## Annales de l'institut Fourier

# Krzysztof Kurdyka <br> On gradients of functions definable in ominimal structures 

Annales de l'institut Fourier, tome 48, no 3 (1998), p. 769-783
[http://www.numdam.org/item?id=AIF_1998__48_3_769_0](http://www.numdam.org/item?id=AIF_1998__48_3_769_0)
© Annales de l'institut Fourier, 1998, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# ON GRADIENTS OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES 

by Krzysztof KURDYKA

## 0. Introduction.

Many results in subanalytic or semialgebraic geometry of $\mathbb{R}^{n}$ hold true in a more general setting called "the theory of o-minimal structures on the real field" (see [DM]). This theory has presented a strong interest since 1991 when A. Wilkie [W1] proved that a natural extension of the family of semialgebraic sets containing the exponential function (( $\mathbb{R}, \exp )$ definable sets) is an o-minimal structure. A similar extension of subanalytic sets ( $\left(\mathbb{R}_{\mathrm{an}}, \exp \right)$-definable sets) was then treated by L . van den Dries, A. Macintyre, D. Marker in [DMM] (geometric proofs of these facts were found recently by J-M. Lion and J.-P. Rolin [LR1], [LR2]). Another type of o-minimal structure $\left(\left(\mathbb{R}_{\mathrm{an}}^{K}\right)\right.$-definable sets) was obtained by C. Miller [Mi], by adding to subanalytic sets all functions $x \rightarrow x^{r}, r \in K$, where $K$ is a subfield of $\mathbb{R}$. We give a list and examples of o-minimal structures in section 1. An extension of semialgebraic and subanalytic geometry was also undertaken by M. Shiota [S1], [S2].

Theorem 1 (Section 2), the first main result of this paper, is an ominimal generalization of the famous Lojasiewicz inequality $\|\operatorname{grad} f\| \geq$ $|f|^{\alpha}$ with $\alpha<1$, where $f$ is an analytic function in a neighborhood of $a \in \mathbb{R}^{n}, f(a)=0$. We prove that if $f$ is a differentiable function in a

[^0]bounded domain, definable in some o-minimal structure, then there exists a $C^{1}$ function $\Psi$ in one variable such that $\|\operatorname{grad} \Psi \circ f\| \geq c>0$. It is rather surprising that the result holds also for infinitely flat functions. Theorem 1 implies that the set of asymptotic critical values of $f$ is finite (Proposition 2). We recall in the beginning of the section the already known o-minimal version of another Lojasiewicz inequality for continuous definable functions on a compact set.

The main result of Section 3 is Theorem 2 which states: if $U$ is an open, bounded subset of $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}$ is a $C^{1}$ function definable in some o-minimal structure, then all trajectories of $-\operatorname{grad} f$ (i.e. solutions of the equation $\dot{x}=-\operatorname{grad} f$ ) have their length bounded by a constant independent of the trajectory. The function $f$ may be unbounded and may not have a continuous extension on $\bar{U}$. We prove also, that for a non negative definable $g$, the flow of $-\operatorname{grad} g$ defines a deformation retraction onto $g^{-1}(0)$. Some applications of this result in the real analytic case can be found in $[\mathrm{Si}]$, $[\mathrm{Sj}]$. We finish the paper by a discussion of Thom's Gradient Conjecture for o-minimal structures.

In Section 1 we gather basic facts on o-minimal structures. To make the paper self-contained and accessible for a wider audience we add a proof of Lemma 2 (on definable functions in one variable). We give also an elementary proof (suggested by C. Miller and J-M. Lion) of the curve selection lemma, the crucial tool in the proof of Theorem 1.

General references of various facts, when not specified, will be as follows: for semialgebraic geometry - [BCR], for subanalytic geometry $[\mathrm{BM}]$ or $[\mathrm{£4}]$, for o-minimal structures - [DM].

In this paper we take the gradient with respect to the canonical euclidian metric in $\mathbb{R}^{n}$.

## 1. o-minimal structures on the real field.

Definition 1. - Let $\mathcal{M}=\bigcup_{n \in \mathbb{N}} \mathcal{M}_{n}$, where each $\mathcal{M}_{n}$ is a family of subsets of $\mathbb{R}^{n}$. We say that the collection $\mathcal{M}$ is an o-minimal structure on $(\mathbb{R},+, \cdot)$ if:
(1) each $\mathcal{M}_{n}$ is closed under finite set-theoretical operations;
(2) if $A \in \mathcal{M}_{n}$ and $B \in \mathcal{M}_{m}$, then $A \times B \in \mathcal{M}_{n+m}$;
(3) let $A \in \mathcal{M}_{n+m}$ and $\pi: \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^{n}$ be projection on the first $n$ coordinates, then $\pi(A) \in \mathcal{M}_{n}$;
(4) let $f, g_{1}, \ldots, g_{k} \in \mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$, then $\left\{x \in \mathbb{R}^{n}: f(x)=0, g_{1}(x)>\right.$ $\left.0, \ldots, g_{k}(x)>0\right\} \in \mathcal{M}_{n} ;$
(5) $\mathcal{M}_{1}$ consists of all finite unions of open intervals and points.

For a fixed o-minimal structure $\mathcal{M}$ on $(\mathbb{R},+, \cdot)$ we say that $A$ is an $\mathcal{M}$-set if $A \in \mathcal{M}_{n}$ for some $n \in \mathbb{N}$. We say that a function $f: A \longrightarrow \mathbb{R}^{m}$, where $A \subset \mathbb{R}^{n}$, is an $\mathcal{M}$-function if its graph is an $\mathcal{M}$-set.

Axiom (5) will be called the o-minimality of $\mathcal{M}$.
Examples. - We give below a list of o-minimal structures on $(\mathbb{R},+, \cdot)$ (see also [DM] for detailed definitions and comparisons between the above examples) with examples of functions definable in those o-minimal structures:
(1) Semialgebraic sets (by Tarski-Seidenberg); $f(x, y)=\sqrt{x^{4}+y^{4}}$.
(2) Global subanalytic sets (by Gabrielov);
$f(x, y)=\frac{y}{\sin x}, x \in(0, \pi)$.
(3) $(\mathbb{R}, \exp )$-definable sets (by Wilkie);
$f(x, y)=x^{2} \exp \left(-\frac{y^{2}}{x^{4}+y^{2}}\right) \ln x$.
(4) $\left(\mathbb{R}_{a n}, \exp \right)$-definable sets (by van den Dries, Macintyre, Marker); $f(x, y)=x^{\sqrt{2}} \ln (\sin y), x>0, y \in(0, \pi)$.
(5) $\left(\mathbb{R}_{a n}^{\mathbb{R}}\right)$-definable sets (by Miller);
$f(x, y)=x^{\sqrt{2}} \exp \left(\frac{x}{y}\right), 0<x<y<1$.
Recently another example of an o-minimal structure was found by van den Dries and Speissegger [DS] which is larger than $\mathbb{R}_{a n}^{\mathbb{R}}$ but polynomially bounded (i.e any definable function in one variable is bounded by a polynomial at infinity). Finally we mention a result of Wilkie [W2] in which he gives a general method for construction of o-minimal structures; this method can be applied to Pfaffian functions.

In the rest of this paper $\mathcal{M}$ will denote some fixed, but arbitrary, o-minimal structure on $(\mathbb{R},+, \cdot)$. We will give now several elementary properties of $\mathcal{M}$-sets and $\mathcal{M}$-functions.

Remark 1. - Let $E$ be an $\mathcal{M}$-set in $\mathbb{R}^{n+1}$. Axioms (1)-(4) imply
that the sets

$$
\left\{x \in \mathbb{R}^{n}: \exists x_{n+1}\left(x, x_{n+1}\right) \in E\right\} \text { and }\left\{x \in \mathbb{R}^{n}: \forall x_{n+1}\left(x, x_{n+1}\right) \in E\right\}
$$

are $\mathcal{M}$-sets. Actually the first set is the image of $E$ by projection, the second is the complement of the image of the complement of $E$ by projection.

Remark 2. - The sum, product, inverse, composition of $\mathcal{M}$-functions is again an $\mathcal{M}$-function. Also the image and inverse image of an $\mathcal{M}$-set by an $\mathcal{M}$-function are again $\mathcal{M}$-sets. Proofs of these facts are quite standard applications of Remark 1 and axioms (1)-(4) and actually the same as in the semialgebraic case (see e.g. [BCR]).

Lemma 1. - Let $f: A \longrightarrow \mathbb{R}$ be an $\mathcal{M}$-function such that $f(x) \geq 0$ for all $x \in A$. Let $G: A \longrightarrow \mathbb{R}^{m}$ be an $\mathcal{M}$-mapping and define a function $\varphi: G(A) \longrightarrow \mathbb{R}$ by

$$
\varphi(y)=\inf _{x \in G^{-1}(y)} f(x)
$$

Then $\varphi$ is an $\mathcal{M}$-function.

Proof. - Write a formula for the graph of the function $\varphi$ and apply Remark 1.

Corollary 1. - Let $A$ be an $\mathcal{M}$-set in $\mathbb{R}^{n}$. Then the distance function $d_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an $\mathcal{M}$-function, where $d_{A}(x)=\inf _{y \in A}|x-y|$.

Corollary 2. - Let $A$ be an $\mathcal{M}$-set in $\mathbb{R}^{n}$. Then $\bar{A}$ and $\operatorname{Int} A$ are $\mathcal{M}$-sets.

Proof. - Actually by Corollary 1 we know that $d_{A}$ is an $\mathcal{M}$-function, hence $\bar{A}=d_{A}(0)^{-1}$ is an $\mathcal{M}$-set. To prove that the interior of $A$ is an $\mathcal{M}$-set we use the fact that by axiom (1) the complement of an $\mathcal{M}$-set is an $\mathcal{M}$-set.

Lemma 2 (Monotonicity Theorem). - Let $f:(a, b) \longrightarrow \mathbb{R}$ be an $\mathcal{M}$-function. Then there exist real numbers $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that $f$ is continuously differentiable on each interval $\left(a_{i}, a_{i+1}\right)$. Moreover $f^{\prime}$ is an $\mathcal{M}$-function and the function $f$ is strictly monotone or constant on every interval $\left(a_{i}, a_{i+1}\right)$.

Proof (Due essentially to van den Dries [vD]). - We may assume that the set $f((a, b))$ is infinite. First we prove that $D(f)$, the set of discontinuity points of $f$, is finite.

Writing the definition of continuity of a function at a point and using Remark 1 we deduce that $D(f)$ is an $\mathcal{M}$-set in $\mathbb{R}$, hence by o-minimality, it is enough to prove that $f$ is continuous at some point of $(a, b)$. Since the set $f((a, b))$ is an infinite $\mathcal{M}$-set it contains an open interval. Thus by induction we can construct a descending sequence of intervals $\left[\alpha_{n}, \beta_{n}\right] \subset(a, b)$ such that $\alpha_{n}<\alpha_{n+1}, \beta_{n+1}<\beta_{n}, \beta_{n}-\alpha_{n}<1 / n$ and $f\left(\left[\alpha_{n}, \beta_{n}\right]\right)$ is contained in an interval of length smaller than $1 / n$. Clearly $f$ is continuous at the point $\bigcap_{n \in \mathbb{N}}\left[\alpha_{n}, \beta_{n}\right]$. So we have proved that the complement of $D(f)$ is dense in $(a, b)$, hence $D(f)$ is finite.

We can assume now that $f$ is continuous on $(a, b)$. To prove differentiability observe first that by o-minimality we have:

Observation. - For each $x \in(a, b)$ and each $c \in \mathbb{R}$ there exists an $\varepsilon>0$ such that $f(t) \geq f(x)+c(t-x)$ for all $t \in(x, x+\varepsilon)$ or $f(t) \leq f(x)+c(t-x)$ for all $t \in(x, x+\varepsilon)$.

Let us write $f_{-}^{\prime}(x)=\lim _{t \nearrow 0} \frac{1}{t}(f(x+t)-f(x))$ for $x \in(a, b]$ and $f_{+}^{\prime}(x)=\lim _{t \backslash 0} \frac{1}{t}(f(x+t)-f(x))$ for $x \in[a, b)$. Note that $f_{+}^{\prime}$ and $f_{-}^{\prime}$ are $\mathcal{M}$-functions, by Remark 1. From the above observation it is not difficult to obtain the following consequences:
i) for each $x \in(a, b)$ the values of $f_{-}^{\prime}(x)$ and $f_{+}^{\prime}(x)$ are well defined (possibly equal to $+\infty$ or $-\infty$ ),
ii) for each $x \in(a, b)$ there exists $y$ arbitrary close to $x, y>x$ such that $f_{+}^{\prime}(y) \leq f_{+}^{\prime}(x), f_{-}^{\prime}(y) \leq f_{+}^{\prime}(x)$ or $f_{+}^{\prime}(y) \geq f_{+}^{\prime}(x), f_{-}^{\prime}(y) \geq f_{+}^{\prime}(x)$.

Clearly the sets

$$
\left\{x \in(a, b) ; f_{+}^{\prime}(x)=+\infty\right\},\left\{x \in(a, b) ; f_{+}^{\prime}(x)=-\infty\right\}
$$

are $\mathcal{M}$-sets, hence are finite unions of open intervals and points. By ii) these sets are finite. So we can assume that $f_{+}^{\prime}$ and $f_{-}^{\prime}$ take values in $\mathbb{R}$. Since $f_{+}^{\prime}$ and $f_{-}^{\prime}$ are $\mathcal{M}$-functions we may also assume that these functions are continuous on ( $a, b$ ). It follows easily now from ii) that $f_{+}^{\prime}=f_{-}^{\prime}$ on $(a, b)$, but this means that $f$ is $\mathcal{C}^{1}$ on $(a, b)$.

We proved also that $f^{\prime}$ is an $\mathcal{M}$-function, hence the claim on monotonicity follows from the fact that $\left\{f^{\prime}=0\right\}$ is an $\mathcal{M}$-set and so is a finite union of points and open intervals.

Writing the definition of partial derivatives and using Remark 1 we obtain:

Lemma 3. - Let $f: U \longrightarrow \mathbb{R}^{k}$ be a differentiable $\mathcal{M}$-function, where $U$ is open in $\mathbb{R}^{n}$. Then $\partial f / \partial x_{j}, j=1, \ldots, n$ are $\mathcal{M}$-functions, and hence $\operatorname{grad} f$ is an $\mathcal{M}$-mapping.

Proposition 1 (Curve Selection Lemma). - Let $A$ be an $\mathcal{M}$-set in $\mathbb{R}^{n}$ and suppose that $a \in \overline{A \backslash\{a\}}$. Then there exists an $\mathcal{M}$-function $\gamma:[0, \varepsilon) \longrightarrow \mathbb{R}^{n}$ which is $\mathcal{C}^{1}$ on $[0, \varepsilon)$ and such that

$$
a=\gamma(0) \text { and } \gamma((0, \varepsilon)) \subset A \backslash\{a\}
$$

Proof. - The key point is to construct a "definable" selection operator $e$, which assigns to each nonempty set $A \in \mathcal{M}_{n}$ an element $e(A) \in A$. Let $n=1$. Then $e(A)$ is the smallest element of $A$ if $A$ has one. Otherwise, let $a:=\inf A$ and let $b \in \mathbb{R} \cup\{+\infty\}$ be maximal such that $(a, b) \subseteq A$. If $a, b \in \mathbb{R}$, then $e(A):=(a+b) / 2$. If $a \in \mathbb{R}$ and $b=+\infty$, then $e(A):=a+1$. If $a=-\infty$ and $b \in \mathbb{R}$, then $e(A):=b-1$. If $a=-\infty$ and $b=+\infty$ (i.e., $A=\mathbb{R})$, then $e(A):=0$. Assume $e(A)$ has been defined for all nonempty $A \in \mathcal{M}_{n}$. Let $B \in \mathcal{M}_{n+1}$ be nonempty, and let $A$ be its image in $\mathbb{R}^{n}$ under the projection map $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)$. Put $a:=e(A)$. Then $e(B):=\left(a, e\left(B_{a}\right)\right)$ where $B_{a}:=\{r \in \mathbb{R}:(a, r) \in B\}$.

This selection operator $e$ has several applications, and Curve Selection is only one of them: let $A \in \mathcal{M}_{n}$ and $a \in \overline{A \backslash\{a\}}$. By o-minimality the set $\{|a-x|: x \in A\} \in \mathcal{M}_{1}$ contains an interval $(0, \epsilon), \epsilon>0$. For $0<t<\epsilon$, let $\gamma(t):=e(\{x \in A:|a-x|=t\})$. It is routine to check that $\gamma:(0, \epsilon) \rightarrow A$ belongs to $\mathcal{M}$. By the monotonicity theorem $\gamma$ is $C^{1}$ after suitable shrinking of $\epsilon$. After composition on the right with a sufficiently flat (at 0 ) function in $\mathcal{M}$ (e.g. the inverse of the bigest component of $\gamma$ ) we can further arrange that $\gamma$ extends to a $C^{1}$-function on $[0, \epsilon)$.

## 2. Łojasiewicz inequalities for o-minimal structures.

We begin this section recalling an already well-known generalization of the Łojasiewicz inequality for continuous $\mathcal{M}$-functions on a compact set. This result was observed by T. Loi [Lo] for ( $\mathbb{R}, \exp$ )-definable sets (actually his version is more precise than the theorem stated below); M. Shiota [S1], [S2] and L. van den Dries and C. Miller [DM] also noticed this fact.

Theorem 0. - Let $K$ be a compact subset of $\mathbb{R}^{n}$ and let $f, g$ : $K \longrightarrow \mathbb{R}$ be two continuous $\mathcal{M}$-functions. If $f^{-1}(0) \subset g^{-1}(0)$, then there
exists a strictly increasing positive $\mathcal{M}$-function $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ of class $C^{1}$, such that for any $x \in K$ we have

$$
|f(x)| \geq \sigma(g(x))
$$

The idea of the proof goes back to the original argument of Łojasiewicz (see [ E 2$]$, [KŁZ]). Let $\Sigma \subset \mathbb{R}^{2}$ be the image of $K$ by the mapping $K \ni u \rightarrow(g(u), f(u))=(x, y)$. Clearly $\Sigma$ is an $\mathcal{M}$-set; moreover it is compact and $\Sigma \cap\{y=0\}=\{(0,0)\}$. It is not difficult to find (by Lemma 2) a strictly increasing positive $\mathcal{M}$-function $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ of class $C^{1}$, such that $\Sigma \subset\{y \geq \sigma(x), x \geq 0\}$. It is proved in [DM] that for each $k \in \mathbb{N}$ one can find $\sigma$ of class $C^{k}$.

We state now the main result of this section. Recall that $\mathcal{M}$ is any fixed o-minimal structure on $(\mathbb{R},+, \cdot)$.

Theorem 1. - Let $f: U \longrightarrow \mathbb{R}$ be a differentiable $\mathcal{M}$-function, where $U$ is an open and bounded subset of $\mathbb{R}^{n}$. Suppose that $f(x)>0$ for all $x \in U$. Then there exists $c>0, \rho>0$ and a strictly increasing positive $\mathcal{M}$-function $\Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ of class $C^{1}$, such that

$$
\|\operatorname{grad}(\Psi \circ f)(x)\| \geq c
$$

for each $x \in U, f(x) \in(0, \rho)$.
The proof is given in the end of the section. We shall see now that in the subanalytic case our Theorem 1 is equivalent to the classical Łojasiewicz inequality for gradients of analytic functions (see [Ł1], [Ł2], [BM]). We state this result in the form generalized in [KP]:

Theorem (ŁI). - Let $f: \Omega \longrightarrow \mathbb{R}$ be a subanalytic function which is differentiable in $\Omega \backslash f^{-1}(0)$, where $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$. Then there exist $C>0, \rho>0$ and $0 \leq \alpha<1$ such that:

$$
\|\operatorname{grad} f(x)\| \geq C|f(x)|^{\alpha}
$$

for each $x \in \Omega$ such that $|f(x)| \in(0, \rho)$. If in addition $\lim _{x \rightarrow a} f(x)=0$ for some $a \in \bar{\Omega}$ (which holds in the classical case, where $f$ is analytic and $a \in \Omega$, $f(a)=0$ ), then the above inequality holds for each $x \in \Omega \backslash f^{-1}(0)$ close to $a$.

To see that in the subanalytic case ( $\mathrm{£I}$ ) $\Rightarrow$ Theorem 1 it is enough to put $\Psi(t)=t^{1-\alpha}$. To prove the converse in the subanalytic case, recall first that every subanalytic function in one variable is actually
semianalytic (see [Ł2], [KŁZ]). Hence $\Psi$ has the Puiseux expansion of the form $\Psi(t)=\sum_{\nu=0}^{\infty} a_{\nu} t^{\frac{\nu}{k}}$. Thus, for $t$ small enough we have $\left|\Psi^{\prime}(t)\right| \leq D t^{\frac{1}{k}-1}$ for some $D>0$. The last inequality and Theorem 1 yield

$$
\|\operatorname{grad} f(x)\|=\frac{\|\operatorname{grad}(\Psi \circ f)(x)\|}{\left|\Psi^{\prime} f(x)\right|} \geq \frac{c}{D}|f(x)|^{1-\frac{1}{k}}
$$

Remark. - The above argument and Theorem 1 imply that ( EI ) holds in any polynomially bounded o-minimal structure on $(\mathbb{R},+, \cdot)$.

We discuss now a consequence of Theorem 1 . Let $f: U \longrightarrow \mathbb{R}$ be a differentiable function, where $U$ is an open subset of $\mathbb{R}^{n}$. We shall say that $\lambda \in \mathbb{R} \cup\{-\infty,+\infty\}$ is an asymptotic critical value of $f$ if there exists a sequence $x_{n} \in U$ such that

$$
f\left(x_{n}\right) \rightarrow \lambda \text { and } \operatorname{grad} f\left(x_{n}\right) \rightarrow 0
$$

Clearly any "true" critical value of $f$ (i.e $\lambda=f(x)$ and $\operatorname{grad} f(x)=0$, for some $x \in U$ ) is also an asymptotic critical value. Notice that this notion depends heavily on the domain $U$, in particular on whether $U$ is bounded or not.

Suppose now that $U$ is bounded and that our $f$ is an $\mathcal{M}$-function, where $\mathcal{M}$ is an o-minimal structure on $(\mathbb{R},+, \cdot)$. Let $\lambda$ be an asymptotic critical value of $f$. It follows immediately from Theorem 1 that $f$ has no asymptotic critical values in $(\lambda-\rho, \lambda) \cup(\lambda, \lambda+\rho)$ for some $\rho>0$. But on the other hand the set of all asymptotic critical values of $f$ is an $\mathcal{M}$-subset of $\mathbb{R}$, so it must be finite. Thus we have proved:

Proposition 2. - If $U$ is bounded and $f$ is an $\mathcal{M}$-function, then the set of all asymptotic critical values of $f$ is finite.

It is easily seen that $-\infty$ and $+\infty$ cannot be an asymptotic critical value of an $\mathcal{M}$-function defined in a bounded set. As the following example shows the assumption of boundness on $U$ is necessary.

Example. - The function $f(x, y)=\frac{x}{y}$ on $U=\{y>0\} \subset \mathbb{R}^{2}$, being semialgebraic, belongs to any o-minimal structure on $(\mathbb{R},+, \cdot)$. But clearly any $\lambda \in \mathbb{R}$ is an asymptotic critical value of $f$.

Proof of Theorem 1. - It follows from Lemma 3 that $U \ni x \mapsto$ $\|\operatorname{grad} f(x)\|$ is an $\mathcal{M}$-function. We may suppose that $f^{-1}(t) \neq \emptyset$ for any
small enough $t>0$, since otherwise, by o-minimality, the theorem is trivial. Hence the function

$$
\varphi(t)=\inf \left\{\|\operatorname{grad} f(x)\|: x \in f^{-1}(t)\right\}
$$

is well-defined in some interval $(0, \varepsilon)$. By Lemma $1, \varphi$ is an $\mathcal{M}$-function.
Claim. - There exists $\varepsilon^{\prime}>0$ such that $\varphi(t)>0$ for any $t \in\left(0, \varepsilon^{\prime}\right)$.
Assume that this is not the case and put

$$
\Sigma=\left\{x \in U:\|\operatorname{grad} f(x)\|<(f(x))^{2}\right\}
$$

Clearly $\Sigma$ is an $\mathcal{M}$-set. Let $\left.f\right|_{\Sigma}$ denote the graph of $f$ restricted to $\Sigma$. If the claim doesn't hold, then there exists a sequence of positive numbers $t_{n} \rightarrow 0$ such that $\varphi\left(t_{n}\right)=0$ for all $n \in \mathbb{N}$. Let $x_{n} \in \Sigma$ be a sequence such that $f\left(x_{n}\right)=t_{n}$, in other words $\left.\left(x_{n}, t_{n}\right) \in f\right|_{\Sigma}$. Let $b$ be an accumulation point of $\left\{x_{n}\right\}$, then $(b, 0)$ belongs to the closure of the set $\left(\left.f\right|_{\Sigma} \backslash\{(b, 0)\}\right)$. By the curve selection lemma (Proposition 1) we have an $\mathcal{M}$-function (arc) $\tilde{\gamma}:(-\delta, \delta) \rightarrow \mathbb{R}^{n} \times \mathbb{R}$ of class $C^{1}$, such that $\tilde{\gamma}(0)=(b, 0)$, and $\left.\tilde{\gamma}(0, \delta) \subset f\right|_{\Sigma}$. Write $\tilde{\gamma}(s)=(\gamma(s), f \circ \gamma(s))$, where $\gamma(s) \in \Sigma \subset \mathbb{R}^{n}$. Let $h(s)=f \circ \gamma(s)$ for $s \in(0, \delta)$, then clearly $\lim _{s \rightarrow 0} h(s)=0=\lim _{s \rightarrow 0} h^{\prime}(s)$, since $\gamma(s) \in \Sigma$. Of course $h$ and $h^{\prime}$ are $\mathcal{M}$-functions, so by Lemma 2 we may suppose that $h$ and $h^{\prime}$ are monotone; actually they must be strictly increasing. Thus we have

$$
0<h^{\prime}(s) \leq A(h(s))^{2}, \text { for } \quad s \in(0, \delta)
$$

where $A$ is a bound for $\left\|\gamma^{\prime}(s)\right\|$. But by the Mean Value Theorem we have $h(s) \leq s h^{\prime}(s)$, because $h^{\prime}$ is increasing. Finally, we get $0<h^{\prime}(s) \leq$ $A s^{2}\left(h^{\prime}(s)\right)^{2}$ for any $s \in(0, \delta)$, which is impossible since $\lim _{s \rightarrow 0} h^{\prime}(s)=0$.

So we have proved that $\varphi(t)>0$ for all $t \in(0, \varepsilon)$, provided that $\varepsilon>0$ is small enough. We define now:

$$
\Delta=\left\{x \in U \backslash f^{-1}(0): f(x)<\varepsilon,\|\operatorname{grad} f(x)\| \leq 2 \varphi(f(x))\right\}
$$

Observe that $\Delta$ is also an $\mathcal{M}$-set and moreover $\Delta \cap f^{-1}(t) \neq \emptyset$ for every $t \in$ $(0, \varepsilon)$. Hence as before there exists $d \in \bar{U}$ such that $(d, 0) \in \overline{\left.f\right|_{\Delta} \backslash\{(d, 0)\}}$. Applying again the curve selection lemma to $\left.f\right|_{\Delta}$ at the point $(d, 0)$ we obtain an $\mathcal{M}$-function (arc) $\tilde{\eta}:(-\delta, \delta) \rightarrow \mathbb{R}^{n}$ of class $C^{1}$, such that $\tilde{\eta}(0)=(d, 0)$, and $\left.\tilde{\eta}(0, \delta) \subset f\right|_{\Delta}$. Write as before $\tilde{\eta}(s)=(\eta(s), f \circ \eta(s))$, where $\eta(s) \in \Delta \subset \mathbb{R}^{n}$. Let $g(s)=f \circ \eta(s)$ for $s \in(0, \delta)$, then clearly $\lim _{s \rightarrow 0} g(s)=0$ and $g(s)>0$ for each $s \in(0, \delta)$. It follows from Lemma 2 that for $\delta^{\prime}>0$ small enough the function $g:\left(0, \delta^{\prime}\right) \longrightarrow \mathbb{R}$ is a diffeomorphism onto $(0, \rho)$, for some $\rho>0$. We put

$$
\Psi(t)=g^{-1}(t) \text { for } t \in(0, \rho)
$$

We shall check now the inequality claimed in Theorem 1 . Let $B$ be some bound for $\left\|\eta^{\prime}(s)\right\|$ in $\left(0, \delta^{\prime}\right)$. Take any $x \in U$ such that $t=f(x) \in(0, \rho)$, and write $s=\Psi(t)=g^{-1}(t)$. Then we have

$$
\begin{aligned}
\|\operatorname{grad} \Psi \circ f(x)\|= & \Psi^{\prime}(f(x))\|\operatorname{grad} f(x)\| \\
& \geq \Psi^{\prime}(t) \frac{1}{2}\|\operatorname{grad} f(\eta(s))\| \geq \frac{\Psi^{\prime}(t)}{2 B}(f \circ \eta)^{\prime}(s)=\frac{1}{2 B}=c,
\end{aligned}
$$

since $\|\operatorname{grad} f(\eta(s))\|\left\|\eta^{\prime}(s)\right\| \geq\left\langle\operatorname{grad} f(\eta(s)), \eta^{\prime}(s)\right\rangle=(f \circ \eta)^{\prime}(s)$ and $B \geq\left\|\eta^{\prime}(s)\right\|$. Theorem 1 follows.

## 3. Trajectories of gradients of $\mathcal{M}$-functions.

Let $f: U \longrightarrow \mathbb{R}$ be a $C^{1}$ function, where $U$ is an open subset of $\mathbb{R}^{n}$. We shall consider a vector field,

$$
U \ni x \mapsto-\operatorname{grad} f(x) \in \mathbb{R}^{n}
$$

Let $\alpha, \beta \in \mathbb{R} \cup\{-\infty,+\infty\}$. We shall say that $\gamma:(\alpha, \beta) \rightarrow U$ is a trajectory of the vector field $-\operatorname{grad} f$ if it is a maximal differentiable curve verifying $\gamma^{\prime}(t)=-\operatorname{grad} f(\gamma(s))$. Actually we shall consider $\gamma$ as an equivalence class of all curves obtained from $\gamma$ by a strictly increasing $C^{1}$ reparametrization. Observe that if $\psi$ is an increasing $C^{1}$ diffeomorphism between two intervals in $\mathbb{R}$, then the trajectories of $-\operatorname{grad} \psi \circ f$ and those of $-\operatorname{grad} f$ are the same.

Let $a, b \in \gamma$. We denote by $|\gamma(a, b)|$ the length of $\gamma$ between $a$ and $b$.
Łojasiewicz derived (see [Ł1], [Ł3]) from (ŁI) that all trajectories of $-\operatorname{grad} f$ are of finite length, when $f$ is analytic in a neighborhood of a compact $\bar{U}$. We have:

Theorem 2. - Let $f: U \longrightarrow \mathbb{R}$ be a function of class $C^{1}$, where $U$ is an open and bounded subset of $\mathbb{R}^{n}$. Suppose that $f$ is an $\mathcal{M}$-function, for some o-minimal structure $\mathcal{M}$.
a) Then there exists $A>0$ such that all trajectories of $-\operatorname{grad} f$ have length bounded by $A$.
b) More precisely, there exists $\sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$a continuous strictly increasing $\mathcal{M}$-function, with $\lim _{t \rightarrow 0} \sigma(t)=0$, such that if $\gamma$ is a trajectory of $-\operatorname{grad} f$ and $a, b \in \gamma$, then

$$
|\gamma(a, b)| \leq \sigma(|f(b)-f(a)|)
$$

Proof of theorem 2. - Taking, if necessary the composition $\psi \circ f$, where $\psi(t)=\frac{t}{\sqrt{1+t^{2}}}$, we may suppose that $f$ is bounded; more exactly that the image of $f$ lies in $(-1,1)$. We consider again the $\mathcal{M}$-function $\varphi:(-1,1) \rightarrow \mathbb{R}$ defined by

$$
\varphi(t)=\inf \left\{\|\operatorname{grad} f(x)\|: x \in f^{-1}(t)\right\}
$$

when $f^{-1}(t) \neq \emptyset$, and $\varphi(t)=1$ when $f^{-1}(t)=\emptyset$. Let $\Sigma$ be the set of all asymptotic critical values of $f$. Observe that $\lambda \in \Sigma$ if $\varphi(\lambda)=0$, or $\lim _{t / \lambda} \varphi(t)=0$, or $\lim _{t \searrow \lambda} \varphi(t)=0$.

Let $I \subset(-1,1)$ be an open interval. Assume that $\varphi$ is bounded from below in $I$ by some $c>0$. Let $\gamma$ be a trajectory of $-\operatorname{grad} f$ and $a, b \in \gamma$. Suppose that the part of $\gamma$ lying between $a$ and $b$ is contained in $f^{-1}(I)$. We parametrise $\gamma$ by arc-length (i.e $\left\|\gamma^{\prime}(s)\right\|=1$ ), so by the Mean Value Theorem we have that $|f \circ \gamma(\beta)-f \circ \gamma(\alpha)| \geq c|\beta-\alpha|$, in other words

$$
|\gamma(a, b)| \leq \frac{1}{c}|f(b)-f(b)|
$$

This observation explains the idea of the proof. By a partition $-1=t_{0}<$ $t_{1}<\ldots<t_{k}=1$ we shall decompose $(-1,1)$ in such a way that $\varphi$ is strictly monotone on $\left(t_{i}, t_{i+1}\right)$. Moreover we shall distinguish between two disjoint types of intervals, namely
(1) there exists $c_{i}>0$ such that $\varphi(t) \geq c_{i}$ on $\left(t_{i}, t_{i+1}\right)$ (we write $i \in I_{1}$ in this case), or
(2) one of $t_{i}, t_{i+1}$ is an asymptotic critical value of $f$, hence by Theorem 1 , there exist $c_{i}>0$ and $\Psi_{i}:\left(t_{i}, t_{i+1}\right) \rightarrow \mathbb{R}$ a strictly increasing, bounded $C^{1}$ function such that,

$$
\left\|\operatorname{grad}\left(\Psi_{i} \circ f\right)(x)\right\| \geq c_{i}
$$

for all $x \in f^{-1}\left(t_{i}, t_{i+1}\right)$ (we write $i \in I_{2}$ in this case).
Take now any trajectory $\gamma$ of $-\operatorname{grad} f$, and let $\gamma_{i}=\gamma \cap f^{-1}\left(t_{i}, t_{i+1}\right)$. We denote by $|\gamma|$ (resp. $\left|\gamma_{i}\right|$ ) the length of $\gamma$ (resp. $\gamma_{i}$ ). Clearly $\left|\gamma_{i}\right| \leq$ $\frac{1}{c_{i}}\left|t_{i}-t_{i+1}\right|$ if $i \in I_{1}$. Extending by continuity, we may suppose that each $\Psi_{i}$ is defined also at $t_{i}$ and $t_{i+1}$. Hence for $i \in I_{2}$ we have $\left|\gamma_{i}\right| \leq$ $\frac{1}{c_{i}}\left|\Psi_{i}\left(t_{i}\right)-\Psi_{i}\left(t_{i+1}\right)\right|$, since the trajectories of $-\operatorname{grad}\left(\Psi_{i} \circ f\right)$ and $-\operatorname{grad} f$ are the same in $f^{-1}\left(t_{i}, t_{i+1}\right)$. Finally, we can write

$$
|\gamma|=\sum_{i=0}^{k-1}\left|\gamma_{i}\right| \leq \sum_{i \in I_{1}} \frac{1}{c_{i}}\left|t_{i}-t_{i+1}\right|+\sum_{i \in I_{2}} \frac{1}{c_{i}}\left|\Psi_{i}\left(t_{i}\right)-\Psi_{i}\left(t_{i+1}\right)\right|=A,
$$

which proves part a) of Theorem 2.
We are now going to construct the function $\sigma$ of part b). For $i \in I_{2}$ we put

$$
\sigma_{i}(r)=\frac{1}{c_{i}} \sup \left\{\left|\Psi_{i}(p)-\Psi_{i}(q)\right|: p, q \in\left(t_{i}, t_{i+1}\right), r=p-q\right\}
$$

and $\sigma_{i}(r)=\frac{r}{c_{i}}$ for $i \in I_{1}$. Extend each $\sigma_{i}$ to a continuous strictly increasing $\mathcal{M}$-function on $\mathbb{R}$. It is easily seen that $\sigma=\sup \sigma_{i}$ satisfies b ) of Theorem 2.

We finish this section by a short discussion of some consequences of Theorem 2, which extend and generalize those known in the real analytic (compact) setting.

Observe that if $\gamma:(\alpha, \beta) \rightarrow U$ is a trajectory then $x_{0}=\lim _{s \rightarrow \beta} \gamma(s)$ exists, and in general $x_{0}$ belongs to $\bar{U}$. Notice that if $x_{0} \in U$, then $x_{0}$ is a critical point of $f$. Let us take $E$ a closed $\mathcal{M}$-subset in an open set $U$; by 4.22 of $[\mathrm{DM}], E$ is the zero set of an $\mathcal{M}$-function $f: U \rightarrow \mathbb{R}$ of class $C^{2}$. Let $g=f^{2}$. We want to show that the flow of $-\operatorname{grad} g$ defines a strong deformation retraction of a neighborhood of $E$ onto $E$. This is actually a new result even in the subanalytic case since the retraction is global and $E$ is not necessarily compact. By Proposition 2, taking a neighborhood of $E$, we may suppose that 0 is the only asymptotic critical value of $g$ in $U$. Clearly the set

$$
V=\{x \in U: \operatorname{dist}(x, \partial U)<\sigma(g(x))\}
$$

is an $\mathcal{M}$-set, it is an open neighborhood of $E$. For each $x \in V$ we denote by $\gamma_{x}:\left(\alpha_{x}, \beta_{x}\right) \rightarrow U$ the trajectory passing through $x$. It is clearly unique if $g(x) \neq 0$ and constant (hence unique) if $g(x)=0$. Put $R(x)=\lim _{s \rightarrow \beta_{x}} \gamma_{x}(s)$, and observe that $R(x) \in E$. We have:

Proposition 3. - There exists an open neighborhood $V_{1}$ of $E$ such that $R: V_{1} \longrightarrow E$ is a strong deformation retraction.

Proof. - First we shall prove that $R$ is continuous. Take $x_{0} \in V$ and $\Omega_{0}$ a neighborhood of $R\left(x_{0}\right)$. Let $x_{1} \notin E$ be close to $R\left(x_{0}\right)$ so that there is (by Theorem 2 b )) a neighborhood $\Omega_{1}$ of $x_{1}$ with the following property: any trajectory passing through $\Omega_{1}$ has its limit in $\Omega_{0}$. By continuity of the flow of $-\operatorname{grad} g$ there exists a neighborhood $G$ of $x_{0}$ such that any trajectory passing by $G$ must cross $\Omega_{1}$. So we have $R(G) \subset \Omega_{0}$, which proves the continuity of $R$.

Let $\gamma$ be the trajectory passing through $x$. Let $\gamma_{x}$ be the part of $\gamma$ between $x$ and the limit $R(x)$. Assume that $\gamma_{x}:\left[0, \beta_{x}\right] \rightarrow U$ is parametrized by arc-length; moreover that $\gamma_{x}(0)=x$, and $\gamma_{x}\left(\beta_{x}\right)=R(x)$. Clearly $\beta_{x}$ is the length of $\gamma_{x}$. Notice that the argument in the proof of continuity of $R$ yields that the function $V \ni x \rightarrow \beta_{x}$ is continuous. Let $V_{1}$ be the set of all $x \in V$ such that $\gamma_{x}$ lies in $V$. We define a homotopy $F:[0,1] \times V_{1} \longrightarrow V_{1}$ as follows: $F_{t}(x)=\gamma_{x}\left(t \beta_{x}\right)$.

In general the retraction $R$ is not an $\mathcal{M}$-mapping. Take $g(x, y)=$ $\left(x^{2}-y^{3}\right)^{2}$; it was observed by $\mathrm{Hu}[\mathrm{Hu}]$ that the retraction $R$ is not hoelderian (at $(0,0))$ in this case, hence it cannot be subanalytic. Observe also that, in general, the set $V_{1}$ is not an $\mathcal{M}$-set. It would be interesting to prove that actually $R$ belongs to some larger o-minimal structure. Even a weaker problem is open (also in the subanalytic case):

Conjecture (F). - Let $\gamma$ be a trajectory of $-\operatorname{grad} f$, where $f$ is an $\mathcal{M}$-function of class $C^{1}$, and let $H$ be any $\mathcal{M}$-subset. Then $\gamma \cap H$ has a finite number of connected components.

This is connected with the Gradient Conjecture of R. Thom, proved recently in [KM]. R. Thom asked whether for an analytic function $f$ every trajectory $\gamma$ of $-\operatorname{grad} f$ has a tangent at the limit point (i.e. whether $\lim _{s \rightarrow \beta_{x}} \frac{\gamma(s)-R(x)}{|\gamma(s)-R(x)|}$ exists). We can of course ask the same question for a trajectory of the gradient of any $\mathcal{M}$-function of class $C^{1}$.

It is easily seen that $(\mathbf{F})$ implies that $\lim _{s \rightarrow \beta_{x}} \frac{\gamma^{\prime}(s)}{\left|\gamma^{\prime}(s)\right|}$ exists, thus that the tangent to $\gamma$ at the limit point exists.

## BIBLIOGRAPHY

[BM] E. Bierstone P.D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42.
[BCR] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Springer, 1987.
[vD] L. van den Dries, Remarks on Tarski's problem concerning ( $\mathbb{R},+, \cdot)$, Logic Colloquium 1982, (eds: G. Lolli, G. Longo, A. Marcja), North Holland, Amsterdam, 1984, 97-121.
[DMM] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183205.
[DM] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J., 84, No 2 (1996), 497-540.
[DS] L. van den Dries, P. Speissegger, The real field with generalized power series is model complete and o-minimal, Trans. AMS (to appear).
[Hu] X. Hu, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse Université Paris 7 (1992).
[K£Z] K. Kurdyka, S. Łojasiewicz, M. Zurro, Stratifications distinguées comme outil en géométrie semi-analytique, Manuscripta Math., 186 (1995), 81-102.
[KM] K. Kurdyka, T. Mostowski, The Gradient Conjecture of R. Thom, preprint (1996).
[KP] K. Kurdyka, A. Parusiński, $\mathbf{w}_{f}$-stratification of subanalytic functions and the Lojasiewicz inequality, C. R. Acad. Sci. Paris, 318, Série I (1994), 129-133.
[LR1] J-M. Lion, J.-P. Rolin, Théorème de préparation pour les fonctions logarithm-ico-exponentielles, Ann. Inst. Fourier, Grenoble, 47-3 (1997), 852-884.
[LR2] J-M. Lion, J.-P. Rolin, Théorème de Gabrielov et fonctions log-exp-algébriques, preprint (1996).
[Lo] T. LoI, On the global Lojasiewicz inequalities for the class of analytic logarithmicexponential functions, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 951-971.
[Ł1] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963.
[Ł2] S. ŁoJasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-surYvette, 1965.
[Ł3] S. ŁoJaSIEWICz, Sur les trajectoires du gradient d'une fonction analytique réelle, Seminari di Geometria 1982-83, Bologna, 1984, 115-117.
[ $£ 4]$ S. ŁoJasiewicz, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1575-1595.
[Mi] C. Miller, Expansion of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94.
[S1] M. Shiota, Geometry of subanalytic and semialgebraic sets: abstract, Real analytic and algebraic geometry, Trento 1992, eds. F. Broglia, M. Galbiati, A. Tognoli, W. de Gruyter, Berlin, 1995, 251-276.
[S2] M. Shiota, Geometry of subanalytic and semialgebraic sets, Birkhauser, 1997.
[Si] L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 527-571.
[Sj] R. SjamaAr, Convexity properties of the moment mapping re-examined, Adv. of Math., to appear.
[W1] A. Wilkie, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 1051-1094.
[W2] A. Wilkie, A general theorem of the complement and some new o-minimal structures, manuscript (1996).

Manuscrit reçu le 15 septembre 1997, accepté le 13 janvier 1998.

Krzystof KURDYKA,<br>Université de Savoie<br>Laboratoire de Mathématiques<br>Campus Scientifique<br>73376 Le Bourget-du-Lac Cedex (France).<br>kurdyka@univ-savoie.fr<br>and<br>Uniwersytet Jagielloński<br>Instytut Matematyki<br>ul. Reymonta 4<br>30-059 Kraków (Poland).<br>kurdyka@im.uj.edu.pl


[^0]:    This research was partially supported by KBN grant 0844/P3/94/07.
    Key words: o-minimal structure - Subanalytic sets - Łojasiewicz inequalities - Trajectories of gradient.
    Math. classification: 32B20-32B05-14P15-26E05-26E10-03C99.

