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HULLS OF SUBSETS OF THE TORUS IN C2

by Herbert ALEXANDER

Introduction.

We consider in C2 the polynomial convex hull X of a compact subset
X of the unit torus T2 = {(z,w) e C2 : \z\ = 1, |w| = 1}. If a point
p in the open unit polydisk A2 is contained in a 1-dimensional analytic
subvariety V of the polydisk and if bV C X, then the maximum principle
implies that p C X. One can ask if the hull of X C T2 can be larger
than X without the existence of such a variety V with bV C X. It is
known that in general a polynomial hull need not contain such analytic
structure: this was first demonstrated by G. Stolzenberg [S]. Subsequently
John Wermer [W] gave an example of a set X in C2 lying over the unit
circle (i.e. X C {(z,w) e C2 : \z\ = 1}) such that X contains no analytic
structure. Our main result here is that such a set can be found in T2.

THEOREM. — There exists a compact subset X of T2 such that
X\X is a non-empty subset of A2 and X\X contains no analytic subset
of positive dimension. Moreover, if V is any pure 1-dimensional analytic
subvariety of A2 with bV C T2 and ^ is any neighborhood of V in A2,
then we can choose X to be contained in Q,.

Our proof is parallel to Wermer's [W]-however the details differ be-
cause we need to construct varieties with boundaries in T2 and conse-
quently, the linear structure in the w-variable, which underlies Wermer's

Key words: Polynomial hull - Analytic structure - Torus.
Math. classification: 32E20 - 32B15.
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construction, cannot be used here. Instead, in order to keep the boundaries
in T2, we iterate the composition of proper holomorphic correspondences.
The first step is to obtain a good explicit approximation to the identity. The
"identity" correspondence in this case being the diagonal variety {z = w}
in A2. Our approximation is by a subvariety V6 that "doubles" the identity
and that satisfies bVe C T2; Ve approaches the identity in the Hausdorff
metric as e —>• 0. The set X is then obtained essentially as a limit of iterates
of the V for a sequence of e's approaching 0.

The method of Stolzenberg mentioned above is based on a different
type of construction. This has been further developed in recent work of
Fornaess and Levenberg [FL] and Duval and Levenberg [DL]. Davidson
and Salinas [DS] have applied the theory of hulls of subsets X of T2 to
study operator theoretical variants of Ext(X).

1. Preliminary remarks and notations.

(a) Notations. — We will denote a point of C2 by (^, w) and denote
the two coordinate functions by z and w. We put A(/?,r) = {z € C :
\z-{3\ < r} and write A'^r) = {z € C : 0 < \z-/3\ < r} for the punctured
disk. A denotes the open unit disk and A2 the unit polydisk in C2 with the
unit torus T2 = {(z,w) : \z\ = 1, |w| = 1}, as its distinguished boundary.
Recall that the polynomially convex hull of a compact set X C C71 is the
set

X = {z € C71 : \P(z)\ < \\P\\x for all polynomials P in C71}

where ||P||x is the supremum of |P| over X. For a subset Z ofC2 we denote
the fiber of Z by the map z over the point A G C by Z\ , this is defined as
the set {w e C : (\,w) G Z}.

(b) Semicontinuity of the hull. — We recall that the operation of
taking the polynomially hull of X is "semi-continuous" in the sense that
for all open sets W 3 X there exists an open set V 3 X such that AT C W
provided that K C V. We shall often use this fact below without an explicit
reference.

(c) Composition of holomorphic correspondences. — Let V be a
pure 1-dimensional subvariety of the polydisk A2 with bV C T2. This
class of varieties can also be described as the set of proper holomorphic
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correspondences of the disk A with itself. See K. Stein [St] for a general
discussion. For these correspondences there is an operation of composition
that can be described as follows: if V\ is given locally by functions w =
Wf(z), 1 < k <_ mi and and V^ is given locally by functions w = W^{z),
1 ^ j <^ m2, then the composition V\ o V^ is given locally by the m\ m^
functions Wf o W^. In particular, identifying a function with its graph,
if these correspondences are functions (i.e., m\ = 1, m^ = 1), then this
is just the usual composition of functions. For us the main point is that
the family of pure 1-dimensional subvarieties V of the polydisk A2 with
bV C T2 (i.e. the class of proper holomorphic correspondences) is closed
under composition. The varieties that we construct below will be of the
form V\ o V^ o • • • o Vn' We remark that Slodkowski [Sl] has proved more
generally that the composition of analytic multifunctions is (when defined)
also an analytic multifunction. We shall not need this here.

2. Approximation of the identity.

We want to approximate the diagonal {w = z} in A2 by a subvariety
of A2 with boundary in T2. More precisely we approximate the diagonal
with multiplicity two, {(w — z)2 = 0}, by an irreducible subvariety of A2

with boundary in T2. To do this we shall modify the coefficients of lower
order powers of w in the defining equation

(1) w2 - 2zw + z2 = 0.

We construct a family {Ve} of such subvarieties depending on a positive
parameter e, 0 < e < 1. We define V€ as the set of all (^,w) G C2 with
\z\ < 1 and satisfying the equation

(2) w2 - 2A,(z)w + B(z) - 0

where

(3) A^z)=(l-e)(z-e2)

and
z-e2

(4) B^=ZT-^•

We shall see below that V6 C A2. Note that as e —^ 0, Ae(z) -^ z and
B^(z) —^ z2 and so the coefficients of the powers of w on the left hand side
of the equation (2) approach the corresponding coefficients of the powers
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of w on the left hand side of the equation (1). The main point here, which
requires some computations, is that bV6 =Ve\Ve C T2.

Note that for \z\ = 1,

(5) \Ae{z)\<(l-e)(l+e2)<l

and that

(6) \Be{z)\ = 1.

since Be is a finite Blaschke product. Define a rational function ge of z by

(7) 9€(z) = Af = (1 - 6)2(1-e^)(^-62)'

LEMMA 1. — On the unit circle T, ge is real-valued, positive and
satisfies

(8) 9e = \9e\ > 1.

Proof. — By a direct computation one shows that ge{z) = ^e(^) tor
|^| = 1 (multiply on the left by z2 in the numerator and denominator).
And so ge is real-valued on T. Also

f9) \a I - 'JBel - 1 > 1( / }ge{ ~ W ~ W
on T by (5), (6) and (7). Hence ge(z) > 1 or g^z) < -1 at each z e T.
Finally since ^e(l) > 1 we conclude, by the connectedness of T, that (8)
holds on T. D

Define a function he on T by

he = \/Qe - 1.

By Lemma 1, we can choose the square root so that he is real and positive
on T. Then clearly he extends to be holomorphic in a neighborhood of T.
Now we solve the equation (2) for w and get

(10) w = Ac ± y/A^ - Be.

By (7) Be = A^ge and we have A2, - Be = A^l - ge) = -A2^2. We get

W = Ac ±iAehe,

for z in some neighborhood of T. For z € T we get

w = Ae(l ±ihe)
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and so, since he is positive on T, on T we have:

(11) |w| = |A,||1 ± ih,\ = |A,|vTT7^ = |AJv1^J = |Ae|—— = 1.
|Ad

From (11) we conclude that bV6 C T2.

Consider the discriminant De = A2 - Bg of (2). By (5) and (6) De has
no zeros on T. We claim that De has two distinct zeros in the unit disk. Since
Be has two zeros in the unit disk it follows from Rouche's theorem that D^
also has two zeros in the unit disk, provided that \D^-\-B^\ < \B^\ on T . This
last inequality follows from (5) and (6), since \D^ + B^\ = |Ae|2 < 1 = |Bg|
on T. We want we locate the two zeros of Dg in A more precisely. One of
these zeros is e2. We claim that the other zero in the unit disk is in the real
interval (-e,0). Write D^ = (z - e^H^z) where

H^z)^(l-e)\z-e2)--^^.

In fact clearly H^(0) < 0 and so we need only show that H^{-e) > 0. By a
short calculation, ((1 + e^/e)H,{-e) = 1 - (1 - c)2^ + e)(l + e3) > 0.

Our constructions below will be based on the varieties V6. The next
result collects the facts that we shall need.

PROPOSITION 2. — The equation (2) defines subvarieties V6 of A2

with the following properties:

(a) The boundary bV ofV6 is contained in the torus T2 and consists
of two disjoint simple closed real curves each of which is mapped by the
coordinate function z diffeomorphically to T.

(b) The map z : V^ —> A is a branched analytic cover of order 2.
There are precisely two points in A over which the mapping branches: e2

is one of these points and the second point lies on the negative real axis in
the interval (—e,0).

(c) The sets V6 converge in the Hausdorff metric to the diagonal set
{{z, w) € A2 : z = w} as e —> 0.

Moreover let V be a pure 1-dimensional subvariety of A2 with bV C T2

and let U be a neighborhood of bV in T2. Ife is sufficiently small, then
b(v o y6) c u.

Remark. — As we have noted above, V o V^ is a subvariety of A2

with^VoV 6) CT2.
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Proof. — The V6 are defined as subvarieties of A x C and are clearly
bounded sets. We have seen above that for (z^w) € V6, (z^w) —> T2 as
|^| —>• 1. Thus we can apply the maximum principle to the function w on
V6 to conclude that |w| < 1 on V6; i.e., V6 C A2.

By the discussion above, bVe C T2 is the union of the two curves
{(^, A,(^)(l + ih,(z))) : z € T} and {{z, A,(z)(l - ih,{z))) : z € T}. Since
h^ -^ 0 on T, the two curves are disjoint. This gives part (a). We have shown
above that D^ has precisely the two zeros in A that are given in (b). Since
Ag (z) —->• z and B^z) —>• z2 uniformly on A as e —>• 0, (c) follows from the
explicit formula (10) for V6.

Finally the fact that b(VoV6) C U for small enough e follows directly
from (c). D

Remark. — The varieties V6 that we have used to approximate
the diagonal are annuli such that bV6 is a union of two disjoint simple
closed curves in T2. The referee has pointed out a different approximation
parameterized by the unit disk by the map A i—^ (A2, A(A — 6)/(1 — eA)). The
boundaries of these disks are single curves in T2 with one self-intersection.
(Any sufficiently good approximation to the diagonal by a disk will have
such a self- intersection at the boundary.) These disks could be used in
place of the V6 in an appropriate version of Proposition 2 and then, without
further changes, in our proof of the theorem.

3. The doubling lemma.

The next lemma gives an approximation of a given variety by one with
twice the number of sheets and introduces branching over a given point.

LEMMA 3. — Let V be a pure one-dimensional analytic subvariety
of A2 with bV C T2 so that z : V —> A is a branched cover of order
m. Let U C T2 be an open neighborhood of bV in T2. Let A € A be
a point over which V is not branched. We can thus choose s so that
V H ^-1(A(A, s)) is the union ofm components each of which is mapped
biholomorphically by z to A(A, s). Assume further that : ( * ) w maps these
m components biholomorphically to mutually disjoint open subsets in C.
Then for all sufficiently small e > 0 there exists a pure one-dimensional
analytic subvariety W of A2 with bW C T2 such that

(a) bW C U
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and, setting (3 = (A + e2)/(l + e^),

(b) there exists r > 0 with A(/?,r) C A(A, 5) and such that

w^z-l(bA((3^))=^u^u'-u^
with each 7^ a (connected) Jordan curve such that z : ̂ j —> 6A(/3,r) is a
2-to-l covering- projection.

Proof. — We consider first the case A = 0. We define the variety W
to be the composition V o V6. If e is sufficiently small then (a) holds.

By hypothesis there are m single-valued analytic functions
wi,W2, • • • , Wm in A(0, s) so that 1^-^(0,5)) is the union of the graphs
of these m functions.

Recall that V6 is given by the two locally defined function w^, w^. Let
A' be the punctured disk A^.e2^). A germ of w{ at any point of A'
can be analytically continued around every path in A'. Moreover, by the
construction of V6, such analytic continuation of w{ once around a circle in
A' about 0 yields the different germ w|. Thus, over A', V€ is a connected
double cover without branching locus; i.e., z : V^^-^A') -^ A' a covering
projection of order two and Ve H z-\^) is connected. If e is sufficiently
small, the range of (all continuations in A' of ) w{ lies in A(0, s).

Consider the (multiple-valued) functions Wj o w{ in A'. Each can
be analytically continued on all paths in A'. We claim that such analytic
continuation of wjow{ once around a circle in A' about 0 yields a different
germ (i.e., gives rise to a two-valued function). Otherwise, continuation
would lead back to the same germ (since by (*) the m sets w^(A(0,5))
are mutually disjoint for 1 < k < m). But this implies, by applying the
inverse of Wj (which exists by (*)), that analytic continuation of w{ once
around a circle in A' about 0 yields the same germ—a contradiction. This
gives the claim. Since W is 2m-sheeted, we conclude from the claim that
W D ̂ (A') is the union of m connected components, each of which is
an unbranched double covering of A'. Hence the lemma holds in the case
A = 0 with (3 = e2 and for any r with 0 < r < e2/^.

Next we consider the general case A € A. For a e A, set

J. /.A z-^-^
W = , , -1 + az

for z e C, and let
La(z,w) = (^(^),W).
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La is a biholomorphism of A2. We apply the previous case, taking V\ ==
L-x(V) for V and U^ = L-x(U) for U. Since 0-A(A) = 0, Vi is unbranched
over 0. The previous case gives, for e sufficiently small, that W\ =
L-\(V) o V€ satisfies bW\ C U\ and that W\ also has the appropriate
branching behavior near z = e2. Finally we let W = L\(W\). Since
L\ o L-\ = identity, we have bW C U and (b) holds with ft = (^(e2) =
(A+c^/^l+e^). Indeed for e sufficiently small, 4>\{e2) € A(A, s) and from
the previous case we conclude that over a small deleted neighborhood of /?,
W is the union of m connected components, each of which is an unbranched
double covering. This gives the lemma. D

4. Proof of the theorem.

LEMMA 4. — Let W be a. pure 1 -dimensional analytic subvariety of
A2 with bW C ^and let A(/?,r) be a disk with closure contained in A.
Suppose that TV^^ - l(6A(^,r)) is the disjoint union ofN smooth Jordan
(connected!) curves 71,72, • " 5 7N -such that z : 7^ —^ &A(/3, r) is a covering
projection of order rij > 1 for each j = 1,2, • • • , N. Then there exists a
neighborhood U of bW in T2 with the following property: if X is compact
with X C U C T2, then X has no continuous sections over 6A(/3,r); i.e.,
there does not exist a continuous complex valued function f defined on
&A(/?,r) such that Gr(/) = {(A, /(A)) : A € &A(/3,r)} C X.

Proof. — We can view each 7j as a submanifold of &A(/3, r) x C.
Let A/j be a small tubular neighborhood of 7^ in &A(^,r) x C with the
^-coordinate constant on the fibers of this tubular neighborhood (viewing
the tubular neighborhood as a normal bundle). Let pj : A/} —> 7j be the
projection along the fibers; in particular, we have ^(^(^1,^2)) = z\. We
can choose the A/j to be disjoint, j = 1,2, • • • , N. For all sufficiently small
neighborhoods U of bW in T2, X C U implies that X n (&A(/3,r) x C) C
U^i^-; this is because W D ( &A(/3,r) x C) = W D ( 6A(/3,r) x C) C
U^i.A/j. Fix such a Z^. Suppose that X C, U. Arguing by contradiction,
suppose that there is a continuous complex valued function / defined
on 6A(/3,r) such that Gr(/) = {(A,/(A)) : A G &A(/3,r)} C X. Then
Gr(/) <= ^i-A^- By the connectedness of Gr(/), Gr(/) C A4, for some k,
1 < k < N. Set g(\) = p/c((A, /(A))). Then ^ is a continuous section of the
covering projection (of order njc) z '. 7fc —^ &A(/3,r) . Since 7^ is connected
and rife > 1, this is a contradiction. D
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Choose a dense sequence {o^} in A and let {an} be a sequence in A
in which each a^ is repeated infinitely often. Choose 6n > 0 such that
6n < 1 — | On | and 6n —> 0. Set An = A(o!n,^n)- We construct three
sequences for n > 0 : a sequence of subvarieties {Vn} of A2 with bVn C T2,
a sequence of compact subsets {Xn} of T2 and a sequence of disks A(/?n, 7-n)
such that

(a) bVn C the interior in T2 of Xn for n > 1.

(b) Xo 3 Xi D X2 3 • • • 3 Xn 3 • • •

(c) The diameters of the components of the fibers (Xn)z of Xn are
less that 1/n for each n > 1 and each z € A.

(d) For n > 1, A(/?n? rn) C An C A is such that there is no continuous
section of the map z : Xn Fl ̂ "^A^n^n)) —> &A(/?n^n); i.e., there does
not exist a continuous complex valued function defined on 6A(/3n,^n) with
graph contained in Xn.

Construction. — For the sake of a uniform notation we set VQ =V,
A(/3o^o) = A(0; 1). We also choose XQ to be a sufficiently small compact
neighborhood of bV in T2 so that XQ C f^—this is possible since V U bV =
bV C f^. We proceed by induction. We assume that we have already defined
Vo^V^-'^Vn-i and A(/?o,ro),A(/3i,ri),A(/32,r2), • • • ,A(/3n-i,rn-i)
and Xo,Xi,X2, • • • ,Xn-i and that this data satisfies (a)-(d) up to index
n—1. Then, for n > 1, we define (i) A(/3^,rn), (ii) Vn and (iii) Xn- Choose a
point \n € An such that Vn-i is unramified over An. By moving An slightly,
we can arrange so that (*) of Lemma 3 also holds. For sufficiently small 6,
Lemma 3, applied to Vn-i, yields a variety W, f3n and Tn such A(/?n, 7-n) C
An, bW C int(Xn-i) (since ^Vn-i c mt(^n-i) by the induction
hypothesis) and such that the map z : lV^^-l(6A(/3n5 ̂ n)) —^ ^A(/?n, ̂ n) is
a union of irreducible double covers. We take Vn = W. By Lemma 4 there
exists a neighborhood U of &Vn m T2 such that: U C int(Xn-i) and if K is
a compact subset ofZ^ then K has no continuous section over 6A(/?n^n)-
Now take Xn to be a compact neighborhood of bVn with Xn C ̂  and we
get (a), (b) and (d). Moreover since the fibers of bVn = bVn U Vn are finite,
by taking Xn to be a sufficiently small neighborhood of bVn-, it follows that
the connected components of the fibers of Xn each have diameter less that
1/n. This gives (c) and completes the construction.

00

Continuing the proof of the theorem, we let X = Q Xn. Then
71=1
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X = Fl Xyi. Hence X C Q,, since Xo C ^2. Also X \ X is non-empty. To
n=l

see this note that X H {2; = 0} is the intersection of the sets Xn Fl {z = 0}.
And these sets are non-empty since Xn H {z = 0} 3 Vn H {z = 0} ̂  0.

Finally we need to show that X \ X does not contain analytic
structure. We argue by contradiction and suppose that X \ X contains
a 1-dimensional analytic set A. We can assume that A is connected. Then
z(A) is open in C. For if not, then z\A is constant = ZQ. Hence A is contained
in the set X^o, which is totally disconnected by (c)—a contradiction.

Thus we can choose a regular point p 6 A so that z maps a
neighborhood of p in A biholomorphically to an open set uj in A. Hence
there is an analytic function / on uj whose graph is in A. There exists
n such that A^ C uj. This is because 6n —^ 0 and each a'n is repeated
infinitely often in {cin,}. Hence A(/3^,rn) C uj. Then / gives a section of X
over 6A(/3yi,rn). Hence / gives a section of Xn 2 X over 6A(/^^n)- This
is a contradiction of (d) and gives the theorem. D

5. Concluding comments.

If the variety V in the theorem is assumed to be irreducible, then the
set X C T2 constructed in the proof is a minimal set having a non-empty
hull without analytic structure. Minimal here means that every proper
closed subset of X is polynomially convex. We omit the straightforward
proof.

By a well-known result of B. Shiftman [Sh], a (pure one-dimensional)
subvariety of A2 with boundary in T2 can be reflected across T2 to yield a
subvariety of C2 (or of P2 ). The local version was given in [A]. In fact, this
reflection procedure works more generally for pseudoconcave subsets Z of
A2 with boundary in T2. Namely, the set ZUr(Z) is pseudoconcave across
T2, where r is the reflection map r{{z,w)) = (l/^, 1/w). The local version
also holds. This pseudoconcavity across T2 can be shown by adapting the
proof of the Lemma in [A], in part, by replacing the use of the maximum
principle by the use of the local maximum modulus principle. In particular,
we can apply reflection to sets Z = A2 D X for X a compact subset of T2.
More specifically the varieties Vn and the sets Xn and X constructed in
the proof of the Theorem can be reflected across T2. The convergence of
Xn to X on A2 clearly extends to convergence, on compact subsets of C71,
of the sets extended by reflection.
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Duval and Sibony [DSib] employed Wermer's example [W] to produce
extreme points in the cone of positive closed (1,1) currents on P2 such that
these extreme points have no analytic structure in their supports. (First
Demailly [D] found extreme points that were not supported by algebraic
varieties.) Their construction requires a Wermer set given in all of C2, not
just in the polydisk. As noted in the previous paragraph, by reflecting in
T2, the constructions of the present paper yield sets where the convergence
in all of C2 is evident.
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