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GALOIS CO-DESCENT FOR ETALE
WILD KERNELS AND CAPITULATION

by M. KOLSTER* and A. MOVAHHEDI

Introduction.

For a number field F, the classical wild kernel - denoted by WK-z{F)
- is the kernel of all local power norm residue symbols on K^{F)^ in other
words it fits into Moore's exact sequence

0 ̂  WK^F) -^ K^(F) -^ e/^Fl) ̂  ^(F) -^ 0,
v

where v runs through all finite and real infinite primes of F^ and l^(Fy)
and f^(F) denote the groups of roots of unity of the local field Fy and of F^
respectively. For a fixed prime number p, the p-primary part W K^ (F) {p}
of WK^(F) has another description in terms of etale cohomology: For any
finite set S of primes in -F containing the p-adic primes and the real infinite
primes, we have

WK^F){p}=ker{Hi{o^(2))-. C ^(^^(2))).
v^S

This property immediately leads to the definition of the higher etale wild
kernels for i ̂  2:

WK^(F):=ker(H^o^(i))-. © H\F^{i))).
vfES

The etale wild kernels play a similar role in etale cohomology, etale K-
theory and Iwasawa-theory as the p-primary parts A'? of the 6'-class groups
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36 M. KOLSTER, A. MOVAHHEDI

of F. For these, Galois co-descent is classically described by genus theory.
The main result of this paper proves an analogous genus formula for
the etale wild kernels of a cyclic extension L / F of degree p, p odd. Let
G = Gal(L/F). We first show that the transfer map WK^(L) -^
^^-^(^ is onto except in a very special situation, and we determine
its kernel as the cokernel of a certain cup-product which is obtained as
follows: Let E = F(f^p), where f^p consists of the p-th roots of unity
and let A = Gol(E/F). We associate with the extension L E / E a certain
set T L E / E of primes of E, consisting of all tamely ramified primes and
some undecomposed p-adic primes. Let B^^E) denote the subgroup of
the Brauer-group which is supported only at primes in T L E / E ^ and let
pBTT(E) denote the subgroup of all the elements in B^^E) of exponent p.
The target of the cup-product is the (1-z)- eigenspace pBr7^)^-^, under
the action of the Teichmuller character w. Now, let 6' be the set of primes
in E consisting of the p-adic primes, the real infinite primes as well as all
primes ramified in LE and denote by o% the ring of ^-integers in E. The
etale cohomology group H^(o%^p(i))/p injects into the (z - l)-fold Tate
twist of the module E ^ / E ^ and hence is isomorphic to D^ / E ^ ( i - 1),
where D^ C E^ can be viewed as the analog of the Tate kernel (z = 2).
The cup-product is now given by

(D^/E^1-^ ^^(G.Z/pZ) -^ (pBr^))^.

We illustrate the method by finding all Galois p-extensions of Q for which
the p-part of the classical wild kernel is trivial.

We also discuss the Galois co-descent situation for p = 2 in the
classical case z = 2.

Let £'00 denote the cyclotomic Zp-extension of E with finite layers
En. If we assume the Gross Conjecture for En with n large, for instance if
E is abelian over Q, then the groups D^ / E^ can be described in terms
of local conditions at p-adic primes, and are independent of z.

Let Foe denote the cyclotomic Zp-extension of F with finite layers
Fn and let A^ denote the p-part of the p-class group of Fn. The classical
capitulation kernel is defined as

Capo(Foo) = ker(A^ --̂  A'^) for n large.

The study of capitulation kernels under Galois extensions is an essential
ingredient in the more general problem of comparing Iwasawa-invariants
(cp. e.g. [28]). In Section 3 we introduce similar capitulation kernels
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GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 37

Cap^_^(.Foo) fo1' all z ^ 2 using etale JC-theory, and show that they have
properties similar to Capo(I'oo).

Assume now that F is totally real, and let E^~ denote the maximal real
subfield of£'= F^p). A conjecture ofGreenberg predicts that limA^E^)
is finite. Under this assumption we show that for all odd i ^ 3:

Cap,_i(Foo) ^ A^(E+)^ ^ WK^(Fn) for n large.

Therefore the co-descent results from Section 2 imply similar results for
Cap^_i(Foo) and for the eigenspaces A^{E+)^1~^\ when n is large.

In Section 4, we briefly discuss how our approach can be applied to
the simpler problem of Galois co-descent for etale tame kernels. This has
already been studied by Assim ([I], [2]) under Leopold!'s conjecture.

Acknowlegdements. — The second-named author would like to thank
McMaster University for its hospitality during March 1996, when a prelimi-
nary version of this paper was written, which was circulated as a McMaster
preprint. The first-named author thanks the IHES for its hospitality from
January 1999 to March 1999, when the final version was written. Thanks
go also to Thong Nguyen Quang Do for helpful comments on the earlier
version.

1. Preliminaries.

In this section we briefly recall some of the basic properties of etale
J^-theory and etale cohomology which are subsequently needed. A more
detailed account can be found in [3], [20]. Let F be a number field and p
a fixed prime number. Let S be a finite set of primes in F^ containing
the set Sp of primes above p and the set Syo of infinite primes. As
usual, Gs(F) denotes the Galois group over F of the maximal algebraic
extension of F, which is unramified outside S. We note that the condition
on infinite primes only intervenes if p = 2 and F is not totally imaginary.
Let of denote the ring of ^-integers of F. As is well-known, the etale
cohomology groups ^^(spec^f^Z/j/1^?)) of spec (of.) coincide with the
Galois-cohomology groups Hk(Gs{F),rL/pnrL{^)), and will be denoted by
^(of.Z/^Z^)). Here, as usual, Z/p^Z^) denotes the z-fold Tate twist
of Z/yZ. Furthermore, let

J^(of,Zp(z)) = lim^of.Z/p^))
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38 M. KOLSTER, A. MOVAHHEDI

and

^t(^QpW)) = lim^o^Z/^Z^)).

Assume now that p is either odd or that p = 2 and F contains y^T.
Then for i ^ 2 and A; = 1,2 the etale cohomology groups 7^(oj,,Zp(z))
are isomorphic to the higher etale JC-theory groups K^_^{oj.), introduced
by Dwyer-Friedlander ([8]). Moreover, the relation to Quillen's J^-theory
groups K^-k{oj^ is provided by a Chern character, which yields split
surjective maps with finite kernels

K^(o^^^^K^_,(o^

(cp. [8], [15]), which conjecturally are isomorphisms (recall that for p = 2,
F contains V^^T). BoreRs results (cp. [4]) then imply that the groups
-̂ 1 -̂2 (°i1) are finite and that the groups ^^_i(o'j-) are finitely generated
of rank ri +r2 if i is odd, and of rank r^ if i is even, where as usual r\ and r^
denote the number of real and pairs of conjugate complex embeddings of F,
respectively. We note that the odd etale JC-theory groups are independent
of the choice of the set S of primes: If ^*(F, ) denotes the absolute
Galois cohomology groups of F then, in fact, the localization sequence in
etale cohomology (cp. [36, Proposition 1]) implies that

^(o^Z^(z)) - H\F^{i)) Vz ^ 2.

We therefore simply denote the odd etale JC-theory groups by K^_^(F).
The torsion subgroup of K^_-^(F) is isomorphic to ^°(F,Qp/Zp(z)).

In the special case i = 2 more is known: There exist isomorphisms

^2(o^)0Zp-^(o^Zp(2))

and

^(F^Z^^GF.Z^))

without any restrictions on the prime p and the number field F (cp. [36],
[22]). Here K^{F) denotes the indecomposable J^-group of F, i.e. K^(F)
divided by the image of the Milnor group K^ (F), which is 2-torsion.

More recently, Kahn ([18]) and Rognes-Weibel ([32]) have determined
the kernel and cokernel of the 2-adic Chern character

K2i-k{op) (^Z2 ̂  H^OpW)).

which in general are non-trivial.
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GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 39

The following result is due to B. Kahn (cp. [16, Theorem 2.1,
Proposition 6.1]):

THEOREM 1.1.— Let L / F be a Galois extension of number fields
with Galois group G and let S be a finite set of primes in F, containing
the primes which are ramified in L. There is an exact sequence

0 -> H\G^K^{L)) -. K^{o%) -^ K^oi)0 -. H\G^K^{L)) -> 0.

The following etale analog is well-known (cp. [I], [5]), however we
include a proof, since the sources are not easily accessible:

THEOREM 1.2. — Let p be an odd prime and let L/F be a Galois
p-extension of number fields with Galois group G. Let S be a finite set of
primes, containing the primes above p and the primes which ramify in L.
Then for i ^ 2 there is an exact sequence

0 - H\G^K^(L)) -^ K^o%)

- K^{oif - H^G^K^L)) -. 0.

Proof. — Consider the Hochschild-Serre spectral sequence

E^ = ̂ (G,J%(of,Z,(z))) ̂  ̂ (^,Z,(z)).

Since J^(of,Zp(z)) = 0 ([36, Lemme 7]), all terms E^° vanish. On the
other hand, cdp{Gs(F)) = 2 and hence H^oj,, Zp(z)) = ̂ |t(°i ̂ (^ = °
for all q ^ 3. The spectral sequence therefore yields

7^1 ^ iTiOl ^ zrOlE = EOO = Ec! ^

i.e. an isomorphism

K^(F)^K^(Lf^

as well as the exact sequence
H nil r2 _. ir02 . r?21 _ . nU —> ^/2 —> rj —> ±!/2 —^ Jb^ —^ u,

which is precisely the claim. D

As a by-product, we obtained the fact that the odd etale JC-groups
satisfy Galois descent. Note that this, in the form

H^F^W^H^L^a))0,

remains true for p = 2.

TOME 50 (2000), FASCICULE 1



40 M. KOLSTER, A. MOVAHHEDI

On the other hand we have Galois co-descent for the even etale K-
theory groups K^_^{o^):

PROPOSITION 1.3.— Let p be odd and L / F a Galois p-extension of
number fields with Galois-group G. If S contains the primes above p and
the ramified primes of L / F , then

T^et (nS\ ~ T^et (^S \
J-^2i-2\OL)G = K2i-•2{OF)'

Proof.— This follows as above using the Tate spectral sequence
(cp. [35], [17], [26]). D

Now K^_^{o^) 1s finite, and hence this proposition together with
Theorem 1.2 yields

COROLLARY 1.4. — For any cyclic p-extension L / F (p odd) of number
fields with Galois group G, the quotient

\H^G^K^_,{L)\
\H^G^K^{L)\

is trivial.

Remark 1.5.— The previous results depended only upon two facts:

cdp(Gs{F))^2 and H°{Gs(F)^p{z)) = 0.

Therefore analogous results also hold for example for finite extensions of
local fields, thus, for a Galois p-extension E / F of local fields with Galois
group G, we have an exact sequence

0 ̂  H\G^H\E^^)) -. H\F^^)
-^ H^E^))0 -. H\G^H\E^{z))) - 0,

and an isomorphism

H\E^(i))G^H\F^(i)).

Again, in the case i = 2, more information on co-descent is available,
i.e. no restrictions on F are necessary to also include results concerning the
2-primary part.

ANNALES DE L'lNSTITUT FOURIER



GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 41

The following result is easily obtained from [16, Theoreme 5.1] :

PROPOSITION 1.6. — Let L / F be a finite Galois extension of number
fields with Galois group G and let S be a finite set of primes in F, containing
the primes which ramify in L / F . Then, there is a short exact sequence

0 -> K^{oi)G -^ K^oj,) -> © ^2-^0,
v^s^

where S^ consists of the real infinite primes in F which ramify in L.

Finally, we recall the definition of the higher etale wild kernels (cp. [3],
[20], [29]):

WK^(F)=keT(Hi(os^(i))-^ C ^(F^Z^z))).
v^:S

The definition is independent of the choice of the set S containing Sp, and
part of the Poitou-Tate duality sequence yields the exact sequence

0 - WK^{F) -^ Ki\.^o%)
-. ® ^(F^Z^^J^Qp/ZpO-Or-^O,

v^S

where * indicates the Pontrjagin dual. Moreover by local duality

^(F^Z^^^F^Qp/Z^l-z))*.

The groups H°(F, Qp/Zp(l - %)) and H°{Fv, Qp/Zp(l - z)) are finite cyclic
for i ̂  1.

The etale wild kernels are the analogs of the p-part of the classical
wild kernel WK^(F) - defined for any number field F - which occurs in
Moore's exact sequence of power norm symbols (cp. [23]):

0 ̂  WK^F) -^ K^{F) -^ C/^(F.) ̂  ^(F) -^ 0,
v

where v runs through all finite primes and all real infinite primes of F,
and /^(Fy) and /^(F) denote the group of roots of unity of Fy and of F
respectively. If 5' is a finite set of primes in F containing Sp and Syo, then
we obtain an exact sequence of finite groups

0 -^ WK^F){p} -^ K^){p} -^ C uW{p} -^ a{F){p} -. 0.
v^S

Here, for an abelian group A, we use the notation A{p} for the p-primary
part of A.

TOME 50 (2000), FASCICULE 1



42 M. KOLSTER, A. MOVAHHEDI

2. Galois co-descent for the etale wild kernel.

Let p be an odd prime and let L / F be a cyclic extension of number
fields of degree p with Galois group G. In this section, for any local or
global field K, we denote by K^ the cyclotomic Zp-extension of K with
finite layers Kn. We also assume that i ^ 2. We obtain necessary and
sufficient conditions for the etale wild kernel WK^_^(L) to satisfy Galois
co-descent. This approach also yields a genus"-formula comparing the sizes
of WKj^L)0 and WKj^(F). Let S be the finite set of primes in F,
containing the set Sp of all primes above p, as well as all primes which
ramify in L. We denote by SL the set of primes in L above S. Moreover,
let ©ves'^^^Zp^)) be the kernel of the surjection

e ^(^Zp^^^F.Qp/z^i-z))*.
v^S

Then by definition of the etale wild kernel from section 1, we have the
following short exact sequence:

0 - WKj^(F) -. K^(o%) -. C H\F^(i)) -. 0.
v^.S

By Proposition 1.3 the group K^_^{o^} satisfies Galois co-descent. The
following commutative diagram:

WKj^(L)^ - ̂ -2(0!)^ - ( ® ff2^,^))) - 0
\weSL /Q

I ll I
0-. WK^(F) -. K^_,(o%) -. @H\F^{i)) ^0

v(=.S

then shows that

cokeT(WK^(L)^ ^ WK^(F))

^kerf( C ^(L^Z^z))^ ^ e ^(F^Z^z)))
\ we6'L ves )

and

ker(TV^_2(^)G ̂  WK^(F))

^cokerf^^^if-f © ^(L^.Z^z))) ).
\ \weSL ) j

Before we compute the first group we need a preliminary result: Let
M/N be a cyclic extension of degree p, p odd, of global or local fields of
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GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 43

characteristic -^ p, and let G denote the Galois group of M / N . Furthermore,
let NQQ denote the cyclotomic Zp-extension of N.

There are two maps relating the cohomology groups H°{N^ Qp/Zp(fc))
and H°(M,Q)p/Zp(k)), where we assume k € Z, k ^ 0: The nat-
ural map H°(N,(Qp/'^p(k)) -^ Jf°(M,Qp/Zp(A;)) and the norm map
H°(N^p/Zp(k)) -^ J:f°(M,Qp/Zp(fc)). The first one induces an isomor-
phism

7J°(JV,Qp/Zp(AO) ̂  ̂ (M.Qp/Zp^,

which implies immediately that either both groups are trivial or both
groups are non-trivial. Assume now that Jf^A^Qp/Zp^)) is non-trivial.
Then the order of ff°(lV,Qp/Zp(A;)) is the maximal power p771, such
that the Galois group Gal(JV(^pm)/W) has exponent k. If M (/_ N00,
then [M(^pm) : M] == [N(^pm) : N], and therefore G acts trivially
on J:3r°(M,Qp/Zp(A;)). Therefore, in this case, the natural map is an
isomorphism, and hence the norm map has both kernel and cokernel of
order p. On the other hand, if M C A^ and say ^°(7v,Qp/Zp(A;)) ^
(Z/j/^Z)^), then H°(M^p/^p(k)) ̂  (Z/V^Z)^), and - p being odd -
the norm

(z/p^zKfc) -. (a/p"^)^)
is surjective, and therefore induces an isomorphism

H°(M^ Qp/Zp(AQ) G ̂  H\N^ Qp/Zp(A;)).

We summarize:

LEMMA 2.1.— Let k € Z, k ^ 0 and H°{N^p/'Lp(k)) ̂  0.

i) IfM(^ N^, then G acts trivially on ^(M.Qp/Zp^)), and hence
the natural map

^°(^,Qp/Zp(fc)) -. ̂ °(M,Qp/Zp(A;))

is an isomorphism, whereas the norm map has kernel and cokernel of
order p.

ii) IfMc N^, then G acts non-trivially on H°(M, Qp/Zp(AQ) and the
norm induces an isomorphism

H\M, Qp/Zp(AQ) a ̂  H\N^ Qp/Zp(A:)).

TOME 50 (2000), FASCICULE 1



44 M. KOLSTER, A. MOVAHHEDI

The non-vanishing of H°(N,(Qp/Zp(k)) can be characterized as fol-
lows: Let d = [N(p.p) : N]. Then

H°(N, Qp/Zp(AQ) + 0 <^ k = 0 mod d.

Let us now study the question of co-descent for ewe^L^^w^p^)).
Using local duality the problem is equivalent to computing the cokernel of
the map

/ \G
e^°(F.,Qp/Zp(l-z))^ C ^°(L^Qp/Zp(l-z)) .

v^:S \W^SL )

As we noted above, we have isomorphisms

H°{F^IW -i)) ̂  ff°(L,Qp/Zp(l -i))°

and
/ \G

C ^°(F.,Qp/Zp(l-z))^ C ^°(^QA(l-z)) ,
v^S \W€SL )

hence the above cokernel is isomorphic to the kernel of

H°(L^p/^{l-i))G-^ ( C ^°(L^,Qp/Zp(l-z))) .
\weSL ) o

We consider the commutative diagram

H°(L^p/^(l-i))G - ( C H°(L^/^(l-i))\
\weSL ) Q

I I
0 ^ ^°(F,Qp/Zp(l-z)) ^ C ^°(F.,Qp/Zp(l-z))

ve5'
induced by the norm maps. It is now clear that the map in the top
row is not injective, if and only if Galois co-descent fails globally for
^°(L,Qp/Zp(l - i)), but holds locally for all w <E SL, in which case
the kernel is of order p. If v € 6' is decomposed in L, then obviously
co-descent holds. We now define T^7 to be the set of undecomposed
primes v € S, such that Galois co-descent fails for 7:f°(L^,Qp/Zp(l — z)).
By Lemma 2.1, an undecomposed prime v lies in T^y if and only if
^°(^QA(1 - z)) + 0 and L^ (jL F^. Let d = [F(/^) : F]. Then
it is clear from the definition that

T^p=T^ if i=jmodd.

Let us analyze this set a little further:

ANNALES DE L'lNSTITUT FOURIER



GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 45

LEMMA 2.2. — i) r^ contains all tamely ramified primes:

s\SpC r^ c s.

ii) Assume that L f F^ and i = 1 mod d. Then, for large n, the set
TL^/F^ ^^ams all undecomposed p-adic primes.

Proof.— Let v be any prime in S \ Sp. Then F^ contains the p-th
roots of unity ^, which shows that ^°(^,Qp/Zp(l - 2)) ^ 0. Moreover,
i^,oo is the maximal unramified pro-p-extension of ^, which shows that
L'w f- Fy^. This proves i). To prove ii), it suffices to choose n large enough
so that no p-adic prime of Ln decomposes in L^i. D

We can now formulate our first result in terms of the set T^]
L/F

PROPOSITION 2.3. — The canonical map

WK^(L)^ -. WKJ^(F)

induced by the corestriction is surjective precisely in the following situa-
tions:

i) ^)^0;

n) ^ / F = 0 and eitAer i ̂  1 mod d or L C Foo.

In the exceptional case where T^y = 0 , 1 = 1 mod d and L (jL F^, the
cokernel ofWKj^(L)^ -. WK^(F) is cyclic of order p.

Remark 2.4. — The possibility of the failure of Galois co-descent in
Proposition 2.3 was already observed in [2]. The situations where this
happens are easily described: First of all we must have i = 1 mod d and
L f. Foo, in which case, for any n, the set T^p = 0 if and only if
TL^/F^ = 0- Now^ choose n large enough, such that no p-adic prime in Ln
decomposes in L^+i. By Lemma 2.2, the set T^/^ = 0 precisely when
Ln/Fn is unramified and all p-adic primes of Fn split in Ln. Thus, the
exceptional case occurs for L / F if and only if the following two conditions
hold:

i) i = 1 mod d;

n) ImiA^ ^ 0 and L^/F^o is an unramified cyclic extension of degree
p, in which all primes above p split.

TOME 50 (2000), FASCICULE 1



46 M. KOLSTER, A. MOVAHHEDI

Example 2.5. — Assume that the prime p is irregular and let F =
Q(^p). Then F possesses a cyclic extension L of degree p inside the
Hilbert p-class field, which is disjoint from Foo. Therefore the canonical
map WK^(L)^ -^ WK^(F) is not surjective for any i ̂  2.

We recall that by Lemma 2.1, the natural map

H\F^/^{\ - i)) -> H°(L^q^(l - i))

is an isomorphism for v e T^y , and hence the norm map

^°(^,QA(1 - z)) -^ ^°(F,,Qp/Zp(l - i))

can be identified with the p-th power map on H°(Fy, Qp/Zp(l - z)), which
is induced by the p-th power map on Qp/Zp(l - z). Hence we have an exact
sequence for v € T " :

0 -> ^°(F,,Z/pZ(l - 2)) -^ H°(L^/Z^1 - i))c
-^ ^°(F,,Qp/Zp(l - i)) -^ ^°(F,,Qp/Zp(l - i ) ) / p -^ 0.

The dual sequence then reads:

0 -. pH\F^^)) -^ H\F^(i))

-^ ^(L^.Z^z))0 ̂  ̂ (F^Z/pZ^)) -. 0.

If we compare this sequence with the one mentioned in Remark 1.5, we see
that we have an isomorphism

J:f2(G,^l(L^,Zp(^))f^^2(F„Z/pZ(^)).

We make this isomorphism more explicit in Proposition 2.9.

Let us now consider the problem of the surjectivity of the homomor-
phism

K^{oif^( e H^^i))}
\weSL )

G

If T^jp = 0, then we assume that either i ^ 1 mod d, or that L C
Foo, so that we have Galois co-descent for (ewe^L^^w^p^))), i.e.
WK(2t^-2(L)G -> ^^-^(^ [s surjective. In particular this implies that
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GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 47

the map f3 in the following commutative diagram is surjective:
0 0
i I

© (pH2(Fv^p(i))) -^ B

^
I I

^-2(°^) -^ e H2(F^Zp(^)) -^ JJ°(F,Qp/Zp(l-z))* -.0
v^.S

[ i i

^It^0!)0 ^ © ( © H2^^)))0 ^ (^(^Qp/ZpO-z))*)^ -. o
v(E5' w|v

I I I

H2(G,K^_^L)) ^ C H2(Fy,Z/pZ(i)) ^ C -^ 0
v^

I I I
0 0 0

Here we define B and C to be the kernel and cokernel of the
homomorphism

^°(F,QA(1 - z))* - (^°(L,Qp/Zp(l - z))*)0

respectively, hence both B and (7 are either trivial or of order p. More pre-
cisely, by Lemma 2.1, they are non-trivial if and only if % = 1 mod d and L (jt.
Foe. In this diagram the columns are exact and also the rows, except pos-
sibly at ^^(©wl^2^^)^ and O^w H2(F^Z/pZ(i)). Note

''^-L/F

that

( / \G '^
ker ^/inm = coker K^o^f -. ( C ^(L^.Z^z)) )

VWG^ / y

is precisely the cokernel we want to study.

An easy diagram chase shows:

LEMMA 2.6. — The surjection

ker (3/im a —> ker /?'/im a7

is an isomorphism if the map

e ^(F^Z^))-^
^p

is surjective (otherwise, its kernel is of order at most p ) .

In particular, this settles the case T^7 = 0:

TOME 50 (2000), FASCICULE 1



48 M. KOLSTER, A. MOVAHHEDI

COROLLARY 2.7.— IfT^p = 0, then WK^{L)^ ^ WK^(F)
if and only if either i ̂  1 mod d or L C Fyo •

Thus, for example, in the cyclotomic Zp-extension, the wild kernels
satisfy Galois codescent, whereas, in general, the p-class groups do not.

Let us assume now that T - ' p ^ 0. Then L is disjoint from Foo, and
therefore the kernel B is non-trivial if and only if z •= 1 mod d. In this case B
is clearly isomorphic to pH°(F, Qp/Zp(l — z ) ) * , and we can characterize the
surjectivity of the map C^(z) pH2(F^Zp(i)) -^ p^°(F,Qp/Zp(l - z))*
as follows:

LEMMA 2.8. — ^T^y -^ 0 and i = 1 mod d, then

C pH\F^pW -^ pH°(F^p/Zp(l -i)Y
^^F

is surjective if and only if at least one of the primes in T^p is undecomposed
in the first layer F\ of the cyclotomic lip-extension Foo/F.

Proof. — It is clear that the map in question is surjective if and only
if|J:f°(F^,Qp/Zp(l-z))| = J:f°(F,Qp/Zp(l-z))| for at least one prime v e
T^. On the other hand |^°(^,Qp/Zp(l - z)) | > |^°(F,Qp/Zp(l - z))|
if and only if v splits in F\. D

We note that any finite place v in F is finitely decomposed in
Foe. Therefore, if n is large enough, all the primes in T ^ / will be

undecomposed in Fn+i. If i = 1 mod d, we will assume that Tj^.p contains
at least one prime, which is undecomposed in F^. We are then left with the
determination of | ker f3' /ima'l.

The order of ker ft' is clearly equal to
IT^ Ip ^ L / F \

|ker/?'| =
|JIO(F,Z/pZ(l-z))r

To determine the order of im a' we construct a canonical homomorphism

H\G^ H\L^ Z^(z))) ̂  H\F^ Z/pZ(z)),

which gives rise to a commutative diagram
^(^^(L.Z^z))) ^ C ^2(G,^ l(L^,Zp(z)))

^.
i n

^2(F,Z/pZ(z)) ^ C ^2(F„Z/pZ(z))
.̂

and will factor the map a ' .
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PROPOSITION 2.9. — Let M/N be a cyclic extension of degree p of
local or global fields of characteristic ^ p, where p is an arbitrary prime.
Let G = Gal(M/7V). There is a canonical map

H\G^H\M^p(i))) -^ ^(Tv.Z/pZ^))

with kernel isomorphic to

(^l(^Z^^))^n7VM/^(^l(M,Z/pZ(z))))/^/^(^l(M,Z^(z))/p).

Proof. — We first note that the exact sequence

0 -^ Zp(z) -. Zp(z) -^ Z/pZ(z) -^ 0

induces an injection

H^N^^/p ̂  ^(TV.Z/^z)),

and therefore we can view H1 (N, Zp (%))/? as a subgroup of H1 (N, Z/pZ(z)),
and similarly for M. Since G is cyclic, we have a canonical isomorphism

H\G^ H\M^ Z^(z))) ^ H\G^ H\M^ Z^(z))) 0 H\G^ Z^)

given by the cup-product. Here H denotes Tate-cohomology. Now the
group ̂ (M, Zp(z)) satisfies Galois descent as we have seen in the proof of
Theorem 1.2, even in the case p = 2. Hence

H\G^H\M^{i}}} ̂  H\N^p(i))/NM/N(H\M^(i))))
^(H\N^{z})/p)/NM/N{H\M^{i))/p).

Now ^((^Zp) ^ ^(G^Qp/Zp) ^ H\G,Z/pZ), since G is cyclic of
order p, and we have the cup-product

H\N^/p^(i)) (^^(G.Z/pZ) -^ H2(N^/p^(i))

whose kernel is equal to

NM/^H^M^/R^Z))) 0 H\G^/pZ).

To see this, we may assume without loss of generality that N contains /^p,
in which case this product is just a twisted version of the standard cup-
product into the Brauer group of F. Restricting the last morphism to the
subgroup ^{N^ Zp(z))/p 0 ̂ (G, Z/pZ) yields the result. D
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Let us return now to the situation considered before: p is odd and L / F
is a cyclic extension of number fields of degree p with Galois group G. We
are going to compare the global and local maps constructed in Proposition
2.9. Let Cy := coker(^2(F^Zp(z)) -^ (e^ ̂ (L^Z^z)))^ Then by
definition

^ = o ̂  v i r^
and Cy = H'2(G,Hl(L^^p(^)) ^ 7f2(F^Z/pZ(z)) if v e T^. The
following commutative diagram:

H\G^K^(L)) -> FL^
I I

0 ^ ^(F.Z/j^z)) -. n.^^^W))
then shows that the image of H2(G,K^_^L)) in f^ ^(F^^Z/pZ^))
is in fact contained in 9 ^(^) ^(F^Z/j^z)). The injectivity of the

'"^L/.F

localization map ^2(F,Z/pZ(^)) ^ f^ H ' 2 { F y ^ / p ' ^ ( i ) ) is proved for
instance in [33, Section 2, Lemma 7]. We can now conclude:

LEMMA2.10.— The canonical map H2(G,K^_^L)) -^ ^(F.Z/^z))
induces the map

a' : H^G^K^L)) -^ © ^(F^Z/pZ^)).
^T^

Furthermore:

ker a' ̂  [^_iW/Pn ̂ (^(^Z/pZ^l/A^jq^LVp)

ajnd

lima'l = [^_i(F)/p : K^_,(F)/pn ̂ /^(^(L^Z/^z)))].

Combining this with the calculation of ker ft' provides the main result
of this section, a "genus formula" for the etale wild kernels for cyclic
extensions of degree p:

THEOREM 2.11. — Let L / F be a cyclic extension of number fields of
degree p, p odd, with Galois group G. Assume that T^p -^ 0 and that
some v 6 T^F is undecomposed in Fi if i = 1 mod d. Then the natural
map WK^_^(L)^ —^ WK^_^(F) is surjective and its kernel has order

IT^ |p ^ L / F \

|^o(F,Z/pZ(l-z))|.[^_i(F)/p : ̂ _i(F)/pn^/F(^(L,Z/pZ(z)))]'
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Remark 2.12.— Let us consider the special case that i = 1 mod d,
and that all p-adic primes of L are undecomposed in L^. Then T^'
contains all undecomposed p-adic primes as well as all tamely ramified
primes. Hence we can rewrite the formula in the preceding theorem as

\WK^{Lf\
\WK^{F)\

T[^d^L/F)^p^e^L/F)
[L : F ] • [K^(F)/p : K^(F)/pnN^F(H^L^/pZ(im'

Here d p ( L / F ) and e p ( L / F ) denote the local degrees and the ramification
indices, respectively. If we replace the etale J^-theory index by the index
[Up '• Up D 7V^/^(L*)] for the p-units Up, then this becomes precisely the
genus formula for the p-class groups. We will return to this peculiarity
later on.

Example 2.13. — 1) Take p = i = 3 and F = Q the field of rationals.
Since JC^Z) is trivial (cp. [30], [31], [32]), so is WKf^). We are going to
give an infinite family of cubic fields L such that WK^{L) == 0. For this,
consider the set of primes (see also [37, Remarks page 182])

P = {£ ; £ = 1 mod 3 and 3^1 = 1 mod £}
= {£ ; £ = 1 mod 3 and ^3 G Z/^Z}.

Obviously, by HensePs lemma, we have

P = {£ ; ^ C Q^ and ̂  € Q4
= {£ ; £ splits in Q(^ ̂ )}.

We are interested in the infinite family (of density - — —) of the primes £
in P which do not split in Q(/^Q, \/3). Now let L be the cubic extension of
Q contained in Q(^) and G = G(L/Q). Then T^ = {£} and, according
to Theorem 2.11, the wild kernel WKf(L) = 0.

2) In this example, we are going to determine the Galois p-extensions
M of Q, for which the p-part of the classical wild kernel is trivial. The
two cases p = 3 and p ^ 5 are completely different due to the fact that
in the latter case the considered fields do not contain the maximal real
subfield ©(/^"^of the cyclotomic field Q(/^p). For p ^ 5, the Galois p-
extensions M of Q for which WK^(M){p} = 0 are exactly the layers Q^
of the Zp-extension Qoo/Q- Indeed, since Qoo is the maximal p-ramified
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pro-p-extension of Q, we see that the maximal p-ramified extension of Q
contained in M is a layer Q)n of Qoo- If M = Q^ then, by Corollary 2.7,
WK^(M){p} = 0. Otherwise, choose a tower of degree p cyclic extensions

Qn = MQ c Mi c • • • C Mr = M.

Since T^,^ ^ 0, we have WK^(M^){p} ̂  0 (Theorem 2.11). Moreover,
for each intermediate extension M^+i/M^, the canonical map

TV^(M,+i){p}c,(M.WM.) -^ WK^){p}

is surjective (Proposition 2.3), which shows that WK^(M){p} ^ 0. A
number field M for which HJ^(OM^/P'^) == 0, is called p-rational [25],
[24]. Moreover, if M contains Q(^p)4", then it is also called p-regular [10].
The p-regularity of M is simply expressed by the triviality of the p-part
of the tame kernel K^OM)- As the Q)n are not the only p-extensions of Q
which are p-rational, we notice that, for p ^ 5, among the p-extensions M
of Q, some are p-rational but have a non-trivial WK^(M){p}. Now take
p = 3. Then by Moore's exact sequence WK^(M){3} = 0 if and only if
the tame kernel K^^OM) has no 3-torsion. Hence the number field M is
3-rational or 3-regular. In this case, WK^(M){3} = 0 if and only if outside
the prime 3, the 3-extension M/Q is at most ramified at one prime Z, which
is inert in the Zs-extension Qoo/Q (cp. [10], [25], [24]).

Let us have a closer look at the cup-product

K^(F)/p^H\G^/p^ -. ̂ (F.Z/pZ^)),

which occurred in the proof of Proposition 2.9, and describe the maps a'
and f3 ' . Let E = F(f^p) and A = Gal(E/F). Over E we have

H\E^/pZ(i)) ̂  ^(^.Z/pZO)^ - 1) ^ pBv(E)(i - 1),

where Br(^) stands for the Brauer group of E. The set T ' / c ; is indepen-
dent of z, and we simply denote it by T ^ E / E - Obviously, every prime in E
which lies above a prime in T1 7 belongs to T ] ^ E / E ' Conversely, let VE be a

prime in T L E / E - > ^d ^et v denote the prime of F below VE- Then v € T^^
if and only if ^(F^.Z/?^)) ^ 0. Let Br^F) denote the subgroup of
Br(£') of all isomorphism classes of central simple ^-algebras split outside
T L E / E - It ls now easy to see that

ker f3' ^ (pBrT(£)(^ - 1^ ̂  (pBr^(2-;))[l-^^,
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where uj denotes the Teichmuller character of A, and A^ denotes the j-th
eigenspace of uj acting on a A-module A.

Since K^(E)/p is contained in ^(E^/p^i)) ̂  ( E " / E ^ ) ( i - 1),
there exists a subgroup D^) of E* containing E^ - the analog of the Tate-
kernel in case i = 2 - such that

K ^ ( E ) / p ^ ( D ^ / E ^ ( z - l ^

and hence

K^(F)/p ̂  ({D^/E^i - 1^ ^ (D^/E^-^.

Note that for i = 1 mod d we can similarly define Dp , and clearly in
this case (D^ / p ) ^ ^ D ] - / p . The considerations after Proposition 2.9 now
show that the cup-product over E is explicitly given as

(D^/E^)(i - 1) 0 H\G, Z/pZ) --. ^(E^i - 1),

where

D^/E^(^H\G^/pZ) -^ pBTT{E)^

is the classical cup-product x 0 \ \—> {\,x) (cp. [34, Chap. XIV]). De-
scending to F^ we see that the image of a' is precisely the image of the
cup-product

(D^/E^~^ ^H\G^/p^) -> (pBr^))^.

We can therefore reformulate the condition for Galois co-descent of the wild
kernel as follows:

THEOREM 2.14. — Let L / F be a cyclic extension of number fields of
degree p, p odd, with Galois group G. Assume that T^,? -^ 0 and that
some v e T^p is undecomposed in F^ if i = 1 mod d. Then the etale wild
kernel WK^_^(L) satisfies Galois co-descent if and only if the cup-product

(D^/E^-^^H^G^/pZ) -^ (pBr^E))^

is surjective.

In the special case where i = 1 mod d, the condition can be reformulated
as: The cup-product

D^/F^(S)H\G^/p^) -^ pBr^/^F)
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is surjective. Moreover, in this special case the genus-formula simplifies to:

\WK^(Lf\ ^ pl̂ l-1

\WK^(F)\ [D^ : D^ n A^,(L*)] '

Since i ^ 2, we can reinterpret the cup-product as a Galois symbol:
Let EL=E(V6). Then

(D^/E^)(i -1)0 H\G^lpT) = (D^/E-P) 0 H\G^p)(i - 2),

and therefore the cup-product over E is the (z — 2)-th twist of the Galois
symbol

D^/E^ 0 H\G^ ^ip) -^ lip 0 pBr^F).

The Kummer radical ̂ (G, /^p) is generated by 6, and the map is given by
(cp. [23])

x^6^Cp0 \(x^-}\,[_v bj /J

where (^p is a primitive j9th root of unity and [( a—)] denotes the isomor-
phism class of the cyclic algebra (^-), with generators u^v and relations:
v^ = x^ V19 = 6, vu = C,pUV.

In general, not much is known about the higher "Tate-kernels" D'^
denned by K^_^(E)/p ^ {D^/E^). However, for n large, the groups
DJ^ /E^ can be characterized in terms of local conditions, if we assume
the Gross conjecture, which we describe next: Let F be any number field.
For a finite prime v in F let Fy = limF^/F^, let Uy = Zp 0 Uy and

let J\Tv C Fy denote the group of norms from the cyclotomic Zp-extension
of Fy. Thus Afv = Uy if v $? 5'p, and for v € Sp we have the following
characterization:

a G My ̂  logp(^/Q^(a)) = 0,

where log? denotes the p-adic logarithm normalized by logp(p) = 0 (cp. [9],
[19]). There is a natural homomorphism

gp :ZP^UF-^ ® F^/Nv
v\p

and the Gross kernel GK(F) := ker^ has Zp-rank r-^(F) + r^{F) + ̂ ,
where 6p ^ 0 is the Gross defect. GK(F) is therefore characterized by the
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following local conditions:

e € GK{F) ̂  c € Zp 0 Up and logp(7V^/Q^ (e)) =0 W C 5p.

The Gross Conjecture postulates that <^ = 0, which is true for instance
for abelian fields F. Let - as before - E = F(^p) and A = Gal(£'/F). The
following result was proved for i = 2 in [19, Theorem 2.5]. The method was
extended to higher etale K -theory in [5].

THEOREM 2.15. — For n large there is an exact sequence

0 -^ K^_,(En)/p -. (kergEjp)(i - 1) -. (Z/pZ)^" - 0,

where 6n denotes the Gross defect for the field En.

COROLLARY 2.16. — Assume that the Gross Conjecture holds for En,
n large. Then

D^JE^ ^ GK{En)/p for n large.

In particular, for n large, the groups D-j^ /E^ are independent ofi.

So far in this section we have ignored the prime 2. Let us briefly
discuss the case p = 2 in the classical situation i = 2, where special
attention has to be paid to real infinite primes in F. Let L == F(^/~6)
be a quadratic extension of number fields with Galois group G. Denote
by T L / F tne set °f finite primes in F which consists of all ramified non-
dyadic primes and of all undecomposed dyadic primes v of F, for which
either ^(Lyj){2} = fJ,(Fv){2} or L^ is not contained in the cyclotomic Zs-
extension of Fy^ where w is the prime above v in L. Also, denote by Dp
the subgroup of F* of all elements x, such that {—1, x} = 1 in K-^{F). This
is the classical Tale-kernel. Then the following results can be proved along
the same lines as for odd p:

PROPOSITION 2.17.— The canonical map WK^L) {2} G-^WK^F) {2}
is surjective precisely in the following situations, and has cokernel of order
2 otherwise:

i) KL){2}|>KF){2}|andLcFoo.

ii) W{2}\ > W{2}\, L f F^ and /.(^){2} = /.(£){2} for some
w | v, v e T L / F '

iii) ^(L){2} = /x(F){2} and /^){2} = ̂ (F^){2} for some v C TL/F'
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We note in particular that the map WK-2(L){2}c -^ WK^(F){2} is
always surjective if a non-dyadic prime of F is ramified in L.

THEOREM 2.18.— Let L / F be a relative quadratic extension with
Galois group G.

a) If KL){2}| > |^(F){2}| and L c F^, then WK^{L){2}G ^
WK^(F){2}.

b) If either \p.(L){2}\ = \p.(F){2}\ or L (/_ F^, and if either a real
infinite prime of F ramifies in L or if |/^(F^){2}| = |/^(F){2}| for some
prime v C T ^ / p , then

\WK^(L){2}G\ 2lT^l-l

\WK^(F){2}\ ~ [ D p : D p n N L / F { L - ) ] '

In [6], Browkin and Schinzel computed the 2-rank of the wild kernel
of a quadratic number field and obtained a complete list of quadratic
number fields with trivial 2-primary wild kernels. A combination of their
results with the genus formula in Theorem 2.18 and methods of [12] yield
a complete list of bi-quadratic fields with trivial 2-primary wild kernels.
Details will appear elsewhere.

3. Capitulation kernels.

Let p be an odd prime and let F y o / F be an arbitrary Zp-extension
of F with finite layers Fn. Let A^ = A'(Fn) denote the p-part of the p-
class group of Fn and A^ = limA^. We define the capitulation kernel
Capo(Foo/^n) = ker(A^ -^ A^). As is well-known (cp. [13]) these
kernels stabilize, more precisely, the norm N p ^ / F r , '• Cap^^Foo/^m) —^
Capo(Foo/Fn) is an isomorphism for n large and m ^ n and we set
Capo(Foo) - lim Capo(Foo/^n).

Remark 3.1. — Let An denote the p-part of the (usual) class group of
Fn and let Aoo = limA^. Once again, the capitulation kernels ker {An —^

Aoo) stabilize, and we can consider Cap(Foo) = lim ker(A^ —^ Aoo).

We note that in general Cap(Foo) ^ Capo(Foo). Indeed, from the explicit
examples elaborated by Greenberg in [11, section 8], it is not hard to see

ANNALES DE L'lNSTITUT FOURIER



GALOIS CO-DESCENT FOR ETALE WILD KERNELS AND CAPITULATION 57

that if we take F = Q(vT42), p = 3, and let Foo be the cyclotomic Zs-
extension of F, then Cap(Foo) ^ Z/3Z, whereas Capo(Foo) is trivial. From
a J^-theoretic point of view, Capo(Foo) is the appropriate object to study.

We want to consider the analog of these kernels in higher etale K-
theory.

Let again S be a finite set of primes in F containing Sp. To simplify
notation, we put

K^(F^=iimK^_,(Fn)
and

K^{o^=limK^_^),

where o^ denotes the ring of S'-integers in Fyi, i.e. the integral closure of
of, in Fyi. We now define for i > 2:

Cap^(Foo/F,) = kei(K^(o^ - K^_,(o^)).

The following result implies in particular that the definition is independent
of the choice of the finite set 5' containing Sp. Let I\ denote the Galois
group of FoQ/Fn with the usual convention TQ = F.

PROPOSITION 3.2. — -For i > 2 there is a short exact sequence

0 - H^r^K^F^)) -. K^(o^ -. K^o^ -. 0.

Proof. — For each m ̂  n, Theorem 1.2 gives an exact sequence

o - ̂ (r./r^jq^F^)) - ̂ (o^)
- ̂ (^J^^ - ̂ (r./r^^.^)) - o.

From Corollary 1.4 we see that the orders of the groups H'2(^n/frm ̂ jl-i(^m))
are bounded independently of m by the order of K^_<^(o^), and therefore
the limit

H^r^K^F^)) = \\mH\Yn^m^K^_^F^)}

is finite. On the other hand, this group is divisible, since cdp(Tn) = 1, hence
trivial. D
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In the classical case i = 1, it was shown by Iwasawa (cp. [13,
Theorem 12]) that

Capo^oo/^)^1^^),

where U^ = lim U^ and U^ denotes the group ofp-units of Fn. Therefore
Proposition 3.2 gives, in particular, the following higher-dimensional analog
of this result:

COROLLARY 3.3. — For i ̂  2

Cap,_i(F^/F,) ^ ^l(^,,Att_l(Foo)).

To go further, we quote the following general result of Kahn (cp. [16,
Proposition 6.2]), which he attributes to Nguyen Quang Do:

LEMMA 3.4.— Let A be a discrete torsion free F-module. Assume
that for all integers n ^ 0:

i) H°(Tn, A) is finitely generated;

ii) T^fT^A) is finite;

iii) H2(^^A)=0.

Then the groups ̂ (T^, A) stabilize, in particular lim^1^, A) is finite.

Let

^-i(^n) = K^_,(F^/torsion
and

^-1(^00) = ̂ -i(^oo)/torsion.

We want to apply the previous lemma with A = K^_-^(Foo). From the
exact sequence

0 ̂  ^°(Foo,QA(z)) -^ ^_i(Foo) ̂  J^_i(Foo) -. 0,

we deduce the exact sequence

0 ̂  K^_,(F^) - Xjti^)1- ̂  H\r^H°(F^Q>^W))
-^ H\r^K^(F^)) -^ H^r^K^F^)) - 0,

as well as an isomorphism

H^r^K^F^)) - ̂ (r^.i^oo)).
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The proof of Proposition 2.2 showed that H2(^n,K^_^F^)) = 0, and
hence we see that ^^_i(Foo) satisfies the assumptions of the previous
lemma. We obtain the fact that the groups ^(Tn.K^^F^)) stabilize
and therefore that lim ^(Tn.K^^F^)) is finite. To obtain the same

result for the groups ^(r^^.i^oo)) and their limit, we look at the
term ^(F^, ̂ (Fo^Qp/Zp^))) in the above exact sequence: The group
^°(^oo,Qp/Zp(z)) is either Qp/Zp(z) or finite. In the first case, Tate's
Lemma implies that ^(r^^Foo.Qp/Zp^))) = 0, hence

^(Fu^-i^oc)) ^ H\r^K^_,{F^).

In the second case, ^(r^^Foo.Qp/^z))) stabilizes for n large, and
hence in any case we obtain:

PROPOSITION 3.5. — The groups Cap,_i (Foo/F^) stabilize; more pre-
cisely, the corestriction maps

Cap,_i(Foo/F^+i) -^ Cap,_i(Foo/F^)

are surjective for all n and lim Cap^_i(Foo/Fyi) is finite.

We now define

Cap,_i(F^) = lim Cap,_i(F^/F,).

Now let us specialize and take Foo/F to be the cyclotomic Zp-extension.
As in the case i = 1, the finite groups Cap,_i(Foo) then have various
characterizations in terms of Iwasawa-theory. Let E == F(/^p), let Foo =
F(/^,oo) be the cyclotomic Zp-extension of E and identify I\ with the
Galois group of Foo/Fn. We first describe Cap,_i(Foo). Let X^, denote
the standard Iwasawa-module for E^o, i.e. the Galois group over E^ of the
maximal abelian p-ramified pro-p-extension of Eoo. Denote by torA^oo the
torsion part of <^oo as a module over A = Zp[[r]]. As is well-known, there
exists an injective homomorphism ([11, Theorem 3])

^oo/torA^ -^ A^)

with finite cokernel H. The following result is due to Iwasawa ([13]) for
z = 1, to Coates ([7]) for i = 2 and to Nguyen Quang Do([27, section 4]) in
general:

THEOREM 3.6. — For all i ^ 1 and all n ^ 0, there are canonical
isomorphisms

Cap,_i(F^/F,)^jr(z)r,.
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Since H is finite, the group Fn acts trivially on H " ( z ) for all i provided
n is large enough. Therefore, as abstract groups, all capitulation kernels
Cap^_i(.Eoo) are isomorphic to H .

Let A == Gal(£y.F) and let d denote the order of A. Now clearly

C^_,(F^)=C^_,{E^.

Theorem 3.6 shows that Cap^_i(£oo) and Cap^_i(^oo) are isomorphic as
A-modules for i = j mod d . Therefore we obtain the following periodicity
result:

COROLLARY 3.7.— Let p be odd and let Foo/F be the cyclotomic
Zp -extension of F. Then

Cap,_i(Foo)^Cap,._i(Foo)

for all z, j ^ 1, i = j mod d.

Next we would like to discuss another well-known relation between
capitulation kernels and Iwasawa-theory: We continue to assume that
EQQ = F{iip^) is the cyclotomic Zp-extension of E = F(f^p), and that p is
odd. As usual, let X^ denote the Galois group over £'00 of the maximal
abelian unramified pro-p-extension of Eoo, in which all primes above p are
completely decomposed. Thus X^ ^ lim A^{E). The co-invariants (-X^)r

have been described by Jaulent as a group of logarithmic classes cl(E)
which can be interpreted as the class field theory analog of the wild kernels
corresponding to the case i == 1. The Galois co-descent for these modules
cl{E) has been studied in [14]. Now, let (X^)° denote the maximal finite
submodule of X^. It is well-known (cp. [21]) that

Capo(^oo) ^ (^o)°.

On the other hand, we have for all n ^ 0 and all i ̂  2, an isomorphism

(X^(i-l))r^WK^(En)

(cp. 33, section 6, Lemma 1]), and therefore

ker(WK^(E^ -^ WK^{E^))
^ ker((X^(z - 1))^ - {X'^(i - l))rj
- P0°(z - 1)
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for n large and m sufficiently larger than n. If we define

WK^(E^) = \imWK^(En)^

then we obtain

PROPOSITION 3.8. — For i ^ 2 and n sufficiently large we have:

Cap,_i(£oo) - kev(WK^(En} -> WK^(E^)) ̂  (X^)°(z - 1)

as A-modules.

For the original field F and the cyclotomic Zp-extension Foo/F this
implies:

Cap,_i(Foo) = kev(WK^{Fn) - WK^(F^)) ̂  ((^J°(z - 1))^

Again let ijj denote the Teichmuller character on A. We have

((x'^°(i - l))A - (paT-11 ^ (^ [l-il)o,
and hence

Cap,_i(Foo) ̂  (X^ t1-1')0 ̂  Capo(^)[1-1)

for all z ^ 1. We therefore obtain a decomposition of Capo(£oo) mto
eigenspaces:

Cap(^oo)^delCap(Foo)
o j=o j

with Cap^(Foo) being isomorphic to the (d-j)-th eigenspace of Capo(£'oo)-
The following result gives the connection with Section 2:

PROPOSITION 3.9. — For i > 2 , the following statements are equiva-
lent:

i) Cap,_i(Foo) ^ H^-2(^) ̂  ̂ ^e n.

ii) X^ ^-^ is finite.

Proof. — As already mentioned we have for z ^ 2:

Wi-l))r^WK^E^,

hence

X'^(i - 1) ̂  lim lV^_2(£'n),
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and therefore

-v-f[i-i] r^ Y WK^ (F }
•/- oo — llm r r - f l -2^—2v- L ^/ •

The equivalence of i) and ii) is now obvious. D

Let us assume now that the base field F is totally real. Then E
is a CM-field with maximal real subfield E^. Since obviously the plus-
part of the group H is trivial in this situation, Theorem 3.6 implies that
Cap^_i(Foo) = 0 for all even i ̂  2, hence that the minus-part of Capo(^oo)
vanishes: Capo(^oo)~ = 0. Let Xoo denote the Galois group of the maximal
abelian unramified pro-p-extension of £'00. Greenberg's Conjecture (cp.
[11]) for the cyclotomic Zp-extension Foo of the totally real field F is
equivalent to the fact that X^ is finite. Clearly this implies that (X^)^ is
also finite, and the converse implication is true if one assumes for example
that Leopoldt's Conjecture holds for the layers Fn of F ^ o / F . We will refer
to Greenberg's Conjecture in the form: {X^)^ is finite. In fact we will
consider Greenberg's Conjecture for the field E^~. Using Proposition 3.9,
we can summarize:

PROPOSITION 3.10. — Let F be a totally real number field, p an odd
prime, E = F{jip) and E^ the maximal real subfield of E. Furthermore,
let Foe denote the cyclotomic Zp -extension of F and Eoo the cyclotomic
Zp -extension of E. Then:

i) Capo^oo)" = 0, i.e. Cap,_i(Foo) = 0 for all even i ̂  2.

ii) Cap,_i(Foo) ^ WK^(Fn) for large n and all odd i > 3, if and
only if Greenberg's Conjecture holds for E~^~.

As an immediate consequence of part ii), we obtain that under
Greenberg's Conjecture the etale wild kernels WK^_^(Fn) show the same
periodic behaviour as the capitulation kernels for n large and i ^ 3 odd.
On the other hand, under Greenberg's Conjecture for £4", we also have
Capo(£^) == Capo^oo)4' = A^(£)+ for n large; hence for all i ̂  3 odd:

Cap,_i(F^) ^ A^{E)^ ^ WK^{Fn) for n large.

Therefore, the Galois co-descent results of Section 2 also apply to both
Cap,_i(Foo) and the eigenspaces A^(E)^~^ of A^(£+) for n large. In
particular:

THEOREM 3.11.— Let L / F be a cyclic extension of totally real
number fields of degree p , p odd, with Galois group G and let E =
F(p^p). Assume Greenberg's conjecture holds for E^, LE^~ and the Gross
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conjecture holds for En, u large. Then for i ^ 3 odd, n large and
T^/Fr, ¥- 0, Galois co-descent holds for Cap,_i(Loo) and A^(LE)^~^
if and only if the cup-product

(G^Ej/^-^^G.Z/pZ) -^ pB^iEn)^

is surjective.

Remark 3.12.— If i =. 1 mod d, then, under the assumptions of
Theorem 3.11, we can compare the genus formulae for WK^_^(Ln) and
A^(-L) to obtain for large n:

[U^ : U^N^/F^)]=[GK(Fn) : G^(F,)nA^/^(L:)],

a result which one can also prove directly.

4. Galois co-descent for the etale tame kernel.

In this final section we briefly discuss how the methods of Section 2
can be used to study the much easier problem of Galois co-descent for
the etale tame kernels again for cyclic extensions L / F of degree p, p
odd. Results for arbitrary finite Galois p-extensions have been obtained
by Assim (cp. [I], [2]) in terms of primitive ramification, however under
the assumption that Leopoldt's Conjecture holds for the fields L(apn) for
all n. Let S be the finite set of primes of F, consisting of the set Sp and
the tamely ramified primes in L / F . We have the following exact sequence:

0 -^ K^(op) -^ K^(o%) -^ ® H\F^^)) -. 0,
ves\s.p

which, combined with Proposition 1.3, shows that the canonical map

^-2(^)^-^-2^)

is always surjective and that the kernel of this map is isomorphic to the
cokernel of the map

/ \0

K^(oif^[ e J^.z^)) ,
V^L )

where S^ consists of the primes in L above S \ Sp. We recall that S \ Sp
is always contained in T". The following is now clear from the results in
Section 2:

TOME 50 (2000), FASCICULE 1



64 M. KOLSTER, A. MOVAHHEDI

THEOREM 4.1.— The kernel of the surjective map K^_^(OL)
K^_^{op) is isomorphic to the cokernel of the map

K^^/p^H^G^/pZ) -^ e ^(F^Z/pZ^)).
v^.S\Sp
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