rinehart algebra, we consider K0(g), the Grothendieck ring of
g. This is defined as follows: K0(g) is the free abelian group on the symbols
[W,∇] module a subgroup D wich we will define below. Here (W,∇) is a
g-connection which is a locally free A-module of finite rank. The symbol
[W,∇] denotes the isomorphism-class of the pair (W,∇). The subgroup D
is the group generated by the relations

[W ⊕W ′,∇⊕∇′]− [W,∇]− [W ′,∇′].

That is: K0(g) = ⊕Z[W,∇]/D. (We obviously have that the direct sum of
two g-connections is again a g-connection.) Given two g-connections (W,∇)
and (W ′,∇′), there exists a natural connection ∇⊗∇′ = ∇⊗ 1 + 1 ⊗∇′
on W ⊗AW ′, hence W ⊗AW ′ is in a natural way a g-connection. Define a
map

⊗ : ⊕Z[W,∇]×⊕Z[W,∇]→ K0(g)

by the following

⊗(
∑
i

ni[Wi,∇i],
∑
j

mj [Vj ,∇′j ]) =
∑
i,j

nimj [Wi ⊗A Vj ,∇i ⊗∇′j ].
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LEMMA 2.8. — The map ⊗ defines a Z-bilinear product

K0(g)⊗Z K0(g)→ K0(g)

making K0(g) into a commutative Z-algebra.

Proof. — This is straightforward. �

LEMMA 2.9. — Let (W,∇) and (W ′,∇′) be two g-connections. The

the following holds:

R∇⊕∇′ = R∇ ⊕R∇′(2.9.1)

R∇⊗∇′ = R∇ ⊗ 1 + 1⊗R∇′(2.9.2)

R∇ ⊗ 1 ∧ 1⊗R∇′ = 1⊗R∇′ ∧R∇ ⊗ 1(2.9.3)

(R∇⊕∇′)n = Rn∇ ⊕Rn∇′ .(2.9.4)

Proof. — We first prove equation 2.9.1:

R∇⊕∇′(δ ∧ η) = [∇⊕∇′δ,∇⊕∇′η]−∇⊕∇′[δ,η].

It follows that if we pick (w,w′) in W ⊕W ′, we get

R∇⊕∇′(δ ∧ η)(w,w′)

= [∇⊕∇′δ,∇⊕∇′η](w,w′)−∇⊕∇′[δ,η](w,w′)

= ∇⊕∇′η ◦ ∇ ⊕∇′δ(w,w′)−∇⊕∇′δ ◦ ∇ ⊕∇′η(w,w′)−∇⊕∇′[δ,η](w,w′)

= ∇⊕∇′η(∇δ(w),∇′δ(w′))−∇⊕∇′δ(∇η(w),∇′η(w′))− (∇[δ,η](w),∇′[δ,η](w′))

= (∇η∇δ(w),∇′η∇′δ(w′))− (∇δ∇η(w),∇′δ∇′η(w′))− (∇[δ,η](w),∇′[δ,η](w′))

= (R∇(δ ∧ η)(w), R∇′(δ ∧ η)(w′))

= R∇ ⊕R∇′(w,w′)
and equation 2.9.1 follows. We prove equation 2.9.2: Let w ⊗ w′ be an
element of W ⊗AW ′, and let ∇⊗∇′ = ∇⊗ 1+1⊗∇′ be the g-connection
on W ⊗AW ′. We get

R∇⊗∇′(δ ∧ η)(w ⊗ w′)

= [∇⊗∇′δ,∇⊗∇′η](w ⊗ w′)−∇⊗∇′[δ,η](w ⊗ w′)
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= ∇⊗∇′η ◦ ∇ ⊗∇′δ(w ⊗ w′)−∇⊗∇′δ ◦ ∇ ⊗∇′η(w ⊗ w′)−∇⊗∇′[δ,η](w ⊗ w′)
= ∇⊗∇′η(∇δ(w)⊗ w′ + w ⊗∇′δ(w′))−∇⊗∇′δ(∇η(w)⊗ w′ + w ⊗∇′η(w′)
− (∇[δ,η](w)⊗ w′ + w ⊗∇[δ,η](w′))

= ∇η∇δ(w)⊗ w′ +∇δ(w)⊗∇′η(w′) +∇η(w)⊗∇′δ(w′) + w ⊗∇′η∇′δ(w′)
− (∇δ∇η(w)⊗ w′ +∇η(w)⊗∇′δ(w′) +∇δ(w)⊗∇′η(w′) + w ⊗∇′δ∇′η(w′))

−∇[δ,η](w)⊗ w′ − w ⊗∇[δ,η](w′)

= [∇δ,∇η](w)⊗ w′ + w ⊗ [∇′δ,∇′η](w′)−∇[δ,η](w)⊗ w′ − w ⊗∇′[δ,η](w′)
= R∇(δ ∧ η)(w)⊗ w′ + w ⊗R∇′(δ ∧ η)(w′)

and equation 2.9.2 follows. We prove equation 2.9.3: Let ω be an element
of ∧4g. We get

R∇ ⊗ 1 ∧ 1⊗R∇′(w)

=
∑
(2,2)

sgn(σ)(R∇ ⊗ 1, 1⊗R∇′)σ(ω)

=
∑
(2,2)

sgn(σ)R∇(σ(ω))⊗ 1 ◦ 1⊗R∇′(σ(ω))

=
∑
(2,2)

sgn(σ)1⊗R∇′(σ(ω)) ◦R∇(σ(ω))⊗ 1

=
∑
(2,2)

sgn(σ)(1⊗R∇′ , R∇ ⊗ 1)σ(ω)

= 1⊗R∇′ ∧R∇ ⊗ 1(ω)

and equation 2.9.3 follows. Finally we prove equation 2.9.4 by induction
on n. For n=2 we get the following: Let ω = δ1 ∧ · · · ∧ δ4, and for any
(2, 2)-shuffle σ put σ(ω)1 = δσ(1) ∧ δσ(2) and σ(ω)2 = δσ(3) ∧ δσ(4). We get

(R∇ ⊕R∇′)2(ω)

=
∑
(2,2)

sgn(σ)(R∇ ⊕R∇′ , R∇ ⊕R∇′)σ(ω)

=
∑
(2,2)

sgn(σ)R∇ ⊕R∇′(σ(ω)1) ◦R∇ ⊕R∇′(σ(ω)2)

=
∑
(2,2)

sgn(σ)R∇(σ(ω)1)⊕R∇′(σ(ω)1) ◦R∇(σ(ω)2)⊕R∇′(σ(ω)2)

=
∑
(2,2)

sgn(σ)R∇(σ(ω)1)R∇(σ(ω)2)⊕R∇′(σ(ω)1)R∇′(σ(ω)2)

TOME 55 (2005), FASCICULE 7



2564 Helge MAAKESTAD

= (
∑
(2,2)

sgn(σ)(R∇, R∇)σ(ω))⊕ (
∑
(2,2)

sgn(σ)(R∇′ , R∇′)σ(ω))

= R2
∇(ω)⊕R2

∇′(ω)

and we have proved equation 2.9.4 for n = 2. Assume the equation is true
for n = k. Put n = k + 1, and let ω = δ1 ∧ · · · ∧ δ2k+2. Put also for any
(2k, 2)-shuffle σ, σ(ω)1 = δσ(1)∧· · ·∧δσ(2k) and σ(ω)2 = δσ(2k+1)∧δσ(2k+2).
We get

Rk∇⊕∇′R∇⊕∇′(ω)

=
∑

(2k,2)

sgn(σ)(Rk∇⊕∇′ , R∇⊕∇′)σ(ω).

By the induction hypothesis we get

=
∑

(2k,2)

sgn(σ)(Rk∇ ⊕Rk∇′ , R∇ ⊕R∇′)σ(ω)

=
∑

(2k,2)

sgn(σ)Rk∇ ⊕Rk∇′(σ(ω)1) ◦R∇ ⊕R∇′(σ(ω)2)

=
∑

(2k,2)

sgn(σ)Rk∇(σ(ω)1)⊕Rk∇′(σ(ω)1) ◦R∇(σ(ω)2)⊕R∇′(σ(ω)2)

=
∑

(2k,2)

sgn(σ)Rk∇(σ(ω)1)R∇(σ(ω)2)⊕Rk∇′(σ(ω)1) ◦R∇′(σ(ω)2)

= (
∑

(2k,2)

sgn(σ)(Rk∇, R∇)σ(ω))⊕ (
∑

(2k,2)

sgn(σ)(Rk∇′ , R∇′)σ(ω))

= (Rk+1
∇ ⊕Rk+1

∇′ )(ω)

and equation 2.9.4 follows, and we have proved the lemma. �

LEMMA 2.10. — Let W and W ′ be two free A-modules, and let φ in

EndA(W ) and ψ in EndA(W ′) be two endomorphisms. Then the following

holds

tr(φ⊗ ψ) = tr(φ)tr(ψ).

Proof. — Let W = ⊕ni=1Aei and W ′ = ⊕mj=1Afj be two direct-sum
decompositions of W and W ′. Put also φ = (aij) and ψ = (bij) where aij
and bij are elements of A. One verifies that for instance tr(φ) =

∑
i eiφei.

We get
tr(φ⊗ ψ) =

∑
i,j

ei ⊗ fj(φ⊗ ψ)ei ⊗ fj .
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It is trivial to check that ek⊗fl(φ⊗ψ)em⊗fk equals akmbln, hence we get

∑
i,j

aiibjj = (
∑
i

aii)(
∑
j

bjj) = (trφ)(trψ)

and the lemma follows. �

LEMMA 2.11. — Let (W,∇) and (W ′,∇′) be two locally free g-

connections, then

tr(Rn∇ ⊗ 1 ∧ 1⊗Rm∇′) = (tr(Rn∇)) ∧ (tr(Rm∇′)).

Proof. — Let ω = δ1 ∧ · · · ∧ δ2(n+m), and put for any (2n, 2m) shuffle
σ, σ(ω)1 = δσ(1) ∧ · · · ∧ δσ(2n) and σ(ω)2 = δσ(2n+1) ∧ · · · ∧ δσ(2(n+m)). We
see that

Rn∇ ⊗ 1 ∧ 1⊗Rm∇′(ω)

=
∑

(2n,2m)

sgn(σ)(Rn∇ ⊗ 1, 1⊗Rm∇′)σ(ω)

=
∑

(2n,2m)

sgn(σ)Rn∇(σ(ω)1)⊗ 1 ◦ 1⊗Rm∇′(σ(ω)2)

=
∑

(2n,2m)

sgn(σ)Rn∇(σ(ω)1)⊗Rm∇′(σ(ω)2).

By lemma 2.10 we get

tr(Rn∇ ⊗ 1 ∧ 1⊗Rm∇′(ω))

= tr(
∑

(2n,2m)

sgn(σ)Rn∇(σ(ω)1)⊗Rm∇′(σ(ω)2))

=
∑

(2n,2m)

sgn(σ)(tr ◦Rn∇)(σ(ω)1)(tr ◦ Rm∇′)(σ(ω)2)

=
∑

(2n,2m)

sgn(σ)(tr ◦Rn∇, tr ◦Rm∇′)σ(ω) = (tr ◦Rn∇) ∧ (tr ◦Rm∇′)(ω)

and we have proved the assertion. �

We can now prove the existence of the Chern character.
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THEOREM 2.12. — There exists a ring homomorphism

chg : K0(g)→ H∗(g, A)

from the Grothendieck ring K0(g) to the cohomology ring H∗(g, A).

Proof. — For every locally free g-connection W of finite rank

we obtain by Theorem 2.6 a cohomology class

chg(W ) in H∗(g, A). Define a map φ : ⊕Z[W,∇] → H∗(g, A) by the
formula

φ(
∑
i

ni[Wi,∇i] =
∑
i

nich(Wi,∇i).

We want to show that the map φ gives rise to a well-defined map

chg : K0(g)→ H∗(g, A).

Let [W ⊕W ′,∇⊕∇′] − [W,∇] − [W ′,∇′] be a generator of the group D,
where K0(g) = ⊕Z[W,∇]/D. We get

chg([W ⊕W ′,∇⊕∇′]− [W,∇]− [W ′,∇′]) =

chg(W ⊕W ′,∇⊕∇′)− chg(W,∇)− chg(W ′,∇′)

=
∑
n�0

1
n!

tr(R∇⊕∇′)n −
∑
k�0

1
k!

trRk∇ −
∑
l�0

1
l!

trRl∇′ .

By lemma 2.9, equation 2.9.1 and 2.9.4 we get

∑
n�0

1
n!

tr(Rn∇ ⊕Rn∇′)−
∑
k�0

1
k!

tr(Rk∇)−
∑
l�0

1
l!

tr(Rl∇′)

=
∑
n�0

1
n!

(trRn∇ + trRn∇′)−
∑
k�0

1
k!

trRk∇ −
∑
l�0

trRl∇′ = 0

hence φ gives rise to a map chg : K0(g)→ H∗(g, A), and obviously chg is a
group-homomorphism. We show that chg is a ring homomorphism: Put for
any g-connection (W,∇), chn(W,∇) = 1

n! trR
n
∇. We have that chg(W,∇) =∑

n�0 chn(W,∇). Since C∗(g,EndA(W ⊗AW ′)) is an associative A-algebra
and by lemma 2.9, equation 2.9.3 we have that R∇ ⊗ 1 ∧ 1 ⊗ R∇′ =
1⊗R∇′ ∧R∇ ⊗ 1, we can apply the binomial-theorem. We get

chn(W ⊗W ′,∇⊗∇′) =
1
n!

(R∇⊗∇′)n
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and by lemma 2.9, equation 2.9.2 we get

1
n!

tr(R∇ ⊗ 1 + 1⊗R∇′)n =
∑
i+j=n

1
i!j!

tr(R∇ ⊗ 1)i(1⊗R∇′)j .

By lemma 2.11 we get

∑
i+j=n

1
i!j!

(trR∇)i ∧ (trR∇′)j =
∑
i+j=n

(
1
i!

trRi∇) ∧ (
1
j!

trRj∇′)

=
∑
i+j=n

chi(W,∇)chj(W ′,∇′).

The following holds

chg(W ⊗W ′,∇⊗∇′) =
∑
n�0

chn(W ⊗W ′,∇⊗∇′)

=
∑
n�0


 ∑
i+j=n

chi(W,∇)chj(W ′,∇′)




=

(∑
k�0

chk(W,∇)

) (∑
l�0

chl(W ′,∇′)
)

= chg(W,∇)chg(W ′,∇′),
and the theorem follows. �

3. On independence of choice of connection.

In this section we prove the fact that the Chern character chg(W,∇)
of an A-module with a g-connection from Theorem 2.6 is independent with
respect to choice of connection ∇. Let in the following A be a k-algebra
where k is a field of characteristic zero. Let furthermore g be a Lie-Rinehart
algebra with anchor map α : g → Derk(A). We first prove a series of
technical lemmas:

LEMMA 3.1. — We get in a natural way a map α ⊗ 1 : g[t] →
Derk(A[t]), making g[t] into an (k,A[t])-Lie-Rinehart algebra.

Proof. — Define a k-Lie algebra structure on g[t] as follows: [
∑
i δi⊗

fj ,
∑
j ηj⊗gj ] =

∑
i,j [δi, ηj ]⊗figj . Define furthermore a map α⊗1 : g[t]→

Derk(A[t]) by α⊗1(δ⊗ f)(a⊗ g) = α(δ)(a)⊗ fg, then it is straightforward
to check that g[t] is a (k,A[t])-Lie-Rinehart algebra. �
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LEMMA 3.2. — Let W be an A-module with a g-connection ∇. There

exists a g[t]-connection ∇⊗ 1 on the A[t]-module W [t].

Proof. — Define the following map: ∇ ⊗ 1 : g[t] → Endk(W [t]), by
letting ∇⊗ 1(δ ⊗ f)(w ⊗ g) = ∇(δ)(w)⊗ fg. Then it is straightforward to
check that ∇⊗ 1 is a g[t]-connection. �

LEMMA 3.3. — Let ∇0 and ∇1 be g-connections on W , then ∇ =
∇1 ⊗ t+∇0 ⊗ (1− t) is a g[t]-connection on W [t].

Proof. — This is straightforward. �

LEMMA 3.4. — Let ∇ be a g-connection on an A-moduleW . Let ∇⊗1
be the induced g[t]-connection on W [t]. Then the curvature R∇⊗1 defines

a natural map

R∇⊗1 : ∧2g[t]→ EndA(W )[t].

Proof. — Define R∇⊗1(δ ⊗ f ∧ η ⊗ g) = R∇(δ ∧ η)⊗ fg, then the lemma
follows. �

LEMMA 3.5. — Let ∇ be a g-connection on the A-module W , and

consider the induced connection ∇ ⊗ 1 on W [t]. There exists a map

pi∗ : Cp(g[t],W [t])→ Cp(g,W ) making commutative diagrams

Cp(g[t],W [t]) d−−−→ Cp+1(g[t],W [t])� pi∗

� pi∗

Cp(g,W ) d−−−→ Cp+1(g,W )

for all p.

Proof. — Define the maps

pi∗ : Cp(g[t],W [t])→ Cp(g[t],W [t])

as follows: There exists an obvious map q : ∧pg → ∧pg[t] defined by
mapping δ1∧· · ·∧δp to δ1⊗1∧· · ·∧δp⊗1. There exists a map pi :W [t]→W

defined by letting pi(t) = i for i = 0, 1. Put now for any A-linear map
φ : ∧pg[t] → W [t], pi∗(φ) = pi ◦ φ ◦ q. We show that we get commutative
diagrams as claimed: Consider first pi∗(dφ)(δ1 ∧ · · · ∧ δp+1) =

pid(φ)(δ1 ⊗ 1 ∧ · · · ∧ δp+1 ⊗ 1) =

ANNALES DE L’INSTITUT FOURIER



THE CHERN CHARACTER FOR LIE-RINEHART ALGEBRAS 2569

pi + (
p+1∑
k=1

(−1)k+1∇(δk)⊗ 1φ(· · · ∧ ˆδk ⊗ 1 ∧ · · ·)

+
∑
k<l

(−1)k+lφ([δk ⊗ 1, δl ⊗ 1] ∧ · · · ˆδk ⊗ 1 · · · ˆδl ⊗ 1 · · ·))

=
p+1∑
k=1

pi∇(δk)⊗ 1φ(· · · ˆδk ⊗ 1 · · ·)(3.5.1)

+
∑
k<l

(−1)k+lpiφ([δk, δl]⊗ 1 ∧ · · · ˆδk ⊗ 1 · · · ˆδl ⊗ 1 · · ·).

Consider

d(pi∗φ)(δ1 ∧ · · · ∧ δp+!)

=
p+1∑
k=1

(−1)k+1∇(δk)pi∗φ(· · · δ̂k · · ·)

+
∑
k<l

(−1)k+lpi∗φ([δk, δl] · · · δ̂k · · · δ̂l · · ·)

=
p+1∑
k=1

(−1)k+1∇(δk)piφ(· · · ˆδ1 ⊗ 1 · · ·)(3.5.2)

+
∑
k<l

(−1)k+lpiφ([δk, δl]⊗ 1 · · · ˆδk ⊗ 1 · · · ˆδl ⊗ 1 · · ·).

One checks that∇(δk)pi = pi∇(δk)⊗1 hence equation 3.5.1 equals equation
3.5.2, and the claim follows. �

LEMMA 3.6. — Given two g-connections ∇0,∇1 on W , and let ∇ =
∇1⊗t+∇0⊗(1−t) be the induced connection onW [t]. Then the curvature

R∇ is an element of C2(g[t],EndA(W )[t]), and it follows that pi∗(R∇) = R∇i
for i = 0 and 1.

Proof. — This is straighforward. �

LEMMA 3.7. — Consider the map

pi∗ : Cp(g[t],EndA(W )[t])→ Cp(g,EndA(W )).
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Let φ and ψ be elements of Cp(g[t],EndA(W )[t]) and Cq(g[t],EndA(W )[t])
respectively. The following holds:

pi∗(φ ∧ ψ) = pi∗(φ) ∧ pi∗(ψ).

In particular it follows that pi∗(R
k
∇) = (pi∗R∇)k.

Proof. — This is straighforward. �

LEMMA 3.8. — There exists for all p commutative diagrams

Cp(g[t],EndA(W )[t]) tr⊗1−−−→ Cp(g[t], A[t])� pi∗

� pi∗

Cp(g,EndA(W )) tr−−−→ Cp(g, A)

in particular we get pi∗(tr(R
k
∇)) = tr(pi∗R

k
∇).

Proof. — Let φ : ∧pg→ EndA(W )[t] be an A-linear map. Since W is
locally free, we have a trace map tr : EndA(W ) → A, and we get a trace-
map tr⊗ 1 : EndA(W )[t]→ A[t], and we get tr⊗ 1 ◦ φ in Cp(g[t], A[t]). We
see that pi∗(tr⊗ 1 ◦ φ)(δ1 ∧ · · · ∧ δp) =

(3.8.1) pi∗ ◦ tr⊗ 1 ◦ φ(δ1 ⊗ 1 ∧ · · · ∧ δp ⊗ 1)

We also see that tr(pi∗(φ))(δ1 ∧ · · · ∧ δp) =

(3.8.2) tr ◦ pi ◦ φ(δ1 ⊗ 1 ∧ · · · ∧ δp ⊗ 1)

and since pi∗ ◦ tr ⊗ 1 = tr ◦ pi∗ we see that equation 3.8.1 equals equation
3.8.2, and we have proved the assertion. �

LEMMA 3.9. — The maps pi∗ : Cp(g[t],EndA(W )[t])→ Cp(g,EndA(W ))
satisfy pi∗(φ∧ψ) = pi∗(φ)∧pi∗(ψ). In particular we get pi∗(R

k
∇) = (pi∗R∇)k.

Proof. — pi∗(φ ∧ ψ)(δ1 ∧ · · · ∧ δp+q)

= pi(φ ∧ ψ(δ1 ⊗ 1 ∧ · · · ∧ δp+q ⊗ 1)

= pi
∑
(p,q)

sgn(σ)φ(δσ(1) ⊗ 1 · · · δσ(p) ⊗ 1)ψ(δσ(p+1) ⊗ 1 · · · δσ(p+q) ⊗ 1)
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=
∑
(p,q)

sgn(σ)pi∗φ(δσ(1) · · · δσ(p))pi∗(ψ)(δσ(p+1) · · · δσ(p+q))

= pi∗(φ) ∧ pi∗(ψ)(δ1 ∧ · · · ∧ δp+q)
and the lemma follows. �

We are now in position to prove the main theorem of this section.

THEOREM 3.10. — Let A be any k-algebra where k is any field, and

let g be a Lie-Rinehart algebra. Let W be a locally free A-module with

a g-connection ∇. The class chn(W,∇) in H2n(g, A) is independent with

respect to choice of connection.

Proof. — Consider the complex C∗(g[t], A[t]):

· · · → Cp−1(g[t], A[t])→ Cp(g[t], A[t])→ Cp+1(g[t], A[t])→ · · ·

By functoriality we get:

Cp(g[t], A[t]) = HomA(∧p(g⊗A A[t]), A[t]) = HomA((∧pg)⊗A A[t], A[t])

= HomA(∧pg, A)⊗A A[t] = HomA(∧pg, A)⊗k k[t].
It follows that we get an isomorphism at the level of cohomology-groups

Hi(g[t], A[t]) ∼= Hi(g, A).

We get induced maps on cohomology groups

pi∗ : H2k(g[t], A[t])→ H2k(g, A)

with the property that

pi∗(tr(R∇)) = tr(R∇i).

It follows that
tr(R∇0) = tr(R∇1),

and the theorem follows. �

It follows from Theorem 3.10 that the Chern character from Theorem
2.12 is independent of choice of connection. We get a corollary:
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COROLLARY 3.11. — Let A be a smooth k-algebra of finite type where

k is a field of characteristic zero. There exists a ring homomorphism

chA : K0(A)→ H∗DR(A).

Proof. — There exists a natural map

ΩpA → (ΩpA)∗∗ = HomA(∧pDerk(A), A)

hence we get when Ω1
A is locally free an isomorphism ip : Hp

DR(A) ∼=
Hp(Derk(A), A). Any connection

∇ : E → E ⊗ Ω1
A

gives rise to a covariant derivation

∇ : Derk(A)→ Endk(E).

One checks that the Chern class defined by ∇ agrees with the one defined
by ∇ via ip, and the claim follows. �

The ring homomorphism from Corollary 3.11 is the classical Chern
character from Theorem 2.1.

Note that by functoriality there always exist a diagram

K0(A) −−−→ K0(g)� chA
� chA

H∗DR(A) −−−→ H∗(g, A),

but the map K0(A) → K0(g) is not surjective in general: by the example
in [18], section 2 the following holds. Let k be a field of characteristic zero
and consider O(d) on P1

k. There exist a left OP1-linear splitting

P1(O(d)) ∼= O(d− 1)⊕O(d− 1),

hence the Atiyah-sequence

0→ Ω1 ⊗O(d)→ P1(O(d))→ O(d)→ 0
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is not left split. It follows that O(d) does not have a connection. If we
consider the linear Lie-Rinehart algebra VO(d) ofO(d) introduced in section
1 in [18], we see that O(d) has a VO(d)-connection. It follows that the
natural map

K0(P1
k)→ K0(VO(d))

is not surjective hence chg is not determined by chA in general. Note also
that the construction of the Chern-class chn(W,∇) is valid for any S-
algebra A, where S and A are commutative rings. The Chern character
exists when S is a ring containing the rationals.
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