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1279-1

LIE GROUP STRUCTURES ON

GROUPS OF DIFFEOMORPHISMS

AND APPLICATIONS TO CR MANIFOLDS

by M. Salah BAOUENDI, Linda Preiss ROTHSCHILD,
Jörg WINKELMANN, Dmitri ZAITSEZT(*)

1. Introduction.

One of the main objectives of this paper is to address the following
question: When is the global CR automorphism group of a CR manifold
a Lie group in an appropriate topology? We give here sufficient geometric
conditions on a CR manifold M to guarantee that the group of all its

smooth (and real-analytic when M is real-analytic) CR automorphisms
has the structure of a (finite-dimensional) Lie group compatible with its
natural topology. The results of this paper are obtained by first establishing
general theorems on Lie group structures for subgroups of diffeomorphisms
of a given smooth or real-analytic manifold, and then applying these results
together with recent work concerning jet parametrization and complete
systems for CR automorphisms. We also prove a partial converse in

the real-analytic case: If the real-analytic CR automorphism group of a
connected real-analytic CR manifold M has the structure of a Lie group
such that its isotropy group at a point p E M has finitely many connected
components, then the (real-analytic) CR automorphisms satisfy so-called

(*) The first and second authors are partially supported by National Science Foundation
grant DMS-01-00330.
Keywords: Lie group - CR manifold - CR automorphism - Jet parametrization -
Complete system.
Math. classification: 22E15 - 22F50 - 32V20 - 32V40 - 57S25 - 58D05.
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"finite jet determination" at p. That is, there is an integer such that two
automorphisms of M coincide if and only if their derivatives at p up to
order 1~ are the same.

In Section 2 we define a notion of a complete system for a set

of diffeomorphisms of a manifold and show (Proposition 2.2) that it is

equivalent to a notion of a jet parametrization. A closed subgroup of the
diffeomorphism group of a connected manifold M satisfying a complete
system at every point has a Lie group structure; this is the content

of Theorem 2.3. Analogous definitions and results are also obtained for
subsets of germs of diffeomorphisms fixing a point (Proposition 2.8 and
Theorem 2.9). The notion of complete system we use here is motivated

by recent results establishing this property for CR automorphisms, due to
Ebenfelt [E01] and Kim and the fourth author [KZ02] (see also Han [H97]).
In the real-analytic case, results on jet parametrization were obtained by
the first two authors jointly with Ebenfelt [BER97, BER99a] and by the
fourth author [Z97]. The partial converse mentioned above is stated in both
global and local cases in Theorems 2.4 and 2.10.

Sections 3, 4 and 5 are devoted to the proofs of the results stated
in Section 2. In Section 6 we recall basic definitions and properties of
abstract and embedded CR manifolds that will guarantee the existence of
a Lie group structure on the group of CR automorphisms. In particular, we
recall the definitions of finite type and finite nondegeneracy (generalizing
that of Levi-nondegeneracy for a real hypersurface in a complex manifold).
One motivation for considering the conditions of finite type and finite
nondegeneracy is that they hold for some important examples such as
the "light cone + = (Re z3) 2 ~, for which Levi-

nondegeneracy does not hold. Another motivation is that an arbitrary
smooth or real-analytic embedded generic submanifold in C~ can always
be perturbed to satisfy these two conditions (see the forthcoming paper
[BRZ04]). In contrast, a general real hypersurface in C~ cannot necessarily
be deformed into one which is Levi-nondegenerate at every point.

Theorem 6.2 states that the global CR automorphism group of a
CR manifold satisfying the conditions of finite type and finite nondegen-
eracy at every point has a Lie group structure. (For Levi-nondegenerate
hypersurfaces, the latter result follows from the work of E. Cartan [C32],
Tanaka [T67], Chern-Moser [CM74] and Kobayashi [Ko72], see also Burns-
Shnider [BS77].) In Section 6 we also briefly survey results on the group
of germs of local CR automorphisms fixing a point of a CR manifold. In
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particular, under the two nondegeneracy conditions mentioned above, such
a group has a Lie group structure in the real-analytic case but may not be
a Lie group in the smooth case.

2. Complete systems and jet parametrizations
for diffeomorphisms.

If M and M’ are two smooth (resp. real-analytic) manifolds, we
denote by C°° (M, M’) (resp. CW (M, M’)) the set of smooth (resp. real-
analytic) maps from M to M’. We equip C°° (M, M’) (resp. C- (M, M’))
with its natural topology, which we shall now describe. Let n = dim M
and n’ - dim M’. To simplify notation, we write r for oc or cv, depending
on whether the manifolds M and M’ are smooth or real-analytic. For any
local coordinate charts (U, p) and (V, ~) on M and M’ respectively, denote
by

and define the map

We equip with the weakest topology for which the

8u,c.p; V,’lj; is continuous. (Here, for an open set Q C R~, the vector space
C’ (Q, is equipped with the Fréchet space topology of uniform conver-
gence of the mappings and their derivatives on compact sets. The vector
space is equipped with its usual topology of inductive limit
of Frechet spaces of holomorphic maps in open neighborhoods in C~ of
Q C ET C C’.) We may now describe the topology of cr(M, M’) as fol-
lows. A subset 0 C M’) is open if and only if for all choices of

local charts (U, cp) and (V, as above, 0 n M’; U, V) is open in

C~’ (M, M’; U, V).
We equip Diff (M) (resp. Diff~’ (M)), the subset of all smooth (resp.

real-analytic) maps that are diffeomorphisms from M onto itself with

the topology induced from C°° (M, M) (resp. Note that if a

sequence converges to f in Diff(M) (resp. Diff w (M) ) then the sequence
(fj-1) converges to f -1 in the same topology. (See e.g. Lemma 3.2 below.)
It can be further shown that Diff (M) (resp. is a topological
group.

For a nonnegative integer k, we use the notation jk (M, M’) for

the space of all k-jets of smooth maps from M to M’ and write for
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simplicity := J~ (M, M) (see e.g. [GG73] for basic definitions and
properties). Furthermore, we denote by C J~ (M) the open subset
of all invertible jets. If p, p’ E M, we denote by jk (M) C J~ (M) and
G~(M) C G~ (M) the subsets of jets with source p, and by C

G~(M) the subset of jets with source p and target p’. Note that G k,
is a submanifold of G’~ (M) equipped with a Lie group structure whose
multiplication is given by composition. For a jet A E J~ (M, M’), denote by
A(’) its projection to M’) for any 0  s  ~. Given any smooth map
f : M - M’ and x E M, we denote by jj f E M’) its k-jet at 

2.1. Results for global diffeomorphisms.

Our main tools for establishing Lie group structures on subgroups
of Diff(M) and DiffW(M) are the so-called complete systems and closely
related notions of jet parametrizations.

DEFINITION 2.1. - Let M be a smooth (resp. real-analytic) mani-
fold. A subset S C Diff(M) (resp. S C Diff’ (M) ) is said to satisfy a smooth
(resp. real-analytic) complete system at a point xo c M if there exists a
nonnegative integer k such that, for every lio E G ko (M), there exists a
neighborhood Q of Ao in and a smooth (resp. real-analytic) map
.1~: SZ -~ such that

for any x E M and f E S with E S2. In this case we shall say that

the order of the complete system (2.1) is k -~- 1. We say that S satisfies a
complete system if it satisfies a complete system at every point in M.

The reader should be warned that, for a given f E S in the above
definition, the open subset of x E M for which jx f G Q, may be empty or,
even if not empty, may not contain the point xo.

The following proposition gives a necessary and sufficient condition
for S to satisfy a complete system of order ~ 1 at xo in terms of a local

k-jet parametrization of mappings in S.

(1) If M is an open subset of R", and M’ an open subset of then jk (M, MI)
MxM’xR N, where N is n’ times the number of multiindices cx E with 0  k,



1283

PROPOSITION 2.2. - In the setting of Definition 2.1 the subset S
satisfies a smooth (resp. real-analytic) complete system of order k + 1 at
xo E M if and only if, for every Ao E Gko (M), there exist neighborhoods
Q’ of xo in M, Q" of Ao in and a smooth (resp. real-analytic) map

such that

As usual we shall say that a Lie group G acts smoothly (resp. real-
analytically) on a smooth (resp. real-analytic) manifold M if the action
map G x M - M is smooth (resp. real-analytic). One of the main results
of this section is the following.

THEOREM 2.3. - Let M be a smooth (resp. real-analytic) con-
nected manifold and G c Diff(M) (resp. G c Diff’ (M) ) be a closed sub-
group satisfying a smooth (resp. real-analytic) complete system. Then G,
equipped with the induced topology of Diff (M) (resp. Diff’ (M)), has a
(unique) structure as a Lie group acting smoothly (resp. real-analytically)
on M.

Note that if a topological group has a Lie group structure, the latter
is necessarily unique (see e.g. [V74]). The proofs of Proposition 2.2 and
Theorem 2.3 will be given in Section 3. We also have the following partial
converse of Theorem 2.3.

THEOREM 2.4. - Let M be a connected real-analytic manifold
and G C Diff’(M) be a subgroup equipped with a Lie group structure
acting real-analytically on M. Fix a point p E M and assume that the
Lie subgroup Gp :== fg E G : g(p) - p} has finitely many connected
components. Then there exists an integer k such that for any two elements

G,

Observe that the assumption that Gp has finitely many components
is automatically satisfied when M is a real-algebraic manifold and G is a

real-algebraic group acting algebraically on M.

The proof of Theorem 2.4 will be given in Section 5. We would like
to point out that the conclusion of Theorem 2.4 does not hold without the

assumption that Gp has finitely many components, as can be seen by the
following example.



1284

Exam pl e 2. 5. -

denotes the ring of polynomials in one variable with integer
coefficients. It is easy to see that the topology of induces

the discrete topology on G C Diff’(M). Hence G, as well as Gp, are
(zero-dimensional) Lie groups with infinitely many components, and the
conclusion of Theorem 2.4 obviously does not hold.

We should mention that Theorem 2.4 does not hold in the smooth

category, i.e. with M a smooth manifold and G C Diff(M), as can be easily
seen by the following modification of Example 2.5.

where X(x) is a smooth nonzero real function on R vanishing of infinite
order at 0. It is easy to see that G C Diff(M) is a closed subgroup and a Lie
group (isomorphic to R) in the induced topology. However the conclusion
of Theorem 2.4 does not hold.

In the context of Theorem 2.4 one can ask whether the stronger con-
clusion that G satisfies a complete system at p also holds. The authors know
of no example where finite jet determination (in the sense of Theorem 2.4)
holds without the existence of a complete system.

2.2. Results for germs of diffeomorphisms.

We consider now local versions of Theorems 2.3 and 2.4. Let M be

again a smooth (resp. real-analytic) manifold and fix a point p E M.
We denote by Diff(M, p) (resp. DiffW(M,p)) the germs at p of all local
smooth (resp. real-analytic) diffeomorphisms of M fixing p. Similarly
denote by C°° (M, p) (resp. CW(M,p)) the germs at p of all smooth (resp.
real-analytic) maps fixing p. We equip the latter sets with the following
topology. A subset 0 c COC;(M,p) (resp. 0 C CW(M,p)) is said to be

open if and only if, for every open neighborhood U of p in M, the subset
~ f E [f] E C~~ E C‘~ (U, M) : ~ [f] E C~~) is open in

C°° (U, M) (resp. CW(U,M)), where [f] denotes the germ of f at p. We
further equip Diff(M, p) c C° (M, p) (resp. DiffW(M,p) C CW (M, p)) with
the induced topology. In contrast to Diffw (M, p), the topology on Diff (M, p)
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is not Hausdorff and therefore will not be considered. Note that a sequence

( fn) in DiffW(M,p) converges to f if f and fn have representatives (denoted
by the same letters) defined in a fixed open neighborhood U of p in M and
such that fn - f in CW(U,M).

The following is a local version of Definition 2.1.

DEFINITION 2.7. - Let M be a smooth (resp. real-analytic) mani-
fold and p E M. A subset S C Diff(M, p) (resp. S C DiffW(M,p)) is said to
satisfy a smooth (resp. real-analytic) local complete system if there exists
a nonnegative integer k such that, for every Ao E there exists a

neighborhood Q of Ao in G~ (M) and a smooth (resp. real-analytic) map
I&#x3E;:O ~ Jk+1(M) such that

for any f representing a germ in S with jp f E 0 and x E M sufficiently
close to p.

Note that if f is a germ at p E M of a smooth map from M into
itself, jx f is a germ at p of a section from M to If

Jk+1(M) is as in Definition 2.7 with CQ, then 4p o is

a germ at p of a smooth map from M to Jk+1(M). Equality (2.3) simply
means the equality of the two germs,

As in the global case in Proposition 2.2, we have the following charac-
terization of local complete systems in terms of local jet parametrizations.

PROPOSITION 2.8. - In the setting of Definition 2.7 the subset
S C Diff(M, p) (resp. Diff’ (M)) satisfies a smooth (resp. real-analytic)
local complete system if and only if there exists an integer k such that, for
every Ao C G;(M), there exist neighborhoods S2’ of p in M, Q" of Ao in

and a smooth (resp. real-analytic) map W: Q’ x n" ~ M such that

for any f E S with p where the equality in (2.4) holds in the sense
of germs at p.

For a subgroup G C DiffW(M,p) equipped with a Lie group structure,
we shall say that G acts real-analytically on M if, for any go E G, there
is an open neighborhood U’ x U" of (p, go) in M x G and a real-analytic
map 8: U’ x U" - M such that for any g E U", the germ at p of the map
x - B(x, g) coincides with g.
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We now state the following local version of Theorem 2.3.

THEOREM 2.9. - Let M be a real-analytic manifold and p E M.
Let G C be a closed subgroup satisfying a smooth (resp.
real-analytic) local complete system. Then G, equipped with the induced
topology of has a (unique) structure as a Lie group acting
real-analytically on M.

The proofs of Proposition 2.8 and Theorem 2.9 will be given in
Section 4. As in the global case we also have the following local analogue
of Theorem 2.4.

THEOREM 2.10. - Suppose that M is a real-analytic manifold,
and let p be a point in M. Let G C DiffW (M, p) be a subgroup equipped
with a Lie group structure acting real-analytically on M. Assume that G
has finitely many connected components. Then there exists an integer k
such that for any two elements gl , g2 E G,

The proof of Theorem 2.10 will be given in Section 5.

3. Lie group structures for global diffeomorphisms.

In this section we shall give proofs of the results about subsets of

(global) diffeomorphisms stated in Section 2.

Proof of Proposition 2.2. - We start by assuming that (2.2) holds
in the setting of the proposition. By differentiating (2.2) we obtain the
complete system (2.1) with

proving one implication of the proposition.

To prove the converse, we now assume that (2.1) holds. Let xo C M
be the target of the given jet Ao. We take local coordinates (x ~ , ... , 
(resp. (Xl , ... , x£) ) on M vanishing at xo (resp. at xo ) . By shrinking Q if
necessary, we may assume that Q C G~ (M) is a coordinate neighborhood
of Ao with respect to the induced coordinates on jk (M). Hence an element
A C SZ has coordinates with E R~. Here a is a

multiindex in It follows from (2.1) that we have, in particular,
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where (D, is a smooth (resp. real-analytic) function defined in Q. By setting
f(3(x) := ä(3 f(x), we obtain from (3.1) a system of the form

For l = l, ... , n, denote by Xl (y, t, A) the unique solution of the initial value
problem for the ordinary differential equation

-1 -

where g (t) - with each being an Rn-valued function
of one variable. Similarly rl = with given by (3.2) and A = 
with A,3 E R~. It follows from the standard theory of ordinary differential
equations with parameters that the function xl is uniquely determined
for (y, t, A) = (y1, ... , yn, t, A) near (o, 0,110) and is smooth (resp. real-

analytic). Using the notation us : :- (11, ... Xs-1, ys, ... , yn), s = l, ... , n,
(and hence ~c1 = y), we define

Hence again defined for suf-

ficiently close to (0 , 0 , Ao ) . We claim that the :=

satisfies the desired conclusion of the proposition. Indeed, if

f E S and is sufficiently close to (independently of
the choice of f), then (2.1) and hence (3.2) is satisfied. Thus g(t) :=

yl-1, t, YZ+1,..., yn ) ) solves the initial value problem (3.3) with
A = (fo (y)) - Hence ( f,~(x)) = X (x, y, (f,(y)) by the construction of x. The
claim follows by taking ~3 = 0. The proof of the proposition is complete. 0

We shall now give the proof of Theorem 2.3 in the smooth case. We
will not give the details of the proof of the real-analytic case, since it is

completely analogous. We start with the following proposition, which will
be needed for the proof of the theorem.

PROPOSITION 3.1. - Let the assumptions of Theorem 2.3 be

satisfied. Then, for any p E M, there exists an integer 1~ &#x3E; 1 such that

the mapping

is a homeomorphism onto a closed subset of (M).

The following known consequence of the implicit function theorem
will be used in the proof of Proposition 3.1.
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LEMMA 3.2. - Let U C R N be an open set and fn: U - I~N a
sequence of smooth (resp. real-analytic) maps which converges to a smooth
(resp. real-analytic) map f in the C°° (U, (resp. CW(U, JRN)) topology.
Let p E U and assume that the Jacobian 0. Then there exists

an open neighborhood V C JRN of f (p) such that f -1 and 1;;1 are defined
in V for n sufficiently large. Moreover the sequence ( fn 1 ) converges to f -1
in the topology (resp. CW(V,IRN)).

The main step in the proof of Proposition 3.1 is given by the following
lemma.

LEMMA 3.3. - Let G satisfy the assumptions of Theorem 2.3. Fix

p E M and assume that G satisfies a complete system of order k -I- 1 at p
1. If ( fn) is a sequence in G with = A E G;(M),

then fn converges to an element f in G (and hence = A).

Proof. We use Proposition 2.2 with xo = P and Ao = A. Let Q"

and be given by the proposition. For n large enough we have E Q//.

Hence for such n we have

When n - oo the right hand side of (3.5) converges to := À)
in We conclude from (3.5) that the sequence ( fn) converges to

in C°° (SZ’, M) . Since this implies, in particular, that 
= A, we conclude that the Jacobian 0.

Denote by C7 the set of points q E M such that the sequence ( f n )
converges in the C’°° topology in a neighborhood of q and such that

Jac(lim fn) (q) =,4 0. It is clear that 0 is open and contains p by the above
argument. We must show that 0 is closed. For this, let qo be in the closure
of C~ in M. We shall apply Proposition 2.2 with xo - qo, ko being the
corresponding integer (i.e. S satisfies a complete system of order ko + 1 at

where id is the identity mapping on M. We
let again S~" and T be given by Proposition 2.2 for the latter choice of xo
and Ao. Fix q E 0 such that jq° id Set f ~q~ (x) := limn-o which

is defined in a neighborhood of q by the definition of G. By Lemma 3.2, it
follows that there exists no such that for n, m &#x3E; no, the following holds:

Therefore we have by Proposition 2.2,
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Since the right-hand side converges in M) as m ~ oc, we conclude
that the sequence also converges in C°° (SZ’, M) to a map 

Recall that qo cz Q’. Hence, to show that qo C C~, it remains to

prove that 0. For this, we again make use of Proposition 2.2
with xo = q’ := (qo), and 110 - id, assuming that S satisfies a
complete system of order ki + 1 at xo . We denote again by Q’, Q" and
the data associated to this choice given by the proposition. Let q1 E C~ be
sufficiently close to qo such that id E S2" holds with q’ := If

I denotes the limit of the sequence ( f n ) defined in a neighborhood of
ql, by Lemma 3.2, there exist nl such that, for n, m &#x3E; nl, we have

Note that for all x in a neighborhood of Q1. By
Proposition 2.2, we have for m &#x3E; nl,

By the choice of q1 and q’, again the right-hand side converges in a neigh-
borhood of qo and hence (f;~’(x)) also converges in the same neighborhood
of qo. Denote by g its limit. Since = x for x in a neighborhood of
qo, we conclude that :~ 0. Hence qo E 0 proving that 0 = M
by connectedness of M. Thus the sequence ( fn) converges in C°° (M, M)
to a mapping f with nowhere vanishing Jacobian.

By using Lemma 3.2 again, we see that, for n sufficiently large, the
sequence ( fn 1 ) converges in a fixed neighborhood of p’ :- f (p) in the C°°
topology. Since, for any l, the jets ,~p~ fn 1 converge in G’ (M), we may apply
the above argument to the sequence (f,,-’) instead of ( f n ) to conclude that
( fn 1 ) converges to a map g: M -~ M in the C°° topology. Then it follows
that g o f = f o g = id and therefore f E Diff (M) . Since G is assumed to
be closed in Diff(M), we conclude that f E G completing the proof of the
lemma. 0

Proof of Proposition 3.1. - By the assumption of the proposition,
given a point p E M, G satisfies a complete system of order + 1 at p for
some integer (see Definition 2.1 with xo = p). We shall show that the
map (3.4), with this value of k, satisfies the conclusion of Proposition 3.1.

We first show that the map (3.4) is injective. For this, let 91, 92 C G
with By Proposition 2.2, we conclude that gi and 92 agree in
a neighborhood of p in M. Then the set
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contains p and is open again by Proposition 2.2. By the connectedness of
M, it suffices to show that V is closed in M. For this, let qo be in the
closure of V. Then, by Proposition 2.2 with xo = qo, there exists an integer
1~o and, for Ao jqo gl, a map F: Q’ x SZ" --~ M, for which (2.2) holds.
Then, for y E V, and hence, for y e V sufficiently close
to qo, w(x, j;O gi) holds for x E Q’ and i = l, 2. In particular,
we obtain gl (x) - g2 (z) for x in a neighborhood of qo. This proves that
qo E V and hence the map (3.4) is injective. As an immediate consequence
of Lemma 3.3, we see that the image is closed in The map

jp in (3.4) is clearly continuous. Since we have shown that it is injective,
the rest of the proof of the proposition is a consequence of Lemma 3.3. 0

As a direct corollary of Lemma 3.3, we obtain the following.

COROLLARY 3.4. - Under the assumptions of Theorem 2.3, let ko
be the minimum of the integers k given by Definition 2.1 as the point
xo E M varies. Then the topologies induced on G by COCJ(M, M) and
C~° (M, M) coincide.

We complete the proof of Theorem 2.3 by applying the following
theorem of Bochner-Montgomery [BM46].

THEOREM 3.5 ~Bochner-Montgomery~ . - Let G be a locally com-
pact topological group acting continuously on a smooth manifold M by
smooth diffeomorphisms. Suppose that the identity is the only element of
G which fixes every point of a nonempty open subset of M. Then G is a
Lie group and the action G x M 2013~ M is smooth.

Proof of Theorem 2.3. - We apply Theorem 3.5 to our situation.
Since, for every p E M and every integer k, the invertible jet space
fiber is a manifold, it follows from Proposition 3.1 that G is

locally compact. Moreover, since the map (3.4) is injective, the second
assumption of Theorem 3.5 also holds. The proof is completed by applying
Theorem 3.5. 0

4. Lie group structures for germs of diffeomorphisms.

In this section we shall give proofs of the local results stated in
Section 2.
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Proof of Proposition 2.8. - The proof of the fact that (2.3) implies
(2.4) is analogous to the corresponding part in the proof of Proposition 2.2.
We shall prove that (2.4) implies (2.3). Since the statements are local, we
may assume that M = and p = 0. As in the proof of Proposition 2.2,
we take local coordinates x - (Xl,.’.’ xn) on Rn inducing coordinates
(x, A) - (x, on the jet space R nx where N is

the number of the multiindices fl with 0 ~ 1!31 ~ k. Let Q’, Q" and T be
as in Proposition 2.8. Then we have 0 C Run and Ao E Q" C We

begin by changing T to obtain with the property

For this, we take

Then (4.1) holds and (2.4) still holds with replaced by ~.

Consider the map

By (4.1), 8(0, A) == (0, A). By the implicit function theorem, there exists a
smooth (resp. real-analytic) function X(x, A) defined in a neighborhood of
(0,Ao) in ET x JRN satisfying O (x, x(x, ll) ) -= A. Then

satisfies the desired conclusion. D

Proof of Theorem 2.9. - We want to show that the image of the
continuous group homomorphism

is closed. Since this image is a subgroup of it suffices to show

that it is closed in a neighborhood of the identity. For this, we apply
Proposition 2.8 to S .- G and Ao := *k id. We claim that the image
of G is closed in Q" C G~(M). Indeed, given a sequence G with

E Q" as n --~ oo, the sequence := consists of

representatives of gn defined in Q’, a uniform neighborhood of p. Clearly
converges to g(x) := À) in C°°(Q’, M) (resp. CW(n’, M)). It

follows that the germ gn converges in (resp. DiffW(M,p)) to g,
the germ of Y at p, and hence A = Since G is closed in Diff(M, p) (resp.
Diffw (M, p)), it follows that g E G proving the claim. The same argument
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also shows that the homomorphism (4.3) is a homeomorphism onto its

image. Since a closed subgroup of a Lie group is a Lie subgroup, it follows
that G has a (necessarily unique) Lie group structure (see e.g. [V74]).
Furthermore, the conclusion of Proposition 2.8 also implies that the action
of G is smooth (resp. real-analytic). The proof of the theorem is complete. 0

5. Finite jet determination for Lie group actions.

The purpose of this section is to prove the following finite jet deter-
mination result which is slightly more general than Theorem 2.10 and from
which Theorem 2.4 will follow.

PROPOSITION 5.1. - Let M be a connected real-analytic manifold
and p a point in M. Suppose that G is a Lie group with finitely many con-
nected components equipped with a continuous injective homomorphism
t: G --~ Diff ~’ (M, p). Then there exists a number k such that, for 91, 92 E G,
jk (¿(91)) = jk (c(g2)) if and only if 91 = g2.

As a first step, we need some basic facts about jet groups. For every
positive integer k, consider the subgroup

If (x 1, ... , xn) are local coordinates on M vanishing at p, then every p E Lk
can be written as

where x = (x 1, ... , xn ) and = x -* 0. As a consequence we

obtain that Lk j Lk+1 is a commutative group which can be identified with
the additive group of all R’-valued homogeneous polynomials on R~ of
degree + 1. In particular Lk j Lk+1 is isomorphic to the additive group of
a finite-dimensional real vector space. Thus we have established:

LEMMA 5.2. - Let (M, p) be a germ of a real-analytic manifold
and Lk be the subgroup given by (5.1). Then LkjLk+1 is a torsion-free
commutative group for all 1~ &#x3E; 1.

We shall also need the following well-known fact from Lie group theory
for which we give a proof for the reader’s convenience:

LEMMA 5.3. - The fundamental group of a connected Lie group
is commutative and finitely generated.
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Proof. Let G be a connected Lie group and 7r: G - G the universal
covering group of G. The kernel H of 7r is therefore a normal discrete

subgroup of G that is isomorphic to the fundamental group of G. Hence
ghg-1 E H for all g E G and h E H. Since G is connected and H is
discrete, it follows that ghg-1 == h for all g and h as above proving the
commutativity of H and hence of the fundamental group of G.

To show that the fundamental group of G is finitely generated, con-
sider a maximal compact subgroup I~ of G. Then G is homeomorphic to
K x R~ for some nonnegative integer l, in particular, G and K have isomor-
phic fundamental groups. Since K is a compact manifold, its fundamental
group is necessarily finitely generated. This completes the proof of the
lemma. 0

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. - For let

Since Hk is the kernel of the homomorphism G 3 g - jp (~(g) ) E 
(Hk) is a descending sequence of normal closed Lie subgroups of G.
Moreover, since t is injective and t(g) is real-analytic for any g E G, it

follows that

k

where e is the unit in G. In fact, we shall show that there exists a number
k E N such that Hk == {e}.

Note that dim Hk is a decreasing sequence of nonnegative integers
and set do Then there is a number no E N such that

dim Hk = do for all k # no. Since for all k, this implies that the
connected component Ho of e in Hk is the same for no. Combined

with (5.3) this implies that {e} and hence that Hk is discrete for

k &#x3E; n0

From now on, consider only with k # no. Denote by Go the
connected component of e in G and set Ik := H~ n G°. Since Hk is discrete
and normal in G, we conclude that I,~ is a discrete normal subgroup of
the connected Lie group Go. Thus is a connected Lie group and

the canonical map G° -~ G° /Ik is a covering map. By lifting each loop
through the unit in G°/Ik to a (unique) path in Go starting from e,

we obtain a surjective group homomorphism from the fundamental group
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to Ik. Since, by Lemma 5.3, is necessarily a finitely
generated commutative group, it follows that Ik is also finitely generated
and commutative.

Recall that the (free) rank of a finitely generated commutative
group A, regarded as a Z-module, is the maximal number of Z-linearly
independent elements in A. Recall also that, by the main structure theorem
for finitely generated commutative groups (see e.g. [DF91]), A is isomorphic
to a direct sum of cyclic groups Z’ (B Zal ED ... (B where 7~a is the cyclic
group of order a. In this case rank(A) = r. Since is a decreasing
sequence of finitely generated commutative groups, there exists a natural
number no such that for all k ) ni . Then it
follows from the definition of the rank that Ikllk+1 consists of elements of
finite order. From now on, consider only 1~ nl. By construction,
there exists an embedding lkl Ik+1 ~ Lkl Lk+1’ Since Lkl Lk+1 does not
contain any element of finite order, it follows that 0. Combined

with (5.3) this implies that Ik == {e}.
Recall that Ik = GO n Hk. Thus {e} implies that the natural

projection G 2013~ G/Go restricts to an injective group homomorphism from
Hk to GIG’. Since G has finitely many components by assumption, it

follows that GIGO is a finite group and hence Hk is also finite n1.

Thus the (Hk) form a descending sequence of finite groups. In view of (5.3),
it follows that Hk = {e} for sufficiently large k E N.

To complete the proof of Proposition 5.1, choose k with Hk = {e}
and suppose that, for g1,g2 E G, = *k(L(92)) holds. Then forand suppose that, for gl, g2 E G, jkp (c(gl)) - holds. Then for

9 o g2, we have jp (c(g)) = jkp id. Hence g E {e} which implies
91 = g2 as desired. 0

Proof of Theorem 2.4. - We apply Proposition 5.1 to the group
Gp and the obvious homomorphism t: Gp - Diffw (M, p). Let be given
by the conclusion of the proposition. Then, if for gl, 92 E G, we have

= jP g~, then g og2 E Gp satisfies id. By the conclusion
of Proposition 5.1, we conclude that g = id proving gl = g2 as desired. 0

6. Applications to CR automorphism groups
of CR manifolds.

In this section we shall apply the results of Section 2 to the case
of CR automorphism groups of CR manifolds. Recall (see e.g. [Bo91],



1295

[BER99b] for more details) that an (abstract) CR manifold is a smooth

manifold equipped with a complex vector subbundle V of the complexified
tangent bundle CTM of M such that v n V = 0 and [V, V] C V. The
subbundle V C CTM is then called the CR bundle of M. The (complex)
fiber dimension of V is called the CR dimension of M and the (fiber)
codimension of V s3 V in CTM the CR codimension of M. In case both M

and V are real-analytic, M is called a real-analytic CR manifold.

An important class of CR manifolds is that of embedded ones. If X
is a complex manifold and M C X a smooth real submanifold such that

is a subbundle of CTM, where is the bundle of (0,1) tangent vectors
on X, then M equipped with subbundle V defined above is a CR manifold.
It is known (see [AF74) that a real-analytic CR manifold can be always
considered as embedded in a complex manifold X with

(6.1) dimCX = CR dim M -~- CR codim M.

In case M is embedded in a complex manifold X and (6.1) holds, then M
is called a generic submanifold of X. (A smooth abstract CR manifold may
not be even locally embeddable in any see e.g. [Bo91] ) .

If M and M’ are two smooth CR manifolds with CR bundles V

and V’ respectively, a CR map f : M - M’ is a smooth map satisfying
f * V C V’, where CTM’ is the induced pushforward map.
A CR automorphism of ll~ is a CR map from M to itself which is also

a diffeomorphism. Observe that in this case the inverse map is also CR.
We denote by AutcR(M) c Diff(M) the subgroup of all smooth CR
automorphisms of M equipped with the induced topology. When M is
a real-analytic CR manifold, we also denote by AutCR (M) C Diff’ (M) the
subgroup of all real-analytic CR automorphisms of M.

In general, AutcR(M) (or AutcR(M) in case M is real-analytic) may
not be a (finite-dimensional) Lie group. Indeed, for the embedded CR

manifold M := R" C C’ (and hence V = 0) we have AutCR(M) = Diff(M)
and AutcR(M) = Diff’ (M) . On the other hand, it is known that, if M is
a Levi-nondegenerate smooth hypersurface in N &#x3E; 1, then AutcR(M)
(and also AutcR(M)) is a Lie group (see [C32, T67, CM74, BS77]).

It is clear from the above that some nondegeneracy conditions have
to be imposed on a CR manifold in order for AutcR(M) and AutcR(M)
to have Lie group structures (compatible with their topologies). One of
the conditions we impose here, generalizing Levi-nondegeneracy, is that of
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finite nondegeneracy, whose definition we recall. Let M c (CN be a smooth
generic submanifold and p E M. If d is the CR codimension of M, then
M is a real submanifold of codimension d in CN. Let p = (p1 ...,pd) be
a smooth defining function for M in a neighborhood of p with linearly
independent complex differentials Then M is said to be

finitely nondegenerate if

where the span is taken over all collections of smooth (0, 1) vector fields
L1, ... , Lk on M defined in a neighborhood of p. Here each pZ is regarded
as the vector in C~ whose components are 1 ~ r  N, where Z =

(Zi,..., ZN ) are coordinates in C . We further call M 1-nondegenerate at
p or say that M is finitely nondegenerate of order I if 1 is the smallest

integer for which (6.2) still holds under the additional restriction 1~ 
l. In particular, a hypersurface M C CN is Levi-nondegenerate at p
if and only if it is 1-nondegenerate at p. The reader can check that

the above definitions are independent of the choice of local holomorphic
coordinates Z in (CN and of the defining function p. For the notion of finite
nondegeneracy for abstract CR manifolds we refer to [BER99b]. Another
way of defining this notion for an abstract CR manifold M is to reduce
to the embedded case by means of "approximate embeddings" in (CN for
N := CR dim M + CR codim M (see [KZ02] for this approach).

We recall also the notion of finite type in the sense of Kohn and
Bloom-Graham. A CR manifold M is of finite type at a point p if the
Lie algebra generated by the ( 1, 0) and the (0,1 ) smooth vector fields
on M spans the complex tangent space of M at p. For hypersurfaces
M C CN, N &#x3E; 1, (and, more generally, for abstract CR manifolds of
CR codimension one and CR dimension at least one), it can be seen that
finite nondegeneracy at p implies finite type at p.

For CR manifolds with the above nondegeneracy conditions the
following result is known.

THEOREM 6.1. - Let M be a smooth (resp. real-analytic) CR
manifold of CR codimension d, which is l-nondegenerate and of finite
type at a point p E M. Then the subgroup AutCR(lVf) C Diff (M) (resp.
AutcR(M) C DiffW(M)) satisfies a smooth (resp. real-analytic) complete
system at p of order k + 1 with k = 2(d + 1 ) l .

Theorem 6.1 as stated above was proved by S.-Y. Kim and the fourth
author [KZ02]. The embedded hypersurface case was previously established
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by Ebenfelt [E01]. Previous results on complete systems for CR mappings
between real-analytic Levi-nondegenerate hypersurfaces were obtained in
[H97]. For M real-analytic, Theorem 6.1 is essentially contained in the work
of the first two authors jointly with Ebenfelt [BER99a] (see also [BER97,
Z97]).

6.1. Global CR automorphisms.

Using Theorem 6.1 we obtain the following application of Theorem 2.3
to the global CR automorphism group of a CR manifold.

THEOREM 6.2. - Let M be a smooth (resp. real-analytic) CR
manifold, which is finitely nondegenerate and of finite type at every point.
Assume that M has finitely many connected components. Then AutcR(M)
(resp. AutCR(M)), equipped with the induced topology of Diff(M) (resp.
Diffw (M)), has a (unique) structure of a Lie group acting smoothly (resp.
real-analytically) on M.

In the case where M is a compact real-analytic CR manifold satisfying
the assumptions of Theorem 6.2, this result was proved in [Z97]. We note
that in Theorem 6.2 no upper bound, as p varies in M, is imposed on
either the order of finite nondegeneracy at p, nor on the minimal length
of commutators of ( l, 0) and (0,1 ) vector fields needed in the definition of
finite type at p. In fact, both of these numbers can be unbounded.

Proof of Theorem 6.2. - We give the proof only for AutcR(M)
since the case of AutcR(M) is completely analogous. If M is connected,
Theorem 6.2 is an immediate consequence of Theorems 6.1 and 2.3.

When M has finitely many connected components, Ml , ... , ML , it follows

from the above that each AutCR(Mi), i - l, ... , l, is a Lie group. For

each g E AutcR(M), there is a permutation ag of 11 such that
g (Mi) = Mag(i)’ i = 1,..., l. Then for any permutation a of ~1, ... , l~, the
set ~g E r} is a coset of the Lie group AutcR (Ml ) x ~ ~ ~ x
AutCR(Ml). Hence AutcR(M) is a Lie group as a finite (disjoint) union of
cosets of a Lie group. 0

The assumption of finiteness of the number of components in Theo-
rem 6.2 cannot be removed. Indeed, if M has infinitely many components
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Ma, a e A, such that each AutCR (Mx ) is a Lie group of positive dimen-
sion, then the group AutCR(M) contains as a subgroup the infinite product

AutcR(Ma) and hence is not a (finite-dimensional) Lie group.
If M is real-analytic and satisfies the assumptions of Theorem 6.2

then it follows from results of [BJT85], using also [Tu88], that the groups
AutCR(M) and AutCR(M) coincide. However, in general, for a real-analytic
CR manifold, these groups may be different even when both groups have
Lie group structures compatible with their topologies, as is shown by the
following example.

Example 6.3. - Let Q C (~2 be the quadric given by Im w = Izl2
and

All (smooth) CR automorphisms between open subsets of Q are known
(see e.g. [CM74]) to be restrictions to Q of birational maps of of the

form V with

(6.3) 4) (z, w) = (zo, wo) E Q,

(Observe that every T of the form (6.4) is defined on all of Q except at most
one point.) Hence we can identify the CR automorphisms of Q with their
birational extensions to Q. Then AutcR(Q) : f S) = §l
with § :_ ~ (z, w) E Q : z E and it is then straightforward to check
that

(6.5) AutcR(Q) = u E where CPu(z, w) = (z, w-f-u).
Let X E C°° (R) with x(t) _ 0 for t  3/2 and &#x3E; 0 for t &#x3E; 3/2. Define
a CR submanifold M C (C3 by 

-

where F is the closure in (C3 of the subset ~ (t, t, nx(t) + it2) : t E (l, 2),
n E Z}. Given any f = ( f l, f2) E AutcR(M), it follows from the definition
that fix : M - R is a CR map and hence (since Q is of finite type) f 1 (t)
for t E (1, 2), i.e. fi depends only on the first argument. For t C ( 1, 2) , the
map (z, w) - f2 (t, z, w) extends to a map in AutCR(Q) and hence, by (6.5),
f2(t, z, w) _ (z, w + u(t)) for some smooth function u(t). Thus f = ( f 1, t2 )
extends to a CR automorphism (t, z, w) - (f1 (t), z, w + u(t)) of (l, 2) x Q
that preserves F. From here it is straightforward to check that
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Hence AutcR(M) consists only of the identity map. Both AutcR(M) and
Aut’R(M) are (zero-dimensional) Lie groups. Note that M is finitely
nondegenerate at every point but not of finite type at any point.

Example 6.3 furthermore shows that AutcR(M) may have a (com-
patible) Lie group structure without satisfying a complete system. Indeed,
at any point of the form po = (3/2, zo, wo) E M, one has jP On - jp id
for all and n and hence even finite jet determination does not hold for

AutcR(M) . On the other hand, AUt’CR(M) -- {id} clearly satisfies an (an-
alytic) complete system in the sense of Definition 2.1.

It may also happen for a real-analytic CR manifold At that Aut’
is a Lie group while AutcR(M) is not, as is shown by the following
modification of Example 6.3.

Example 6.4. - We take

where F is the closure in ([:3 of the + 2t2 ) : 3/2 
t  2, n E where Q and x(t) are as in Example 6.3. Then the same
arguments as in Example 6.3 show that AUt’CR(M) = {id}. However,
for any function a E C°°(R) with support in (1,3/2), the mapping
(t, Z, W) F-+ (t, z, w + a (t) ) is in AutcR(M). Hence AutCR (M) is not a

(finite-dimensional) Lie group.
An immediate application of Theorem 2.4 gives the following.

COROLLARY 6.5. - Let M be a connected real-analytic CR 
fold with p E M, and assume that the subgroup of AutCR(M) fixing p has
finitely many connected components. Then there exists an integer k such
that for any two elements gl, g2 E AutCR(M),

The authors do not know if, under the assumptions of Corollary 6.5,
the stronger conclusion that AutCR(M) satisfies a complete system at p
also holds.

6.2. Germs of local CR automorphisms.

If M is a smooth (resp. real-analytic ) CR manifold and p C M, we
denote by AutCR (M, p) C Diff (M, p) (resp. AutCR (M, p) C 
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the group of all germs at p of local smooth (rep. real-analytic) CR
automorphisms of M fixing p. We consider on Aut’ the topology
induced by Since the general results for groups of germs of
local diffeomorphisms given in Section 2.2 are only for the real-analytic
case, we shall first discuss this case and survey recent results.

THEOREM 6.6. - Let M be a real-analytic CR manifold of CR
codimension d which is £-nondegenerate and offinite type at a point p E M.
Then with k - (d -I- 1)~ the mapping

is an injective homeomorphic group homomorphism onto a totally real real-

algebraic Lie subgroup of Hence AutcR(M,p) has the structure
of a real-algebraic Lie group.

Theorem 6.6, as stated above, was proved by the first two authors
jointly with Ebenfelt in [BER99a]. An earlier result by the fourth author
in [Z97] proved that the mapping (6.6) 2(d + 1)~ is an injec-
tive homeomorphic group homomorphism onto a closed Lie subgroup of

(The real hypersurface case was treated in ~BER97~ ) . The main
tool for proving Theorem 6.6 is a local jet parametrization in the sense of

Proposition 2.8.

For a real-analytic hypersurface M C (C2, it has recently been proved
in [ELZ03] that AutCR(M,p) has a Lie group structure under the single
assumption that M is of finite type at p (that is, without the condition
that M is finitely nondegenerate at p). More partial results are known in
the direction of Theorem 6.6 stating only the injectivity of the map (6.6)
for suitable [BEROO, BMR02, ELZ03, Kw0l].

In contrast to the real-analytic case, the statement analogous to that
of Theorem 6.6 does not hold for general smooth CR manifolds even under
the strongest possible conditions (e.g. if M is a strongly pseudoconvex
hypersurface in C~). In fact, it is shown in [KZ03] that there exists a smooth
strongly pseudoconvex hypersurface M C (~2 and a point p E M such that
the image of the map

is not closed for any integer (observe that the map (6.7) is known to be

injective for k &#x3E; 2 (see [C32, CM74])). This is also in contrast with the
global automorphism group AutcR(M), where the mapping
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has always closed image for suitable under the assumptions of Theo-
rem 6.2 on M (see Proposition 3.1 and Theorem 6.1 ) . Although, as men-
tioned in Subsection 2.2, Diff (M, p) is not Hausdorff, it is easy to see that
its subset AutcR(M,p) is Hausdorff in the induced topology whenever the
(continuous) map (6.7) is injective for some k. If, moreover, AutCR (M, p)
satisfies a smooth local complete system of order + 1 in the sense of

Definition 2.7, then it follows from Proposition 2.8 that the induced topol-
ogy from Diff (M, p) coincides with the one induced by the injection (6.7).
Hence the mentioned examples from [KZ03] show that AutCR (M, p) may
not have a Lie group structure compatible with that topology. It should be
noted that if M is a smooth CR manifold which is finitely nondegenerate
and of finite type at a point p, then AutCR (M, p) satisfies a local complete
system; this is proved in [E01, KZ02].

We would like to conclude with the following open question. Let M
be a connected real-analytic CR manifold such that for every p E M,
CR (M, p) has a Lie group structure compatible with its topology. Does
this imply that AutcR(M) has also a Lie group structure (compatible
with its own topology)? Note that the converse implication does not hold.
Indeed, for the CR manifold M given in Example 6.4, Aut’ {id}
whereas, for every p E M, AutcR(M,p) is infinite-dimensional since M is
locally a product of the quadric Q and R.
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