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AXIOMATIC THEORY OF HARMONIC FUNCTIONS.
BALAYAGE

by N. BOBOC, C. CONSTANTINESCU and A. CORNEA

This paper is devoted to the theory of balayage of
non-negative hyperharmonic functions on a locally compact
space X on which there is given a sheaf of harmonic functions.
The axioms satisfied by this sheaf represents a slightly weakened
form of those introduced by H. Bauer [I],

For any non-negative hyperharmonic function s on X and
any subset A of X let R^ be the greatest lower bound of the
set of non-negative hyperharmonic functions on X, which
dominate s on A and let R^ be the function obtained by its
lower semi-continuous regularisation. We prove the following
relations :

R ^ ^ R ^ + R ^ ;(1)
(2)
(3)

R^AUB^. ^AHB^R^ RB^

A.fA^ t^^R^ tR^ .
A ^^

The same relations hold for R. We give sufficient conditions
for R^ == ft^ outside A.

If there exists a large number of potentials on X an dif (x is
a measure for which any finite continuous potential is inte-
grable then there exists for any subset A of X a measure (^
such that the relation

(4) f\d^=f*R^dy.
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holds for any finite continuous potential 5. We prove that
this relation holds also in the following cases :

a) X has a countably basis and A, s are arbitrary;
b) Brelot's axiom D [3] is fulfilled, s is arbitrary and there

exists a series of locally bounded potentials whose sum is
positive on A.

c) s is arbitrary and A is fine open.
R. M. Herve [4] has also proved the relations (1) and (4)

under supplementary conditions: Brelot's axiom 3 is ful-
filled, X has a countable basis and either A is closed or A is
open or Brelot's axiom D is fulfilled.

A good many proofs done in this paper were inspired from
the classic case or from Brelot's axiomatic theory. The same
is true for all concepts used here (e.g. potential, fine
topology, quasi-continuity) which coincide with the usual
ones in the classic cases.

In order to facilitate the reading of this paper, we introduced
a paragraph of preliminary results. For some of them, however,
the proofs are not given here, since they are identical with
the classic ones or can be found in the paragraph of preli-
minaries of [2].

1. Preliminaries.

Let X be a locally compact space and Wo a sheaf on X of
real vector spaces of real continuous functions called harmonic
functions.

An open relatively- compact set U of X is called regular
if it has non-empty boundary ^)U and any real continuous
function f on bU possesses a unique continuous extention to U,
whose restriction H^ to U is harmonic, non-negative if f is
non-negative. For any regular set U and any x e U the map
f—> Hy(a;) is a linear non-negative functional on the space
of real continuous functions on bU; we denote by (o^ the mea-
sure on U associated with this functional and we call it harmonic
measure,

A numerical function on an open set U is called hyper'
harmonic if

a) it does not take the value — oo ;
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b) it is lower semi-continuous;
c) any point x e= U possesses a neighbourhood U^(a;) c U such

that for every regular set V, V c U^rc), and any y e= V

^y) >J s dwj.
An open set U is called an MP-set if any hyperharmonic

function s on U is non-negative if there exists a compact
subset K, of X such that s is non-negative on U-K, and
for any boundary point x of U

lim inf s(y) ̂  0.
y->x

We shall suppose that the sheaf 3d> satisfies the following
axioms :

Ho. For any point x e. X there exists a harmonic function
on a neighbourhood of x, positive at x\

Hi. The regular sets form a basis of X;
Hg. The MP-sets form a cohering of X;
H3. For any open set U the least upper bound of any upper

directed non-empty set of equally bounded harmonic functions
on U is harmonic.

For any regular set V and any bounded (resp. lower
bounded) function f on ^)V the function s on V

x -ffd^

is harmonic (resp. lower semi-continuous and for any regular
set W, WcV,

s{x) ̂ fsd^, rceW).

PROPOSITION 1.1. — Let Ui, TJ2 be two open sets and for
any i <= ^1, 2^ let s^ be a hyperharmonic function on Ui. If the
function s defined on Ui u Ug by

s(^x) •= inf s^x).
V,3X

is lower semi-continuous, then it is hyperharmonic.
It follows from this proposition that any open subset of

an MP-set is also an MP-set. Hence the regular MP-sets form
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a basis of X and in the point c) of the definition of hyperhar-
monic function one may take, in the role of U,(rc), any MP-set
containing x, this means independently of 5.

A numerical function s on an open set U is called nearly
hyperharmonic if it is locally lower bounded and for any regular
MP-set V, V c U, and for any x e= V we have

s{x) ̂  j s dicoj.

The greatest lower bound of a locally equally lower bounded
set of nearly hyperharmonic functions is also nearly hyper-
harmonic.

LEMMA 1.1. — Let s he a nearly hyperharmonic function
on X. The function s equal to

lim inf s(y)
y->x

at any x e X is hyperharmonic and

s ( x ) == sup / s dcoj = lim / s dcoj,
ve^ v.^

where ®a; is the set of regular MP-sets containing x and 9^ is
the filter of sections on 2^, considering 2L ordered by the rela-
tion '=> .

COROLLARY 1.1. — If 5i, «2 are nearly hyperharmonic func-
tions then $1 + ^2 is also nearly hyperharmonic and

5i + 52 == Si + ^2.

COROLLARY 1.2. — If (^)ngN ls an increasing sequence of
nearly hyperharmonic functions^ then s = lim s^ is also nearly
huperharmonic and n^w

!Jr A T ^s = lim 5n.
n>oo

For any family ^ == (^\ei ot hyperharmonic functions we
denote by

Vt for \ /^ /resp. A^ or f\s\
lei \ iei /

the least upper bound (resp. the greatest lower bound) of if
in the set of hyperharmonic functions, if it exists.
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LEMMA 1.2. — For any upper directed (resp. locally equally
lower hounded) family ^ = {s^^ of hyperharmonic functions
Vtf (resp. A^) exists and

V^ = sup s, fresp. A^ == mf^\.
lei \ i6i /

For any hyperharmonic function s we have

s + \/s, == V {s + s,} /resp. s + f\s, == /\ (^ + ^V
ie! ie! \ iei iei /

LEMMA 1.3. — Let x he a point of X, (^)^eN be a sequence
of sets of non-negative hyperharmonic functions on X and let if
be the set of non-negative hyperharmonic functions on X which
may be written in the form

S^n, <?n^n.
n€N

If for any ne N
( A ^ ) ( a Q = 0 ,

then (A^) (x) =0.

Let us denote

A,==<yeX|inf^)=OL
( ^e9n ^

A =(yeX | i n f^ )==0^
( ^e{f )

We have
A^HA.

n6N

Indeed let y <= ^ ^ An and £ > 0. There exists for any n e N,
n€N

an Sn e ̂  such that
S ^n(y) < £.

TJ x n€N

Hence y e A.
Let V be a regular neighbourhood of x. We have

0 < f (inf 5) AoJ < inf5 {x) = (A^) (a?) = 0.
— s^ se^
Hence

<oJ(X-A,)=0,
<(X - A) < coI/U (X - A,)\ = 0,

\ n6N /

/ (inf5)rf(oj=0.
v se^f

4
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V being arbitrary, we get

(A ̂ ) (x) == nds {x) = sup f* (inf ^) rfcoj = 0.
^e9' Vea^" se^

LEMMA 1.4. — Le( ^i, ^2 &e hyperharmonic functions on X,
5! ̂  ̂ 2) an(^

SiW +/* ^2 d!o)J > ^2(0;) +y1 5i do)J

for any regular MP-set V and any x e V. TAe function s on X
equal to s^ — s^ where s^ is finite and equal to 4" °° where s^
is infinite, is nearly hyperharmonic and

s! = ̂  + ^*

PROPOSITION 1.2. — Let (^)^gi &e a lower directed family
of hyperharmonic functions such that for any regular MP-set
V and any y e V we have

^{y) =f s.d^J, i e I.

For any point x e X such that

inf s^x) < + oo
cei

w^ Aa^e

/^
inf s,(x) = inf 5i dcoj
i€i IGI

/or ani/ regular MP-set V containing x.
Let us denote

5 = inf s^
iei

and let V be a regular MP-set containing x. Obviously
/**

s{x) ̂  f s dooj.

Hence it is sufficient to prove this proposition only in the
case

s(x) > — oo.
Let i e I such that

St(x) < + 00.

For any x e I such that Sy^ <^ ^ we denote by <x the function
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equal to ^ — s^ wherever s^ is finite and equal to + oo else-
where. By the preceding lemma ^ is nearly hyperharmonic
and

Si = ̂  + ?,..

The family (?x) being upper directed its least upper bound (
is hyperharmonic and we have

s, = s + (.

Since s{x) is finite, t{x) is finite. Hence ( and s are coj integrable
and

s{x) + t(x) = s,(x) =f s, rfcoj = f sd^+f t AoJ,

s{x) ̂  [ s doj.

2. Thin sets and fine topology

We say that a set A c X is thin at a point r c e X — A if
either x «~K. or x e ~K and there exists a hyperharmonic func-
tion s defined on a neighbourhood of x such that

s{x) <; lim inf s(y).
A9y->a?

Let U be an open subset of X, s be a hyperharmonic func-
tion on U and a be a real number. We denote

( U , ^ , a ) = {x^V\s{x)<^.

The fine topology on X is the least fine topology on X for
which the sets (U, s, a) are open. We shall say: fine neighbou-
hood, fine open set, fine continuous function, etc., instead
of neighbourhood, open set, continuous function, etc., with
respect to the fine topology.

LEMMA 2.1. (1) — Let A. be a subset of X and x e A. A is
a fine neighbourhood ofx if and only if X — A is thin at x.

It is sufficient to prove the lemma for the case x e X — A.
Suppose that X — A is thin at x. Then there exists a hyper-

(1) This lemma shows that the fine topology introduced in this paper coincides
in Brelot's axiomatic with the fine topology introduced in [3], p. 139.
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harmonic function s defined on a neighbourhood of x and
a real number a such that

lim inf s{y) > a > s{x).
X—A3y->a?

Let U be a neighbourhood of x such that s is defined on U and

s{y) > a

for any y e U — A. Hence

xe (U, s, a) c A

and A is a fine neighbourhood of x.
Suppose now that A is a fine neighbourhood of x. Then there

exists a finite system (U;, 5;, a,), i = 1, 2, ... M, such that

A^n^s-a-)-
i=l

Let s be the hyperharmonic function defined on f | U i ?
i==l

n

S == S Si
i==l

and U be an ultra filter on X — A converging to x such that

lim^ s == lim inf s(y).
X—Asy^a;

Then there exists an / such that

X-(U,,.,,a,)eU.
Hence

n n

limn s = ^ limn ^ >. S ̂ (^ + a./ — ^•(lr) > s{x)-1=1 i=i

LEMMA 2.2. — Let A. be a fine neighbourhood of x. There
exists a compact set K c A which is a fine neighbourhood of x.

We may suppose that x e X—A. There exists, then, a hyper-
harmonic function s defined on a neighbourhood of x and
a real number a such that

lim inf s(y) > a > s(x).
x—A.ay->x
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Let K' be a compact neighbourhood of x such that 5 is
defined on K' and

s > a
on K' — A. The set

K= | z / e K ' K y ) < a j

fulfils the required conditions.

LEMMA 2.3 (2). — Let x e X, A be a fine neighbourhood of
x and ^ be the filter of sections on the set of all regular sets
containing x ordered by the converse inclusion relation. Then

Hm (coj), (A) = 1,
v.^

where (coj)^ is the inner measure associated with coj.
Let ^ be a hyperharmonic function defined on a neighbour-

hood of x, a, p be real numbers such that

a < s(x) < P < lim inf s{y),
X--Aa^->a?

and u be a harmonic function defined on a neighbourhood
of x equal to 1 at x. There exists a neighbourhood U of a; Such
that

on U and

on U — A. We have

S > QLU

s> pu

s{x) — a > lim f (s — au) AoJ > lim sup f* (8 — a)u AoJ
v.^" v.^ '^x-A^ /

/**
== (P — a) lim sup / u rfcoj.

V,g?a, ^X-A
a being arbitrary we get

lim sup / u rfcoj ==0.
^ J^

Let Y be a real number, y > 1. For a sufficiently small U
we have

-!-< u<y
Y

(2) This lemma was proved in Brelot's axiomatic theory by M. Brelot [3], p. 131
and R. M. Herve [4], p. 435.
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on U. Then

^-i.r uAo;<(<),(A)<Y-yr ud^
T t ^X-A ^X-A

for any V, V c U. Hence

^ < lim inf (coJ)^(A) < lim sup (o)J)^(A) < y.
T v.^ v.^

The proof is complete since y is arbitrary.

LEMMA 2.4. — Le( s be a nearly hyperharmonic function
on X and x e X. TAen (/ie /ine lower limit ofs at x is equal to
the lower on X and limit of s at x.

Let a be a real number smaller than the fine lower limit of
s at x and A a fine neighbourhood of x such that

5 > a
on A. We have (lemma 1.1)

lim inf s(y) === lim j s AoJ ̂  lim sup f s AoJ
y^x v,^" v,^ t /A

>alim(coJ),(A)=a.
v.^

Hence the fine lower limit of s at re is not larger than the
lower limit of s at x. Since the converse inequality is trivial,
the assertion is proved.

3. Balayage of non-negative hyperharmonic functions

Let f be a locally lower bounded numerical function on X.
We denote by R^ the greatest lower bound of the set of hyper-
harmonic functions which dominate f. R/ is a nearly hyper-
harmonic function.

PROPOSITION 3.1. — Let /*, g be locally lower bounded numerical
functions and (/^ei be a family of locally lower bounded nume-
rical functions. We have

^ f<g->Rf<R,^
b) R^<R^+R,;
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c) / -<g<R,=^R/=R, ;
d) if for any i e I R^ is hyperharmonic then Rg,p ̂  is afeo

hyperharmonic and '.ei

R^/.-V^;lei iei

e) iffis fine lower semi-continuous then R/is hyperharmonic.
a) - d) are trivial, e follows from lemma 2.4.

PROPOSITION 3.2. — Let f be a locally lower bounded numerical
function, U be an open subset of X such that Ry is locally bounded
on U and f is harmonic on U. Then Ry is harmonic on U.

Let V be a regular MP-set, V c U. If s is a hyperharmonic
function on X dominating /*, then the function on X equal
to s on X — V and equal to

x >f sd^

on V is hyperharmonic and dominates also /*. We denote by
tf the family of hyperharmonic functions on V of the form

x > j s AoJ,

where s is a hyperharmonic function on X dominating /*.
Obviously for any (e tf, any regular set W, W c V, and any
x e W we have

Since
t^x) =f*t r fo)J .

inf ( = R.
te^

on V, it follows from proposition 1.2 that Ry is harmonic
on V.

Remark. — It follows from this proposition and c) of the
proposition 3.1 that if for a locally lower bounded nume-
rical function f and for a point re e X

lim sup f{y) < lim inf R/(y)
y->x y->x

and Ry is bounded on a neighbourhood of x, then Ry is har-
monic on a neighbourhood of x.
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PROPOSITION 3.3. — Let f be a locally lower bounded nume-
rical function on X and x be a point of X. If

Urn sup f{y) ̂  lim inf R/(t/)
y->x y->x

and Ry is bounded on a neighbourhood of x then Ry is upper
semi-continuous at x.

Let £ be a positive number and u be a positive harmonic
function on a neighbourhood of x equal to 1 at x. Let further V
be a regular MP-neighbourhood of x such that u is defined
on V, R^ is bounded on V and

/*<; (lim sup f{y) + e)u, Ry :> (lim inf R/y) — e)u
Y->x y-^x

on V. For any hyperharmonic majorant s of f we denote by
hy the function on V equal to

y->f sd^J.

The function on X equal to s on X — V and equal to
min (2su 4- ^? s) on V is a hyperharmonic majorant of h.
Hence

Ry < 2su + /i,

on V. The family {hs)s is lower directed and

inf h, < R^
^

on V. Since R/ is bounded on V we deduce by proposition 1.2
that the function inf hs is harmonic. Hence

«
lim sup R/y) < 2eu{x) + inf h,{x) < 2e + R/o;).

y-^-x s

£ being arbitrary we get

lim sup R/(y) <^ R/(^)-
y-^a;

Remark. — It follows from propositions 3.1 and 3.3 that
if f is a continuous finite function and Ry is locally bounded
then R^ is continuous.

Let s be a non-negative hyperharmonic function on X and
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A be a subset of X. If f is the function on X equal to s on A
and equal to 0 on X — A we denote

R^ = R .̂
Obviously

R^ = s on A;
AcB, ^(^R^R";
R^^R^+R^;
R^^R^ R?.

From proposition 3.2 it follows that if R^ is locally bounded
on an open set U, U n A == 0, then R^ is harmonic on U. If
V is a regular MP-set then

R^v == ftj-v
and

R^-v^^y^^j

for any x e V.

THEOREM 3.1. — Let A. be a fine open subset of X and s be
a non-negative hyperharmonic function on X. Then

a)t{^=R^,
b) for any regular MP-set V, V n A = 0, we have

R^)==/*R^co;;

c) if (^)iei (resp. (A^g^) i5 an upper directed family of
non-negative hyperharmonic functions on X (resp. fine open
subsets of X) such that s = \/ s^ /resp. A = 1 J A ^ V (Aen

K=I \ XSA /

^=V^;
^ ft^V^

K

where K run5 through the set of compact subsets of A.
a) follows from proposition 3.1 e) since the function on X

equal to s on A and equal to 0 on X—A is fine lower semi-
continuous. b) follows from a) and from the fact that the func-
tion on X equal to R^ on X — V and equal to

x >f R^co ^coj
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on V is a non-negative hyperharmonic and equal to s on A.
c) follows from proposition 3.1 d) since the function on X equal
to ̂  on A.\ and equal to 0 on X — A^ is fine lower semi-continuous.
d) follows from c) and lemma 2.2.

LEMMA 3.1. — Let A. be a subset of X and s be a non-negative
hyperharmonic function on X finite on A. Then

R^infft?,
Cr

where G runs through the set of fine open sets containing A.
Let s' be a non-negative hyperharmonic function on X

such that
s > s

on A. We denote, for any a > 1,

G^== {x€.X\Qisf{x)>s(x)} u ^x^X\s{x) = O j .

Ga is a fine neighbourhood of A since |rce X\s(x) ==• 0| is
fine open and

ft^<a5'.

a being arbitrary we get

R^ < int ft? < R^,
G

where G runs through the set of fine open sets containing A.

THEOREM 3.2. — For any subset A of X and any two non-
negative hyperharmonic functions s, t on X we have

R^, == ^A + R^, R,\( = R^ + R^.
The second equality follows from the first one by corol-

lary 1.1. Since the inequality

R^^R^+R^
is obvious, it is sufficient to prove the converse inequality.

Suppose firstly A fine open. Let K be a compact subset
of A and

5K = ft?.
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Let a; be a boundary point of K, V be a regular MP-neigh-
bourhood of x and Ay the hyperharmonic function on V,

y ->j SK dwj.
We have

Av < R.̂

on V. Let 5y be the function on V equal to infinite where Ay
is infinite and equal to R^ — Ay elsewhere. By lemma 1.4
5y is nearly hyperharmonic. Since

R^< == S + t > ^K + t > Ay + t

on V n A we have
5y>(

on V n A. Hence by lemma 2.4
lim inf Sv(y) ̂  5v(^) == lim inf 5v(z/) ̂ . lim inf t{y) == ((a;).
V—K3y-^a? VnA3y->a? VnA3y->a;

Let /' be a non-negative real continuous function on X whose
support is contained in the set

{x^X\s^x)>0}

and /"< SK whenever f is positive. We denote
s ' = Ry.

Obviously
R&o <^ RA,» ^ n^ .̂t,

where Ko is the fine interior of K. By theorem 3.1 b) we have

R^(y)=fRKOd^w

for any regular MP-set W, W n K = 0. Hence by lemma 1.4
the function 5" on X—K equal to infinite wherever R .̂0 is
infinite and equal to R^ — R^° elsewhere is nearly hyper-
harmonic. Let a; be a boundary point of K, and V be a regular
MP-neighbourhood of x such that

Av>/1

on V. The function on X equal to s^ on X—V and equal to h\
on V is a non-negative hyperharmonic function which domi-
nates f. Hence

Av>^>R?°
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on V and therefore
ft '-̂  A/y ^^ A

S ^ 5y, S ^ 5y

on V — K . We deduce

lim inK"(z/)>^).
X-Ksy^a;

The function (' on X equal to ( on K and equal to inf ((, s " )
on X— K is lower semi-continuous on X and therefore, by propo-
sition 1.1, hyperharmonic. It is obviously non-negative and

on K. Hence
t'^t

t' > R?S
5" > R?t ?

on X—K. It follows

R^<> R?° + R? > R?° + R^
on X.

Let tf be the family of the functions Ry, where f is a non-
negative real continuous function on X, whose support is
contained in the set

{x^X\s^(x)>0}

and f <; 5s. whenever /* is positive. We have

W==5K.

Since
s^ = s

on Ko by theorem 3.1 a), we get by theorem 3.1 c)
VR^RK^RKO

S'G^

Hence
TRA ^ TOKo I DKo^lA+( ̂  rl^ 1̂  ̂

and, by theorem 3.1 c),

R^< > R^ + R^.
Suppose now A arbitrary and s + t finite on A. Then we have

R^< == inf R?^ = inf (R? + R°) > R^ + R^,
G G

where G runs through the set of fine open sets containing A.
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Let us consider now the general case. We denote by B the
subset of A where 5 + t is finite. Let re be a point where R^
is finite and s' be a non-negative hyperharmonic function
on X such that

s' > s + (

on A and finite at x. For any £ > 0 and any non-negative
hyperharmonic function s" on X, such that

on B, we have

on A. Hence

5">5

5" + £5' > S

^ + £5' > R^.

£ and s" being arbitrary we get

R?(aQ > R^x).
Similarly we get

R^x) > Rf{x).

We have, by the above considerations,

R^{x) > R^(rr) = R^x) + R°(^) > R^) + IW.

Hence
R^< > R,4 + R^

and the proof is complete.

THEOREM 3.3. — For any non-negative hyperharmonic
function s and for any two subsets A, B of X we have

R^AUB _^_ F^AHB ̂  RA ^_ RB^ ^AUB .̂ ^AOB ̂  ̂ A ̂  ^B

The second inequality follows from the first one by corol-
lary 1.1.

Suppose first A, B fine open. We denote
o __ DAUB -. __ TDAnBî — n, , s^ — L\s

By theorem 3.1 a) we have
« _ D A U B _ D A U B
°1 —— rt^ ? °2 —— rl^

By theorem 3.1 a)
s, + s, < R^ + R?
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on A u B. Hence by the preceding theorem

^UB + R^" =s,+s,= R^ + Ry = R^! < R^ + R?.
Suppose now A, B arbitrary and let us denote by A' (resp. B')

the subset of A (resp. B) where s is finite. Let a; be a point
where R^ + R? is finite. Then R^, IVnB are also finite at
x. Let t be a non-negative hyperharmonic function on X,

t^s

on A u B and finite at x. For any £ > 0 and any non-negative
hyperharmonic function s ' on X such that

s ' >5
on A' u B' we have

$'+£(> S

on A u B. Hence
^^R^".

6 and 5' being arbitrary we get

Rf^) > R^^).
Similarly we get

Rf0"'^) > R^8^).
We have further

R^x) + R8^) > Rf(rr) + R?^) == mf R^{x) + inf R?'̂ )

= mf^(Rf^) + R8"^)) > in^Rf08^) ̂  Rf08'^))
A'> R^^'^) + P^^W^ R^x) + R^8^),

where A." (resp. B") runs through the set of fine open sets
containing A' (resp. B'). We get

R̂ A _^ R? > R^" + R^03.

PROPOSITION 3.4. — Let {^n)ney ^e an increasing sequence
of subsets of X, A = = 1 J A ^ and s be a non-negative hyperhar-

n€N
monic function on X finite on A. TTien

RMR^.
Let x e X. Obviously

lim R^"(a;) < R^(a;).
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In order to prove the converse inequality it is sufficient to
assume

lim R^(^) < + oo.
n>oo

Let £ be a positive number. We shall define inductively an
increasing sequence of fine open sets (G^)^g^ such that

A,cG,, R^XR^+i—1=1 L

Suppose Gn constructed. By lemma 3.1 there exists a fine open
set G' such that

A,+i c G', R6'^) < R^{x) + ̂ i.
Setting

G,+i == G' u G,
we get by the preceding theorem

R°^{x) + R?'"^) < Rf(aQ + R0"^).
Hence

R^(x) < R0^) + R?"^) — RT^x)
< R^ )̂ + —i + R^(^) + 5 — - RW•" 1=1 •"
< R^{x} +'>$l——

1=1 "
Let us denote

G^U0"
n=l

By theorem 3.1. c) we have
R^) < R^{x) = lim R0^^) < lim R^{x) + e.

n>oo n><»

£ being arbitrary we get
R^{x) < lim R^(^).

n>oo

THEOREM 3.4. — Le( s be a non-negative hyperharmonic
function on X, A be a subset of X and {fn)neuf ^e an increasing
sequence of non-negative numerical function on X equal to 0
on X — A and such that for any rceA

s(x) == lim fn{x).
n>oo
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Then
R/.tR^, R^fR^

The second relation follows from the first one by corol-
lary 1.1. Let x e X. Since the inequality

lim R^) < R^)
n>oo

is obvious, it is sufficient to prove only the converse one.
Suppose first that s is infinite on A. If for any n e N

then
IW = 0,

R^x) = 0.
Indeed for any e > 0 we may take a sequence (sjnea °^ non-
negative hyperharmonic functions on X such that

^(y) > fn(y), y e A,
S ̂ ) < £.

n€N

The non-negative hyperharmonic function on X

S^n
n€N

is infinite on A. Hence

R^) < S ^(^) < £.
n6N

£ being arbitrary we get

R^x) = 0 < lim Ryjo;).
n>oo

We may assume therefore

0 < R^{x) < + oo

for a k e N. Let ( be a non-negative hyperharmonic function
on X such that

t ̂  fk on A,
^)<+oo.

Let a be a positive number. We denote

B,=^eA|/,(y)>a((y)^,

B =UB"••'n9

n6N
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Obviously t is finite on B and infinite on A—B. Hence

R^x) < R^x) < R^x) + R^{x) == R8^).

By the preceding proposition we have

lim R^(x) > a lim Rf"^) = aR^) > aR^(^).
n>oo n>oo

a being arbitrary we get
lim R^{x) = + oo > R^).
n^-oo

Suppose now 5 arbitrary. Let a be a real number, 0 <; a <; 1,
and let us denote

C,.==|y6Ala^)<^,

C ^U^-
n6N

Obviously
C==|t/eAKy)<+ ooj.

We have, by the preceding proposition,
lim R^(x) > a lim R^) = aR?(a;).
n>oo n>oo

a being arbitrary we get
lim R^{x) > R^).
nxw

Since 5 is infinite on A — C we have either
R^x) = 0

or
R^W = + oo.

In the first case we get
R^x) < R^x) + R^x) == R^x) < lim Rj?;(o;).

n><»

In the second case we get, from the first part of the proof,
lim R^{x) > R^x) = + oo > R^o;).
n>oo

COROLLARY 3.1. — Let s be a non-negative hyperharmonic
function on X, A c X and x^ X—A. If\x\isof type G§ one?
(Aere exists a non-negative hyperharmonic function on X finite
at x and positive on \y e AJ5(y) > 0| t/ien R^{x) == ft^o?).
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4. Balayage of measures

A non-negative hyperharmonic function p on X is called
potential on X if any hyperharmonic function s is non-negative
it s + P is non-negative. Obviously the sum of two potentials
and a non-negative hyperharmonic minorant of a potential
are also potentials.

PROPOSITION 4.1. — Any non-negative locally bounded
hyperharmonic function s on X possesses a unique decompo-
sition

s = p + u,

where p is a potential on X and u is a non-negative harmonic
function on X. The function u is a greatest harmonic minorant
of s. Let ® be an open covering of X with relatively compact
MP-sets and ^ be the smallest set of non-negative hyperharmonic
functions on X containing s and such that for any t e if and any
U e @ the function ft^"17 belongs to if. Then

u= A^.
Let

s = p + u,

where p is a potentials on X and u a harmonic function on X.
If v is a harmonic minorant of s we have

p + (u — v) > 0, u — v > 0, u > v.

Hence u is the greatest harmonic minorant of s and therefore
the decomposition of s is unique.

Let us denote now
u= Atf

and let U e ®. Then
u = A ftwj-t^

Since any ( e tf is locally bounded the function ft.̂ "17 is harmonic
on U. Hence u is harmonic.

Let ( be a hyperharmonic function such that s -4- t is non-
negative. We denote by tf' the set of non-negative hyperhar-
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monic functions s/ on X such that s ' + t is non-negative.
Obviously t f c t f ' and

u + ( == Atf + (> A^' + ( = /\ (5' + t) > 0.
y'€9"

Let us denote
p = s — u.

p is non-negative hyperharmonic function and for any hyper-
harmonic function ( on X such that p + ( is non-negative
we have

s— u + ( > 0, u— u + ( > 0, (> 0.

Hence p is a potential and

s = p + u.

LEMMA 4.1. — TAe following assertions are equivalent:
a) For any point of X there exists a locally bounded potential

on X positive at this point',

b) For any two different points x, y e X there exists two locally
hounded potentials p, q on X such that

p{x)(l{y)—p{y}(lW¥^o',
c) For any two different points x, y e X there exists two locally

bounded non-negative hyperharmonic functions s, t on X such
that

s{x)t{y)—s(y)t{x)^0;

d) For any point x e X and any regular MP-neighbourhood
V ofx there exists a locally bounded non-negative hyperharmonic
function s on X such that

s{x) >J$AoJ;

e) For any point x e X and any regular MP-neighbourhood
V of x there exists a locally bounded potential p on X such that

p{x) >fpd^.

a) =^ fc). Let x,y be two different points of X and p be a
locally bounded potential, positive at x and y, and @ be the
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set of regular MP-sets V such that either x « V or y « V. ® is
a covering of X. Let if be the smallest set of non-negative
hyperharmonic functions on X containing p and such that
for any (e if and V e ® the function ft^ belongs to tf. Since,
by the preceding proposition

A t f = = 0 ,
there exists an q e tf such that either

q{x) = p{x) and g(y) < p(y)
or

q{x) < p{x) and q{y) = p{y).

Since any element of ^ is a minorant of p and therefore a
potential, q is a potential. Obviously

^piy) — q{y)pW + o.
b) =^ c) is trivial.
c) a=:=^ ^). Let y be a point of the carrier of coj and s, t be

two non-negative locally bounded hyperharmonic functions
on X such that

s{x) = t{x), s{y) < t(y).

For an open set U, xe U, i /«U, we denote
</ _ RU
6 —— •"•inf^O*

Obviously
s'(y} < t{y), ^(x) = t{x}.

Since s' is harmonic on X — U,

^ ' < t

on a neighbourhood of y. Hence

s\x) = t{x) >/t rfcoj >V5' ̂ J.

rf) ===»• e). Let s be a non-negative locally bounded hyper-
harmonic function on X such that

s(x) >J^sd(^,



AXIOMATIC THEORY OF HARMONIC FUNCTIONS 61

and let p (resp. u) be a potential (resp. harmonic function)
on X such that

5 === p -|- u.
We have

p{x) = s{x) — u{x) > j s rfcoj —Ju^coJ =jp AoJ.

e) ^^ a) is trivial.
In order to introduce the balayaged of a measure one has

to suppose that there exists a large number of potentials on X :
For that purpose we shall assume from now on that one of the
equivalent conditions a)-e) is fulfilled. Obviously Bauer's
Trennungsaxiom T4" implies the condition c). Also in Brelot's
axiomatic, the existence of a positive potential implies the
condition a).

The following lemma contains some of the first consequences
of this hypothesis.

LEMMA 4.2. —
a) X is an MP-set9,
b) for any real continuous non-negative function f on X,

whose support is compact, the function Ry is a finite continuous
potential on X;

c) any non-negative hyperharmonic function is the least
upper bound of an upper directed family of continuous finite
potentials.

a) Let s be a hyperharmonic function on X, non-negative
outside a compact set K. There exists a potential p on X

on K. Then

on X and therefore

P ̂  — s

p + , ? > 0

5>0.

b) Since f is a real continuous function with compact
support, there exists a locally bounded potential dominating /*.
Hence Ry is locally bounded. By the remark from the propo-
sition 3.3 it follows that Ry is a non-negative locally bounded
continuous hyperharmonic function. Being dominated by a
potential it is itself a potential.
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c) Let s be a non-negative hyperharmonic function on X.
Then

s = sup Ry,

where f runs through the set of non-negative real continuous
functions on X with compact support and not greater than s.
The proof is complete.

Let £ be the set of real continuous functions on X with
compact support which may be written in the form

P — ̂
where p and q are finite continuous potentials. Obviously £
is a real vector space ordered by the relation <^. Since

max (p — q, 0) = p — min (p, q),

£ is a vectorlattice.

LEMMA 4.3. — Let f be a non-negative real continuous func-
tion whose support is a compact set K. For any neighbourhood U
of K and for any positive number £ there exists a non-negative
function fo^S whose support lies in U such that

\f-f.\<^

Let x, y be two different points of X. Let V be a regular
MP-neighbourhood of x^ y « V and s a locally bounded non-
negative hyperharmonic function on X such that

s(x) > / s rfcoj.

By c) of the preceding lemma there exists a finite continuous
potential p on X such that

p{x) >fpd^.

Let q be the function on X equal to p on X-V and equal
to

z —> f p dw]

on V. q is a finite continuous potential on X. The function
g = p — q belongs to £, is equal to zero at y and is different
from zero at x. Similarly we may construct a function g7 e S
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equal to zero at x and different from zero at y. Hence for any
real numbers a, ? there exists an element of £ equal to a at re
and equal to (3 at y .

Let U' be a relatively compact open set,

K c U ' c U ' c U .

By Stone's theorem there exists an />/ e S such that

\r-f\<^
on U'. Let further g be a real continuous function with com-
pact support on X such that

on K,

on X — U'

g > sup f(y) + £
yeK

g<0

g<-£

on (X—U') n Supp /*'. Again by Stone's theorem there exists
a g ' e £ such that

Ig'-gK^
on U' u Supp f\ The function

fe = max (0, min(f, g'))

belongs to £ has its support in U', and

\fo-f\<^

and the proof is complete.
We denote by A the set of measures p. on X such that for

any finite continuous potential p on X

fp dy. < + oo.

Obviously any measure with compact carrier belongs to A.
If p, q, p', q[ are finite continuous potentials on X such that

p — q = p f — q f ,

then by theorem 3.2 for any subset A of X and any a e A,

f^d^—fR^d^=f^dy.—ft{^d^
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Hence the map

P-q^f^d^-f^dy.

is well defined on S. It is a linear positive functional. By the
preceding lemma there exists a unique measure (JL^ called the
balayaged measure of (JL on A, such that

f{P - q} d^ =f ̂  dy. -f ̂  dy.

for any p — q <= S. The carrier of p^ is contained in S. Indeed
let p — q e S such that

p—q=0
on S. Then

f{p-q) d^ =f^ dy.-f^ dy. = 0.

LEMMA 4.4. — For any finite continuous potential p on X^
for any A c X and for any (x e A we have

fpd^=f^d^.

Let if be the smallest set of non-negative hyperharmonic
functions on X which contains p and such that for any q e if
and any regular set V the function ft^"^ belongs to if. Since
the set of non-negative continuous hyperharmonic functions
s on X such that s <^ p on X and s = p outside a compact
set (depending on s) contains tf, any element q of if is a finite
continuous potential and p — q e 2. Hence

f(p — q) d^ = f ̂  dy. —f ̂  dy..

Since p is a potential
inf q = 0.
^

Since p. e A and if is lower directed

0 < inf / R^ da < inf f q du. = 0,
ge^ qe^

f pdy.A=s\lpf(p—q)d^=fR^d^—mifR^d^=f^d^
q^ v ' 9^



AXIOMATIC THEORY OF HARMONIC FUNCTIONS 65

COROLLARY 4.1. — For any non-negative hyperharmonic
function 5, for any A c X and for any (JL e A we have

f*sd^^f*^d^

If A. is fine open this inequality becomes an equality.
By lemma 4.2 c) there exists an upper directed family

(Pi)i€i °f finite continuous potentials on X such that
sup pt == 5.
i€i

We have

f s d^ == sup fp, d^ == sup /' ft^ d!a < f* ^A rfm.
lei t/ cei *7 t/

COROLLARY 4.2. — J/* A, B are subsets of X 5ucA (Aa( A c B,
</ieyi /or any (x e A anrf any non-negative hyperharmonic function
s on X we Aa^e

f*sd^^ f * s d ^ .

By lemma 4.2 c) there exists an upper directed family
of finite continuous potentials (pi)iei ^Gh ^at

5 == sup pi.
t6I

We have

j s d^ = sup f p, d^ = supV ̂ A dpi

< sup / ft^ d[x = sup fp , du^ = f* s dm®.
lei * IGI v J

LEMMA 4.5. — Let (AJ^g^ fee an increasing sequence of subsets
of X, A ==^ JA^ and [xe A. Let {Sn)ney be a sequence of non-

n€N

negative hyperharmonic functions on X such that for any n

f^nd^=J^{{.^d^
sn ̂  sn+l

on A^. I f s i s a non-negative hyperharmonic function on X such
that

s == lim s^
n->oo
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on A and s ̂  s^ on A for any n e N, (Aen

f\d^=f^d^

By corollary 4.1, 4.2 and theorem 3.4 we have

f f^ dy.^ F s d^ > lim /lilc 5 d^
J J n->ao J

> lim f* 5, ^Ara = l imf* ft^ rfpi =/* ̂  rfpi.
n>oo </ n>oov n u

THEOREM 4.1. — If s is the limit of an increasing sequence
of finite continuous potentials then for any pi <= A and A c X

f* s d^ = /"'* R^ d^

The assertion follows from lemma 4.4 and 4.5.

COROLLARY 4.3. — If X has a countable basis then for any
non-negative hyperharmonic function s any pi e A and any
A c X we have

f*sd^=f*R^d^

Let (^n)ngN be an increasing sequence of non-negative real
continuous functions with compact support converging to s.
Then (R/JneN ls an increasing sequence of finite continuous
potentials converging to s.

THEOREM 4.2. — Let UL belong to A. If the relation

f*sd^=f*R^dy.

holds for any relatively compact subset A of X and any locally
bounded potential s on X, then it holds also for any non-nega-
tive hyperharmonic function s on X and any subset A of X
which satisfy one of the following conditions:

a) ^^^=0,
K

where K runs through the set of compact subsets of X;
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b) There exists a sequence of locally bounded potentials
(Pn)n€N such thc^

SUp pn>0
n€N

on A.
a) We have

^=7^,
K

where K runs through the set of compact subsets of X. Indeed
for any K

ft^R^+f^-11,
ft^VK^+A^-V^^

K K K

Let K be a compact subset of X and p be a locally bounded
potential on X positive on K. Since

({np)/\s)^s

on A n K and (np)/\s is a locally bounded potential we have
by lemma 4.5

f*sd^^K=f*^^Kd^

From this relations we get

f s d^ > ̂ P/^ s ̂  n K = sup f*!^011 rfpi
A. K.

=f*^dy.^f*sd^.
b) Let us denote

/ n \^ == 5 A ( n S Pk)
\ <c=i /

for any n e N. Since ^ is a locally bounded potential we have

A^-o,
K

where K runs through the set of compact subsets of X. Hence
by a) we get

fs^d^^f'^dy..
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Since
Sn\S

on A and
^<$

on X we deduce from lemma 4.5

f^sd^^f^d^

Let A be a subset of X and s a non-negative hyperharmonic
function on X. We denote by 2^ the set of non-negative hyper-
harmonic functions ( on X such that the restriction of 5 to

^€EA|^)<1|

is continuous. We say that 5 is quasicontinuous on A if

/\^=o.
LEMMA 4.6. — Let A. be a relatively compact subset of X and

s be a non-negative hyperharmonic function on X quasiconti-
nuous on A. Then^ for any p. e A

f*sd^=y^dy..

Suppose first that the restriction of s to S is continuous.
Since A is relatively compact there exists tor any n e N a
real continuous function fn with compact support, not greater
than s and equal to min [n, s) on S. We may suppose

fn ̂  fn+1-

Then by lemma 4.2 b) Ry^ is a finite continuous potential.
Obviously

R/,.h
on A and

R/,<^
on X. Hence by lemma 4.5 we have

^sd^^^R^dy..

Let now s be quasicontinuous on A. For any t e 2^ we set

A,= ja;eA|((a;)< 1}.
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Since 2^ is lower directed, the family (A^g^ is upper directed.
We shall prove that

^A < sup ft^t.
te^

Let (<n)neN be a decreasing sequence of elements of 3? and

B=LK
n€N

We have by theorem 3.4

ft? = sup ft^n < sup ft^,
neN (e^?

^-^Stn,
n€N

R^ < ft? + ft^-11 < sup ft^ + 2 („.
'62^ '>€N

By lemma 1.3 we have

A/S^=0,
\n6N /

since 2^ is lower directed and s quasicontinuous on X. Hence,
by lemma 1.2,

^A < sup ft^.
(e^

We get now, from the first part of the proof,

f ft^p. < sup f* R^ dy. == sup y* s d^
t^ <e^

^fsd^^f^d^
and the proof is complete.

THEOREM 4.3. — Let s be a non-negative hyperharmonic
function and (Kn)n^ be an increasing sequence of compact
subsets of X such that s is quasicontinuous on any K^. Then
for any (A e A and for any A c I J K^ we have

n6N

f\d^==f*^dy..

By the preceding lemma we have

y% 4^-^ y* R ĵx,



70 N. BOBOC, C. CONSTANTINESCU and A. CORNEA

where
A, = A n K,.

The assertion follows now from lemma 4.5.
In order to obtain further results, M. Brelot has introduced

a supplimentary axiom called axiom D. This axiom asserts
that for any non-negative locally bounded hyperharmonic func-
tion s and any open relatively compact set U, the restriction
of R^ to U is the greatest harmonic minorant of s on U. It this
axiom is fulfilled it can be proved like in [2] that any non-
negative hyperharmonic function on X is quasicontinuous or
any compact subset of X. In this case the hypothesis of the
theorem 4.2 is fulfilled and the relation

f*sd^=f*^d^

holds if s and A satify one of the conditions a) and b) of
this theorem. Moreover if Brelot's axiom 3 is fulfilled this
relation holds for any non-negative hyperharmonic function
s and any subset A of X since in this case there exists a posi-
tive locally bounded potential on X.
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