
ANNALES DE L’INSTITUT FOURIER

EVGUENI DOUBTSOV
Henkin measures, Riesz products and singular sets
Annales de l’institut Fourier, tome 48, no 3 (1998), p. 699-728
<http://www.numdam.org/item?id=AIF_1998__48_3_699_0>

© Annales de l’institut Fourier, 1998, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1998__48_3_699_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
48, 3 (1998), 699-728

HENKIN MEASURES, RIESZ PRODUCTS
AND SINGULAR SETS

by Evgueni DOUBTSOV

1. INTRODUCTION

The principal objects of the present paper are measures defined on
the complex sphere S = {C € C" : |C| = 1}, n > 2. The role of S in
the function theory is twofold. First, S is the boundary of the unit ball
jE?, the simplest pseudoconvex domain. Second, let U(n) be the group of
unitary operators on C71, then S = U(n)/U(n — 1), in other words, S is
a homogeneous space. In particular, it is possible to develop the spectral
function theory on S in terms of H ( p ^ q ) , the spaces of complex spherical
harmonics.

DEFINITION. — Fix a dimension n. Let (p^q) € Z^_, then H(p,q) is
the vector space of all harmonic homogeneous polynomials in Cn of total
degree p-^-q, of degree p in z\^... ,^n, and of degree q in^i, . . . ,^. We use
the same symbol for the restriction of H(p, q) on S.

The spectrum of a measure p, € M{S) is defined by the equality

spec(^) = [(p,q) € Z^ : ̂ (z) = [ K^(z^)d^) ̂ 0, z € S\,
I J s )
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where Kpq(z^ C) is the reproducing kernel for H{p^ q) C L2^). We address
the reader to the monograph [Ru], Chapter 12, for a systematic presentation
of the harmonic analysis on S.

Given a set (a spectrum) A C Z^_, the general problem is to investigate
the properties of the space M^(S) = {p. € M(S) : spec(^) C A}.

Put Mj^(S) = {p.8 : there exists a p, e M^(S) such that fi8 is the
singular part of fJi} (here and in what follows, "singular" means "singular
with respect to the corresponding Lebesgue measure"). It is interesting, in
particular, to find the sets with the following quite rare property.

DEFINITION. — A set A C Z^_ is said to be singular if

1) M^{S) and M^ ^(5) are not trivial;

2) if ^ € M^{S) and v € M^^{S), then [iLv (are mutually
singular).

Let d € Z+. Define A(cQ = {(p,g) € Z^ : (p - d)(q - d) = 0,p >.
d-i q >. d} (often we add the point (0,0) to the set A(d); clearly this does not
affect the properties under the question). Note that the spectrum A(0) is
a natural object in the complex analysis, since spec(^) C A(0) if and only
if the Poisson integral P[p] is a pluriharmonic function. Such a measure
is said to be pluriharmonic (remark that in the pluripotential theory the
term "pluriharmonic measure" is used for a completely different object).
By analogy, if spec(^) C A(d) or spec(^) C A(d) U {(0,0)}, then we say
that /-A is d-pluriharmonic.

It is shown in [Dl] that A(0) is singular. The first aim of the present
paper is to generalize this result.

THEOREM A. — The set A(d) is singular for all d € Z+.

To prove the mutual singularity property, we use some properties of
the Henkin measures (see §2) and an asymptotic formula of the Boole-
Hruscev-Vinogradov type (§3, Theorem 3.1).

Actually the non-triviality part from the definition of a singular set
is known for all A(d). Indeed, it is shown in [D3] that the corresponding
triple (A^S"), 5, a) is regular in the sense of [Al]. On the other hand, given
a d-plh measure /^, the slice measure /^ is defined (on the circle) for a-
almost all ^ C CP71"1. Moreover, in the weak sense, we have the integral
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representations

^1= { /^a(0, ^= f ^da(0,
JCP71-1 JCP11-1

where ̂ s (^|) is the singular part ofjLA (^) (see §3 for details). So a natural
problem is to understand the properties of the family {/^l^ecp71-1-

In §4 we introduce the d-pluriharmonic Riesz products to give exam-
ples of probability singular d-plh measures. Probably, such product mea-
sures are of independent interest. On the other hand, the Riesz product
idea yields, for example, the following existence result.

THEOREM B. — There exists a probability singular d-plh measure
[i such that the slice measures u^ live on sets of Hausdorff dimension 1 for
all^CP71-1.

To illustrate the results about MA{S) and M^(5), in §5 we discuss
the peak, interpolation and null sets for the unitarily invariant spaces of
continuous functions Ake(S).

Notation. — Throughout this paper a is Lebesgue measure on 5,
a(S) = 1; the unit disc is D, and m is Lebesgue measure on the unit circle
T, m(T) = 1. CP71-1 is the projective space, pr : C71 \ {0} -> CP71-1 is the
canonical projection, and a = pr(o-).

Given a ^ e M^), the symbol P[u\ denotes the classical Poisson
integral:

P[^(z) = I P^ 0 ̂ (C) = / \ ~ lzp ^(C) (z e B).
^S JS F — Sl

We identify a function / € ^(.S') and a measure fa e M(S).

It is useful to imagine Z^_ as the first quadrant of the integer lattice.
In particular, we say that {(p,k) : p € Z+}, k € Z+, is a horizontal ray
(respectively {(£, q) : q e Z+}, £ G Z+, is a vertical one).

2. HENKIN MEASURES

Motivated by Bourgain's investigations of the Dunford-Pettis prop-
erty, Cima and Timoney introduced in [CT] the following notion.
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DEFINITION. — Let A be a Banach algebra and X c A be a linear
subspace. The Born-gain algebra Xg is the set offeA such that

if fj -^ 0 weakly in X , then \\ffj + X\\ -> 0.

In fact, Born-gain showed in [Bl] that a subspace X of C(K) had
the Dunford-Pettis property if XB = C{K). It happens that a very similar
abstract notion (we put the weak* convergence in place of the weak one)
is useful in the study of the Henkin measures corresponding to a subspace
X C C(K).

2.1. Henkin algebras.

In the definitions below we suppose that K is a compact Hausdorff
space, p is a positive regular Borel measure on K^ the closed support of p
is K, and X C C(K) is a closed subspace.

DEFINITION. — A function sequence {/j}^i C X is called an
(X, p)-sequence (or a p-sequence) if

/ fjgdp^O foral lpeL1^).
J K

Remark. — In other words, fj —^ 0 weakly* with respect to the
duality (L1 (p), L°° (p)) (where X C C(K) C L°°(p)). In particular,
11/jllc'W = 11/jlloo ^ const.

DEFINITION. — Let X C C(K) be a closed subspace, then the
Henkin algebra X^{p) (with respect to p ) is the set of ̂  € C{K) such
that

||^+X||oo^O asj^oo

for every p-sequence {/j}j^i C X.

The following standard observation (compare with [CT]) justifies the
word algebra in the above definition.

PROPOSITION 2.1. — The space X^(p) is a closed subalgebra of
C(K).

Proof. — Suppose that {/j}j^i is a p-sequence.
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1. Let (pi,(p2 e X^(p), then there exist gj e X such that ||^i/j +
9j\\oo -^ 0 as j —> oo. Note that gj is a p-sequence, therefore, there exist
hj € X such that Hy^j + ^j'lloo —)> 0 as j —> oo. In sum we obtain

||^1^2/j -Moo < ||^2||oo||^l/j+^||oo+ || (P29j +M oo -^ 0.

In other words (^1^2 ^ X^(p).

2. Without loss of generality ||/j||oo ^ 1. Let {<^}^i C X^(p) and
ll^fe — ^Hoo —> 0 as k —> oo. Take /? € N such that \\(pk — ^lloo < ^? then
11/j^ + ̂ ||oo < ^ + ll/j^A: + ̂ ||oo < 2^ for j large enough. D

DEFINITION. — A measure [i C M(K) is called an (X^p)-measure
(or a Henkin measure) if

lim / fj dp, = 0
•^00 J K

for every p-sequence {/j}^i C X.

Remark. — Clearly, the set of the Henkin measures is norm-closed.

PROPOSITION 2.2. — Suppose that X^{p) = C(K). Let p. be an
(X, p ) -measure and X <^ p,. Then \ is an (X^p) -measure.

Proof. — Fix a p-sequence {/j}j^i and a y? € C{K). The definition
of the Henkin algebra yields a sequence {^j}^i C X such that \\^pfj 4-
9j\\oo ^0 as j —>• oo. Remark that {^j}^i is a p-sequence. Therefore

/ fj^d/j,= / ( f j i p - g j ) d ^ + \ gjd^-^O,
JK JK JK

since p, is a Henkin measure. So (^ is a Henkin measure for all y? € C(K).
On the other hand A = ^u, with '0 € I^d/^l). Since the set of the Henkin
measures is closed, A is a Henkin measure. D

There is a large number of results about the Bourgain algebras
generated by subspaces of different uniform algebras (see, for example, [I]
for the C^-setting, see also references therein). Many of such statements
have their analogues in terms of the Henkin algebras. However, in the
present paper, we concentrate our attention on the case K = S and p = a.
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2.2. Henkin measures on the sphere.

PROPOSITION 2.3. — A sequence {fj}^ C X c C(S) is a a-
sequence if and only if 1) P[fj](z) —^ 0 as j —^ oo for all z e B, and 2)
I I fj I I oo <: const for aJJ j e N.

Proof. — Assume that 1) and 2) hold and g e ^(a). Put Pr[^](C) =
^K^ 0 < r < 1, C e 5. FubinFs theorem yields

{ fjgda = /> /, (g - P,[g}) da + [ Pr[fj}gda
Js Js Js

<ll/.lloo||^-P.b]|li+||P.[/,]lLlM|i.
Note that \\g - Pr[g]\\^ -^ 0 as r -^ 1- and P[fj\ tends to zero uniformly
on compact subsets of the ball, therefore fg fjgda —>- 0 as j —> oo.

Let now {/j}^=i be a cr-sequence. If z e B, then P(z, •) e I/^cr), thus
1) holds. On the other hand, 2) holds for any p-sequence. D

In what follows, we assume that / € X implies Pr[/] e X.

The above proposition enables us to relate the (X, a)-measures and
the annihilator X1- = [^ e M(S) : fg f dp, = 0 for all / e X}. If X =
A(5) (the ball algebra), then the next statement is Valskii's theorem (see
[Ru], 9.2). We can use the argument of Valskii in the general case (for
reader's convenience, we reproduce the proof here, since this result is given
in [Dl] without proof).

THEOREM 2.4. — Let p, be an (X, (r)-measure and e > 0. Then there
exists a function g e ^(a) such that ||p||i < ||/^||x- +£• and p, -go- C X^.

Proof. — First, we establish an auxiliary result.

CLAIM. — Let A be an (X, a)-measure and e > 0. Then there exists
an h C ^(a) such that ||/i||i < ||A|| and ||A - ha\\x- < e.

Put Ur = Pr[A], 0 < r < 1. It is sufficient to verify that lim ||A -
^r^llx^ = 0. (We can define h = Ur with r sufficiently large.) Assume that
the latter limit is not zero. Then there exist 6 > 0, rj —> 1 and fj G X,
11/jlloo < 1, such that

fj d\— fjUry da > 6 for all j e
J s/s Js
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By Fubini's theorem fg fur da = fg fr dX, thus

l /I/^O-^^Ol^C) ^6 f o r a l l ^ e N .
\Js

Define gj(z) = fj{z) - fj(rjz), z € B. Remark that gj(z) -> 0 for all
z C B\ hence, by Proposition 2.3, {gj}^ is a cr-sequence. Therefore, by the
definition of a Henkin measure, fg g^; dX —^ 0 as j —> oo. This contradiction
proves the claim.

00

Now choose £j > 0 such that e- ̂  EJ > e\ -\\^\\x- > 0. Put /^i = ^
J=2

and suppose, as induction hypothesis, that £ > 1, /^ is an (X, a)-measure
and ||/^||x- < £ ( . ' By the Hahn-Banach theorem ||̂  - p^\\ < ̂  for some
p^ € X-1. By the claim (with A = ̂  - /^), there exists a ̂  e ^(cr) such
that ||̂  ||i < ̂  and \\^-pt-g(,(T\\x- < ̂ +1. Define ^4-1 =^-p^-g^a.
Note that ^4-1 is a Henkin measure, so the induction construction proceeds.

00 00

Define g = ̂  ^-, then ^ e L^a) and ||^||i < ^ £j.
J'=i j=i

^ ^
We have p, = ̂ +1 + S pj + ̂  ^•a for every ^ € N, thus

j=l j=l

t 00

^-^=^+l+^pj- ^ ^^.
J=l J=^+l

Since pj e -X-1-, we obtain
00 00

\\^-9^\\x- < 11^+illx* + ^ ||^||i<^+i+ ^ ^-^0 as^-^oo.
j=^+i j=^+i

In other words [i — ga € X-1. D

Now we consider the ^-invariant subspaces of C(S). More precisely,
put X = CA(S) ={fe C(S) : spec(/) C A}, A c Z^_.

Let J<"A : L2(S) —^ L^(S) be the orthogonal (Cauchy-Szego) projec-
tion (as above, Z^(5) = {/ € ^(5) : spec(/) c A}).

DEFINITION. — Given a ̂  e L°°(S), the A-Hankel operator (more
precisely, the A-spectral Hankel type operator) V^ : L2(6') —^ ^(S) is
denned by the formula V^[f\ = ̂ K^f] - K^pf}.

Note that VA^ + Vz2 \A^ = 0-



706 EVGUENI DOUBTSOV

DEFINITION (see [D3]). — A spectrum A is said to have the Com-
pact Hankel property (we write A € (CH)) if V^ : C(S) -^ C(S) is a
compact operator for every polynomial (p on S.

PROPOSITION 2.5. — Suppose that A e {CH), p e M(S) is a
positive measure, the closed support ofp is S, and KA is bounded in L2^)-
norm. Then C^(S)u(p) = C(S).

Proof.— Let y be a polynomial and {fj}^ be a (CA^),?)-
sequence. Note that K^pfj} e C^(S), so the property ||̂ . -K^fj} \\^
^0 yields ^€CA(5Mp).

Assume that \\H^[fj}\\^s) 74 0. Since \\fj\\c(s) ^ 1 and A € (CH),
there exists a subsequence {jk}^ such that H^[f^} -^ g in 07(5') for
some g ^ 0. On the other hand fj -^ 0 weakly in L^p) and KA is I/2(p)-
bounded, thus H^[fj\ —. 0 weakly in I/2(p), a contradiction.

Recall that the Henkin algebras are closed, so the proof is complete.

D

For ^,FcZ+, define

A = A(^,F) = {{p,q) € Z-;. : g e £; or p € F}.

(A union of horizontal and vertical rays.)

COROLLARY 2.6. — Let E,F c Z+ be Alite sets, A = A(E,F) or
A = Z^. \ A(£',F). Suppose that ^ is a (C^( S), a) -measure and v < /2.
Then ^ is a (CA (5'), a) -measure.

Proof. — The property A{E,F) e (C^) is obtained in [D3]. So we
apply Proposition 2.5 and Proposition 2.2. D

COROLLARY 2.7. — Let A be as in Corollary 2.6. Suppose that
u. € L^) + C^S')-1- and v < ^. Then 1̂  € L^^) + ̂ (5)^.

Proof. — We apply Corollary 2.6 and Theorem 2.4. D

To finish this section, we give other simple examples of the Henkin
algebras generated by ^/-invariant subspaces.

Example 2.8. — For i <E Z+, put D(£) = {(p,q) e Z^ : p - q = i}.
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Let d be a prime number and
oo oo 0

A = |j D(£d), or A = |j D(£), or A = |j D{£).
£=-oo £=0 £=-OQ

Then C^S^a) = 0^(5).

Proof. — 1. Put A = CA(5')^(cr). Note that A is a ^-invariant
subalgebra of C(S). Since C^(S) is an algebra, we have C^(S) C A.

2. Assume that A (jL C^(S), then A = C{S) since C^{S) is a maximal
^-invariant subalgebra of (7(6') (see [Ru], 12.4.7 and 12.5.6). Fix a < € 5.
Let m^ be Lebesgue measure on the circle T^ = {A^ : A € T}. We suppose
that d > 1, so A^m^ € CA(S')-1-, A € T, for some k € Z. In particular, A^m^
is a Henkin measure. Since A == G(5'), Proposition 2.2 says that m^ is a
Henkin measure. On the other hand, take polynomials {/j}^i such that
fj C H{jj), /«) = 1, |/| < 1 on S. Then {/j}^i is a cr-sequence and
fg fj dm^ = 1 for all j € N. A contradiction. D

3. d-plh measures and d-Cauchy transforms.

Fix a d € Z+. Recall that a measure fJi € M(5) is said to be d-plh if
spec(/2) C A(d) = {(p, q) € Z^_ : (p - d)(q - d) = 0, p > d, q > d}.

First, we explain and establish integral representations for d-plh
measures in terms of the slice-measures (in the pluriharmonic case such
results are given in Chapter 5 of [A2]).

Convention. — Given an / € -^('S'), the standard "slice-integration
formula" has the following form:

f fda= { ( ( /(AC)dm(A))^(C).
Js Js \Jr /

Recall that pr : C71 \ {0} —> CP71"1 is the canonical projection and
o- = pr(cr). We rewrite the above equality as a Fubini type theorem. Namely

I f d < r = f ( f f^\)dm(\)) da(Q,
J S JCP"-1 \JT }

where f^X) == /(A^c), Ci ̂  0, ifpr(C) = $.v Ci /
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In a sense, we identify S and CP7^1 x T. Note that cr{C € S : Ci =
0} = 0, so such identification is correct from the measure theory point of
view (of course this is not true topologically).

Suppose that ^ € M(5), spec(^) c A, A c Z^., and u = P[/^], then

^^ Z^ A^(^ z<^
(p,g)eA

where /^pg e ^(p, ̂ ). Now we assume that ^ is a d-plh measure. Fix C, € S
and consider the slice function z^(A) = u(\(^), A e D, then we have

00

^W=W2d^W\2d ^ (^(OA^+^^OA^^IAI^CW,ZA,

p=d+l

where the harmonic function v^ is defined (in D) by the latter equality.

Let Z4.(C) =zt(rC), then
SUp ||nr||Li(5) = ̂ lim_ ||^||^i(5) < 00,

thus

/ lim ll(^)r||Li(T)^(0 <00.
JCPn~l r~>L~

In particular, ^lim_ ||(^)^||^I(T) < oo for a-a.e. $ e CP71"1. Therefore,

for a-a.e. ^ G CP71"1, there exists /^ e M(T) such that ^ = P[^] (the
Poisson integral in dimension one).

Since ||Pr[p]||i / ||p|| as r —^ 1- for every measure p, we have

IH|= / 11^11^(0.
JCP71-1

Let ^a be the absolutely continuous part of ^ and n* be the boundary
values of u, then ^a == n*(7. Analogously ̂  = ^?m when ^ is correctly
defined. So, by FubinFs theorem ||^a|| = f ||̂ ||. Therefore

(3-1) 11^11= / 11^11^(0,
JCpn-1

where ^s (^j) denotes the singular part of ^ (^).

Remark. — Given an / e 07(5'), classical properties of the Poisson
integral yield

/ fdji= lim / Urfda
J s r-"1- J s

' / ' (l^rkdm\da^)
Jcp"-1 \Jr /

== lim r^
r—^l-

= 1 (fudfi^d^).
JCpn-l \Jj ]
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Fubini's theorem provides the same integral formula for the absolutely
continuous parts, so we have also u8 = f ̂  da(^) in the above weak sense.

Now, we investigate so-called d-Cauchy projections. Define Hj(S) =
{/ e L^S) : spec(/) C {(p,d) : p € Z+}}, Hj(B) == {P[f} : f e Hj(S)}.
In particular, H^{B) is the Hardy class H2^). Let Q(^,C) be the
reproducing kernel for Hj(B) (in the point z € B). Then the d-Cauchy
projection

W(z)= /Q^Od^C)
Js'

is defined for all [L € M(S). Again, if d = 0, then we have the classical
Cauchy-Szego projection.

Our main object is Cd[p\ with d-plh /-A. Take a C € S such that /^ is
correctly defined, then

(3.2) Q^(AC) = IAI^C^KA), A CD.
Therefore, the boundary values Cd[/^]* exist cr-a.e., moreover, (3.1) leads
to an asymptotic formula of the Boole-Hruscev-Vinogradov type.

THEOREM 3.1. — Suppose that ^ is a d-pluriharmonic measure,
d e Z+, and ^s is the singular part of p.. Then

y^V a ^ e s : I^M(C)1 > y} = ll^ll/^.

Proof. — By (3.2), we have

a{C e S : IG^KOI >y}= f m{\ e T : |C7[^](A)| > ̂ }da(0.
Jcp71-1

If we consider the Cauchy projection C[p\ in dimension one, then the
formula under the question holds for all p € M(T) (see [HV]). Therefore,
by (3.1), the limit under consideration is equal to ||/^||/7r. D

Recall that Co(z, C) = (1 - {z, C))"71- If d € Z+ is arbitrary, then

c^ c) - E p^ (^ ̂  ̂  o- ̂  ̂ ))((c?') "''LI -
fc==0 V1 \ Z 5 C » / /

where P^ are polynomials (see Theorem 3.4 in [D3]). So the singular
integrals theory shows that the boundary values Cd[/^]* exist a-a.e. for
every ^ e M(S). Moreover, Q : M(S) —> L1100^) is a bounded operator.
In particular, y ' a {( € S : \ Cd [/](€) I > y} —> 0 as V —)' +00 fo1* every
/ e L^S). We write, in brief
(3.3) ^[L1^)]^00^).
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The latter observation and the Henkin measures technique give
Theorem A. In fact, the following statement is even stronger than the
second property from the definition of a singular set.

THEOREM 3.2. — Let I I s be the singular part of a d-plh measure
and v be a measure on S such that spec(z/) C Z^_ \ {(p, d) : p e Z+}. Then
/^-L^.

Proof. — Denote by V s the singular part of v. Let V s = ̂  + y^ be
the Lebesgue decomposition with respect to p,8.

Put X = C^q):qe^+}{S) and Y = C^\^{S) {as above, A(d) =
{(p,g) € Z^_ : (p - d)(q - d) = 0,p ^ d,q > d}). Since ^ < V s and
^ < /^, Corollary 2.7 yields ̂  € L^) + X1- and ̂  € L^) + Y-L.

The first inclusion and (3.3) provide Q[^] € L^°°(S). On the other
hand, the second inclusion and (3.3) give

y^v'a^ e s : I^I^KOI > v} = KIIAr-
Thus ||̂  | |=0. D

Remark. — Note that the singular sets have to be asymmetric: for
A C Z^., put A = {(g,p) : (p, q) e A}. Assume that A H A is finite, then A
is not singular. Indeed, if ^ e M^(S), then /7 e M^ \^(5).

Moreover, suppose that E, F C Z+ are finite, E H F = 0 and
A = A(E, F) = {(p, g) e Z^. : 9 e E or p C F}. Then, by Corollary 2.7, we
have MJ[(5) C M .̂

4. Riesz products.

In this section we give a construction based on the Riesz product
idea. This construction yields examples of positive singular d-pluriharmonic
measures discussed above. Moreover, we can force the corresponding slice
measures to have large supports. As a corollary, we obtain peak sets (for the
ball algebra A(5)) of maximal Hausdorff dimension (see Subsection 5.3).

Recall that the classical Riesz product on the unit circle T is

H^ (akZ^ akz^\
^ := —)- + 1 + -.- . ^ e T, |afc| < 1, j^/jk > 3.

k=i^ z 2 ^
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ZygmuncTs theorem (see [Z]) establishes the following dichotomy:
00

(i) if ^ |afc|2 = oo, then u. is singular (with respect to m);
k=i
00

(ii) if ^ \a,k\2 < oo, then p, < m and dp./dm e L^T).
k=l

We are looking for Riesz type products on the complex sphere
which are not absolutely continuous. So it is reasonable to substitute the
characters z^ by polynomials of the Ryll-Wojtaszczyk type (see [RW], see
also [A2] and [D3] for the non-holomorphic case):

DEFINITION. — We say that {Rj }̂  is an RW-sequence (on a level
d € Z+ and with a constant 6 € (0,1)^ if Rj e H(j,d), \\RJ\\L^(S) = 1>
and \\Rj\\L2^s) >. 6 for all j € N.

There are two obstacles for a pluriharmonic Riesz product construc-
tion on the sphere:

1. If P is a polynomial and IIPllL00^) = ll-Plli^s), then P = const
(see [D3]). In other words, there are no -RW-sequences with the constant
6=1.

2. The multiplication rule for the spherical harmonics: If / e H{p^ q)
L

and g € H{r^ s), then the product fg is in ^ H(p + r — £ ^ q - ^ - s — £), where
^=o

L = min(p, s) + min(g, r).

If we do not bother about the second obstacle, then we have the
following "standard" analogue of the classical construction.

DEFINITION. — Let R = {Rj}^ be a Ryll-Wojtaszczyk sequence,
J = {jk}^ C N, ji > d, jfc+i/jfe ^ 3, and a == {a^i, |afc| < 1. The
standard Riesz product II(^, J, a) is defined by the formal equality

WJ,a)=f[(a^+l+a^Y
fc=l v /

i

We write 11̂  (J?, J, a) or 11̂  for ]~[ , and sometimes Rk for Rj^.
fc=l

Fix a polynomial P on 5'. Since jk+i/jk > 3, we have

spec (II^+g — 11̂ ) D spec P = 0 for all q € N if £ is sufficiently large.
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Remark also that 11̂  > 0 and ||II^||^i(5) = 1. Therefore, the products
II^(jR, J, a)a converge weakly* to a probability measure (we use the above
symbol II(.R, J, a) for this limit).

Fix a C € 5. Clearly the slice product II(.R(AC), J,a), A e T, is the
classical Riesz product on T based on the pair ({ajcRjk (C)L {Jk~d}). Often
this observation reduces a problem about standard Riesz products on the
sphere to that about classical Riesz products. However, the spectrum of a
standard product is quite far from being d-pluriharmonic. So we move to
the main objects of the present section.

4.1. d-pluriharmonic Riesz products.

Put PLHj{S) = {/ € L2^) : spec(/) C A(d) U {(0,0)}}. Clearly,
/ € PLHg(S) if and only if P[f] is a plh function. Let K = Kd : L2^) -^
PLH^{S) be the orthogonal projection (often we omit the index d, if there
is no confusion). Given a polynomial y? on S (a symbol), recall that the
corresponding A(d)-Hankel operator is Hy[f] = ^K[f] -K[(pf], f e ^(S").

Remark that Hy : C(S) —> C(S) is a compact operator (see [D3]; we
used this property in the proof of Corollary 2.6). Therefore
(4.1) ll^to-O if /,eC(5),||/,||c(^l,

and fj —>• 0 weakly in L2 (S)
(compare with Proposition 2.5).

The last observation leads to the notion of a d-pluriharmonic Riesz
product. Our definition is a variant of the ^-argument, 0 < p < 1, given
in [Al]; a similar construction (based on a bounded orthonormal basis in
the Hardy class H2^)) is also outlined in [B2].

DEFINITION. — Let {Rj}^^ be an RW-sequence on the level d and
a = { a f c } ^ i C P (note that \dk\ = 1 is not allowed now and the index set
J is not given a priori).

Step 1. — Fix ji > d and put (p\ = 1 + Re(ai^J > 0.

Step k + 1. — Suppose that a d-p\h polynomial y?fc, (pk > 0, is
constructed. For i >, 3jk^ put

^iW : = K (^[1 + Re(afc+i^)])
= <^[1 + Re(afc+i^)] - ̂ [Re(afc+i^)].
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Since (pk > 0, ||^||c(5) ^ 1, and R(, -> 0 weakly in 1/2(5') as £ -^ oo,
we have (pk+iW > 0 for all £ € N large enough. Fix such an £ and define
jfc+i = ̂  ^+i = ^fc+iW-

Now the induction construction proceeds.

As in the standard case, given a polynomial P, spec(^+^ - ̂ fc)n
specP= 0 for all £ € N if A; is sufficiently large. We have also ||^fe||Li(5) = 1,
y?fc > 0, so (pkO-—>TT for some probability measure TT. The measure TT =
7r(^?, <7, a) (here J = {jk}^) is said to be a d-plh (or just pluriharmonic)
product based on the Riesz pair (R,a).

Given a polynomial sequence R = {Rj}^ and a sequence of unitary
operators (on C71) U = {Uj}^ we put R o U = {Rj o Uj}^.

THEOREM 4.1. — Let (R,a) be a Riesz pair. Then
00

(i) if ^ \ak\2 < oo, then all pluriharmonic Riesz products based on
k=l

(R, a) are absolutely continuous with respect to a;
00

(ii) if ^ \ak\2 = oo, then there exist an index set J C N, a sign
k=l

sequence (3 = {AJ^i, f3k e {±1}, and a sequence U = {Uj}^ of unitary
operators such that 7r{R o U^ J, (3a)-La.

Proof of part (i). — Given a triple {R,J,a), a e ^2, we claim that
7v(R,J,a) C L2^). Indeed, let n^.J.a) be the corresponding standard
Riesz product. Note that (^+1 = ̂  + K [(^Re(aA;+i.R^J], so we have
the estimate

IK+i|li2(5) = ll̂ lll + 11^ [^Re(afc+iJ?^J] |||

< l l^l l i+ ||^Re(a^i^)||| ̂  iin^iin.
On the other hand, let Hpq denote the H(p, 9)-projection of II. Then

l|iW||i<||n||i= ^ ||n,j|i<i+f^^ ^ f[a^
(P,9)€Z^_ *=1 ' fc^^GN ^=1 2

<l+exp ^|a,|2

which proves (i). D

To establish part (ii), we will need a known result about Fourier series
of the measures with a lacunary spectrum. Given a measure p, € M(T), put
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k

Sk[p\W= E AO')^-7', A eT (the A;-th Fourier partial sum). Define alsoj=-k

^^o^'^)' A e T '
if the latter limit exists. Recall that Vfi{\) = /(A) for m-a.e. A C T, where
fa is the absolutely continuous part of /^.

LEMMA 4.2 (see [Z], Chapter 3, Theorems 8.1 and 1.27). — Assume
that ^ e M(T), jk / +00, and fi(j) = 0 for all \j\ e (^, 2^], k € N. Then
^k M(A) -^ ^(A) for m-a.e. XeT ask-^oo.

Now, we are ready to investigate the singular pluriharmonic Riesz
products.

Proof of Theorem 4.1, part (ii). — We have El^l2 = oo and
proceed as in the definition. So on the step k + 1 we assume that a d-
plh polynomial ̂ , (pj, > 0, is constructed. Let £ ^ 6jfe.

Given a polynomial h <E ^(p,g), p ^ 9, we have || Reh\\L2(s) =
I I Im/i||^2(5) because || Re^||^2(T) = || Im/iJI^^) for all < c 5'. Therefore,
by the ^TV-property, we can assume that

/'^(afc+i^da^lafc+il2
Js

with 7 > 0. Given f,g e ̂ (5'), we have

/ [ f ' ( g o U ) d a d U = { fda f gda^
Jy Js Js Js

therefore, we can choose U^ € U such that

I ^/2 [Re(ak^R, o U^)]2 da > f ̂ da { [Re(a^i^ o U^)]2 da.
" s J s J s

Remark that (1 + a;)1/2 + (1 - a;)1/2 ^ 2(1 - a;2^) if |a;| ^ 1, thus

y(^ /2[l+Re(a,+Ao^)] l /2

+ y^2 [1 - Re (afc+ifi, o U^)]1/2) da

<2/^2fl-[Re(afc+l^o^l)]2La
75 \ 8 )

< ' ) ( • { ^\ak^i\ f 1/2 ,<.2(1-——^)J^ da.
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So we take (3^ e {±1} to ensure that

/ ̂  [1 + Re (^a^Re o U^}}1/2 ̂  <; fl - ̂ ak-^\ f ̂ da.
J s \ ° / Js

Define

(4.2) ^iW = K (^[1 + ReG^a^A o ̂ i)]).

Then K+i(^) -^[l+Re(^+iafc+i^o^)]||^^ -^ 0 as ̂  oo.
Therefore, for alU € N large enough, we have ^fc+i(^) > 0 and

(4.3) / ̂ (,) ̂  (l - ̂ -^) / ̂ /2 da.
^5' \ io / Js

Fix such an i and define ^+1 = £, Uj^ = U^, (3^1 = /^+i, and
(pk-^-i = ̂ fc+i(^). Now the induction construction proceeds.

We claim that the resulting measure 7r{Ro U, J, f3a) is singular. First,
remark that TT is a positive d-plh measure, so the slices TT^ are defined for all
$ C CP71"1. In fact, we can use also the Riesz product nature of TT to obtain
the same family of slice measures. Indeed, for 0^5', put (y^L (A) = ^(A(^),
A € T, £ e N. Then the sequence {(^c)^m}^ converges weakly* in M(T)
to a probability measure.

Fix a $ € CP71"1. We have j^+i > 6jk in the above construction,
therefore, 7t^(j) = 0 for all \j\ e (2^,4j'fc]. Thus, Lemma 4.2 gives
(^)fc (A) = ̂ WW -^ ̂ W for m-a.e. A e T.

On the other hand, ̂  |a/c|2 = oo, thus ̂  -^ 0 in Ll/2(5') by (4.3).
Since ^fc(C) converges for cr-a.e. ^ e 6', we obtain ̂  ̂  0 cr-a.e. In other
words, for a-a.e. ^ C CP71"1, PT^(A) = 0 for m-a.e. A e T. Therefore TT^ is
singular for almost all $ e CP71"1. So TT is singular. D

In the next subsections we obtain singular d-plh products with some
special properties. In the corresponding constructions we always assume
that the following restrictions hold.

General restrictions on the step k + 1. — We assume that a $? £2,
Ok 7^ 0, and proceed as in the plh definition and in Theorem 4.1. Namely, we
choose unitary operators U^ and signs (3^ such that the estimate (4.3)
holds for the rf-plh polynomial </?fc+i(^) defined by (4.2). Often we abuse the
notation and omit these auxiliary sequences U and (3 in the corresponding
equalities.
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4.2. Small H(p, ̂ -projections.

As indicated in the title, we are going to control the size of TTpd and
TI-dp, P € Z+.

Put, as in the definition, (po = 1, ^ = a^R^/2 + 1 + ai^/2.
Let k e N and let ^ = ^ /^(p) be the homogeneous expansion (here

pez
A(p) € ^(p,d) if p - d € Z+, and /fc(p) € ^(d, -p) if -p - d € Z+).
We suppose, as induction hypothesis, that ||A(p)||c(5) < \ak\ < 1,
(p, d) € spec((/^) \ spec(^-i) (clearly, this estimate holds for k = 1).

Step k + 1. — Define, as in (4.2),

^fc+iW = ̂  + K [^(a^+i^ + afc+i^)] /2

(we abuse the notation and omit U and /?). Since the ^(p, ̂ -projections
of (pk are symmetric with respect to the diagonal {p = g}, it is sufficient
to investigate the projections K [ak+ifk(p)Re] /2, p € Z. By (4.1), for all £
sufficiently large, we have

(4.4) \\a^iK[fk(p)R,]/2\\c^ ^ \\a^ifk(p)R^c(S) < |a,+i|

for all p e Z (of course |p| ^ 3^/2). We fix ^ so large that (4.4) and the
"general restrictions on the step k 4- 1" hold. By definition j^i = £ and
(pk+i = ^fe4-i(^ thus, for 0 ̂  p ^ -3^/2,

IIA+iOfc+i +p+d)||c(5) = ||afc+i^ [A(p)^J /2||c(5).

(Ifp > 0, then the above equality holds for A+i(jfc+i +p - d).) Therefore
jl/fc+i(g)||c'(^) < |^+i| ^ 1, (9,d) e spec(^+i) \ spec(^), and the
induction construction works. Q

We take the projection on PLHj(S) on every induction step, there-
fore, the slice measures are not exactly the classical Riesz products (as it
was in the standard construction). Nevertheless, (4.4) guarantees that the
situation is sufficiently close to the classical one.

00

In particular, take a sequence a such that ^ [a^l2 = oo and a^ —^ 0,
A;==l

then the above modification yields an ^-version of MenchofTs example on
T (see [M]).

COROLLARY 4.3. — There exists a probability singular d-plh mea-
sure p, e M{S) such that \\p.pq\\L-(s) -^ 0 as p + q -^ oo.
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Remark. — Put o,k = 1/2 for all k C N, then it is possible to ensure
||/A;(jfc)||2 > 7 for some 7 > 0. So we obtain a probability singular d-plh
measure ^ C M(5) such that \\^d\\L-(S) > \\^dh^s) > 7.

If we consider arbitrary measures, then define fi = 6^ (the Dirac
measure at the point < € S). Recall that Kpq{z, w) denotes the reproducing
kernel in H{p, q), therefore l^pq(z) == Kpq(z, C) and the family {||^pJ|L2(5) '•
(p^q) C Z^_} even is not bounded.

4.3. Maximal Hausdorff dimension and symmetric measures.

Let TT be a singular pluriharmonic Riesz product. Then the slices TT^
are singular for almost all ^ € CP71"1. We are going to show that this
fact is compatible with properties of an opposite nature. More precisely,
we obtain TT^ which are supported by sets of maximal Hausdorff dimension.
Moreover, we construct a singular TT with uniformly symmetric slices.

The following lemma is well-known (see, for example, [P], Lemma 2.1).

LEMMA 4.4. — Suppose that I C T is an interval and m(I) is the
Lebesgue measure of I . Let ji be the classical Riesz product based on a pair
({jk}^a),then

|/.(J)-m(J)|<2||a||oo/ji.

Since the d-plh Riesz products are not products, our variant of the
above lemma is more sophisticated.

For TT = 7r(^,J,a), define TT^ = Tr/^p, where y?p, (pp > 0, is the
polynomial from the plh definition. Put also gk == 1 + Re{/3kCikRjk ° Uj^)

00

and II^ = ]~[ gk (a tail of the standard Riesz product).
fc=p+i

LEMMA 4.5. — Let a ^ £2, ||a||oo < 1/4, and Ep € (0,1). Then there
exists a singular d-plh Riesz product TT = 7r(J?, {jfc}^=i,ft) such that the
following property holds for every $ € CP71"1: Let I C T be an interval,
then

\^\I)-m(I)\^£pm(I)+l/j^

for all p e Z+.
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Proof. — For (q,p) e Z^., fix e(q,p) > 0 such that f; e(q,p} < £p

fo ra l lpeZ+. 9=p+l

We proceed as in the general scheme. On the step k + 1 we use (4.1)
and impose the extra restrictions (recall that (pp > O):

(4.5) ^fc+i - ̂ fc^fc+i
^p < £(A;+l,p) for all? < k.

We claim that the resulting measure TT = 7r(R o U, J, /3a) satisfies the
conditions of the lemma.

Indeed
.(P)/^(J)-m(J)|< ^(J)-n^(J) + n^(J)-m(J) ^X^^.^)/

Since n^ is a classical Riesz product, Lemma 4.4 yields the estimate
2X2 ^ l/.7p+i. Now we claim that, for all p and k,

XW^f ̂ -f[9^ dm<eMl)+(2j^)-1).
J i rP ^_ie=i

(Note that the above estimate gives Xi < £p(m(J)+(2^+i)-1) and finishes
the proof.)

We have
fc—i ,. i ^_i

X ( r ) k} < V^ / ^p+fc-^ - ̂ p^k-e-igp^-k-e -n ,(p' ^^Al"——^—— n^-.^
J=0

k-1

"s/^O'77

Vi^^m.

By (4.5), we have \\Y^ < e(p+k-^p). Since Y^ is a finite Riesz product,
Lemma 4.4 yields ̂  Y^ dm < m(Z)+(2jp+i)-1. By the definition of^(g,p),
the proof is complete. Q

Now, we give a direct proof of Theorem B.

Proof of Theorem B. — On the step A;+1 we repeat the construction
of Lemma 4.5 with Cp = 1/4, p e Z+. Moreover, we ensure that

(4.6) 2^+1 > ̂  > 2-^-1

(we can apply (4.1) since |aA;+i| < 1/4);

(4-7) k(\ogjk)-1 -. 0 as k -^ oo.
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We claim that the Riesz product 7r(R o U, J, f3a) solves the problem.

Fix a $ € CP71"1 and put ̂  = ((pk)^ TT = 71 .̂ Suppose that I c T is
an interval, 2/jk+i < m(I) <, 2 / j k .

By definition 7r(J) = fj ̂  d^, so, by (4.6)

log7r(J) - logTr^J) < max|log^fc(C)| < const k.

On the other hand, m(I)jk-^-i > 2, therefore, Lemma 4.5, with
Ck = 1/4, provides |7r^(J) - m(J)| ^ 3m(J)/4. Hence

log TT^ (J) - log m(J) < const.<

In sum, we have |log7r(J) — logm(7')| < const k. Recall that l/m(I) >,
j k / 2 , thus, by (4.7)

log7r(J) , const k const k
.———77T - 1 ^ -n———T-FTT < -.—7——^ -^ 0 as k -^ oo.logm(J) |- |logm(J)| - log(jV2)

So (see, for example, [Bi]) TT = 7r^(RoU, J, /3a) is supported by a set
of Hausdorff dimension 1. D

Finally, we obtain even more interesting example and construct a sin-
gular symmetric plh product (an analogue of the symmetric classical Riesz
product obtained in [AAN]). Such a measure promises multidimensional
generalizations of the results given in [AAN].

DEFINITION. — A positive finite measure p, G M(T) is said to be
symmetric if

^) - 1 as m(I+) = m(J_) ̂  0,

where 1-^- and I- are adjacent intervals.

It is well-known and easy to see that every symmetric measure
IJL € M(T) lives on a set of HausdorfF dimension 1, so we have Theorem B
again.

THEOREM 4.6. — There exists a probability singular d-plh measure
IJL such that ̂ , $ e CP7""1, are uniformly symmetric.

Proof. — Fix a sequence a ^ t2 such that ||a||oo < 1/4 and dk —> 0
(the latter property is crucial).
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On the step k + 1 of the induction construction we impose the
restrictions from Subsection 4.2 and Lemma 4.5 with Ep —^ 0 (i.e. the
general restrictions, (4.4), and (4.5) hold). Moreover, we ensure that

W 1 + 2|^+i| > ̂ +i/^ ^ 1 - 2|afc+i|
(we apply (4.1));

(4.9) ^jk/j^i -^ 0 as k -^ oo.

Our example is the Riesz product 7r{R o £7, J, f3o).

Fix a ^ € CP71"1 and put (pj, = (^k)^ TT = TT^. By (4.4), we have
|TT(^)| ^ 1 for all i e Z, therefore

^ |^-i(^)| ^ const 3^ and
(4.10) ^z

max|^_i(^)| ^ const 3^-i.JLJLAO)-<\.

^eT

Now we suppose that J+ U J- = 7, 1/jfc+i < m(J) < 1/jfe.

Since m(J) < 1/j'fc, the estimates (4.8-4.10) provide

max\\og^-i(z) -log^-i(w)| < m^)111^71^-11

^,^eJ 'mmji^-il

< const ——7fc-1 -^0.
^ 2-^

Since a^ ̂  0 , this fact and (4.8) yield

(4.11) max log (^+i - minlog^+i —^ 0 as k -^ oo.

On the other hand, m{I)jk^i > 1, so Lemma 4.5 and (4.9) give

^+D(J) _ ^(J)| < ^(J)^+i + 1/^+2 = o(m(J)).

Recall that 7r(J) = ̂  (pk+i d^^, therefore, we obtain

7r(-4) = ^+i(C±)(m(J) + o(m(J))), where C± € J±.

Thus, by (4.11), we have
7^(J+) i _ ^(^)^+i(c+) . , . - , . .
—/ r \ ~ 1 — —m————77—^ — 1 + °(1.) —^ 07r(J_) m(J)^+i«_) v /

as m(I) —>0. Q
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5. PEAK, INTERPOLATION AND NULL SETS

We apply the results about M^(S) to the study of the sets mentioned
in the title of the section. As usual, we identify X C ^(S) and X(B) =
{?[/]: / e X}.

DEFINITIONS. — Let X C C(S) be a closed subspace and K C S
be a compact set.

We say that K is an (N)-set (a null set for X) if \^\(K) = 0 for all
p. € X1- (as above, X1- = [p, € M(S) : fg f dp. = 0 for all / € X}).

K is a (PI)-set (a peak interpolation set) if given a g e C{K), g ^ 0,
there exists / e X(B) with f\p =9 and \f(z)\ < \\g\\K for z € ~B \ K.

K is a (P)-set (a peak set) if the previous property holds for g = 1.

K is an (I)-set (an interpolation set) if X \K = C(K).

In the classical case of the ball algebra A(S) = {/ € C(S) : P[f} is
a holomorphic function} the above properties are known to be equivalent
(see [Ru], Chapter 10). Moreover, a smooth manifold M C S has these
properties with respect to A(5) if and only if M is complex tangential.

Other classical ^-invariant space is PHC{S) := {f € C(S) : P[f] is
a pluriharmonic function}. PHC{S) is not an algebra, so the situation is
more complicated. For example, given a simple smooth curve 7 C S', the
restriction PHC{S) |/y is a closed subspace of finite codimension in C{^)
(in other words, 7 is a set of almost pluriharmonic interpolation, see [AB]
and references therein). On the other hand, a smooth manifold M C S of
dimension at least two can be a set of almost pluriharmonic interpolation
only if M is complex tangential (see [RS]). Finally, the Henkin-Cole-Range
theorem implies that (7V)-sets for PHC(S) and A(5') coincide (see [D3]).

The principal objects of the present section are the spaces A^(S') =
{/ € C(S) : spec(/) C {(p,q) (E Z^_ : k >_ q >. £}}, k,t € Z+, k > L In
particular, Aoo(S) is the ball algebra.

5.1. Equivalent properties for A^(5).

The spectrums ofA^(S') and A(S) have a similar geometry, therefore,
it is reasonable to expect that A^(S) inherit some properties of A(5). In



722 EVGUENI DOUBTSOV

particular, Ako(S) are modules over the algebra A(S) and permit a natural
description in terms of iterated 9.

However, it is easy to see that (P) ̂  (TV) for Ako(S), k > 1. Indeed,
put ei = (1,0,. . . , 0) € S and Ti = {Aei : |A| = 1}, then Ti e (P) for
Ako(S) (consider the function f(z) = (1 + zi^i - z^)/2). On the other
hand, Ti ^ (TV) for Ako(S).

So we introduce a variant of the property (P).

DEFINITION. — Let X c C{S) and K c S. We write K e (SP)
(a strong peak set) if there exists a sequence {fj}^ C X(B) such that
fj\K =1, |/| <1 onB, andl> \fj\-^ 0 on S\K.

Remark. — By Bishop's and Glicksberg's theorems, we have (N) =^
(SP) for any X C C(S) (see [D3]). Note that there exists a unitarily
invariant function algebra A with (5'P) ̂  (TV). Indeed, put A == CA(S'),
where A = {(p, q) e Z^_ : p > 9}, then Ti e (5'P) \ {N) for A.

Now, we have the following equivalences.

PROPOSITION 5.1. — Let k,£ e Z+, k > £, then (N) ̂  (SP) for
Ake(S); moreover, (7v) o ( P I ) ̂  ( I ) ̂  (SP) for Ako{S).

Proof. — Let K e (5'P) for Ake(S). We claim that K e (TV).

First, assume that a(J<T) > 0. Note that K ^ S, so we have
(1 - /) \K = 0 and 1 - / ^ 0 for some / e A^(^). Since spec(l - /) C
{(p, g) € Z^. : A; > 9}, the inverse part of the F. and M. Riesz type theorem
(see [Br]) yields a < (1 - f)a. A contradiction.

Now a(K) = 0. By the (^Redefinition, take a sequence {fj}^ C
A^(S) such that fj = 1 on K and 1 > \fj\ -> 0 on S\K. Let IJL e A^(S)1-
and p,s be the singular part of p,. By Corollary 2.7, there exists ^ e I/^o-)
such that l^^l - ga e Ak^S)^-. Since fj -> 0 cr-a.e., we have

/ fj d\p,s\ = \ fjgda -^0 as j -^ oo.
Js Js

On the other hand, fg fj d\p.s\ -> \P's\{K), thus \p.s\{K) = 0 and \^\{K) = 0.
In other words (SP) ̂  {N) for A^{S).

Since the implications (TV) <^> (PJ) <^> (J) for AA;o(Sf) are established
in [D2], the proof is complete. Q
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5.2. A-Cauchy transforms of measures on smooth curves.

In this subsection we use the approach of Nagel [N] to characterize
the smooth (TV)-sets for Ako{S). This method is based on the investigation
of the Cauchy type integrals.

For A C Z^, denote by K^{z, C) the reproducing kernel for the Hilbert
space L^{B). Clearly, K^{z,') G C(S), z e B, therefore, the A-Cauchy
transform

KMz)= ( ̂ ,0^(0
Js

is defined for all [L € M(S).

The following observation is standard.

LEMMA 5.2. — Suppose that K^[p\ e L\(B). Then p, - ho- e
CA(S)1- for some h € L1^).

DEFINITION. — Let ( j ) : [0,1} —^ S be aC1 curve. We say that (/ ) is
nowhere complex tangential (NCT) if there exists e > 0 such that

|(^),^'(t))| >e for all te [0,1].

Remark. — The tangent to a curve (f) is in the complex tangent space
to S at (f)(t) if and only if {cj)(t\ ̂ (t)} = 0.

A smooth manifold M C S is said to be complex tangential if the
real tangent space to M at ^ is in the complex tangential space to S at ^
for all C e M. Note that if M is not complex tangential, then there exists
a NOT curve 0 : [0,1] -^ M.

LEMMA 5.3. — Let E,F C Z+, max{E U F} = k, and A ==
A(^,F) = {(p,q) € Z^_ : q G E or p € F} (a finite union of rays). Let
g e C^^O, 1] be a function with compact support on (0,1) and (f) be a
nowhere complex tangential C^2 curve. Suppose that a measure ^ € M(S)
is defined by the equation

f fd^i = f f^(t))g(t) dt for / e C(S).
Js Jo

Then K^} e L\(B).

Proof. — Given an x G [0,1], there are neighborhoods £4 C [0,1]
of x and Vx C S of (f){x) such that if t e ~Ux and C e Va;, then <^(t) e Va;
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and |(C, 0^))| > e /2 . Let {Uj}^ be a finite subcover of {^}, let ^ c *9
correspond to Uj, and let {hj}^ be a C00 partition of unity subordinate
to {^-}^i. Put g,(t) = h,{t)g(t), t e [0,1].

We consider the case A = A({A;}, 0) (the only ray). Define F = K^[p],
then

N .1

^K) = E / ^A« <^))<^) dt, c e 5, o ^ r < i.J=l</0

It is sufficient to verify that

sup / I^K)^ da(C) < oo for some p > 1.
0^r<lJs

(Then F = P[F*] for some F* e L^(S), in other words, F e L? (B) C
L\(B).)

Recall that

K^z, w) = ̂  ̂  (., J, (., w), (w,.)) ((w' ̂  - ̂ 2^.
^=0 (1 - (^^))

where P^ are polynomials (we used this fact in §3).

If C e S\Vj, thenj^A^C, ̂ (fi)gj(t) is bounded uniformly with respect
to r e [0,1) because (f){Uj) c Vj and supp(^) c Uj. So we have to estimate
the j-th integral when C G l^. Now fix a j and omit it in the notation.

Put z = rC and consider the integral of the £-th summand in the
expansion of the kernel K^(z, (f)(t)). We have

^-^•^ '̂-'̂

<•! ( 1 ^ ( 4 \ y\ |y |2\^
1^1 \ z ' \

'r.̂ --.̂ 2'',̂ ]̂̂ ,
- />1 d- rp.0 ̂  wt) z})] «^)^)-ki2)' gffl^^ „ ̂  (.,..., wt),.))] (i.^^-î ^
- /"^m ^^o(^)'^-l"12)'"1 gffl^^^^^(i-^,^)))—^^))

:=7j+/l+^.

Since 5 is compactly supported on (0,1), the integration by parts
yields

-ziK) = ^1^ (^'^-r2)' ^ f ^) 1 „
Yo ' (l-(rC,^)))"^-1 d*[«^))J
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Let r > 1/2. Since ^ € V, the derivative in the above integral is
bounded, so FubinFs theorem gives

fWW\'^) ,c,n^^^ ,̂

Let (n — l)p < n. Since \{rj^rQ — r2\ < |1 — {r^rj}\, the last integral
is bounded as r —> 1— (see [Ru], 1.4.10).

The integral Jj is even simpler. To estimate If, we put

^'^wr
P^W^}?,0

and continue the integration by parts. After the £-th integration the
corresponding integral is absent. D

PROPOSITION 5.4. — Let k e Z+ and let M C S be a real
submanifold of class C^2. Then every compact set K C M is an (TV)-set
( ( P I ) , ( I ) , or (SP)-set) for Ako(S) if and only ifM is complex tangential.

Proof. — Suppose that M is not complex tangential, then there is
a NOT curve 0 : [0,1] -^ M of class C^2. Take g € C^^O.l] and
define a measure p, € M(S) as in Lemma 5.3. By Lemma 5.2, we obtain
p. - ho- e Afco^)-1 with h € ^(cr), hence | p,\ {(f){ [0,1])) == 0 (remark that
cr(0[0,1])) == 0). A contradiction.

Clearly, the above argument works for all sets A considered in
Lemma 5.3.

On the other hand, if M is complex tangential, then every K C M is
an (TV)-set even for the ball algebra A(S). D

5.3. Pluriharmonic measures and (TV)-sets for A^*?).

Put Mo(S) = [p is a probability measure on S such that fg f dp =
/(O) for all / 6 A(B)}. It is well known that K e (N) for A(S) if and only
if p(K) = 0 for all p e Mo(S). In the proposition below (which is, probably,
of independent interest), "pluriharmonic" means "0-plh".
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PROPOSITION 5.5. — Suppose that [t is the singular part of a
pluriharmonic measure. Then there exist compacts Kj € (N) for A(S)
such that

\ ^ [ S \ [ J K , \ =0.
V ^=1 /

Proof. — Let ^ = u^o, + ^s be the Glicksberg-Konig-Seever decom-
position of ^ with respect to the set of representing measures Mo(S) (for
this Lebesgue type decomposition see, for example, [Ru], 9.4.4). So ^a ̂  ^
and fJia <^ po for some po € Mo{S). By Theorem 3.2, we have l^-Lpo, thus
/^-L^o? hence u.a = 0- In other words, p, is concentrated on a Borel set E
such that p{E) = 0 for all p C Mo(S).

So take compact sets Kj C E such that \p,\{Kj) > ||^|| — 1/j. D

Since singular plh measures do exist, we have

COROLLARY 5.6. — There exists a compact set K C S such that
K € (AQ for A[S) but K i (N) for all A^{S), k ̂  i ̂  1.

Remark. — Recall that (TV)-sets for PHC(S) and A(S) coincide. It
is interesting to compare this fact, Proposition 5.4 and Corollary 5.6.

Finally, note that Theorem B and Proposition 5.5 give an alterna-
tive proof of Henriksen's theorem about peak sets of maximal Hausdorff
dimension (the original proof is based on more geometrical ideas).

COROLLARY 5.7 (B.S. Henriksen [He]). — There exists a compact
set E C S of Hausdorff dimension 2n - 1 such that E is a peak set for
A{S).

6. FINAL REMARKS

1. Every probability singular d-plh measure with d > 0 is a quite
exotic example of a representing measure for the ball algebra. (Classical
elements of Mo{S) live on unions of smooth manifolds.)

2. It is not clear how to construct (if possible) a d-plh measure fi
such that /^, ^ G CP^^ are supported by small sets (in the sense of the
Hausdorff dimension, for example).
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3. Theorem A motivates the investigation of the Riesz type products
with spectrum in A(d), d € Z+. On the other hand, if A C Z^_ is
arbitrary, then it is not clear what is the A-Riesz product. First, we need
the ^TV-polynomials with spectrum in A. Second, there is a lot of sets
A without CH -property (see [D3]). Finally, often the multiplication rule
for the spherical harmonics breaks the Riesz product idea (consider, for
example, the diagonal {(p,p) € Z^_}).
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