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THE SYMBOL OF A FUNCTION OF A

PSEUDO-DIFFERENTIAL OPERATOR

by Alfonso GRACIA-SAZ

1. Introduction.

The goal of this paper is to give a realistically computable formula
for the symbol of a function of an operator. Let Â be a pseudo-
differential operator in L2(RN ) which admits a self-adjoint extension.
Let A ∈ C∞(T ∗RN ) be the symbol (definitions to follow; see §2) of Â. Let
f : R → R be a smooth function and let B̂ = f(Â) be an operator with
symbol B. We want to write B in terms of A. We will derive the formula

(1.1) B =
∑
Γ

( ih̄

2

)E cΓ
SΓ

λΓ(A)
f (V )(A)

V !
·

The sum is taken over finite graphs Γ with no isolated vertices. For every
such graph Γ:

• V is the number of vertices and E is the number of edges,

• λΓ(A) is a polynomial in the derivatives of A constructed algorithmically
from Γ (see §3),

• SΓ is the order of the symmetry group of Γ,

• cΓ is a simple invariant of Γ (see §4.3).

The terms through order 4 in h̄ of (1.1) are shown in Appendix D.

The existence of a universal equation like (1.1) was used by Voros [19]
and Colin de Verdière [6] as part of a calculation to obtain Bohr-Sommerfeld
quantization rules at higher orders in h̄. They derived it by using a explicit

Keywords : Deformation quantization, Moyal product, Weyl quantization, Bohr-
Sommerfeld, symbol, diagrammatic technique.
Math. classification : 53D55, 81S10.



2258 Alfonso GRACIA-SAZ

spectral theorem that writes f(Â) in terms of the resolvent.(1) Their method
gives a recursive way of obtaining higher order corrections in h̄ but is, in
practice, intractable after order 2. In contrast, the diagrammatic notation
that we use (inspired by [4]) makes it simple to derive all our formulas and
to write down explicitly their terms.

For the derivation of (1.1) we need:
•Weyl quantization, i.e., a well defined correspondence between operators

and symbols (see §2.1), but we will not use its explicit form.
• The explicit form of the Moyal product (see §2.2).
• A spectral theorem, i.e., a way to define a function of an operator

(see §2.3), but we will not use its explicit form.

Before going on, let us mention some possible applications of this
calculation:

1) Bohr-Sommerfeld quantization rules. This is treated in §7.

2) Determinant of certain differential operators. See [14]. Such
determinants naturally arise in quantum field theory at the one loop
level. The determinant of an operator can be defined with the property
log det Â = trace log Â, which holds in finite dimensional spaces. Then,
the trace of the operator B̂ = log Â can be calculated by integrating its
symbol B in phase space. For this to make sense we need the operator Â to
be of the form “identity + trace class”, or we have to use a regularization
to redefine it.

3) Star exponential of quadratic forms. Omori et al analyzed this
problem in [16]. In the case when A is a quadratic function and f is an
exponential, formula (1.1) simplifies. See §6.

The structure of this paper is as follows. In §2 we explain the
necessary background: Weyl quantization, the Moyal product and functions
of operators. In §3 we introduce diagrammatic notation that will be used
afterwards. §4 is the core of this paper, where we derive (1.1) and other
equivalent equations. In §5 we consider generalizations to functions of
various variables and to other quantizations. In §6 we study the case of a
quadratic symbol, in particular the harmonic oscillator hamiltonian. This
is an example of restricting to a smaller class of symbols A, for which
the family of graphs to consider becomes smaller, too, and (1.1) simplifies.
§7 explains the application to Bohr-Sommerfeld rules.

(1) In Appendix B we give an alternative derivation of our main result inspired by this
approach.

ANNALES DE L’INSTITUT FOURIER
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2. Background.

2.1. Weyl quantization.

Weyl quantization [20] (or Weyl-Wigner correspondence) is a way
to relate the classical and quantum descriptions of a system. In the
classical description of a system, the space of states is a Poisson manifold,
whereas the quantum space is a Hilbert space. For a particle in N

dimensions, the Poisson manifold (classical) is T ∗RN and the Hilbert
space (quantum) is L2(RN ).

The observables are classically described by smooth functions on the
phase space C∞(T ∗RN ). In the quantum description they are operators on
the Hilbert space Op(L2(RN )). For instance, we have canonical coordinates

(x, p) := (x1, . . . , xN , p1, . . . , pN )

on the cotangent bundle T ∗RN : xj are the coordinates on the base RN

and pj are the coordinates along the fibers. Coordinates xj and pj are
elements of C∞(T ∗RN ) and hence classical observables. We associate to
them operators x̂j and p̂j on L2(RN ) defined by

x̂j [φ](x) = xjφ(x), p̂j [φ](x) = −ih̄ dφ
dxj

(x)

for φ ∈ L2(RN ).

Here h̄ is the Planck constant. We will treat it as a formal parameter
and consider that all our spaces are formal power series in h̄. Thus the
classical observables will be elements of C∞(T ∗RN )[[h̄]] and the quantum
observables will be elements of Op(L2(RN ))[[h̄]].

A quantization is an extension of this correspondence to a map

A ∈ C∞(T ∗RN )[[h̄]] �−→ Â ∈ Op(L2(RN ))[[h̄]].

In particular the Weyl-Wigner correspondence is defined by:

(2.1)




Â[φ](x) =
∫

dny dnp
(2πh̄)n

ei(x−y)·p/h̄A
(

1
2
(x + y), p

)
φ(y),

A(x, p) =
∫

dns
(2πh̄)n

e−is·p/h̄
〈
x + 1

2
s|Â|x− 1

2
s
〉
.

In order for it to be a well-defined bijection we need to restrict the domain
and consider only a certain family of smooth functions and a certain

TOME 55 (2005), FASCICULE 7



2260 Alfonso GRACIA-SAZ

family of operators. See [8] for details. In §5.2 we consider alternative
quantizations.

A is called the symbol of Â. Moreover, the space of operators
with composition is an algebra. We can define an associative operation
in C∞(T ∗RN )[[h̄]], called star product �, that makes the bijection A �→ Â

into an algebra isomorphism. In other words, C � D is the symbol of the
operator ĈD̂.

2.2. The Moyal product.

Moyal [15] gave an explicit expression for the star product in the
case of the Weyl quantization, called the Moyal product (but actually due
to Groenewold [9]). It is derived from the definition of the Moyal product
(Ĉ�D = ĈD̂) and the explicit form of Weyl quantization (2.1). If C,D are
symbols in C∞(T ∗RN ), then

(2.2) C�D =
∞∑
k=0

1
k!

( ih̄

2

)k
{C,D}k.

We need to explain the notation in (2.2). In the natural coordinates (x, p)
on T ∗RN , the Poisson bivector field is

J =
N∑
j=1

(∂xj ⊗ ∂pj − ∂pj ⊗ ∂xj ),

where ∂q := ∂/∂q. Let us call the coordinates (z1, . . . , z2N ) := (x, p) and
Jµν the coefficients of the Poisson tensor on this chart

(Jµν) =
( 0 IN
−IN 0

)
,

where IN is the identity N ×N matrix. Using Einstein summation criterion
(summation over repeated indexes), J = Jµν∂µ ⊗ ∂ν . Let us also write

C,µ = ∂µC = ∂zµC =
∂C

∂zµ
,

C,µ1...µk = ∂µ1 · · · ∂µkC = ∂zµ1 · · · ∂zµkC =
∂kC

∂zµ1 · · · ∂zµk ·

Then the Poisson bracket in T ∗RN can be written as

{C,D} = C,µ J
µν C,ν .

ANNALES DE L’INSTITUT FOURIER



SYMBOL AND PSEUDO-DIFFERENTIAL OPERATOR 2261

The terms appearing in (2.2) are defined as:

{C,D}0 = CD,

{C,D}1 = {C,D} = C,µ J
µν D,ν ,

{C,D}k = C,µ1...µk J
µ1ν1 · · ·Jµkνk D,ν1...νk .

Following [4] we use the notation “→” for a Poisson tensor in the
following way: “→” is replaced by Jµν , the expression in the head of the
arrow is acted on by ∂ν and the expression in the tail of the arrow is acted
on by ∂µ. For instance

C → D = C,µJ
µνD,ν = {C,D},

C→→D = C −→[2]−→D = C,µ1µ2Jµ
1ν1

Jµ
2ν2

D,ν1ν2 = {C,D}2,

C −→[k]−→D = C,µ1...µkJ
µ1ν1 · · ·JµkνkD,ν1...νk = {C,D}k.

Here, −→[k]−→ denotes k arrows:

−−→
[k]−−→ =

→→...→→

}
k arrows.

The same can be done with more complicated diagrams:

C → D→→A = C
Jµ1ν1−−−−→ D

Jµ2ν2−−−−→−−−−→
Jµ3ν3

A(2.3)

= C,µ1 J
µ1ν1 D,ν1µ2µ3 J

µ2ν2 Jµ3ν3 A,ν2ν3 .

Since Jµν is skew-symmetric, inverting an arrow multiplies the
expression by −1:

C → D = (−1)C ← D.

With this notation, the Moyal product (2.2) is written:

(2.4) C � D =
∞∑
k=0

1
k!

( ih̄

2

)k
C −→[k]−→D.

The fact that the Poisson bracket is a derivation on each argument
(Leibniz rule or product rule) is written as

(CD)→ E = C(D → E) + (C → E)D,

{CD,E} = C{D,E}+ {C,E}D.

TOME 55 (2005), FASCICULE 7



2262 Alfonso GRACIA-SAZ

Another application of the product rule is

(2.5)




(C → D)→ E = C → D → E + E ← C → D,

(C,µJ
µνD,ν),αJαβE,β = C,µJ

µνD,ναJ
αβE,β

+ C,µαJ
µνD,νJ

αβE,β .

Notice that (2.5) cannot be written with Poisson brackets { , }.
This notation makes it simpler to write certain calculations.

Lemma A.1 in Appendix A is a generalization of (2.5) that will be used in
our derivations.

2.3. Spectral theorems.

To understand (1.1) we need to define what a function of an operator
means. If f(y) = yn then f(Â) = (Â)n. A spectral theorem extends this
definition of f(Â) to a wider class of functions f . More specifically, let A be
an algebra of smooth functions under pointwise multiplication and let Â

be an operator. Then a spectral theorem is an morphism of algebras

f ∈ A �−→ f(Â) ∈ Op
(
L2(RN )

)
with certain properties. See [7] for details. There are many spectral theorems
(i.e. different algorithms to calculate f(Â)) for different algebras A. See [1]
for a complete list of references. We will not use any explicit form of a
spectral theorem (with the exception of Appendix B, where we derive an
alternative proof of our main result). We just need the fact that a spectral
theorem is a morphism of algebras:

f(Â)g(Â) = (fg)(Â).

3. Graphs.

The formulas we are going to derive are power series whose terms are
labeled by graphs. We define now the family of graphs that we are going to
use and introduce notation.

A graph consists of a finite set of vertices and a finite number of edges.
Each vertex is represented by a dot. Each edge is represented by a line
joining two vertices. Multiple edges joining the same pair of vertices are
allowed. A self-edge (an edge from a vertex to itself) is not allowed. A graph
does not need to be connected.

ANNALES DE L’INSTITUT FOURIER
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An example of a graph is

(3.1) • −−−−−−−−• −−− −−− • • −−− •• • .

A labeled graph is a graph with in which we have labeled the vertices
with the first V natural numbers 1, 2, . . . , V and the edges with the first E

natural numbers 1, 2, . . . , E. Therefore, V is the number of vertices and E

is the number of edges. For instance:

1
1

2
3

6 3
4

6
4 5 5

2

−−− −− −−− −− −−− −−−−− −− −−− −− .

Even though a graph as defined above is not oriented, a labeled graph
has a natural orientation: every edge is oriented so that the target has a
higher label than the source:

1
1

2
3

6 3
4

6

4 5 5

2

−−− −− −−− −− −−− −− −−− −−−−− −− .

All the information in a graph is given by how many edges there
are joining each pair of vertices. All the information in a labeled graph is
given by which edge joins which pair of vertices. This leads us to adopt the
following formal definitions.

DEFINITION 3.1. — Let V and E be two non-negative integers.
A labeled graph with V vertices and E edges is a map

s:{1, . . . ,E} −→ P2{1, . . . ,V }

where P2X denotes the set of subsets of X with two elements.

This means simply that the edge i joins the pair of vertices s(i). The
group SE of permutations of E letters acts on {1, . . . , E}. The group SV of
permutations of V letters acts naturally on P2{1, . . . , V }. Hence the direct
product SV × SE acts on functions {1, . . . , E} → P2{1, . . . , V }, that is, on
the set of labeled graphs with V vertices and E edges.

DEFINITION 3.2. — An unlabeled graph or simply graph with V vertices
and E edges is an orbit of this action.

We will denote a labeled graph by Γ and the corresponding (unlabeled)
graph by [Γ], if we need to distinguish between them. Otherwise, we will
abuse notation and denote a graph simply by Γ.

TOME 55 (2005), FASCICULE 7
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It is convenient to define now two more concepts that will be
needed later. The order of symmetry of a labeled graph is the number of
permutations of edges and vertices that we can make without changing it.
Or, more formally:

DEFINITION 3.3. — The order of symmetry SΓ of a labeled graph Γ is
the order of the stabilizer of Γ in the action of SV ×SE on the set of graphs
with V vertices and E edges.

See Appendix C for examples.

A labeled graph is reduced if it does not have any isolated vertices.
Or, more formally:

DEFINITION 3.4. — A labeled graph s:{1, . . . ,E} → P2{1, . . . ,V }
is reduced if every i = 1, . . . V is in some element of the image of s (i.e.,
“if every vertex is in some edge”).

Both concepts (order of symmetry of a graph and reduced graph)
extend naturally to unlabeled graphs. All the previous examples are
reduced. The graph •−− • • is not reduced.

Given a labeled graph Γ with V vertices, and given V symbols
A1, . . . , AV we construct a new symbol, called λΓ(A1, . . . , AV ), by
substituting the vertices with A1, . . . AV , and letting every edge represent a
Poisson tensor (as explained in §2.2). We denote λΓ(A, . . . , A) simply
by λΓ(A).

For instance, if Γ is the labeled graph

1
1

−−−− 2 2====
3

3

then λΓ(C,D,A) is the expression in (2.3). And

λΓ(A) = A→ A→→A = A
Jµ1ν1−−−−→ A

Jµ2ν2−−−−→−−−−→
Jµ3ν3

A

= A,µ1J
µ1ν1A,ν1µ2µ3J

µ2ν2Jµ3ν3A,ν2ν3 .

Since changing the direction of one arrow multiplies the expression by −1,
λ[Γ] is defined up to a sign.

4. Main results and calculations.

We recall our problem. Let us fix an operator Â with symbol A

and a smooth function f . Let B̂ = f(Â) be an operator with symbol B.

ANNALES DE L’INSTITUT FOURIER
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In this section we will perform the necessary calculations to obtain various
expressions of B in terms of A.

The main step is to obtain an expression for an iterated star product
C1 � · · · � Cn for symbols Ci in terms of graphs. We do this in §4.1. Then
in §4.2 we derive our first expression for B in terms of A.

Equation (4.4) at the end of §4.2 is a power series whose terms are
parametrized by labeled graphs. This is the easiest form of our result to
derive, and it is useful for theoretical proofs. However, it is not convenient
for explicit calculations when we want to write the first few terms explicitely.
There are only a few unlabeled graphs, but many labeled graphs. In §4.3
we obtain our second expression for B in terms of A, (4.8), a series whose
terms are parametrized by unlabeled graphs. There is still a third form of
our formula, Equation (4.12), whose terms are parametrized by connected
graphs. This last form is studied in §4.4.

Using either of these equations, we have included in Appendix D the
explicit form of the terms up to order 4 in h̄ of the symbol B in terms of A.

4.1. The n-th star product.

The main step in the derivation of (1.1) is the following expression for
the iterated star product, which generalizes Moyal’s formula:

LEMMA 4.1. — Let C1 , . . . ,Cn ∈ C∞(T ∗RN ) be symbols. Then

(4.1) C1 � · · · � Cn =
∞∑
k=0

1
k!

( ih̄

2

)k ∑
labeled graphs Γ
withn vertices

and k edges

λΓ(C1 , . . . ,Cn).

Note that when n = 2, the previous lemma is exactly the Moyal
formula for the star product (2.4). For every k, there is only one labeled
graph with two vertices and k edges.

When n = 3, for instance, we get the expression of Figure 1, where
the vertices are labeled from left to right 1, 2, 3 in all graphs.

Proof of Lemma 4.1. — We will use induction on n. The result is true
for n = 0, 1, 2.

TOME 55 (2005), FASCICULE 7
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A � A � A = A3 +
ih̄

2
(A→ A A) +

ih̄

2
(A A→ A)

+
ih̄

2
(A A A) +

1
2!

ih̄

2( )2

ih̄

2( )2( )2

( )2

( )2

( )2

ih̄

2( )2

ih̄

2( )2

ih̄

2( )2

( )2

( )2

(A−→−→

−→−→

−→−→

A A)

+
1
2!

ih̄

2
(A A A) +

1
2!

+
1
2!

ih̄

2
(A−→1 A−→2 A) +

1
2!

(A−→2 A−→1 A)

+
1

1
2!

ih̄

2
(A−→

1

2

A A) +
1
2!

+
2!

ih

2
+

1
2!

+ O(h̄3)

= A3 +
ih̄

2
(A→A)A +

3
2

ih̄

2
(A A)A

+
4− 2

2
ih̄

2
(A→ A← A) + O(h̄3)

(A−→
1

2
A A)

(A −→
1

2
A A)(A −→

1

2

A A)

(A A A)

.

Figure 1. Illustration of formula (4.1) when n = 3

Inductive step. We use the associativity of the star product:

C1 � · · · � Cn+1 = (C1 � · · ·Cn) � Cn+1

=
( ∑

labeled graphs Γ
withn vertices

1
E!

( ih̄

2

)E
λΓ(C1, . . . , Cn)

)
� Cn+1

=
∑

labeled graphs Γ
withn vertices

∞∑
k=0

1
E!k!

( ih̄

2

)E+k

λΓ(C1, . . . , Cn)−→[k]−→Cn+1.

We can apply Lemma A.1 in Appendix A to λΓ(C1, . . . , Cn)−→[k]−→Cn+1

and we will get a sum over labeled graphs Γ′ with n + 1 vertices. They are
built by starting with a labeled graph Γ with n vertices (labeled 1, . . . , n)
and E edges (labeled 1, . . . , E), adding the (n + 1)-th vertex and k edges
(labeled E + 1, . . . , E + k) ending at the (n + 1)-th vertex. The number
of edges of Γ′ is E′ = E + k. If we want to account for all possible
labeled graphs with n + 1 vertices and E′ edges, we need to divide by a
factor of

(
E+k
E

)
in order to account for all ways of relabeling the edges.

Fortunately, we can write

1
E! k!

=
1

(E + k)!

(E + k

E

)

ANNALES DE L’INSTITUT FOURIER
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and we get

C1 � · · · � Cn+1 =
∑

labeled graphs Γ′

withn+1 vertices

1
E′!

( ih̄

2

)E′
λΓ′ .

4.2. First formula for the symbol of a function of an operator.

We now attack the problem of obtaining the symbol B of B̂ = f(Â)
in terms of A. To calculate B we use the following expression [5]:

LEMMA 4.2. — Let z0 ∈ T ∗RN and let a0 := A(z0). Then

(4.2) B(z0) =
∞∑
k=0

1
k!

f (k)(a0)(A− a0)�k(z0).

Note that the right hand side of (4.2) is well-defined only at the
point z0. To prove it, we need the following fact:

LEMMA 4.3. — Let g be a smooth function and Ĉ := g(Â). Let

a0 := A(z0). If g has a zero of order m at a0, then C(z0) = O(h̄
1
2 m).(2)

Proof of Lemma 4.3. — Let us write g(y) = g1(y)(y − a0)m and let
Ĉ1 = g1(Â). Then Ĉ = g(Â) = g1(Â)(Â− a0)m and C = C1 � (A− a0)∗m.
Since (A(z)− a0)|z=z0 = O(h̄), then C(z0) = O(h̄

1
2 m).

Proof of Lemma 4.2. — For every m, apply Lemma 4.3 with

g(y) := f(y)−
m∑
k=0

1
k!

f (k)(a0)(y − a0)m.

This proves that for all m

B(z0)−
∞∑
k=0

1
k!

f (k)(a0)(A− a0)�k(z0) = O(h̄
1
2 m).

Now we only need to substitute (4.1) into (4.2) to get an expression
for B in terms of graphs:

(4.3)B(z0) =
∞∑
n=0

1
n!

f (n)
(
A(z0)

) ∞∑
k=0

∑
labeled graphs Γ
withn vertices

and k edges

1
k!

( ih̄

2

)k
λΓ(A−a0)(z0).

(2) Actually, we can do better: C(z0) = O(h̄
2
3 m).

TOME 55 (2005), FASCICULE 7
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In order to calculate λΓ(A−a0)(z0) we need to write the symbol A−a0

at every vertex of Γ. If a vertex is not isolated, then some derivatives are
acting upon that symbol, and we may substitute A − a0 with A, since a0

is a constant. If a vertex is isolated, then it contributes a factor of A− a0,
and (A − a0)(z0) = 0. Hence we only need to consider graphs without
isolated vertices, which we called reduced. Putting this all together:

(4.4) B =
∑

reduced labeled
graphs Γ

1
E!

( ih̄

2

)E f (V )(A)
V !

λΓ(A).

It is to be noted that the previous equation is not, strictly speaking,
a power series expansion in h̄, as A itself depends on h̄. However, it is very
simple to write A =

∑
k h̄

kAk as a power series in h̄ and expand (4.4).
As a matter of fact, we have an alternative way to write (4.4) with terms
parametrized by graphs with weights where every term is a monomial in h̄.
We believe that the approach shown in this paper is simpler, though, and
clearly illustrates the method.

Equation (4.4) was easy to derive, and it is useful for proofs and
theoretical calculations, as well as to generalize to other quantizations
(see §5.2). However, when we want to explicitly write the first few terms of
it, this is not yet our ideal expression. We can put together the contribution
of labeled graphs that differ only in the labels to get a series whose terms
are parametrized by unlabeled graphs. We will do it next.

See Appendix B for an alternative derivation of (4.4).

Remark. — Our results (equation (4.4) and the calculations in the
next two subsections) bear a similarity with Feynmann diagram expansions
in stationary phase method. This is not accidental. We have used the
explicit form of the Moyal product (2.2), which is derived from the Weyl-
Wigner correspondance (2.1) through a stationary phase expansion. One
can actually forget that we know (2.2), and use stationary phase expansion
to obtain the iterated star products (Lemma 4.1). That is equivalent to
rederiving (2.2) from (2.1).

4.3. Version with non-labeled graphs.

Two labeled graphs which are the same except for the labeling of
vertices and edges give the same contribution (up to a sign).
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Equation (4.4) can be rewritten as

(4.5) B =
∑

reduced
graphs [Γ]

1
E!

( ih̄

2

)E f (V )(A)
V !

∑
Γ′∈[Γ]

λΓ′(A).

In words, we need to sum λΓ′ when Γ′ runs through all possible relabelings
of Γ. Remember that λΓ′ and λΓ will be equal up to a sign.

Define

(4.6) cΓ =
∑

Γ′is a reordering of
the vertices of Γ

(−1)# of arrows inverted going from Γ to Γ′ .

That is, we start with a labeled graph Γ. Then, we consider the V ! possible
ways of numbering the vertices of the graph with 1, 2, . . . , V . For each of
them, we orient the arrows so that they all go from the vertex with the
lowest label to the vertex with the highest label. Then we count these V !
relabelings with a sign, depending on the parity of the number of arrows
inverted from our original orientation.

We can then write the contribution from (4.5) as

(4.7)
∑

Γ′∈[Γ]

λΓ′(A) =
E!
SΓ

cΓλΓ(A)

where SΓ is the order of the symmetry group of the (unlabeled) graph [Γ]
(see Definition 3.3). The contribution corresponding to different relabelings
of the edges is E!. The contribution corresponding to different relabelings
of the vertices is in cΓ. And we have to divide by the order of the symmetry
group, to account for the situation in which exchanging edges or vertices
results in the same labeled graph.

For instance, if Γ is the graph • → • → •, then the contribution from
renumbering the vertices is

1→2→3 1→3←2 2←1→3 2→3←1 3←1→2 3←2←1

cΓ = (−1)0 + (−1)1 + (−1)1 + (−1)1 + (−1)1 + (−1)2

= −2.

Finally we just have to substitute (4.7) into (4.5):

(4.8) B =
∑

reduced
graphs [Γ]

( ih̄

2

)E cΓ
SΓ

f (V )(A)
V !

λΓ(A).
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Notice how cΓ and λΓ(A) are only defined up to a sign for [Γ].
However, those signs cancel in their product cΓλΓ(A), which is well defined.

The explicit calculation of cΓ for a particular graph is actually very
easy. See Appendix C, which includes the value of cΓ and SΓ for all reduced,
connected graphs with 2 or 4 edges. Thanks to Lemma C.1 we only need to
consider graphs Γ where every connected component has an even number
of edges, since otherwise cΓ = 0.

4.4. Version with connected graphs.

Let us rewrite (4.8) as

(4.9) B =
[ ∑

reduced
graphs [Γ]

( ih̄

2

)E cΓ
SΓ

λΓ(A)
DV

V !

]
f(A)

where D is the differential operator which applies to f .

Whenever we have an expression like (4.9), a series labeled by a
certain family of diagrams, it is standard to reduce all calculations to only
connected diagrams. Let’s generalize.

Let G be the free commutative monoid generated by the set G0. Let S
be a commutative ring (with multiplicative notation). Let O : G → S be a
map satisfying

(4.10) O(r1x1 + · · ·+ rnxn) =
1

r1! . . . rn!
(
O(x1)

)r1 · · · (O(xn)
)rn

for distinct x1, . . . , xn ∈ G and r1, . . . , rn ∈ N. Then, formally:

(4.11)
∑
x∈G
O(x) = exp

[ ∑
x∈G0

O(x)
]
.

In particular, consider G to be a family of diagrams closed under
topological sum and generated by the connected non-empty diagrams G0.
If we write O(Γ) =M(Γ)/SΓ, where SΓ is the order of the symmetry group
of the diagram andM is a multiplicative function

M(x1 + x2) =M(x1)M(x2) for all x1, x2 ∈ G

then O satisfies (4.10).
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In our case,

• G = reduced graphs,

• G0 = reduced, connected, non-empty graphs,

• S = C∞(T ∗RN ),

• M([Γ]) =
(

1
2 ih̄

)E
cΓλΓ(A)DV /V !.

The functionM is multiplicative from (C.1) in Appendix C:

cΓ
V !

=
cΓ1

V1!
· · · cΓn

Vn!
·

Hence, using (4.11) in (4.9):

(4.12) B =
[
exp

∑
connected
reduced

non-empty graphs [Γ]

( ih̄

2

)E cΓ
SΓ

λΓ(A)
DV

V !

]
f(A).

5. Generalizations.

As we mentioned in the introduction, we needed three things to derive
our results:

•Weyl quantization,

• the Moyal product,

• a spectral theorem.

Of these, we only used the explicit form of the Moyal product. Actually,
the form of the Moyal product is calculated from the form of the Weyl
quantization. We discuss now how to generalize to functions of various
variables and other quantizations.

5.1. Functions of several variables.

Let Â1, . . . , Ân be n commuting operators in L2(RN ) with symbols
A1, . . . , An. Let F : Rn → R be a smooth function. We consider the
operator B̂ = F (Â1, . . . , Ân) with symbol B. Can we extend our results
to calculate B in terms of A1, . . . , An? The answer is yes. We are still
using Weyl quantization and the Moyal product, and spectral theorems
behave equally well for functions with several variables. See [1] for a list of
references.
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Hence, we only need to repeat our calculations, starting from §4.2,
but with a function of a several variables. The counterpart of (4.8) is

(5.1) B =
∑

reduced
graphs [Γ]

( ih̄

2

)E cΓ
SΓ

∂i1 · · · ∂iV F (A)
V !

λΓ(Ai1 , . . . , AiV ).

For instance the first few terms of (4.8) are

B = f(A)− h̄2

4

[ 1
2
A→→A

f ′′(A)
2!

+ A→ A← A
f ′′′(A)

3!

]
+ O(h̄4)

and the first few terms of (5.1) are

B = F (A)− h̄2

4

[ 1
2
Ai
→→Aj

∂i∂jF (A)
2!

+ Ai → Aj ← Ak
∂i∂j∂kF (A)

3!

]
+ O(h̄4).

There are also the obvious versions with labeled or connected graphs.

5.2. Other quantizations.

There are other quantizations apart from Weyl quantization, that is,
correspondances between operators and symbols [11]. If we want to use
them, then we have a different star product instead of the Moyal product.
The explicit form of the Moyal product has been used in two places: to
prove Lemma 4.3 and to derive an expression for the iterated star product
(Lemma 4.1).

Let us consider a generic star product that has the form

(5.2) C � D =
∞∑
k=0

1
k!

( ih̄

2

)k
{C,D}k.

As long as (C,D) �→ {C,D}k is a bidifferential operator of order mk

and limk→∞mk = ∞, then Lemma 4.3 is satisfied. Hence, for those star
products, we only need to obtain an analogue to Lemma 4.1, that is, an
expression for the iterated star product C1 � · · · � Cn in terms of diagrams.
This can often be done by induction if we start by writing the star product
of two symbols as a series in terms of diagrams.

For instance, we can consider standard order quantization:

A(x, p) = u−p(x)Â[up](x)
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where up(x) = eip·x/h̄. In that case, the star product has the form of (5.2)
with {C,D}k := ∂kpjC∂kxjD. Lemma 4.3 still holds and, if we change
the meaning of “→”, Lemma 4.1 is also true. The simplest way is to use the
same definitions we gave in §2.2 and §3 to construct a polynomial λΓ(A)
from a labeled graph Γ, but using the (non-Poisson) tensor

(Jµν) =
( 0 0
IN 0

)
.

With that convention, (4.4) is still valid. However, it is no longer true that
C → D = −(C ← D). As a consequence, the versions with unlabeled or
connected graphs are messier (although they still exist).

In [13], Kontsevich gave a star product that quantizes any Poisson
structure on R

N . His expression is already a power series in h̄ whose
terms are labeled by a family of diagrams. We can use it to obtain an
equivalent of Lemma 4.1 and we can derive, again, the counterparts of
Equations (4.4), (4.8) and (4.12). In fact, our set of labeled graphs is a
subset of Kontsevich’s set of labeled graphs. It is to be noted, though,
that Kontsevich’s star product includes a weight ωΓ associated to every
diagram Γ which is, in practice, hard to calculate. (See [12] and [17] for
some results.)

6. The case of a quadratic symbol.

When we restrict to a smaller class of symbols, it is possible that the
contribution of many graphs vanishes, simplifying our calculations. As an
example, we study here quadratic symbols.

A particular (simple) case of importance consists of taking Â = Î, the
harmonic oscillator hamiltonian in 1 dimension. In the standard coordinates
(z1, z2) = (x, p) its symbol is I = 1

2 ((z1)2 + (z2)2). This simplifies the
calculations because any third derivative vanishes: I,µ1µ2µ3 = 0. The same
is true for any quadratic function. Let Qµν be a 2×2 real symmetric matrix
and consider the symbol A = 1

2 z
µQµνz

ν . Assume A is the symbol of an
operator Â. Then

A,ν = zµQµν , A,µν = Qµν ,

and any third derivative vanishes. As a consequence, we only need to
consider graphs where every vertex has at most two edges. After Lemma
C.1 in Appendix C, we only need to consider graphs with an even number
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of edges. If we also ask them to be connected, reduced and non-empty, there
are only two families of such graphs:

∆k = • → • → · · · → • (2k edges, k ≥ 1),

Λk = • → • → · · · → •
↑ ↓ (2k edges, k ≥ 1).
• ← • ← · · · ← •

In words, ∆k consists of 2k + 1 vertices and 2k edges joined forming
a line. Its symmetry group has order 2. Λk consists of 2k vertices and 2k
edges joined forming a simple cycle. Its symmetry group has order 4k.

The corresponding polynomials in the derivatives of A can be
calculated:

λ∆k
= A,µ1J

µ1ν1A,ν1µ2J
µ2ν2 · · ·Jµ2kν2kA,ν2k = zµ1

(
(QJ)2kQ

)
µ1ν2k

zµ2k ,

λΛk = A,ν2kµ1J
µ1ν1A,ν1µ2J

µ2ν2 · · ·Jµ2kν2k = trace
(
(QJ)2k

)
.

Since Q is symmetric and J is skew-symmetric, their product QJ is
traceless. Hence (QJ)2 = −det(QJ) id. Write ω2 := det(QJ) = det(Q).
Then

λ∆k
= (−1)kω2kzµQµνz

ν = (−1)kω2k2A,

λΛk = (−1)kω2k trace(id) = (−1)kω2k2.

As for the coefficients c∆k
and cΛk , Fact 5) in Appendix C gives us

the relation cΛk = −2k c∆k−1 .

We now plug all this values in (4.12) to obtain, for a general function f

and a quadratic symbol A:

B =
(
exp

[
A

∞∑
k=0

( ih̄

2
ω
)2k

|c∆k+1 |
D2k+1

(2k + 1)!
(6.1)

+
∞∑
k=0

( ih̄

2
ω
)2k

|c∆k
| D

2k

(2k)!

])
f(A).

We are left with a combinatorics problem: the sequence {c∆k
}. Fact 5)

in Appendix C gives us a recurrence formula:

(6.2) c∆k
= −

k−1∑
j=0

( 2k
2j + 1

)
c∆jc∆k−j−1 .
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The sequence is alternating in sign, and the first few absolute values are
1, 2, 16, 272, 7936 . . . This sequence is called the Zag numbers [18] and they
appear in the McLaurin expansion of the tangent:

(6.3) tanx =
∞∑
k=0

|c∆k
|

(2k + 1)!
x2k+1.

To prove this, notice that tanx is the only odd solution to the
differential equation

(6.4) y′ = 1 + y2.

Write a generic solution of the form y = f(x) =
∑∞

k=0 αk/(2k + 1)!x2k+1

and substitute it into (6.4). Equating coefficients, we conclude that the
sequence αk satisfies the same recurrence relation as the sequence c∆k

(Equation (6.2)). Hence αk = |c∆k
|.

The Zag numbers can be written in terms of the Bernoulli numbers Bn:

|c∆k
| = 22k

22k − 1
|B2k|
2k
·

When we use Equation (6.3) in (6.1) we obtain a nice, compact
expression:

(6.5) B̂ = f(Â), B = sec
ih̄ωD

2
exp

[ 2A
ih̄ω

tan
ih̄ωD

2
−AD

]
f(A).

Remember that D is the derivative operator that applies to f . If we
also take the function f(y) = eεy, then D acts simply as multiplication
by ε. In particular, when we consider the time evolution operator:

(6.6) B̂ = e−itÂ/h̄, B = sec
tω

2
exp

[ 2A
ih̄ω

tan
tω

2

]
.

Equation (6.6) is derived in [16] in a different manner, and also in [3]
for the case Â = Î. A better-known, equivalent expression is the kernel
of the time evolution operator of the harmonic oscillator, instead of (6.6),
the symbol of the time evolution operator of the harmonic oscillator. Such
kernel is known as the Mehler kernel and can be obtained from (6.6) by
means of a Fourier transform.
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7. Application: Bohr-Sommerfeld rules.

We explain in this section the application that caused our original
interest in this problem.

Colin de Verdière [6] gives an algorithm which computes the Bohr-
Sommerfeld quantization rules to all orders in h̄ in the one dimensional
case N = 1. His method is inspried by Voros [19] and a similar method had
been previously used by Argyres [2].

Let Ĥ be an operator with symbol H ∈ C∞(T ∗R). Bohr-Sommerfeld
quantization rules provide a way to asymptotically compute the spectrum
of Ĥ. Assume H has a regular minimum at a point. Under certain extra
assumptions on the symbol H (see [6]), the eigenvalues of Ĥ are given by
the solutions E to

(7.1) 2πnh̄ = S(E) =
∞∑
j=0

h̄jSj(E)

with n ∈ Z. To solve the previous equation, write E =
∑

h̄kEk as a power
series in h̄ and substitute it into (7.1) to obtain recursive expressions for
each Ek. This requires knowing the form of S(E), called the semiclassical
action, for the hamiltonian Ĥ.

Let us consider for simplicity the case where the symbol H does not
depend on h̄. It is known that at lowest orders in h̄:

S0(E) =
∫
γE

pdx, S1(E) = π.

The path γE denotes the level set H−1(E) around the minimum of H

and (x, p) are the natural coordinates in T ∗R.

The main result in [6] is the following:

Sj(E) =
L(j)∑
�=2

(−1)�−1

(1− 1)!

( d
dE

)�−2
∫
γE

Pj,�(x, p) dt,

where t is the parametrization of γE by the time evolution

dx = Hp dt, dp = −Hx dt

and Pj,� are universal polynomials in the derivatives of H defined by the
symbol Ra of the resolvent R̂a = (a− Â)−1:

Ra =
1

a−H
+
∞∑
j=1

h̄j
L(j)∑
�=2

Pj,�(H)
(a−H)�

·
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Looking back at our formula for the symbol for the function of an
operator (1.1) and using it for the function f(y) = (a − y)−1, we see that
Lj = 3

2 j + 1 and the polynomials Pj,� can actually be defined in terms of
graphs:

Pj,�(H) =
∑

reduced graphs Γ with
�−1 vertices and j edges

( i

2

)j cΓ
SΓ

λΓ(H),

which gives us the following equation for the eigenvalues E of Ĥ :

2π
(
n− 1

2

)
h̄ = S0(E)(7.2)

+
∑

reduced graphs Γ
withEΓ>0

( ih̄

2

)EΓ (−1)VΓ

VΓ!

( d
dE

)VΓ−1 cΓ
SΓ

∫
γE

λΓ(H) dt.

Here E is an eigenvalue of H, whereas EΓ is the number of edges of a
graph Γ.

One has Sj(E) = 0 for j > 1 and odd. S2(E) is given by the
contribution of two graphs, and S4(E) is given by the contribution of 15
graphs (see Appendix C). However, there is a trick using Stokes’ theorem
that allow us to express the contribution of certain graphs in this expression
in terms of others. (This trick is used in [4] and in [6] for S2, although
without the diagrammatic notation.) As a consequence, S2(E) can be
written in terms of 1 graph and S4(E) can be written in terms of five
graphs (those where every vertex has at least two edges):

(7.3) 2π(n− 1
2
)h̄ = S0(E) − h̄2

4 [
[

1
2! · 6

d
dE

∫
γ
E

(H→→H) dt ]

]

+
h̄4

16
1

2! · 120
d

dE

∫
γ
E

(H −→[4]−→H) dt

+
1

4! · 12 ( d
dE )

( )

( )

( )

3
∫
γE

(H→→H)2 dt

−

−

1
3! · 15

d
dE

2
∫
γ
E

H→→H dt
↓

H

+
1

4! · 15
d

dE
3
∫
γ
E

H→ H dt
↑ ↓
H ←H

1
3! · ·12

d
dE

2
∫
γ
E

(H→→H→→H) dt + O(h̄6)

−→
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All the integrands in the previous expressions are long polynomials in the
derivatives of H. The expression would be hard to obtain without the
diagrammatic notation. Given a concrete hamiltonian H we could easily
program a computer to write all the terms in (7.2) for that specific operator
at higher orders in h̄.

For the case of a hamiltonian of the form kinetic plus potential
energy H(x, p) = p2/2m + V (x) the contribution of many graphs vanishes,
and (7.3) becomes:

2π
(
n− 1

2

)
h̄ = S0(E)− h̄2

m

1
24

d
dE

∫
γE

V ′′(x) dt

+
h̄4

m2

1
2732

[ 7
5

( d
dE

)3
∫
γE

[
V ′′(x)

]2 dt

−
( d

dE

)2
∫
γE

V (4)(x) dt
]

+ O
( h̄6

m3

)
.

The disadvantage of this method is that it does not generalize to the
multidimensional case N > 1. Cargo & al. [4] approached this problem in a
totally different way to obtain a result valid in all dimensions. The symbol
of a function of an operator plays a role in their derivation, too.
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Investigación del Ministerio Español de Educación y Ciencia. We thank
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A. A lemma for calculations with graphs.

The diagramatic notation introduced in §3 makes equations and
derivations easier to write. The following lemma is needed in some of those
derivations:

LEMMA A.1. — Let Γ be a labeled graph with V vertices and E edges.
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Let D,C1 , . . . ,CV be symbols. Then

λΓ(C1 , . . . CV )−→[k]−→D =
∑
Γ′

λΓ′(C1 , . . . ,CV ,D)

where the sum is taken over all labeled graphs Γ′ with V ′ = V + 1 vertices

and E′ = E + k edges, which are constructed by putting together

• the labeled graph Γ (conserving its labels),

• an extra vertex labeled by V + 1,

• k extra arrows (labeled by E + 1, . . . ,E + k) starting from the

vertices of Γ and ending at the vertex V + 1.

Proof. — Write down the definition of both sides in terms of Jµν and
check that they are equal.

For instance:

−−−

−−−
3

(C
1

D) E = C E + C D
2

3
E

+

2

3

+

= + C D E + 2

−− −− − 1
D−−−

C E
2

1
D−−−

C ED −−C ED−−

−−−
2

C E
3

1
D−−−

1
−−−

−−

−−

−−−−

−−−−

.

B. An alternative derivation of (4.4).

As we mentioned in the introduction and in §7, the existence of a
universal formula like (1.1) was used by Voros [19] and Colin de Verdière [6]
(and, indirectly, by Argyres [2]). They start by writing a smooth function
of an operator in terms of the resolvent. Let a ∈ C and define the resolvent
operator R̂a := (a− Â)−1 with symbol Ra. Then we use Helffer-Sjöstrand’s
formula [10] as a spectral theorem:

B̂ = f(Â) = − 1
π

∫
C

R̂z∂z f̃(z) dxdy.

Here z = x + iy, f̃ is an almost analytic extension of f , and ∂z = ∂x + i∂y.
This allows us to write for the symbol:

(B.1) B = − 1
π

∫
C

Rz∂z f̃(z) dxdy.
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Hence, finding the symbol of f(Â) reduces to finding the symbol
of R̂a.(3) In order to do so, we may write

Ra =
∞∑
k=0

Ra(k)h̄
k

and, since R̂a(a− Â) = 1, substitute it into

Ra � (a−A) = (a−A) � Ra = 1

to obtain recursively the value of each Ra(k). Although simple, this method
quickly proves intractable. The calculations at order 4 are already too
complex and we will not find the pattern that (1.1) shows.

But we can also use this idea to prove (4.4) in a different way. First,
we prove it for the function f(y) = (a− y)−1:

CLAIM. — The function

(B.2) ha(A) =
∑

reduced labeled
graphs Γ

1
E!

( ih̄

2

)E λΓ(A)
(a−A)V+1

satisfies

ha(A) � (a−A) = (a−A) � ha(A) = 1.

The proof is a long combinatorial exercise on calculations with graphs.
Therefore ha(A) = Ra.

Second, we can substitute (B.2) into (B.1) to obtain again (4.4).

C. Calculation of cΓ and SΓ.

Calculating cΓ is a combinatorial problem. The following five facts
give quick, recursive rules for it:

(3) We could also use Cauchy’s integration formula as a spectral theorem:

B̂ = f(Â) =

∫
γ

da

2πi
f(a)R̂a, B =

∫
γ

da

2πi
f(a)Ra,

which will lead to the same results, but it is only valid for analytic functions f . The
path γ is around the spectrum of Â.
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FACTS:

1) c• = 1.

2) cΓ = 0 if E is odd.

This is due to a symmetry property. If we denote by Γ a labeled graph

with a numbering of the vertices by 1, 2, . . . , V and by i(Γ) the relabeling

of the vertices by the permutation
(

1,2,...,V
V,...,2,1

)
, then

λi(Γ) = (−1)EλΓ.

And when we sum over reorderings of the vertices:

cΓ = (−1)EcΓ.

3) If Γi has Vi vertices, Γi �= Γj for i �= j, and Γ = Γ1 + · · ·+ Γn is the

topological sum with V = V1 + · · ·+ Vn vertices, then

(C1) cΓ =
V !

V1! . . . Vn!
cΓ1
· · · cΓn .

4) cΓ does not change if we erase two edges with the same endpoints.

For instance c1→2→→ 3→4 = c1→2 3→4.

5) If p is a vertex in Γ, denote by Γ− p the same Γ with the vertex p

and every edge starting or ending at p erased. For instance

Γ = • → p→ •→→•,
Γ− p = • •→→•.

Then

cΓ =
∑

verticesp∈Γ

(−1)# of arrows starting at pcΓ−p.

Proof. — Count the possible reorderings of the vertices by choosing
first which vertex has label V .

In particular, putting together Facts 2) and 3) we get:

LEMMA C.1. — If Γ has a connected component with an odd number

of edges, then cΓ = 0.

The reduced, connected graphs with two and four edges, and for each
of them the value of cΓ and SΓ are presented Figure 2.
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Γ E V SΓ cΓ

•−→−→

−→−→

−→−→
−→−→

−→−→ −→−→
−→−→

• 2 2 4 2

• → • → • 2 3 2 −2

• [4]−→
−→

−→
• 4 2 48 2

• [3]−→• → • 4 3 6 −2

•

−→

−→
−→

• • 8 6

• • 4 2
↓
•

• → •
↑ ↓
• ← •

4 4 8 8

• → • → • 2 0
↓
•

• • → • 4 8
↓
•

• • → • → • 2 −8

• → • • → • 4 0

• → • → • → • → • 4 5 2 16

• → • → • → • 2 −8
↓
•

• → • → • 24 −24
↓
• •

Figure 2. The reduced, connected graphs with two and four edges

D. Symbol of a function of an operator at order 4 in h̄.

Using any of the equations derived in §4, we write down (see Figure 3)
the explicit form of all the terms of the symbol of a function of an operator
up to order 4 in h̄. The data in the table in Appendix C are needed.
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B̂ = f(Â)

B = f(A) − h̄2

4
[A A

2
f ′′(A)

2!
+ A→ A← A

f ′′′(A)
3!

]
+

h̄4

16
[A [4]−→
−→

A

24
f ′′(A)

2!

+(

(

A [3]−→
−→

A← A

3
+

1
2
A A

A
↓

+
3
4
A A A)f ′′′(A)

3!

+
3
4

(A A)2 + A→ A
↑ ↓
A← A

+ 4A A→A← A

+ 2A A→ A) f (4)(A)
4!↓

A+ 8( A→ A→ A + A→ A← A
↓ ↑

A← A A A

+ 5(A

−→

−→

A)(A→ A← A)

+ 4A← A→ A→ A)f (5)(A)
5!↓

A

+ 10(A→ A← A)2
f (6)(A)

6!
]+ O(h̄6).

,
−→−→

−→−→

−→−→

−→−→ −→−→

−→−→
−→−→

−→−→

Figure 3. Symbol of a function of an operator up to order 4 in h̄
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