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LOCAL COHOMOLOGY MULTIPLICITIES IN TERMS
OF ÉTALE COHOMOLOGY

by Manuel BLICKLE & Raphael BONDU

1. Introduction.

Let (R,m) be a regular local ring of dimension n and let A = R/I be
a quotient of R. In [Lyu93] Lyubeznik introduces new invariants λa,i(A)
(defined as the ath Bass number of Hn−i

I (R)) and shows that if A contains
a field, these are independent of the presentation of A as a quotient of a
regular local ring. One can verify that

λa,i(A) = e(Ha
m(Hn−i

I (R)))

where the multiplicity e( ) can be described as follows: The main results
of [Lyu93,HS93] state that the module Ha

m(Hn−i
I (R)) is injective. As it is

supported at the maximal ideal it is isomorphic to a finite direct sum of e
copies of the injective hull ER/m ∼= Hn

m(R) of the residue field of R. This
integer e is the multiplicity.

Our main result is the following description of these invariants in the
case that A has reasonable singularities.

The authors were supported by the DFG Schwerpunkt Globale Methoden in der
komplexen Geometrie.
Keywords: Local cohomology, characteristic p, perverse sheaves.
Math. classification: 14B15, 14F20.
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THEOREM 1.1. — Let k be a field of characteristic p > 0 and let Y be

a k-variety of dimension d which is close to F–rational outside the single

point x ∈ Y . Let A = OY,x. Then

(1) λ0,i(A) = dimZ/pZHi
{x}(Yét,Z/pZ) for 1 � i � d− 1.

(2) λa,d(A) = dimZ/pZH
d+1−a
{x} (Yét,Z/pZ) for 2 � a � d − 1 and

λd,d(A) = dimZ/pZH1
{x}(Yét,Z/pZ) + 1.

(3) All other λa,i(A) vanish.

The notion close to F–rational will be introduced and briefly discussed
in Section 4. The name is chosen to indicate that F–rational varieties are
close to F–rational and thus so are smooth varieties. In particular, the
theorem applies in the case that Y has an isolated singularity at x. A key
ingredient in our proof is that a close to F–rational variety Y ⊆ X (X
smooth) has the property that RΓ[Y ](OX) is isomorphic to L(Y,X)[d−n],
the intersection homology module (cf. Section 2).

The isolated singular case was motivated by the main result in
[GLS98] where Garćıa López and Sabbah prove a topological description
of the invariants λa,i(A) in the case that A is the local ring of an isolated
complex singularity.(1) Our methods lead to a generalization of their result,
replacing the assumption of isolated singularity with the significantly
weaker requirement that (Y −{x}) is an intersection cohomology manifold,
i.e. C(Y−{x})[d] ∼= IC•(Y−{x}).

(2)

THEOREM 1.2. — Let Y be a complex variety of dimension d and

x ∈ Y such that (Y − {x}) is an intersection homology manifold. Let

A = OY,x. Then

(1) λ0,i(A) = dimCHi
{x}(Y,C) for 1 � i � d− 1.

(2) λa,d(A) = dimCH
d+1−a
{x} (Y,C) for 2 � a � d − 1 and λd,d(A) =

dimCH1
{x}(Y,C) + 1.

(3) All other λa,i(A) vanish.

(1) To be precise, they state part (2) in its Poincaré dual form (λa,d =

dimCH
d+a(Y,C) for 2 � a � d), see in Remark 2.2 why this is the case and also

why we prefer our version.

(2) This notion was recently introduced by Massey [Mas] and via the Riemann–Hilbert
correspondence it is clearly the condition corresponding to L(Y,X) ∼= RΓ[Y ](OX )[n−d].

ANNALES DE L’INSTITUT FOURIER



LOCAL COHOMOLOGY MULTIPLICITIES 2241

In the isolated singular case, statement (1) was already pointed out in
[Lyu93] to follow from a result of Ogus [Ogu73, Theorem 2.3]. Observing
the proof in [GLS98] we first note that part (3) is independent of the
characteristic whereas the other parts distinctively use characteristic zero.

In order to obtain the full analog of Theorem 1.2 in positive character-
istic we have to work somewhat harder. The proof given in [GLS98] is our
point of departure. They use the Riemann–Hilbert correspondence and du-
ality for holonomic D–modules. Our idea is to replace the Riemann–Hilbert
correspondence (i.e. de Rham theory) with the correspondence recently in-
troduced by Emerton and Kisin [EK04] (i.e. Artin–Schreyer theory). The
main obstacle is that the categories involved in the Emerton–Kisin corre-
spondence do not have a duality, which was an essential part in the proof
of Garćıa López and Sabbah. Thus our first task is to give a new proof of
Theorem 1.2 which as its main feature avoids the use of duality. In this
proof we also show explicitly that part (1) and (2) are equivalent once part
(3) is established.

In Section 3 we briefly recall the setup for the Emerton–Kisin corre-
spondence and show that this allows us to carry our new characteristic zero
proof over to positive characteristic. Thus we obtain Theorem 1.1 postpon-
ing the introduction and investigation of close to F–rational singularities
to the last section.

2. Duality free proof in characteristic zero.

2.1. A spectral sequence computation.

We start with explaining that a vanishing condition (slightly weaker
than the one in part (3) of Theorem 1.2) for the λa,i(A) implies part (3)
and also that part (1) and (2) are equivalent. This is done via a not so
difficult spectral sequence argument. The condition we impose is that

(2.1) λa,i = e(Ha
[x]H

n−i
[Y ] (OX)) = 0

for all pairs (a, i) with a > 1 and i 	= d. This is, for example, satisfied if Y
a complete intersection at x. We will then show that (2.1) implies that is

λ0,1(A) + 1 = λd,d(A) and
λ0,d−r+1(A) = λr,d(A) for 2 � r � d− 1

TOME 55 (2005), FASCICULE 7



2242 Manuel BLICKLE & Raphael BONDU

and that all other λa,i are zero. This clearly suffices to support all our
claims. Now consider the spectral sequence

Ea,j2 = Ha
[x]H

j
[Y ](OX)⇒ Ha+j

[x] (OX).

Since λa,i = e(Ea,n−i2 ) the vanishing assumption (2.1) yields that the only
possibly nonzero entries of the E2 sheet of this spectral sequence are the
ones illustrated in the picture:

Clearly, the only possibly nonzero arrow is the one indicated. We now
assume that d � 2 and leave the easy cases d = 1 and d = 0 to the reader.
Recall that by the Hartshorne–Lichtenbaum vanishing theorem one has
Hn

[Y ](OX) = 0 and therefore E0,n
2 = H0

[x]H
n
[Y ](OX) = 0 which just says

that λ0,0(A) = 0. Now we claim that for r � 2 the Er sheet of the spectral
sequence has only the following (possibly) nonzero entries

where the only nonzero arrow is the one indicated which yields an isomor-
phism

(2.2) H0
[x]H

n−d+r−1
[Y ] (OX) ∼= Hr

[x]H
n−d
[Y ] (OX)

for r < d. In the case r = d this only nonzero arrow fits in a short exact
sequence

(2.3) 0 −→ H0
[x]H

n−1
[Y ] (OX) −→ H d

[x]H
n−d
[Y ] (OX) −→ H n

[x](OX) −→ 0

ANNALES DE L’INSTITUT FOURIER



LOCAL COHOMOLOGY MULTIPLICITIES 2243

the right map being the edge map of the spectral sequence.(3) All these
claims simply follow from the observation that in the limit of the spectral
sequence the only surviving term is Hn

[x](OX) and the fact that each sheet
has only one nonzero arrow. For r < d the bottom left terms (the ones below
the nonzero arrow) must vanish since they do not contribute to the limit
(the only term that does is Ed,n−d) and since there are no nonzero arrows
arriving at or departing from any of them in the rth or any higher sheet.
Similarly the only nonzero arrow must be an isomorphism since otherwise
there would be a surviving term in the next sheet which is impossible as
we just argued. Rephrasing these observations in terms of the λa,i(A) we
obtain from (2.2) that

λ0,d−r+1(A) = λr,d(A)

for 2 � r � d− 1 and from (2.3) that

λ0,1(A) + 1 = λd,d(A)

where we used in the latter that e( ) is additive on short exact sequences
and that e(Hn

[x](OX)) = 1. That all other λa,i vanish follows already form
the shape of the E2–sheet.

Remark 2.1. — The vanishing condition (2.1) is satisfied precisely
when Hj

[Y ](OX) is supported at the point x for j 	= n − d. This, in turn,
clearly holds whenever Y has an isolated singularity at x and is smooth
otherwise.

Remark 2.2. — In [GLS98] Garćia López and Sabbah prove the
Poincaré dual statement of part (2), namely that λa,d = dimCHd+a(Y,C)
for 2 � a � d.(4) The reason for this lies in their computation of λa,d(A)
which uses duality for holonomic D–modules which under Riemann–Hilbert

(3) The injectivity on the left is clear since E
0,n−1
2 must die in the limit. The

surjectivity on the right follows since E
0,0
2 = 0, thus the term in the middle (E

d,d
2 )

is the only one that can contribute to the abutment term, thus has to surject onto it.

(4) In order to recover our part (2) of Theorem 1.2 one proceeds as in [GLS98,
Remark 1] and uses Poincaré duality for the link L(Y,x) of the singularity (Y, x). The link

is a real orientable compact manifold of dimension 2d− 1. We have, locally analytically
around x that

Hd+a−1(Y − {x},C) ∼= Hd+a−1(L(Y,x),C)

∼= Hd−a(L(Y,x),C) (Poincaré duality)

∼= Hd−a(Y − {x},C).

TOME 55 (2005), FASCICULE 7
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corresponds to Poincaré duality, in that special case. Thus they obtain
the equivalence of part (1) and part (2) as a consequence of Poincaré
duality. Our observation though shows that this equivalence follows from
the structure of the invariants λa,i and the use of Poincaré duality can be
avoided.

2.2. Preparatory lemmata and proof of Theorem 1.2.

We start with some (probably well known) facts which will naturally
lead to the proof of Theorem 1.2.

LEMMA 2.3. — Let X be a smooth C–variety of dimension n and let

k : x ↪→ X be the inclusion of a point. LetM be a holonomic DX–module,

then

Sol(Ha
[x](M)) ∼= k!k

−1H−a(SolM).

Proof. — By definition of the symbols involved (pH denotes perverse
cohomology, Sol( ) def= RHomDX ( ,OX)[n]) we have

Sol(Ha
[x](M)) ∼= SolHa(RΓ[x]M) ∼= pH−a(Sol(RΓ[x]M)).

One has that Sol◦RΓ[x]
∼= k!k

−1◦Sol.(5) Thus pH−a(Sol(RΓ[x]M)) is equal
to

pH−a(k!k
−1(Sol(M))) ∼= k!

pH−a(k−1(Sol(M)))

At the same timeHd+a{x} (Y,C) ∼= Hd+a−1(Y −{x},C) andHd−a+1
{x} (Y,C) ∼= Hd−a(Y −

{x},C) for a �= d. When a = d one has dimCH
1
{x}(Y,C) = dimCH

0(Y − {x},C) + 1

and the claim follows.

(5) This follows from the fact that for any closed embedding k : Z −→ X and
complex of DX–modules M• one has the triangle

RΓ[Z]M• −→ M • −→ R j∗j∗M•
[+1]−−−−→

where j denotes the open inclusion X−Z ⊆ X. Let us denote Sol(M•) by L• and apply
Sol to this triangle. Using the compatibility of Sol with the six operations, in particular

Sol ◦ j∗ ∼= j! ◦ Sol and Sol ◦ j−1 ∼= j! ◦ Sol, we obtain the following triangle.

Rj!j
!L• −→ L • −→ Sol (RΓ[Z]M•)

[+1]−−−−→

Comparing with the standard triangle Rj!j
!L• −→ L • −→ R k!k

−1L• [+1]−−−−→
[KS90,Triangle 2.6.33] one obtains the claim.

ANNALES DE L’INSTITUT FOURIER
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where the isomorphism holds since k! is t–exact by [KW01, Lemma III.4.1].
After pullback along k we are on the point x on which perverse cohomology
is the same as ordinary cohomology. Thus we may replace pH−a by H−a.
Using that k−1 is exact we get

k!
pH−a(k−1(Sol(M))) ∼= k!H

−a(k−1(Sol(M))) ∼= k!k
−1H−a(Sol(M))

as claimed. �

One of our tools is the intersection homology DX–module L(Y,X) of
Brylinski and Kashiwara [BK81]. It is the middle extension

L(Y,X) ∼= j̃!∗H
n−d
[Y−SingY ](O(X−SingY ))

where j̃ denotes the open inclusion (X − SingY ) ⊆ X. Its characterizing
property is that it is the smallest DX–submodule of Hn−d

[Y ] (OX) which

agrees with Hn−d
[Y ] (OX) away from the singular locus of Y . Thus in

particular if Y is smooth then L(Y,X) = Hn−d
[Y ] (OX).

LEMMA 2.4. — Let X be a smooth k–variety of dimension n, let

i : Y ↪→ X be a closed subvariety of dimension d and assume that for

x ∈ Y one has L(Y,X)|(X−{x}) ∼= Hn−d
[Y ] (OX)|(X−{x}). Then

Ha
[x](H

n−d
[Y ] (OX)) ∼= Ha

[x](L(Y,X))

for a � 2.

Proof. — By assumption one has the short exact sequence

0 −→ L (Y,X) −→ H n−d
[Y ] (OX) −→ C −→ 0

whose cokernel C has support in the point x. Thus Ha
[x](C) = 0 for a � 1.

By the long exact sequence of H•[x]( ) applied to this short exact sequence
the claim of the lemma follows. �

LEMMA 2.5. — Let X be a smooth k–variety of dimension n and let

Y ⊆ X be a closed subvariety of dimension d. Assume that for x ∈ Y one

has L(Y,X)|(X−{x}) ∼= RΓn−d[Y ] (OX)|(X−{x})[n− d]. Then

Sol(L(Y,X)) ∼= i!j!∗C(Y−{x})[d]

where j is the inclusion of (Y − {x}) ↪→ Y .

TOME 55 (2005), FASCICULE 7
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Proof. — Let us fix the notation (X−SingY ) j′′−−−→(X−{x}) j′−−−→X.
Then by definition of middle extension and our assumption one has

L(Y,X) ∼= j′!∗j
′′
!∗H

n−d
[Y−SingY ](O(X−SingY ))

∼= j′!∗L(Y − {x}, X − {x})
∼= j′!∗RΓ[Y−{x}](O(X−{x}))[n− d].

Denoting the inclusion (Y −{x}) ↪→ (X−{x}) by i′ we have (see footnote 5)

Sol(RΓ[Y−{x}](O(X−{x}))[n− d]) ∼= i′!i
′−1Sol(O(X−{x}))[d− n]

∼= i′!i
′−1
C(X−{x})[n][d− n]

= i′!C(Y−{x})[d]

where we also used that Sol(O(X−{x})) ∼= C(X−{x})[n]. Now finish the proof
with the following chain of equalities

Sol(L(Y,X)) ∼= j′!∗Sol(RΓ[Y−{x}](O(X−{x}))[n− d])
∼= j′!∗i

′
!C(Y−{x})[d]

∼= i!j!∗C(Y−{x})[d]

the last of which follows from the fact that for a closed immersion i! ∼= i!∗
and thus the j and i can be exchanged as we have done. �

Remark 2.6. — Granted, the assumption on L(Y,X) of the preceding
two lemmata seems somewhat random. In characteristic zero (say over
C) they are equivalent via the Riemann–Hilbert correspondence to (Y −
{x}) being an intersection cohomology manifold, see [Mas]. In positive
characteristic our notion of close to F–rational of the final section relates
it to previous work on singularities, such as tight closure theory and the
notion of F–depth as in [HS77].

Also note that if Y has an isolated singularity at x then the assump-
tions are (trivially) satisfied since in this case one has L(Y,X)|(Y−{x}) ∼=
Hn−d

(Y−{x})(O(X−{x})) ∼= RΓ[Y−{x}](O(X−{x}))[n− d].

Proof of Theorem 1.2. — By assumption (Y −{x}) is an intersection
homology manifold which in particular implies by Remark 2.1 that part (3)
holds and part (1) and (2) are equivalent. Thus it is enough to show, say,
part (2):

As we pointed out in the introduction the DX–module Ha
[x]H

i
[Y ](OX)

is isomorphic to a finite direct sum of λa,i(A) many copies of Hn
[x](OX),

ANNALES DE L’INSTITUT FOURIER



LOCAL COHOMOLOGY MULTIPLICITIES 2247

the injective hull of the residue field at x. By Lemma 2.3 together with
Sol(OX) = CX [n] one has

Sol(Hn
[x](OX)) ∼= k!k

−1H−n(CX [n]) ∼= k!Cx

where we recall that k was just the inclusion of x ↪→ X. Therefore λa,i(A)
is just the dimension of the fiber at x of Sol(Ha

[x]H
i
[Y ](OX)). Thus, for a � 2

we can compute

λa,d(A) = e(Ha
[x](H

n−d
[Y ] (OX)))

= dimC
(
Sol(Ha

[x](H
n−d
[Y ] (OX)))

)
x

= dimC
(
Sol(Ha

[x](L(Y,X)))
)
x

(by Lemma 2.4)

= dimC
(
k!k
−1H−a(SolL(Y,X))

)
x

(by Lemma 2.3)

= dimC
(
H−a(i!j!∗C(Y−{x})[d])

)
x

(by Lemma 2.5)

= dimC
(
H−a(j!∗C(Y−{x})[d])

)
x

where i is the inclusion Y ↪→ X and j denotes the inclusion (Y −{x}) ⊆ Y .
Since j is just the inclusion of the complement of a single point it follows
that

j!∗C(Y−{x})[d] ∼= τ�d−1Rj∗C(Y−{x})[d]

by [Bor84, V.2.2 (2)]. By definition of Deligne’s truncation τ�d−1 one has
for a � 1

(
Hd−a(j!∗C(Y−{x}))

)
x
∼=

(
Rd−aj∗C(Y−{x})

)
x
.

Applying the following Lemma 2.7 we get for 2 � a � d− 1 that

λa,d(A) = dimC
(
Rd−aj∗C(Y−{x})

)
x

= dimCH
d−a+1
{x} (Y,C)

and (for a = d) that λd,d(A) = H1
{x}(Y,C) + 1. �

LEMMA 2.7. — Let Y be a variety and let x ∈ Y be a closed point

and C be a constant sheaf on Y . Then

(Rij∗j
−1C)x ∼= Hi+1

{x} (Y,C)

for i � 1 and (for i = 0) one has the short exact sequence

0 −→ C x −→ (R0j∗j
−1C)x −→ H 1

{x}(Y,C) −→ 0 .

TOME 55 (2005), FASCICULE 7
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Proof. — For the open inclusion j : (Y − {x}) ↪→ Y consider the
triangle

RΓ{x}C −→ C −→ R j∗j
−1C

+1−−−→
and take its fiber at the point x to obtain the following triangle:

(RΓ{x}C)x −→ C x −→ ( Rj∗j
−1C)x

+1−−−→

Since Hi(Cx) = 0 for i > 0 and H0
{x}(C) = 0 (since C is a constant sheaf)

the long exact sequence of cohomology for this triangle yields

0 −→ C x −→ (R0j∗j
−1C)x −→ (H1

{x}(Y,C))x −→ 0

and for i � 1

(Rij∗j−1C)x ∼= (Hi+1
{x} (C))x.

But clearly since Hi+1
{x} (C) is supported on x we have (Hi+1

{x} (C))x ∼=
Hi+1
{x} (Y,C) which finishes the proof. �

3. The case of positive characteristic.

We very briefly recall the setup of the correspondence of Emerton and
Kisin and point out the relevant facts which will make clear that the proof
given above in characteristic zero also works in positive characteristic.

Proof given above.

3.1. Emerton–Kisin correspondence.

Let k be a field of positive characteristic p and let X be a smooth
k–variety. In [EK04] Emerton and Kisin establish an anti–equivalence (on
the level of derived categories) between constructible Z/pZ–sheaves on Xét

on one hand and locally finitely generated unit OF,X–modules on the other.
Their construction closely models the Riemann–Hilbert correspondence
and underlies the same formalism – except that there is no duality available
on either side of the correspondence. This leads to the defect that their anti–
equivalence is compatible with only three of Grothendieck’s six operations,

namely with analogs of f !, f∗ (denoted f+ in [EK04]) and
L

⊗OF,X on

the OF,X–module side, which correspond to f∗, f! and
L

⊗Z/pZ on the
constructible étale Z/pZ side.

ANNALES DE L’INSTITUT FOURIER
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We will recall the definition of OF,X–module and point out that the
local cohomology modules are locally finitely generated as such, so that the
formalism of Emerton–Kisin can be applied to our study of the numbers
λa,i. For a nice introduction see [EK03]; or [EK04] for the most general
theory.

DEFINITION 3.1. — A quasi–coherent OX–module M together with

an OX–linear map

ϑ : F ∗M−→ M

is called an OF,X–module. Here F denotes the Frobenius morphism on X.

If ϑ is an isomorphism, then (M, ϑ) is called unit.

Locally, if X = SpecR, an OX,F –module is nothing but a module M
over the non-commutative ring

R[F ] def=
R〈F 〉

(rpF − Fr | r ∈ R)
.

Such R[F ]–module is called finitely generated if it is just that: finitely
generated as an R[F ]–module. Thus we have the notion of locally finitely
generated for OF,X–modules.

One of the key results of the theory (which was essentially proved by
Lyubeznik in [Lyu97]) is that the category of locally finitely generated unit
R[F ]–modules is abelian, and that every such M has finite length in that
category [Lyu97, Theorem 3.2].

Example. — Let X = SpecR be affine. Then, abusing the identifi-
cation of OX–modules and R–modules one can write F ∗M = R(1) ⊗R M

where R(1) is the R–R–bimodule with the usual left structure and the right
structure via the Frobenius map. Thus one sees immediately that the nat-
ural map

F ∗R = R(1) ⊗R R −→ R

sending a ⊗ r to arp is an isomorphism, showing that R is a fg (finitely
generated) unit R[F ]–module.

Let g ∈ R be an element and consider the localization Rg. The natural
map

F ∗Rg = R(1) ⊗R Rg −→ Rg

TOME 55 (2005), FASCICULE 7



2250 Manuel BLICKLE & Raphael BONDU

has an inverse given by sending r/t to rtp−1 ⊗ 1/t. Rg is generated as an
R[F ]–module by 1/g. Thus again Rg is a fg unit R[F ]–module.

Since local cohomology modules Hi
I(R) for I an ideal of R can be

computed via a Čech resolutions, whose entries are localizations of the type
Rg, the aforementioned result that the category of fg unit R[F ]–modules
is abelian implies that local cohomology modules are fg unit.

These examples are a special instance of more general results showing
that the cohomology with supports functors are defined in the category of
locally finitely generated unit OF,X–modules [EK04, Proposition 5.11.5]. If
M• is a bounded complex of such modules then so is RΓ[Y ]M• for Y a
closed subvariety of X and one has the usual triangle

RΓ[Y ]M−→ M −→ j +j
!M +1−−−→

where j : X − Y −→ X denotes the open inclusion.

The correspondence of Emerton and Kisin is between the derived
category of bounded complexes of OF,X modules whose cohomology is
locally finitely generated unit,

and the derived category of bounded complexes of Z/pZ sheaves with
constructible cohomology on Xét. Furthermore, they define functors f !,

f+ and
L

⊗OF,X . They are not the same as (though closely related to) the
functors of Grothendieck-Serre duality.

The canonical t–structure on the left induces via the anti–equivalence
an exotic t–structure onDb

c(Xét,Z/pZ), which in turn is just the t–structure
for the middle perversity as described by Gabber [Gab00]. Thus one obtains
a notion of perverse sheaves and thus of perverse cohomology.

3.2. Intermediate extensions.

There is a theory of intermediate extensions. If j : U −→ X is a
locally closed immersion of smooth k–schemes andM a lfgu OF,U–module,
then its intermediate extension j!+M is defined as the smallest submodule
M′ ⊆ H0(j+M) such that j!M′ =M. Furthermore,

Sol(j!+(M)) ∼= j!∗Sol(M) def= Im(pH0(j!Sol(M)) −→ pH 0(j∗Sol(M)))
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so that the intermediate extension is compatible with the correspondence
[EK03, Section 4.3]. We will only apply this toM = Hn−d

[Y−SingY ](O(X−SingY ))
for Y a closed subset of X and j the open inclusion (X − SingY ) ⊆ X. In
this case we get

L(Y,X) def= j!+H
n−d
[Y−SingY ](O(X−SingY )) ⊆ Hn−d

[Y ] (OX)

as its unique simple submodule. This important special case was already
obtained in [Bli04]. The key point in obtaining these results is the afore-
mentioned fact that lfgu OF,X–modules have finite length.

The following proposition lists the properties of the theory which
are needed to be able to transfer the proof of Theorem 1.2 to positive
characteristic.

PROPOSITION 3.3. —

(1) Sol(OX) ∼= Z/pZ[n] where n is the dimension of X.

(2) For a closed immersion of smooth k–schemes k : Y −→ X one has

Sol ◦RΓ[Y ]
∼= k!k

−1 ◦ Sol.

(3) Let k : Y −→ X be a closed immersion of smooth schemes. Then k!

is t–exact.

Proof. — Part (1) is just Example 9.3.1 in [EK04].

For part (2) note that RΓ[Y ]M is defined via the triangle

RΓ[Y ]M−→ M −→ j +j
!M +1−−−→

with j : X − Y −→ X denoting the open inclusion. Applying Sol and
using the fact that Sol interchanges j+ with j! and j! with j∗ by [EK04,
Proposition 9.3, Proposition 9.5] we compare with the triangle

j!j
∗Sol(M) −→ Sol (M) −→ k !k

−1Sol(M) +1−−−→

in Db
c(Xét,Z/pZ) to obtain the result.

Part (3) can be checked by hand (using Gabbers definition of the
t–structure in [Gab00]), but also follows via the correspondence from the
fact that k+ is exact by [EK04, Remark 3.4.1]. �

Proof of Theorem 1.1. — The assumption of close to F–rational
implies by Proposition 4.2 that L(Y,X)|(X−{x}) ∼= RΓY (OX)|(X−{x})[n −
d]. This means in particular that L(Y,X)|(X−{x}) ∼= Hn−d

Y (OX)|(X−{x})
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and Hi
Y (OX) is supported in x for i 	= n− d. Thus the vanishing condition

(2.1) is satisfied and therefore (by Section 2.1) part (3) holds and part (1)
and (2) are equivalent. Again we prove part (2) to finish the argument.

This is done by following the arguments in the preceding section
step by step, working on the étale site and replacing C by Z/pZ whenever
appropriate. Here are some remarks on this task which finishes the proof.

(1) For Lemma 2.3 one uses that RΓ[x] commutes with Sol in the way
claimed. Furthermore we use that k! is t–exact. This is Proposition
3.3 part (2) and (3).

(2) As pointed out at the beginning of the proof the assumptions of
Lemma 2.4 and Lemma 2.3 are satisfied. For Lemma 2.4 literally
the same argument holds after the existence of the middle extension
L(Y,X) is established as discussed above. The same remark applies
to Lemma 2.5.

(3) In the actual proof one should use that Sol(OX) ∼= Z/pZ[n] and the
discussed properties of middle extension, in particular its compatibil-
ity with Sol.

(4) Lemma 2.7 is even stated for general coefficients and the argument
is valid for any k–variety with the étale topology. The only caveat is
that we implicitly used excision in the last part; an étale version of
which can be found in [Mil80, Proposition 1.27], for example.

�

Remark 3.4. — In positive characteristic a more direct proof of
our main result is possible. One observes that the numbers λ0,i(A) for
i = 1 . . . d − 1 can be interpreted in terms of the action of the Frobenius
on Hi

m(A). Namely if A = R/I the local cohomology module Hn−i
I (R) is

obtained from the local cohomology module Hi
m(A) via a certain functor

HR,A (introduced and studied in [Lyu97, Section 4, Example 4.8]). This
functorial relationship

Hn−i
I (R) ∼= HR,A(Hi

m(A))

implies that λ0,i(A) = e(Hn−i
I (R)) (which is called the corank of Hn−i

I (R)
in [Lyu97]) is equal to the dimension of the Frobenius stable part of Hi

m(A),
by [Lyu97, Proposition 4.10]

Finally, in [HS77, Theorem 2.5] the latter is determined to be equal
to dimkH

i
{x}(Yét,Z/pZ) as required.
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4. Close to F–rational singularities.

We finish this note with a brief discussion of a new class of singulari-
ties, called close to F–rational.

DEFINITION 4.1. — Let (A,m) be a local noetherian ring of dimension

d. Let H•m(A) = ⊕Hi
m(A) be the local cohomolgy with support in m. Then

A is called close to F–rational if and only if

H∗m(A)/0F

is simple as an A[F ]–module, where 0F denotes all the elements of H∗m(A)
which are annihilated by a power of the Frobenius.

If Y is a noetherian scheme then Y is called close to F–rational if for

all closed points y ∈ Y the local ring OY,y is close to F–rational.

Recall that F–rationality of A is equivalent to H∗m(A) being simple
as an A[F ]–module (at least if A is excellent). This implies that an F–
rational ring is close to F–rational. The obstruction to F–rationality is
the tight closure of zero 0∗ in H∗m(A) (see [Hun96] for relevant notions
from the theory of tight closure). Close to F -rational just means that this
obstruction is, if not zero (F–rational) it is at least F–nilpotent. Since one
always has that Hd

m(A) 	= 0∗ (6) it follows that A is almost F–rational if
and only if Hd

m(A)/0FHdm(A) is A[F ]–simple and Hi
m(A) is F–nilpotent for

i 	= d.

The following characterization of close to F–rational singularities is
the key point of our investigation.

PROPOSITION 4.2. — Let Y be a subvariety of dimension d embedded

in X which is a smooth k–variety of dimension n (chark = p > 0). Then Y

is close to F–rational if and only if

L(Y,X) ∼= RΓ[Y ](OX)[n− d]

where L(Y,X) denotes the unique simple unitR[F ] submodule ofHc
[Y ](OX).

(6) For the versed in tight closure theory: existence of test elements is responsible for
this, see for example [Hun96].
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Proof. — This is a slight extension of the main result in [Bli04]. Since
by definition, close to F–rational is checked locally, we have to verify that
for every point y ∈ Y the local ring (A,m) = OY,y is close to F–rational if
and only if L(A,R) = RΓI(R)[n− d] where R = OX,x such that A = R/I.
For this reduction we used that L(Y,X) and RΓ[Y ]OX localize.

In this situation [Bli04, Theorem 4.9] states that L(A,R) = Hn−d
I (R)

if and only if 0∗ = 0F holds in Hd
m(A). This latter condition is equivalent

to Hd
m(A)/0F being A[F ]–simple since 0∗ is the maximal proper R[F ]–

submodule of Hd
m(A). It remains to point out that Hn−i

I (R) is zero if and
only if Hi

m(A) is F–nilpotent. This is because, in the notation of [Lyu 97,
Example 4.8] we have

Hn−i
I (R) ∼= HR,A(Hi

m(A)).

By [Lyu97, Section 4] one has HR,A(M) = 0 if and only if the A[F ]–
moduleM is F–nilpotent. It follows that Hn−i

I (R) = 0 if and only Hi
m(A)

is F–nilpotent. �

Remark 4.3. — Close to F–rational singularities are related to the
notion of F–depth as introduced by Hartshorne and Speiser in HS77, page
60]. One can verify that if A is close to F–rational then F–depth A = dimA.
This notion of F–depth is shown to be equal to the étale Z/pZ–depth.

Thus the notion of (close to) F–rational singularities yields a rea-
sonable description of the class of varieties Y ⊆ X for which L(Y,X) ∼=
RΓ[Y ](OX)[n− d] and consequently Theorem 1.1 holds.

Remark 4.4. — To see that close to F–rational does not imply F–
rational one can consider the example of A = k[x, y, z]/(x4 + y4 + z4). This
is not F–rational but in [Bli01, Example 5.28] the first author shows that
it is close to F–rational precisely if the characteristic p of k is congruent to
3 mod 4.

Remark 4.5. — In a recent preprint [Mas] Massey introduces and
studies the notion of intersection homomolgy manifold in characteristic
zero. As we pointed out before, this notion means precisely that

L(Y,X) ∼= RΓ[Y ](OX)[n− d]

whenever Y ⊆ X is embedded into a smooth variety X. He gives several
alternative characterisations, particularly for Y a complete intersection.
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Also in the complete intersection case Torrelli gives in [Tor] a char-
acterization of L(Y,X) ∼= RΓ[Y ](OX)[n − d] in terms of the Bernstein
polynomial. In the case that Y = (f = 0) is a hypersurface his condition is
easily phrased: The reduced Bernstein polynomial (that is divide the usual
Bernstein polynomial by (x+ 1)) of f has no integral root � −1.

The setup in [HS77] combined with some results of [Lyu97] also allow
for a more direct proof of a generalization of part (1) of Theorem 1.1.
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