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INVARIANTS OF FOUR SUBSPACES

by G.W. SCHWARZ and D.L. WEHLAU

Introduction.

1.1. — Our problem is to determine the invariant theory of four
linear subspaces of a fixed vector space V (everything over C). This is
related to the problem of classifying r-tuples of subspaces of vector spaces.
The latter problem (in the representation theory of quivers) is known to
be "tame" if r < 4 and "wild" otherwise; for example, the determination of
the normal pairs o f n x m matrices (see [GP], [BGP], [Kac]).

1.2. — Let A ; i , . . . , fei be integers between 1 and n — 1, inclusive, and
let k denote one of the ki. A ^-dimensional subspace of C77' corresponds
to an element of the projective space P(D^), where Dk denotes the set
of decomposable elements of A^C71). We are interested in the SLn-orbit
structure of P(D^) x • • • x P(D^), which one easily obtains from the
SLyi-orbit structure of X : = D^ x • • • x D^. The SLyi-variety X is the
basic object of interest.

Note that the quotient of the (SLn x SLfc)-module C71 (g) Ck by the
action of SLk is just Dk (see 2.1). Thus (X, SLn) is a quotient, as follows.
Set H = SLfc, x • • • x SLfc4 with its natural action on W : = C^ C • - • C C^4.
Set k: = (A ; i , . . . , k^) and set G: = SLn x H with its natural action on
V : = V(n,k) = C710 W. Then (X, SLn) is the quotient ( V / / H , G / H ) . The
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orbit structure of (V, G) determines that of (X, SLyi), so we concentrate on
the former case. Set

6: = 2n - A;i - • • • - A;4 (the defect),

g:= dimqx]81- = dimC^.

Unless we are doing a numerical example or otherwise specified, we assume
that

k\ <k-z <k^ <^ A;4.

1.3. — We first determine the closed orbits of (V, G); equivalently, we
determine the algebra C^]0 or the categorical quotient V//G. It is more
difficult to find the orbit structure of the fibers of the quotient mapping
TT: V —>• V//G. Classically, this has been done by using certain covariants.
A covariant is just an element of an isotypic component of C[V}. While
we do not determine the orbit structure of the fibers, we do show that
the covariants have a very nice structure: they are (almost always) a free
(G-Cpl^-module. We then say that (V, G) is cofree; equivalently, V//G
is an affine space and TT is equidimensional. We determine the principal
isotropy group of (V, G) in the important cases (including the coses 6=0,
q>_2). This allows us to completely determine the structure of C[V} as a
(G-C[y] ̂ -module [Sch2, 1.1] (but not as a graded (G-C[y] ̂ -module).

1.4. — The dimensions (n,k) and representations V(n^k) occur in
series (obtained via castling 2.2). Eventually the elements of the series are
either all cofree or all not cofree, but some series take longer than others
to "settle down". Among these are the series containing V(2,(l, 1,1,2))
and V(3,(l,1,1,1)). For other reasons, Gelfand and Ponomarev (see [GP])
found the indecomposables of the latter kind to be exceptional.

1.5. — The invariants of (X,SLn) were recently determined by
R.Howe and R. Huang [HoHu]. Their work complements and/or extends
earlier work ofTurnbull [Turn], Huang [Huan] and Ringel [Ring]. Howe and
Huang used techniques from representation theory and combinatorics (the
symbolic method) to obtain the following:

• an explicit description of C^X]81^;

• a proof that C^X]81^ is always regular (a polynomial ring).
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There are slight inaccuracies in these results: One type of invariant
is missing (see 3.17.4 and Example 2.7) and CRC]^ = C^}0 fails to be
regular in one case (Theorem 2.9.3.d). We have approached the problem
using ideas from invariant theory, and we are able to find shorter and more
direct proofs of the results in [HoHu].

When 6 ^ 0, the technique of castling is decisive (see 2.2 and 3.1).
We show that q < 4 and completely classify the cases q = 3 and q = 4.
We show how the invariants arise from very simple ones twisted and
made complicated by castling (see 2.2). In particular, we explain the
"mysterious" type III invariants of [HoHu] and we also find a fourth type
(Theorem 3.17 (4)). If 6 = 0, castling is not very effective. Instead we
use invariant theory to compute the principal isotropy group of (V,G).
This gives us q, and then we exhibit q explicit generators of CIV]0. The
computation of the invariants is in Sections 3 and 4.

In Sections 5, 6 and 7 we determine necessary and sufficient conditions
for C[V} to be a free (G-CIV] ̂ -module; equivalently, we determine when
the quotient mapping 'Ky:V —> V / / G is equidimensional. This is much
harder than determining the invariants. The most important case is that
of 4 medials (y(2n,(n,n,n,7i))). Here we use an induction to reduce to
properties of the case n = 2. In general, the obvious method is to use the
Luna-Richardson theorem to reduce to the 4 medials case. This does not
work, but we find a variant which does.

We determine the principal isotropy groups of (V, G) in case 6 = 0
and q ^ 2. The cases where 6 ^ 0 and q > 3 are easily handled.
As noted above, this information allows us to compute covariants and
their multiplicities. For example, if the principal isotropy group is trivial,
then every irreducible representation of G occurs as a free CtV^-submodule
of C[V] with multiplicity equal to its dimension. This occurs in the cases
V(5,(4,2,2,2)) {6 = 0, q = 2), V(7,(3,3,3,3)) {6 = 2, q = 4) and many
others.

Usually, 7Ty:V —> V//G is equidimensional if and only if TTX'-X —>•
X//G is. Theorem 2.10 (proof in Section 8) lists the exceptions.

2. Main results.

2.1. — Let Y be an affine G-variety. Let Y//G denote the affine variety
corresponding to the algebra of invariants CIV]6' and 7Ty:y —>• Y//G the
morphism dual to the inclusion C^}0 C C[V]. We say that (V, G) is
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• coregular if C^}0 is a polynomial algebra, equivalently; Y//G is
smooth (and isomorphic to affine space);

• equidimensional if Try is equidimensional;

• co free if C[Y} is a free C[y ̂ -module. (A G-module V is cofree if
and only if it is coregular and equidimensional [Schi], 17.29);

• stable if there is a dense subset of closed orbits.

A subgroup L C G is a

• generic isotropy group if there is an open dense subset Y ' of Y such
that Gy is conjugate to L for every y € V;

• principal isotropy group if there is an open dense subset U of Y / / G
such that Gy is conjugate to L for every closed orbit in ̂ ^(U).

2.2. — We make extensive use of castling (see Section 3.1):
Let a denote k\ 4- • • • + fci and set 6: = 2n — a. (The problem is quite
different, depending upon whether or not 6 is zero.) We have castling
transformations Cy and C^ which transform V(n,k) to V{a - n, k) and
y(n, A;) to V(n, {n — k ^ , . . . , n — A;i)). The transformation C^ was already
used in [HoHu] to reduce to the case that 6 > 0. The class C\(V(n,k))
of V(n^ k) is the collection of representations which can be obtained
from V(n^k) by Cy and C^. Castling transformations preserve algebras of
invariants, (non) stability and generic isotropy groups (up to isomorphism).
Thus principal isotropy groups are preserved in the stable case.

2.3. — Each class (with 6 ^ 0 ) has a linear ordering: Let h denote
a + n. If we apply Cy, then h changes to h — 6. Thus we say that Cy is a
castling up (resp. down) if 6 < 0 (resp. 6 > 0). We define "up" and "down"
for C^ similarly, where C^ sends h to h + 26. We say that V(n1', k1) is above
(resp. strictly above) V{n,k) if V ( n ' , k ' ) is obtained from V(n,k) by a
(resp. nonempty) sequence of castlings up.

2.4. DEFINITION. — We say that V(n,k) is minimal if it is minimal
in its castling class. Equivalently, Cy cannot be applied or is a castling up,
and the same for C^,.

To determine the algebra of invariants, etc. of V(n, k ) we may reduce
to the case that V(n,k) is minimal. Here our questions are either easy to
answer or we may reduce to an instance of three subspaces. We then
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use our complete analysis of the possibilities for two and three subspaces
(Section 3.8).

2.5. — We say that an invariant / of V(n,k) has (reduced) degree
(a, 6, c, d) if, as a function on X = D^ x • • • x D^, it is multihomogeneous
of degree a in D^, b in D^, etc. Note that, as a function on V(n,fc) , it
has multidegree (aA;i , . . . , dk^). By degree we will always mean the reduced
degree. The total (reduced) degree of / is a + b + c + d. We will use similar
notation and definitions for two and three subspaces of n-space. We always
denote the dimension of C[y]6' by q.

2.6. Example. — Consider V(7,(3,3,3,2)). Then castling down we
obtain

y(4,(3,3,3,2)), y(4,(l,l,l,2)) and y(l,(l, 1,1,2)).

Of course, Y(l,(l, 1,1,2)) does not come from four subspaces of C1,
but this is not a problem when computing invariants! The invariant of
degree (1,0,0,0) in V(l,(l, 1,1,2)) becomes one of degree (2,1,1,1) in
y(7,(3,3,3,2)) (see (3.17)). The generators whose degree is bigger than
(1,1,1,1) are labeled "mysterious" in [HoHu]. As in this example, they all
arise from simple invariants made complicated by castling.

2.7. Example. — Consider V(4,(l, 1,1,1)), which is generated by the
obvious invariant of degree (1,1,1,1). Castling we obtain

Y(4,(3,3,3,3)) and y(8,(3,3,3,3)),

where the latter has invariants generated by an element in degree (2,2,2,2).

Our main results are the following:

2.8. THEOREM. — Suppose that 6 ̂  0. Then

(1) (V, G) is coregular^ and q < 4.

(2) Jfg=3, then V is above

(a) y(n,(d,n,n,n)), 1 < d < n, or

(b) V(n,(a, &, n, n)) where a + b = n, a < 6, or

(c) V(n,(a,b,b,n)) or y(n,(a,a,6,n)), a + b = n, a < 6, or
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(d) y(2n,(n,n,n,d)), d> 2n or

(e) y(n,(n,n,n,d)), d > n.

(3) J fg=4 , then V is above

(a) V(n,(n,n,n,n)), or

(b) y(2n,(n,n,n,2n)).

Concerning cofreeness (equivalently, equidimensionality) we have:
(4) Ifq<2, then V is cofree.

(5) The non-cofree representations with q = 3 are

(a) (from2.a,d= 1) thoseaboveV(2n+l,(n+l,n+l,n+l,2n)),
n^ 2,

(b) (from 2.d, n = 1) V(2,(l, 1, l,d)) and V(d + 1,(1,1, l,d)),
d > 3 and

(c) (from 2.e, n = 1) those above V(d+ 2,(1,1, l,d)), d ^ 2.

(6) The only non-cofree representations with q = 4 are

(a) (from 3.a, n = 1) those above V(3,(l, 1,1,1)),

(b) (from 3.a, n = 2) those above V(6,(2,2,2,2)) and

(c) ( from3.b,n=l)V(2,( l , l , l ,2)) ,y(3,( l , l , l ,2)) ,
V(3,(2,2,2,1)), V(4,(2,2,2,1)), V(4,(2,2,2,3))
andY(5,(2,2,2,3)).

2.9. THEOREM. — Suppose that 6 = 0.

(1 ) J f fc4>^ , then g = 0 and V is not stable.

(2) If A;4 == n, then q = 2 with generators of degrees (1,1,1,0) and
(0,0,0,1). Moreover, V is cofree and stable with principal isotropy group
SLk, xSL^ xSL^.

(3) Jffel < n, Jet a denote min{^i,n — ^4}. Then

(a) V is stable with principal isotropy group (up to a finite cover)
SLn-k^-k2 x SLn-k^-ks x SL^_^_^| x T"-1, where T7' denotes
an r-torus (C*)7'. Furthermore^

q = a + 1 + <^i+A;4,n + ^i4-A;3,n + ^i+A;2,n-

(b) y is cofree if V ̂  y(2n,(n,n,n,n))), n ̂  2.
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(c) V(4,(2,2,2,2)) is coregular, but not cofree.

(d) V(2,(l, 1,1,1)) is neither coregular nor cofree.

Write V = y(n, A?) = (C^W, SL^ x ̂ ) as in 1.2. Then X = V//ff =
Dfe^ x • • • x D^4. We consider equidimensionality of (X, SLn):

2.10. THEOREM. — Let (X, SLn) and V = V(n, k) be as above.

(1) IfV is equidimensional, then (X, SLn) is equidimensional.

(2) If (X, SLn) is equidimensional, then V is equidimensional, with
the following exceptions:

(a) V=y(2n+l,(n+l,n+l,n+l,2n)), n ̂  2,

(b) V = V(d+ 1,(1,1, l,d)), d ̂  3 and

(c) V=y(5,(2,2,2,3)).

Theorem 2.8 follows from 3.11 and the results in Section 5.
Theorem 2.9.3 follows from Proposition 4.5, Remark 4.6, Theorem 4.9
and Theorem 7.11. Parts 1 and 2 are left to the reader. Theorem 2.10
follows from Theorem 2.8, Theorem 2.9 and Theorem 5.3.

3. The case 6 ̂  0.

3.1. Castling. — Consider a representation (C71 (g) U C Z, SLn x L)
where dim U = n + n' > n, SLn acts trivially on Z and L is reductive.
We assume that L acts trivially on A"'"1"71''(U). Then the invariants of
(C71 (g) £/ C Z, SLn x L) are isomorphic to those of (C^ 0 £/* C Z, SL^ x L).
The only thing to observe is that the quotients by the special linear
groups are the product of Z and the decomposable vectors in the
isomorphic representations ^(U) and A72 (U*). Furthermore, since the
general SLn and SLn' orbits are closed with trivial stabilizer, the isotropy
groups of non-zero points in the quotients are isomorphic. By projection
to L, we obtain an isomorphism of generic isotropy groups. We will
call a castling transformation of the form described above a simple
castling transformation. Thus Cy is a simple transformation while C^ is
the composition of 4 simple transformations. However, unless otherwise
specified, by "castling transformation" we are referring to Cy and C^'



674 G.W. SCHWARZ AND D.L. WEHLAU

3.2. — As in §§ 1.2-2.3, let

V=V{n,k), a:=Y^k^
i

6:=2n-a, h = a- + n, q= dim CIV]6'.

In this section we assume that 6 -^ 0. We only consider representations
V(n, k ) where n >_ 1 and ki ^ 1, z = 1,..., 4. Castling sends

y(n,^) =Cn(8)TV to (Cy-^lV*.

But we may replace TV* by IV without changing anything of interest, and
we obtain our transformation Cy. Similarly, we obtain C^ by castling each
of the representations

(C^1 0 C71, SLfc, x SL,) to (C"-^ 0 C71, SL,_^ x SL,).

We denote by V = V^n', k ' ) the representation obtained by applying Cy
or C^ to V(n, k), and we set

a'^^^, ^=2n'-a', /z^a'+n'.
z

Then we have

3.3. PROPOSITION.

(1) Cv applies iff a > n, in which case hf = h — 6;

(2) CK, applies iffk^ < n, in which case h' = h + 26;

(3)^=-^;

(4) Cl(y) is totally ordered by the value ofh.

3.4. COROLLARY. — Let

M= {meN; m\6\ < ki <n-2m\6\, i= 1 , . . . , 4 } .

Ifm € M, then we can castle down from V to

V = V{n - 2m|<?|, (fci - m\6\,..., k^ - m\6\)).

If m is the maximal element of M, then V is at most three castlings up
from the minimal element.
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Proof. — We may assume that m >_ 1. First suppose that 6 > 0.
Applying Cy and then C^ we obtain V(n — 6,{n — 6 — k ^ ^ . . . , n — 6 — A;i)),
and another iteration gives V(n — 26, (k\ — 6 , . . . , k^ — 6)). Induction then
gives the result. If 6 < 0, then we may use the argument above after
applying C^,. D

3.5. Example. — Consider V(2r + l,(r, r, r, r)) where 6=2.

• If r = 2k + 1 is odd, then applying 3.4 with m == k we arrive
at y(l,(l, 1,1,1)).

• If r = 2A: is even, we may take m = k — 1 to obtain V(3,(l, 1,1,1)),
and then apply Cy to get to y(l,(l,l,l ,l)). One easily sees that, in fact,
[V(2r ± l,(r, r, r, r))} is the castling class of V(l,(l, 1,1,1)). Similarly,

{y(2r , ( r , r , r , r± l ) )}u{y(2r+l , ( r , r , r , r+ l ) )}
U{y(2r - l , ( r - l , r , r , r ) )}

is the castling class of V(2,(l, 1,1,2)).

3.6. THEOREM. — Let V be minimal with 6 ^ 0. Then we have the
following possibilities:

(1) a < n and 9 = 0 ;

(2) a = n and q = 1 with a generator of degree ( 1 , 1 , 1 , 1 ) ;

(3) a > 2n and k^ > n. Then we have the generators of
V(n,(A;i, A;2, A;s)) and an additional generator of degree (0,0,0,1) ifk^ = n.

Proof. — Clearly (1) and (2) cover the possibilities for a < n, so we
may suppose that a > n. Since V(n, k ) is minimal and a ^ 2n, Cy must be
a castling up, so that a > 2n. If k^ < n, then we may castle down by C^,
so we must be in case (3). D

3.7. COROLLARY. — Let V(n, k ) be minimal where 6 ̂  0.

(1) Ifn<(7 ^n-hfc i , thenC\(y(n,k)) = {V(n,k), C^(V(n,k))} is
finite.

(2) Ifn + A;4 < a or a <_ n, then Cl(V(n, k)) is infinite.

Proof. — If a > n, then a > 2n by minimality, hence Cy is
a castling up. But we cannot apply C^ to V ( n ' , k ' ) = Cy{V{n,k)) if
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^4 = A:4 > n' = a — n, so (1) holds. If n + k^ < a, then

y(n^=c4c,(y(n,^)))
has n' = a — n, a' == 3a — 4n and A;4 = a — n — k\. Then

a' - n' - (max{A/i, . . . , k^} = k^) == a - 2n + A:i > 0,

and we may continue castling up indefinitely. Finally, if a < n, then
V(n1', k ' ) = C,t(V(n, k ) ) satisfies a' > 3n' and a ' — n' —kl^> 0, so we may
castle up indefinitely. D

3.8. Invariants of two or three subspaces. — If V(n, k ) is minimal,
then it often happens that k^ is larger than n, in which case we are
reduced to computing the invariants of three subspaces. So, we consider
the invariants of V(n,£) where n > 1, £j >_ 1 for j = 1,2,3. We adapt our
terminology from four subspaces to this situation: We set

T=^+^2+^3.

The castlings Cy and C^ send V(n^£) to

V(r - n,£) and V(n, {n -^n- i^n- ^i)),

respectively (whenever they apply). Then Cy (or C^) is a castling up if it
increases n + r. In other words, C^ (resp. C^,) is a castling up if r > 2n
(resp. 3n > 2r).

3.9. Remark. — It is no longer true that a castling class has a
unique minimal element. For example, from V(5,(2,3,4)) we can castle
down by Cy or by CyC^ to obtain minimal elements V(4,(2,3,4)) and
y(l,(l,2,3)), respectively.

3.10. THEOREM. — Let £j ^ 1, 1 ^ j ^ 3. Then minimal
homogeneous generators of the invariants of C[V(n^£)] have, up to
permutation of the i^ degrees (1,0,0), (1,1,0) or (1,1,1), corresponding
to equalities

^ = n, £-t + ^2 = n and ^i + ^2 + 4 = ri

(or ^ 1 + ^ 2 + ^ 3 = 2n with ^i, ^2? ^3 < ^)- There are only the following
possibilities (up to permutation of the £z) :
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(1) q = 0: no subset of{^i, ^2? ^3} consisting of numbers at most n
adds up to n or 2n.

(2)g=l and one of the following occurs:

(a) ^i = n;

(b) ^+^=n;

(c) ^+^2+^3=^ ;

(d) ^i + ̂ 2 + ̂ 3 = 2n and ̂ i, ̂  ̂  < n.

(3) q = 2 and the generators are as in 2.a and/or 2.b.

(4) 9 = 3 and V = y(n,(n,n,n)), n ̂  1, or V(2n,(n,n,n)), n >, 1.

Moreover,

(5) V(n^) is coregular.

(6) Only V(2,(l, 1,1)) is not cofree.

Proof. — Assume that i\ <_ ^ <_ £3. If ^3 >: n, then we obtain
(at most) an invariant of type 2 (a) and the invariants o f V = V(n, (^1,^2))-
The only possibility to get something new is if i\, ^2 < u < i\-\- i^. But
then CK gives V(n^ (n — ^2? ̂  — ^i)) where TT, — ^2 + ?^ — ^i < ^5 so there are
no new types of invariants. Note that we get one possibility here for 9=3 ,
namely V(n, (n, n, n)).

It is easy to see that C^, when it applies, can only interchange
invariants of types 2 (a) and 2 (b). Similarly, if C^ applies, then it only
interchanges invariants of types 2 (c) and 2 (d). Hence we may reduce to
finding the invariants of the minimal V.

We may assume that £3 < n and that V is minimal. Since C^ is not a
castling down, we have r <_ | n. If Cy applies it is a castling down, so we
must have r < n. We are in case 2 (c) or case 1, hence 1, 2 and 3 hold. Part 4
is the observation that the castling class of V(n, n) is {V(n, n)^ Y(2n, n)}.

If q < 2, then V(n^£) is cofree: Equidimensionality is easy, and
coregularity follows from [Kempf]. Obviously y(n,(n,n,n)) is coregular
(and cofree), hence its castling transform V(2n,(n,n,n)) is coregular, and
we have (5). It is well-known that V(2,(1,1,1)) is not cofree, since its
null cone has codimension 2 while q = 3. To establish (6), we need to
show that V(2n,{n,n,n)) is cofree, n > 2. But in Section 6 we show that
y(2n,(n,n,n,n)) is cofree for n >_ 3, hence so is y(2n,(n,n,n)). If n = 2,
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one uses the idea of Example 4.10 to reduce to the fact that (3C6, SO (6))
is cofree [Sch2]. Q

3.11. Proof of Theorem 2.8 (1)-(3). — Let V(n,k) be minimal.
Applying Theorem 3.6 we may assume that k^ > n. Parts 1, 2 and 3 are
then immediate from Theorem 3.10. D

3.12. Effects of castling. — Let / be an invariant of degree
(7:= (zi^2^3^4)). Since / is SLn-invariant, 7- k = ̂ ijkj is a multiple s

3
ofn. We call s the n-degree of f. Let |?| denote ^^. Let V ( n ' , k ' ) , /', s1',

3

etc. denote the result of applying Cy or C^ to V(n, k ) , /, s, etc.

3.13. LEMMA. — Suppose that Cy applies to V(n, k ) . Then Cy(f) has
degree (s - z i , . . . ,5 - u).

Proof. — Since A71 (W) is a sum of terms

^:= A^C^) (g) • • . (g) A^^4) where |f| = n,

its dual A'7"71^) is a sum of corresponding terms /\k~'F. The invariant /
lies in sums of tensor products A^ 1 0 - • • (g) A^^ with ^ r^ = ^iA;i, etc.

j=i
It follows that Cy{f) lies in sums of terms A^"^^ 0 • • • (g) A^"^^ where

s ...

S(^i -^1 ) = (5-zi)A;i, etc. ThusC^(/) has degree ( s -%i , . . . ,5-^4). D
j=i

3.14. COROLLARY. — Let /, f, etc. be as above.

(1) liCy applies, then f = (s - % i , . . . , s - 24) and 5' = 5.

(2) IfC^, applies, then f = 7 and s/ = |^| — s.

Proof. — Part (1) is immediate from Lemma 3.13, and (2) is a simple
calculation. Q

3.15. Types of generators. — Let / be a minimal multihomogeneous
generator of C^V]0, where 6 -^ 0.

• We say that / is of type (1) if its total degree is 2, e.g., its degree
is (1,1,0,0).
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• Otherwise we say that / is of type (2).

Our usage of "type" is different than that in [HoHu]. We call {d,s}
the degree pair of /, where d (resp. s) is the degree (resp. n-degree) of /.

3.16. LEMMA. — Let f be a multihomogeneous minimal generator
ofqy]0.

(1) Suppose that f is of type (1), i.e., |r| = 2. Then s = 1 and the
same holds true for C^(f) and C^f).

(2) Suppose that 6 < 0 and that f has degree pair

{(2r - l ) , ( r - l , r - l , r - l , r )} , {(2r), (r,r,r,r - 1)},

or {(2r - l),(r,r,r,r)}. Then C^(f) has the same n-degree and degree
(r, r, r, r - 1), (r, r, r, r + 1), or (r + 1, r + 1, r + 1, r + 1), respectively.

(3) Suppose that 6 > 0 and that / has degree pair

{(2r-2),(r-l,r-l,r-l,r)}, {(2r - 1), (r,r,r,r - 1)},

or {(2r - 2), (r, r, r, r)}. Then C^(f) has degree pair

{(2r-l),(r,r-l,r-l,r-l)}, {(2r), (r - l,r,r,r)},

or {(2r), (r, r, r, r)}, respectively.

Proof. — Part (1) is easy and (2) follows from 3.14. For (3), consider
the case where

r. k = (r - 1)|^| + A;4 = (2r - 2)n.

Then

^.(n-k) =(r-l)(4n-|fc|) 4- (n - k^)

== (4(r - 1) + l)n - (2r - 2)n = (2r - l)n.

The other cases are similar. The change in the degrees of the invariants is
due to the fact that n — k^ < n — k^... Q
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3.17. THEOREM. — Let V(n,k) be minimal. Let f be a minimal
non-constant multihomogeneous generator ofC^}0, and let r > 0.

(1) If f is of type (1), then so are any castling transforms off.

(2) Suppose that f has degree (0,0,0,1). Then (C^)27^/) has degree
(r.r.r.r + 1), C^C^-1 f has degree (r + l,r,r,r), (C^)2^/) has
degree (r, r+l .r+l .r+l) and C^C^f has degree (r 4- l , r+l ,r+l ,r) .

(3) Iff has degree (1,1,1,0), then we are in case 3.7.1. One can only
apply Cy, and Cy{f) has degree (0,0,0,1).

(4) If f has degree (1,1,1,1), then (C^Y f and C^CyC^ j have
degree (r + l,r + l,r + l,r + 1).

4. The case 6=0.

When 6 = 0, we cannot get very far with our usual castling
transformations, since Cv is the identity and C^ has order 2. However,
there are some alternative means to simplify things. We eventually land in
the case of four medials, i.e., in the case V(2n,(n, n, n, n)).

4.1. Four medials. — If V is a G-module, we denote the
principal isotropy group by PIG(V) (or PIG(V,G)) and its identity
component by PIG(y)°. Let L = PIG(V). We denote by N (or Tv^)
the quotient Nc(L)/L, which has a natural action on V L . See [Slod] for the
notion of slice representation used in the proof below.

4.2. PROPOSITION. — Let n ^ 1. Then (V,G) = V^n^n.n.n.n)) is
stable with principal isotropy group T ^ (C*)72"1, where T lies in G as

{(M,t,t,diag(t-1^-1)) e (SL^)4 x SL^n ; t G (C*)71-1}.

Proof. — We use the symbols n, n', n", n"1 to distinguish our four
copies of C71 and SLn. The subrepresentation (C71 C C^) (g) C272 is stable
with one dimensional quotient (the determinant is the generator of the
invariants), and the principal isotropy group is

{(p,/i,A:) € SL, x SL,/ x SL2n ; k = diag((^-1)^ (/i-1)^}.

The slice representation is, ignoring trivial factors,

((c71 e c^)* 0 (C71' e C71"), SLn x SL^/ x SLn. x SL^/).
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We can now take slice representations of the various pairings of the SL^s
to obtain, at the penultimate stage, the adjoint representation of the group

SL, ̂  { ( g ^ g ^ ^ g ) e (SL,)4; g e SL,}.

Thus the principal isotropy group is a maximal torus T71"1. Since the final
slice representation is stable, the original representation was stable. D

4.3. Principal isotropy group. — Suppose that we are given A;i, etc.
as usual. Define

a:= min{A;i,n — ^4}, r = n — k\ — k^^

s = n — A;i — k^, t = \n — k\ — k^\.

Note that, since V\ + Vz has codimension at least r in C7'1, the intersection
V^ 0 V4 has dimension at least r. Similarly, V^ n V^ has dimension at
least s and V^ H ¥3 (resp. Vi H V^) has dimension at least t if k^ + k^ < n
(resp. k\ + k^ > n).

We now find the generic stabilizer of V(n^k): We may assume
that all intersections we consider are as generic as possible. That is,
dim Vi + V^ = k-t + A;2, etc. If A;i 4- A;4 < n define

(1)iv,:=y3n^4,
(2)^:=V2ny4,
(3)Wt:=v^nv^
(4) TV2a := ( î + V2) n (Vi + Vs) n (Vi + ̂ 4).

4.4. LEMMA. — Generically, we have

(1) dimH^a = 2a, dimly^ = r, etc.,

(2) c^ = w^a e Wr e Ws e w,,
(3) Vl C ^2a,

(4)V2C^2ae^®m,

(5) Vs C W^a eWr^Wt and

Wv^cw^a^WreWs.
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Proof. — First of all, the configuration above is possible: Given a
decomposition of C71 as in 2, choose a-dimensional subspaces Ui of W^a such
that W-2a = Ui^Uj, 1 < i < j ̂  4. Then Vi := £/i, V^:= U^Ws^Wt, etc.
do the job. Generically, V^-\-V^ has codimension n-k^ -k^ = k^k^-n = r
in C71, and similarly we obtain generic codimensions s and t for Vi + ^3
and YI + V4. It follows that W^a generically has codimension r + s + t.
Similar arguments show that V^ Fl W^a generically has codimension s +1
in l^, so we have (4). The other cases are similar. Q

Now we consider the isotropy group of such a collection of subspaces.
Suppose that n = 2a 4- r + s + t where a > 0, r, s, t ^ 0. Replacing
each C^ by its dual, we may consider that we have homomorphisms
ipi: C^ —» C71 with images Vi, i = 1,... 4. Our point in y(n, A?) is denoted
(p:= ( (^ i , . . . ,y?4) .

4.5. PROPOSITION. — Let n, M^a, etc. be as above. Let U ^ , . . . , U^ be
a-dimensional subspaces ofW^a such that Ui + Uj = W^ 1 ̂  i < j ^ 4.
Assume that

(1)^:C^^,

(2) (^2: c^^ = (c0)' e c8 e c* ̂  1/2 e Ws ® TVt,
(3) ^3: C^^ = (C0)" C C7" C (C*)' -^Us^Wr^Wt and

(4) (^4: c^^8 = (c0)'" e (c^)' e (cy -^ £/4 e Wr e w,
are injective homomorphisms which respect the direct sum decompositions
(the generic case). Then the isotropy group Gy is isomorphic to

L := (C*)"-1 x SLr x SLs x SLt.

Moreover, L is a principal isotropy group, the representation is stable and
the quotient has dimension

q = CL + 1 + 6rQ + 6sQ + <^0 = a + 1 + <^i+A;4,n + <^i+fc3,n + ^i+A;2,n.

Proof. — Since the images Vi of the (pi determine the direct sum
decomposition C^ = W^a 0 Wr 0 Ws C Wt, the projection 7r(Gy) of Gy
to SLyi lies in (GL2a x GLr x GL^ x GL() H SLn. By choosing appropriate
bases of Wt, C* and C*' we may assume that y^lc* ana ^sic*' a^ multiples
of the identity map, and similarly for r and s.
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Suppose that 7r(G^) is not in the product SLsa x • • • x SL^. Then
there is a nontrivial cyclic subgroup C of SLn acting via scalars $ 2 0 , • • • , ^
on TV2a,. • . , Wt, respectively, where ̂  ̂  $| ̂  = 1. Since

A^rA^C0) -^ A^i) C AWa)

is 7r(G<^)-fixed, we must have that ^ = 1. Similarly, invariance of
A"+-H(^) g^g ̂  ̂ ^^ ^ i Hence ̂  = 1. Similarly, $| = ̂  = 1,
so our cyclic subgroup lies in SLsa x • • • x SL^.

Since we have isomorphisms

P^^lc^C* —>Wt and p /:=^3|c t^C t / —> Wt,

we obtain a contribution to the isotropy group of

{(^W) € SL, x SL,, x SL(TV); g " p g -1 = p, g" p1^')-1 = P'}.

Similarly we obtain diagonal copies of SLy and SL< in L. Finally, we
obtain the principal isotropy group of the four generic injections of
Ca x C^ x C^ x C0" -^ W2a ^ C20, which we already know is (C*)0-1.
Thus L is a generic isotropy group.

By a theorem of Popov [Po] (see also [LuVu]), since G is semisimple
and there is an open dense subset of orbits with reductive stabilizer (-L),
the representation is stable, and then clearly our L is a principal isotropy
group. Making note that the dimension of SLm is m2 — 1 4- 6mo we obtain
that the dimension of C[y]6' is

dim V - dim G + dim PIG(Y, G')

=2n2-(n2- 1+^?-1))
1=1
4

+ (kz - 1 + ̂ (n - A;i - k,)2 - 1 + 6k,^n)
i=2

= A;i + 1 + ̂ i+fc2,n + <^i+fc3,n + <^i+A;4,n. D

4.6. Remark. — Suppose that k\ -h k^ > n. We set

r: = A:3 + A;4 — n and 5 : = k^ + A;4 — n

as before, and

t: = k\ + A;4 — n.
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Then

(1)A;i = a + t ,

(2) k^ = a + s,

(3) A;3 = a + r, and

(4) A4 = a + r + s + ^.

In the generic case, we obtain

C71 = W^a eWrOWsOWt

where W^ = ¥3 H ̂ 4, ̂  = ̂ 2 H ̂ 4, Wt = V\ H ̂ 4 and

w^a = (Vi + ̂ 2) n (Yi + ̂ 3) n (^2 + Vs).
The results and proofs are now as above. Alternately, one can apply C^ to
change to the case where k\ 4- k^ < n.

4.7. Invariants. — We compute generators of CfV]6'. They are all
of degree (1,1,1,1), (1,1,0,0), or (1,0,1,0), etc. We assume at first that
k\ + A;4 < n.

Clearly, whenever ki+kj = n, i < j, we have a "determinant" invariant
fij of total degree 2. Now the symmetric algebra Sym(Da): = C[Da^
is just ®j(^, and the [/-invariants (covariants) of the tensor product
Sym(Da) 0 Sym(Db), a ^ b < n - a, are a polynomial algebra generated by

^a, ^b, (^a-l^b+l, . . . , ^a+b.

Since A;i + A;s ^ n, we have invariants {gp}^ which contract the copy
of y^i-p^s+p with its dual (p^-q^k^q where A;4 + q + A;i - p = n,
i.e., g = p + n — k^ — k^ > p.

To find formulas for the g?, one proceeds as follows: Let v^ denote
^(ej), 1 < j ^ ki. We assume that .̂1) = ^3), 1 <, j < k^ - p and that
v] = v^ ^ 1 ̂  J ^ ^2 - 9. Then the dimension of Vi + ¥3 is at most ks +p,
which implies that the invariants ^p+i, . . . ,^ vanish. Moreover, it is clear
that the value of g? in this case has to be (up to constants) the following
product of determinants:

[̂ ,...,<^ ,̂..,<),̂ .̂ ,...,.g)]
•[^—^^S^.-.,^,^,...,^].
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The formula for g? in general is obtained by polarizing the formula above
in the variables which we assumed equal.

Note that if t: == A;i + k^ - n > 0, then we only have invariants g?
for p >_ t.

4.8. PROPOSITION.

(1) Jf/ci + k^ < k^ + A;4 = n, then go = /i4/32.

(2) Ifk^ + A;2 < k^ + A;3 = n, then ^o = /i4/32 and ̂ i = /13/24.

(3) Jf A;i + k^ = n (four medials), then po = /14/32 4- /i2/34^
^i = /13/24 and g^ = -/i4/32 + /i2/34 modulo gs, g ^ , . . .

Proof. — We prove (3) and leave the rest to the reader. Set m: = 1 n.
Since go is the contraction of two copies ofy?^, it is the (double) polarization
of the invariant f^ with respect to the pairs of indices {1,3} and {2,4},
which gives, up to constants, /i4/32 + /i2/34. The expression for Qm is
obvious.

When m > 1, consider the case where

v^=v^=e^ and v^ = vf = e^.+i, 1 < j < m - 1.

Write v^ = E afe,. Then
j'==i

9i = [e3,...,e^+l,e^+2,.•.,e2m,^\^)]

• [63,..., e^+i, ̂ ), v^\ e^+2, • • • , e2m]
^[w^.w^].^1),^3)],

where w^ = (a^^a^) € C2. Moreover,

-/I4/32 + /I2/34

= - [C3, .... C^+i, V^\ Cm+2, . . • , e2m, ̂ )]

• [(°3, . . . , e^+i, ̂ ), 6^+2, • • . , C2m, ̂ )]

+ [e3,.. . ,em+l,^\e^+2,•.. ,e2m,^2)]
• [e3,••.,e^+l,^ ),e^4.2,...,e2m,^ )]

=_ [^(1)^(4)] . [^(3)^(2)] ̂  [^(1)^(2)] . [^(3)^(4)]

^w^.w^].^2),^4)].
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Thus g\ and —/i4/32 + /12/34 agree in our special case, which, since the
functions are (^-invariant, implies that they are equal modulo ^25 • • • ,9m'
However, since both are skew in V\ and ^3, only g? for p odd are involved
in the relation. D

As an immediate corollary we get the following:

4.9. THEOREM. — If 6 = 0, then V(n, k ) is coregular, except in
the case V(2,(l, 1,1,1)). If k^ + k^ < n, then C^}0 is generated by
{^2 5 • • • 7 9ki-i} (the empty set ifk\ < 2, also, omit g\ below if a = 1) and

(1) go, ^i and ga ifh + k^ -^ n;

(2) {/i4, /23L 9i and ga ifk^ + k^ < fci + k^ = n\

(3) {/i4, /23^ /i3, ^24} and ^i ifA;i + A;2 < fci + A;3 = n;

(4) {/i4, /23, /i3, /24, /i2, /34} m the case kt + k'2 = n {four medials).

Ift := k^ + k^ - n > 0, then C^]0 is generated by ̂ , ^+1,..., g^.

4.10. Example. — Let n = 2. Then the Z^ are just the rank 2
elements of A^C4), which we can interpret as the null cone of the repre-
sentation (C6, SO (6)). The generating invariants of the coregular represen-
tation (4C6, S0(6)) are the inner products /i^, 1 < i <: j < ^ 4, and Y[Di is

i
the zero set of the ha. Since fij = hzj for i < j, the /-ij are algebraically
independent.

5. Cofreeness when 6 ̂  0.

We first determine all the castling classes. Equivalently, we find all
minimal representations V(n, k). We then determine which castlings up of
the minimal representations are cofree. Recall that cofreeness is automatic
when q < 2.

5.1. PROPOSITION. — Suppose that 6 -^ 0 and that V = V(n,k) is
minimal in its castling class and that q = dim CIV]6' > 3. Then, up to
permutation of the ki, we have the following possibilities:

(1) q = 3 and

(a) V = y(n,(d,n,n,n)), 1 < d < n, or
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(b) V = y(n,(a, b, n, n)) where a + b = n, a < 6, or

(c) V = V(n,(a, 6, b, n)) or V = V(n,(a, a, &, n)) where a + & = n,
a < 6, or

(d) y=y(2n,(n,n,7i,d)), d>2nor

(e) V = y(n,(n, 71, n, d)), d > n;

(2) g = 4 and

(a) V = y(n,(n,7i,n,n)), or

(b) V=y(2n,(n,n,n,2n)).

Proof. — Since V is minimal and q > 3, we have that a > 2n
and A;4 > n.

If q = 4, then Proposition 3.10 shows that we have k^ = n and that
we are in either in case 2 (a) or case 2 (b). If q = 3 and k^ = n, then by
Proposition 3.10.3-4, we are in case 1 (a), 1 (b) or 1 (c). Finally, if k^ > n,
one similarly obtains that 1 (d) or 1 (e) holds. D

5.2. Castling up. — We use the following result (compare [Wehl,
Prop. 4.8.1]).

5.3. THEOREM. — Let (V, G) = (C71 0 U C Z, SLn x L) where
U and Z are representations of L. Castling we obtain (V1\G') =
(C^ 0 £/* C Z, SL^/ x L) where n' = dim U - n. We assume that L
acts trivially on ̂ ^(U). Denote the variety V//SLn = Dn C Z by Y and
consider the conditions:

(a) 9-1 ̂ n+dimCIZ]1 ',

(b) q-1 ̂ n'+dimqZ]1'.

Then

(1) If (a) fails, then (V, G) is not equidimensionaL

(2) If(b) fails, then (V\G') is not equidimensionaL

(3) If (a) holds, then (V,G) is equidimensional if and onlyif(Y,L) is
equidimensionaL

(4) If (a) and (b) hold, then (V, G) is equidimensional (resp. cofree) if
and only if(V, G7) is equidimensional (resp. cofree).
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Proof. — For k > n, the fibres of the morphism kC" -^ kC^/SLn
have dimension n2 — 1 = dimSLn, except that the zero fiber has codimen-
sion k - n 4-1. Parts 1, 2 and 3 are then immediate. Since castling preserves
coregularity, we also have (4). Q

5.4. COROLLARY. — Suppose that Cy{V = V(n, k)) is a castling up.
Ifq-l>n, then C^(V) is not cofree, otherwise Cv(V) is cofree if and only
if V is cofree.

5.5. COROLLARY. — Let 91 = q - dimTVi//Jfi where (W^,H^) =
V(n,{k<2, A:3, k^)), and define 92, etc. similarly. Ifqi - 1 > ̂  for some i, then
C^(V = V(n, k)) is not cofree, otherwise C^(V) is cofree if and only ifV is.

5.6. COROLLARY. — Let V = V{n,k). Suppose that q- 1 <
min{A;i, n — k^}. Then all sequences of castlings up from V preserve (non)
eq uidimensionality.

Proofs. — Corollaries 5.4 and 5.5 are immediate from 5.3. Corollary 5.6
combines 5.4 and 5.5 with the observation that min{A;i,n — ^4} increases
under castling up and that n — k^ < n. D

5.7. LEMMA. — Let VQ be one of the representations in Proposi-
tion 5.1. Then

(1) Vo is cofree, except for case l.d with n = 1. Here VQ =
V(2,(l, 1,1,2)) is not cofree.

(2) Ifq=A and n >_ 3, then the whole castling class ofVo is cofree.

(3) Suppose that q = 3, that n ^ 2 and that d > 2 in 5.1.1 (a). Then
VQ and its castling class are cofree.

Proof. — It is obvious that Vo is cofree except for 5.1.2 (b)
and 5.1.1 (d). But y(2n,(n,n,n)) is cofree for n >_ 2, and this implies
that y(2n,(n,n,n,2n)) and V(2n,(n,n,n,d)), d > 2n, are cofree. This
gives (1). Q

Consider VQ = V(n,(l, n - 1, n - 1, n)) (5.1.1.C with a = 1). Note that
n > 3 since 1 7^ n - 1. By 5.4, Vi = V(2n,(l,n - l ,n,n)) is cofree. Since
91 = 2, we may apply 5.5 to get that V^ = V(2n,(n,n,n + l,2n - 1)) is
cofree. After this corollary 5.6 applies. All the other cases are similar.
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We handle the remaining cases in

5.8. PROPOSITION. — The following are the noncofree (equivalently,
nonequidimensional) representations with 6 ̂  0:

(1) V is above V(3,(l, 1,1,1));

(2)yisaboyey(6,(2,2,2,2));

(3) V is above V(2n + l,(n + 1, n + 1, n + 1,2n)) where n > 2;

(4) V is above V(d + 2,(1,1,1, d)) where d ^ 2;

(5) V = V(2,(l, 1, l,d)) or V(d+ 1,(1,1, l,d)), d > 3;

(6)y=y(2,( l , l , l ,2)) ,y(3,( l , l , l ,2)) ,y(3,(2,2,2, l ) ) ,
V(4,(2,2,2,1)), V(4,(2,2,2,3)) or V(5,(2,2,2,3)).

Proof. — We begin with the cases where 9 = 4 . Consider
Vb = ^(1,(1,1,1,1)), which is cofree. Then Vi = V(3,(l, 1,1,1)) is not
cofree, and V^ = V (3,(2,2,2,2)) is also not cofree, since quotienting by
the SLs's essentially gives V\ back again. Now one can apply 5.4 and 5.5
followed by any number of applications of 5.6. When VQ = V(2,(2,2,2,2)),
5.4 shows that V(6,(2,2,2,2)) is not cofree. All castlings up after this
preserve non-cofreeness.

From the non-cofree case VQ = ^(2,(1,1,1,2)) we obtain

yi=y(3,(l , l , l ,2)) , y2=^(3,(2,2,2, l)) , y3=V(4,(2,2 ,2 , l ) ) ,

V4 = y(4,(2,2,2,3)), Ys = V(5,(2,2,2,3)), Vg = V(5,(3,3,3,2)).

Amazingly enough, VQ through V^ are not cofree, while VQ, Vy, etc. are
cofree. One can see the non-cofreeness of V\ through Vz by quotienting by
the copies of SLs to obtain the coregular and non-cofree representations
(3C3 + (C3)*, SLs) and its dual. The non-cofreeness of ¥3 (with 94 = 1), V^
and VQ follow from 5.5 and 5.4. We show below that VQ is cofree, and then
the cofreeness of Vr, etc. follow from 5.6. The case Vb = ^(4,(2,2,2,4))
leads to no non-cofree representations, as one easily sees.

We now consider the cases with q = 3. There are only three left.

• Case 1: Vb = ^(n,(l,n,n,n)), n ̂  2.

Then Vi = Y(2n+ l,(l,7i,n,n)) is cofree by 5.4. Since 91 = 3, 5.5
shows that V^ = V(2n + l,(n +1, n +1, n +1,2n)) is not cofree. Thereafter,
5.6 applies.
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• Case2:Vo=V{2,(l,l,l,d)),d>3.

Then VQ is not cofree. Since 94 = 3, Vi = V(d + 1,(1,1,1, rf)) is not
cofree. However, ^2 = V(d-{- l,(l,d,d,d)) is cofree: Since qi == 1 for i ̂  2,
V2 is cofree if and only if quotient by the copies of SL^ is cofree. But this
quotient is (S^-^)* C C^.SLd+i), which is cofree. Further castlings up
are cofree by 5.4-5.6.

• Case3:Vo=V(l,(l,l,l,d)),d^2.

Now Vi = V(d+2,(l, 1,1, d)) is not cofree by 5.4, and further castlings
up are not cofree by 5.4-5.6. D

5.9. LEMMA. — V = V(5,(2,3,3,3)) is cofree.

Proof. — Since the quotient (C2 (g) C^y/SL^ has dimension 7, we may
assume that we have a non-zero element there, which we can put in the
normal form e\ A 62 where 61, 62 span a copy of C2 in C5. Let C3 denote
a complementary subspace in C5. Then the elements of A^C2 © C3) which
have trivial wedge product with e\ A 62 have the form e\ A 62 A f\ +61 A /2 A /s
for some fi G C3. For this element to be decomposable we must have that
/i is a linear combination of /2 and /a. Now the projection of these forms
to 61 A /2 A /3 is surjective with fibres of the form e\ A 62 A / where
/ € span{/i,/2} (except over 0 we get 61 A 62 A C3, of dimension 3). It
follows that the zero set of the invariants of degrees (1,1,0,0), (1,0,1,0)
and (1,0,0,1) is irreducible. But then by Lemma 2.3 of [Sch2], the fourth
invariant cannot vanish identically on the zero set of the first three, hence
the null cone has codimension 4 and (V, G) is cofree. D

6. Cofreeness for four medials.

6.1. LEMMA.— Let (V,G) =y(4,(2,2,2,2)). Then in C[V], f^ /i4,
/23? /34 3'^^ ^ regular sequence, and we may obtain a regular sequence of
length 5 by adding /ig, /24 or /is/24- However (as we already know), all 6
of the fij do not form a regular sequence.

Proof. — We consider V / / H , where H = (SL2)4. If we are in the null
cone of the action of, say, the first copy of SL2 acting on 4C2, we are in
codimension three, so that setting the invariants /23 and ^4 = 0 certainly
gives us codimension 5, so we may go to the quotient by H and assume that
we have four non-zero decomposable 2-forms ai , . . . , 04. Since /i2 = 0, we
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must have that o;i, 02 € v^ A C4 for some ^12. Considering the other pairs
we obtain vectors z^-, i = 1, 3 and j = 2, 4. Now, generically, all these four
vectors are linearly independent, and we have that (up to ±1):

(1) Oi =^ l2A^ i4 ,

(2) 0-2 = Vl2 A^23,

(3) o;3 = ^23 Az»34, and

(4) 04 = Z'14 A 2:34.

If the vectors are not linearly independent (or two of the o^ are
proportional), we are in a situation of codimension 5 or more. Now /i3 = 0 is
equivalent to the span of our Vij being three dimensional, as is /34 = 0
of /12/34 = 0. Hence we have the lemma. D

6.2. THEOREM. — V(2n,(n, n, n, n)) is cofree ifn ̂  3.

Proof. — We consider homomorphisms ̂ : C71 —> C271, i = 1,.... 4 as
in 4.3, where Vz = ̂ (C71) and v^ = ̂ z(e^), i = 1,. . . , 4, 1 < j < n. If ̂  is
not injective, we are in a situation of codimension n + 1, and the invariants
/23? /24 and /34 give another codimension 3, totalling n + 4 = dimy//G.
Thus we may assume that all the (pi are injective. We may also assume that
V\ n . . . n ^4 = 0. Otherwise, the V^ contain a common line and we are in
codimension 2n + 1, where 2n + 1 ̂  n + 4 for n ^ 3.

Consider the common zeroes of /i3 and ^245 which surely is of
codimension 2. On this set, V\ Fl V^ has dimension at least 1, and similarly
for V'z n ^4. Using the group actions we can reduce to the case that
v[ ) = v[ ) = e\ and v" = v \ ' = 62. Since it does not change the
invariants, we may assume that v" € span{e3...., e^n} for j > 1. Let ̂
denote the restriction of (pi to span{e2,. . . , en} c± C71"1 which has image in
span{e3,...,e2n}^C271-2.

The invariants /i2, /34, /23 and /i4 restrict to functions having the
same zeroes as the corresponding /• of

V = V(2n - 2,(n - l,n - l,n - l,n - 1)).

The restrictions of ^2? • • - ; 9n-2 have the same zeroes as the corresponding
g^ ... ,^_2, and the restriction of gn-i has the same zeroes as /{3/24 by
4.8. Thus V is cofree if the invariants

{A25/145/23^/24?/13/24^25 • • • ? Qn-l}
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of V(2n - 2,(7i - l,n - l,n - l,n - 1)) form a regular sequence. This is
certainly true if V is itself cofree, so our whole induction rests on the case
V = V(4,(2,2,2,2)). Now apply the lemma above, n

7. Cofreeness when 6 = 0.

7.1. Luna-Richardson. — A generalization of the Chevalley Restric-
tion Theorem, due to Luna and Richardson [LR], says the following:

7.2. THEOREM. — Let V be a G-module with L = PIG(V). Then
the inclusion V1' —> V induces an isomorphism V1' / / N ^ V//G. Moreover,
PIG^.AQ is trivial.

7.3. Remark. — If (V^, N) is cofree, then (V, G) is also cofree, so that
one can apply Theorem 7.2 to establish cofreeness in certain cases.

The obvious thing to do at this point is to apply Theorem 7.2 to
our representations to arrive at the case of four medials. Recall that
L ̂  SLr x SLs x SLf x T"-1. There are two problems with this. Firstly, N
contains many central tori, which makes cofreeness doubtful, and secondly,
it can turn out that L = {e}, in which case Luna-Richardson is no help
at all.

7.4. Example. — Consider V = V(3,(l, 1,2,2)), which has trivial
principal isotropy groups. We now "force" nontriviality. Let v denote a
copy of C*, and denote its one-dimensional module of weight p by Vp. We
let G x v = SL2 x SL2' x SLs x v act on V as

((c10 z/-2 e c17 0 z/-2 e c2 0 ̂  e c2' (E) z/i) 0 c3).
Let a (resp. a') be a torus acting on C2 (resp. C27) with weights 3 and -3,
and let rj act on C3 as C2 0 v^ d) ;/_4. Then

(V1', N) ̂  (2C2 (g) 772 C C2 (g) cr-3 0 7720

C2 0 (7'_3 (g) 772 ® (TS ̂  y/-4 ® (TS 0 77-4, SL2 x a x c j 1 x 77).

(Actually, one should divide N by the ineffective part of the action.) Note
that quotienting by the actions of a and a ' one obtains the representation

V/:= (2C2e2(C2)*,GL2)
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which is cofree. However, (V^, N) is not cofree since all nontrivial invariants
vanish when 03 0 77-4 (B 0-3 (g) 77-4 is zero. Our techniques below combine
castling, Luna-Richardson and the idea of increasing the group to establish
cofreeness. In our current example one obtains V without passing through
any non-cofree representations.

7.5. LEMMA. — Let (V, G) := (k^ C (C^*), SLn) where k < n - 1,
andsetL=PIG(y,G).

(1) Ifk ^ 7i-2, thenL = SL^-fc and (V2-, TV) = (^(C^e^^^.GLfc).

(2) The invariants of (V,G) are the same as those of {V , G ' ) =
(A^eOC^.GL^).

(3) Ifk = n-1, thenL' :== PIG(y'.G') ^ C^ and ((V^^A^/(!/)/!/)
is isomorphic to ((n - 1)(C71-1 e (C71-1)*), GL^-i).

We now consider what happens when we apply the above to V(n, k )
via castling:

7.6. COROLLARY. — Suppose that r := ks + k^ - n > 0 (otherwise we
are in the case of four medials). Set

(y'.GQ := V(n - r,(k^k^k3 - r^ - r)).

Let r] denote a copy ofC* and let (V, G' x 77) denote a copy ofV with the
usual Q-action and the rj-action on C^1, C^2, C^3"7' and C^4"7' with weights
(A;3 - r)(A;4 - r), (k^ - r)(k^ -r), -(k^- r)2 and -(k^ - r)2, respectiyeiy.
Then

(^civ^^qv']^^.
(2) (V, G) is cofree if(V, G' x 77) is cofree.

(3) There are minimal generating sets for C^V]6"^ of the form
J'12/34, ^i, • • . , hq such that /i2, /34, ^i, • • . , hq minimally generate CIV]6".

(4) If (y', G') is cofree, then so is (V, G).

Proof. — First we castle C^3 (g) C71 and C^4 0 C71 to C""^ (g) (C71)*
and C71"^4 0 (C'1)*, respectively (leaving the first two terms alone),
obtaining (Vi,Gi). We know the generators of C^}0 c± CIVi]01, and
applying Theorem 5.3 we see that cofreeness is preserved. Now apply
Lemma 7.5 to obtain

V2 := (c^ e c^2) (g) c71-7' 0 i/i e (c71-^ e c71-^) 0 (c71-7')* 0 ;/_i
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with the obvious action of G^: = SLn-r x SL^ x SL^ x SLn-ks x SL^_^ x;/.
If (V2, G2) is cofree, then so is (Vi, Gi). Note that n-k^= k^-r and that
^ — ^3 = ^4 — r. The weights of i/ on the quotient by SL/^ x • • • x SLn-k^
are A;i, A;2, —(k^ — r) and —(A;3 — r). Now we castle back (ignoring v for the
moment) to obtain (V, G'). On (C^ (g) C^V/SL^ the weight of rj is wA;i,
where w = {k^ — r){k^ — r). Similarly, rj acts on the other quotients with
weights wA;2, -w{k^ - r) and -w(k^ - r). But these are just w times the
weights we obtained for z/. This gives (1), and (3) is a weight calculation.
Now Theorem 5.3 shows that we can determine whether or not (V^ ^2) is
cofree by first quotienting by the SL^ x • • « x SLn-k^ action, and similarly
for (V, G' x 77). The two quotient spaces are isomorphic SLyi—r x C*-varieties
(after one divides by the kernel of the action), hence (V^, G^) is cofree if and
only if (V, G' x 77) is cofree, and (2) follows. Finally, (4) follows from (1), (2)
and (3). D

7.7. Remark. — If k^ + k^ < n, then A:i < k^ — r < k^ — r <_ k^, and
if k\-^-k^>_ n, then k^ — r <^ k\ < k^ <_ k^ — r.

Applying the lemma three times we obtain:

7.8. THEOREM. — Suppose that k^ + k^ <, n. Write k^ = a,
A;2 = a + s + ^ , A;3 = a + r + t and k^ = a + r + s where r, s, t >_ 0.
Then V(n,k) is cofree if{V, G') is, where

V' = C" (g) C2" 0 (p(a+s)(a+t)^a(a+t)7-a2 C P^s){a^-a^r-^

®P-(a+s)2CTa(a+t)^-a2 © P_(a+t)2(7_ (0+1)2^2) ,

G' = (SLJ4 X SL2a X p X (7 X T.

Here we omit the action o f p X ( r x r i f r = 0 (four medials!), the action of
a x r i f s = 0 , and the action ofr ift = 0.

7.9. Remark. — The actions of the tori guarantee the following.
Consider the invariants of V(2a,(a,a,a,a)). When r 7^ 0, the action of p
only allows invariants whose degrees in the first two copies of C" 0 C2" are
the same as those in the second two copies. In other words, only /i2 and ^34
are not allowed, but /i2/34 is allowed. Similarly, via a, s ^=- 0 rules out /i3
and /24, and via r, t ̂  0 rules out /i4 and /23 • Thus if all of r, s and t are
not zero, the generators we see are g ^ , . . . ,^a-i, /12/34, As/24 and /i4/23
or, equivalently, g o , . . . , ̂ .
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7.10. Example. — Consider V = V(20,(4,9,13,14)). Then (up to a
finite cover),

PIG(V) = SLr x SLs x SL2 x T3,

and CIV]6' is generated by (^ • • • ^ 94.- Theorem 7.8 reduces the computation
to the p x a x r-invariants of V (8,(4,4,4,4)), giving /i2/34, /13/24, /14/23, 92
and ^3.

7.11. THEOREM. — If 6 == 0, V(n^ k ) is cofree, except in the two cases
y(2,(l , l , l , l))andy(4,(2,2,2,2)).

Proof. — We may always apply C^ to arrive at the case where
ki + k^ < n. Now apply Theorem 7.8 to V(n^k). If a >_ 3, then we
know that y(2a,(a,a,a,a)) is cofree, hence the generators fzj and the 57,
£ = 2 , . . . , a — 1 are a regular sequence. When one (or several) of r, s
and t are not zero, we eliminate a pair of /^-, say /i2 and /34, but keep
their product /i2/34- But, obviously, this process still results in a (shorter)
regular sequence.

Suppose that a = 2. Then by Theorem 7.8, the only problematical
case is that of four medials! So, finally, suppose that a = = l . I f r = s = t = 0 ,
then we have the non-cofree and non-coregular case Y(2,(l, 1,1,1)) where
q = 5. If q = 2, then t ^ 0, and our generators are /i2/34 and /i3/24-
If q = 3^ we have /i4, /23 and /'13/24- It is easy to check by hand that these
are regular sequences. Finally, if q = 4, then s = t = 0 and r 7^ 0, so we
came from the case V(r + 2,(1,1, r + 1, r + 1)). It is then easy to see that
the invariants /is, /i4, /23 and /24 form a regular sequence. Alternately,
V(r -4- 2,(1, l,r + l,r + 1)) is cofree if its quotient by SLy+i x SL^+i is
cofree, and this is the representation (2Cr+2 © 2(Cr+2)*,SLy.+2), and this
representation is cofree for r > 1 by [Sch2]. D

8. Equidimensionality of D^ x D^ x Dks x D^.

8.1. Proof of Theorem 2.10. — Let gi , . . . . 94 be as in Corollary 5.5,
and consider the condition

(A) n- ki+qi>.q-l, 1=1,2,3,4.

From Theorem 5.3 we know that
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(1) If V is equidimensional, then (A) holds and (Y,SLyi) is equidi-
mensional.

(2) If (A) holds, then (V.SLn) equidimensional implies that V is.
Therefore the representations we seek are among those where (A) fails.
By Theorem 7.11, we need only consider the case 6 ^ 0, and then V is
automatically coregular.

We consider the list of noncofree representations in Proposition 5.8,
and look at the small number of cases where (A) does not hold. We find
that V not equidimensional and (V, SLn) equidimensional occurs exactly in
the cases:

(1) V(2n+l,(n+l,n+l,n+l,2n)),n>2;

(2)y(d+l,(l,l,M)),d>3;

(3)Y(5,(2,2,2,3)).

In each case (A) fails, of course, but C^(V) is cofree, so that (V, SLn)
is equidimensional. Q
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