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IDEMPOTENTS IN QUOTIENTS AND RESTRICTIONS
OF BANACH ALGEBRAS OF FUNCTIONS

by Thomas Vils PEDERSEN

We say that a commutative Banach algebra B is generated by its
idempotents if the algebra of all linear combinations of idempotents in B
is dense in B. For a compact Hausdorff space X, it is easily proved, using
the Stone-Weierstrass theorem, that C(X) is generated by its idempotents
if and only if X is totally disconnected. In this paper we discuss conditions
under which quotient and restriction algebras of certain Banach algebras
of functions on the unit circle T are generated by their idempotents.

For the algebra A of absolutely convergent Fourier series on T, Kahane
([7], pp. 39-43) has proved that the restriction algebra A(E) is generated
by its idempotents whenever E is a closed set of measure zero, and that
there also exists a totally disconnected, closed set of positive measure for
which A{E) is generated by its idempotents. In the other direction, it is
known that there exists a totally disconnected set E (necessarily of positive
measure) for which A(E) is not generated by its idempotents.

The algebras that we discuss in this paper are the Beurling and
Lipschitz algebras and the algebra of absolutely continuous functions on T.

For the Beurling algebras A/3, Zouakia has proved that A/3 (E) is
generated by its idempotents whenever E is of measure zero and f3 < j
(thus generalizing the result of Kahane mentioned above). We provide a
proof of this result in Section 2. In the other direction, we prove that,
for f3 > ^, there exists a closed set E C T of measure zero such that
AP/JAQ^E) is not generated by its idempotents.

Key words: Banach algebras of functions — Idempotents.
Math. classification: 46J10 - 26A16 - 26A45 - 42A16.
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In Section 3, we prove that a certain condition on a closed set
E C T is equivalent to the Lipschitz algebra \^(E) being generated by
its idempotents. This condition is shown to hold for every closed set of
measure zero, and we obtain examples of perfect symmetric sets of positive
measure for which it holds and of such sets for which the condition does
not hold.

Finally, for the algebra AC of absolutely continuous functions on T,
we show that AC(E) is generated by its idempotents if and only if E is of
measure zero (Section 4).

1. INTRODUCTION

By a Banach function algebra on a compact Hausdorff space X, we
mean a unital, commutative, semisimple Banach algebra B with character
space X. We shall regard B as an algebra of functions on X. In this paper
we shall study only Banach function algebras on the unit circle T and on
closed subsets of T. We often identify T with [—TT.TT] or [0,27r].

Let f3 >. 0 and define the Beurling algebra Ap as the algebra of
continuous functions on T whose Fourier coefficients

satisfy

f(n}-^ff(t)e-^dt, neZ

1 1 / 1 1 ^ = E \f(n)\{l+\n^<oc.

With the norm || • ||^g, it is easily seen that Ap is a Banach algebra. Since
((1 + |n|)/3)i/H -, i as \n\ -> oo, it follows from [4], pp. 118-120 that the
character space of A(3 is T, so that Ap is a Banach function algebra on T.

The second class of Banach function algebras on T that we consider
is the class of Lipschitz algebras. For / 6 C'(T), let

ujf(h) = sup{|/(t) - f(s)\: t, s € T with \t - s\ < h} (h > 0)

be the modulus of continuity of /. For 0 < 7 < 1, define the Lipschitz
algebra A/y to be the algebra of continuous functions on T satisfying
uJf(h) = 0(/i7) as h -> 0. Hence / € A/y if and only if

,̂ p{M ,̂seT,t^s\<oo.
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With the norm
lk=||/||oo+^(/)

=||/||^+sup^, /CA,
/i>0 ^'

(where || • ||oo is the uniform norm), A-y becomes a Banach algebra. This
algebra was studied by Sherbert, who noted that the character space of A^
is T ([16], Proposition 2.1). Hence A^ is a Banach function algebra on T.

For 0 < 7 < 1, let Xy be the subalgebra of A^ of functions satisfying

ujf(h)=o{h'1) ash->Q.

(If we extend this definition to 7 = 1, we simply obtain Ai = Cl.) In
Section 3 it becomes apparent that \^ rather than A^ provides the right
frame of reference for discussing idempotents in restrictions of Lipschitz
algebras. We mention in passing that from a Banach algebra point of view,
it is often the case that A-y is more interesting than A^. For example, for s €
T, let the translation operator Ls on A/y be defined by (Lsf)(t) = f(t — s)
for t € T and / C A^. It was proved by Mirkil ([12]) that Lsf -> f in
A/y as s —> 0 if and only if / € \^. Hence A-y is homogeneous in the sense
of Shilov, and a remarkably general result of Shilov ([17], Theorem 5.2 or
[II], Proposition 20.1) thus implies that A^ is the closed subalgebra of A.y
generated by the trigonometric polynomials.

Finally, we are also interested in the algebra of continuous functions of
bounded variation and the subalgebra of absolutely continuous functions.
Recall that a function / on T is of bounded variation if

f n 1Var(/) = sup ^ ̂  \f(xk) - f(xk-i)\: 0 = XQ < x^ < ... < Xn = 27T ^ < oo.
lfc==i J

Let BVC be the algebra of continuous functions of bounded variation on T.
Equipped with the norm

||/||BVC=||/||oc+Var(/), f^BVC,

it is easily seen that BVC becomes a Banach algebra. Also, 1/f € BVC
whenever / € BVC does not have any zeros on T, so it follows from [9],
Theorem, p. 204, that the character space of BVC is T. Hence BVC is a
Banach function algebra on T.

Recall that a function / on T is said to be absolutely continuous
n

if, for every e > 0, there exists 6 > 0 such that ^ |/(&fc) — /(^fc)| < £
k=l

whenever (ai, & i ) , . . . , (oyi, bn) are pairwise disjoint intervals in T satisfying
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n
^ (bk — Ok) < 6. Let AC be the algebra of absolutely continuous functions
fe=i
on T. It is well known (for this and other basic facts about AC, see, for
example, [6], Section 18), that / G AC if and only if / is differentiable a.e.
with /' € L^T) and

f(x) - f(y) = F f'(t) dt for x, y € T.
Jy

Obviously a function defined on T is absolutely continuous if and only
if both the real and the imaginary part are, and Banach (see, for example,
[6], Theorem 18.25) proved that a real-valued continuous function on T is
absolutely continuous if and only if it is of bounded variation and maps
sets of measure zero to sets of measure zero. Furthermore,

Var(/)= t \f(t)\dt for feAC.
Jr

It thus follows that AC is a closed subalgebra of BVC, and it is easily seen
that AC is a Banach function algebra on T. (Also, the result of Shilov
mentioned above implies that, for / € BVC^ we have Lsf —> f in BVC as
s -> 0 if and only if / C AC.)

Recall that a Banach function algebra B on X is called regular if, for
every closed set E C X and x € X\E^ there exists / e B such that f(x) = 1
and / = 0 on E. Note that all the algebras AO (/? > 0), A^ (0 < 7 < 1)
and AC contain C'°°(T) and thus are regular.

1.1. Ideal structures.

Let B be a regular Banach function algebra on T. For a closed set
E C T, consider the ideals

W) = {/ e B: f = 0 on E},
Ja(E) = { / € f f : / = 0 o n a neighbourhood of E}.

For / C C(T), let Z(f) = {t € T : f(t) = 0}, and define the hull of a closed
ideal I in B to be

h(I) = F[ Z(/).
f^i

It is well known (see, for example, [9], Corollary 5.7, p. 224) that, if I is a
closed ideal in B with h(I) = E, then

Je(E) C I C Ie(E).
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Hence, if Je(E) is dense in IB(E), then IB(E) is the only closed ideal in B
with E as hull. In this case, we say that E is of synthesis for B. If every
closed set E C T is of synthesis for ff, we say that synthesis holds for 23;
otherwise that synthesis fails.

Malliavin's famous result ([10]) states that synthesis fails for A, and
it is not hard to see that an elaboration due to Kahane ([7], pp. 64-65)
actually shows that synthesis fails for Ap for /? < ^. For (3 > 1, we have
^{3 c ^(T), which implies that not even singletons are of synthesis for
Ap. This makes it seem very likely that synthesis fails for A^ for all (3 > 0,
but to our knowledge this is still an open problem.

For the Lipschitz algebras A/y (0 < 7 < 1), Sherbert ([16], Theo-
rem 4.2) proved that synthesis holds. On the other hand, for 0 < 7 < 1,
we can define / € A^ by f(t) = \t\^ for \t\ < TT. For g e ^({0}), we then
have ||/ - g\\ ̂  > 1, which proves that points are not of synthesis for A^.

Finally, Shilov (see, for example, [14], A.2.5, pp. 302-303) proved that
synthesis holds for BVC as well as for AC.

1.2. Algebras generated by their idempotents.

Let B be a regular Banach function algebra on T. When I is a closed
ideal in B with h(I) = E, then the quotient algebra B / I is a regular Banach
algebra with character space E and radical I j s ( E ) / I . For a closed set E C T,
the semisimple algebra B/Ia(E) is a Banach function algebra on E which
is easily seen to be isometrically isomorphic to the restriction algebra

B(E) = {f e C(E) : there exists g € B such that g\a = /},

with the norm ||/||̂ ) = mf{||^|[0 : g e B and g\a = /} for / € B(E).
When synthesis holds for B, these are the only quotient algebras, but when
synthesis fails, we can also consider the non-semisimple quotients B / I ,
where Je(E) C I c IB{E) for closed sets E C T which are not of synthesis
for B. Note that, if I is a closed ideal in B with h(I) = £", then

(1) B / I c. (B/W)) I (l/W)) ,

(2) B ( E ) ^ ( B / I ) / ( W ) / I )

(where ^ indicates an isometric isomorphism). Hence B / I is generated by
its idempotents if B / J B ( E ) is, and B(E) is generated by its idempotents if
B / I is.
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We shall first see that the only closed sets E C T for which B(E) can
be generated by its idempotents are the totally disconnected sets.

PROPOSITION 1.1. — Let B be a regular Banach function algebra
on T. Let I be a closed ideal in B and suppose that B / I is generated by its
idempotents. Then h(I) is totally disconnected.

Proof. — Suppose that E = h(I) is not totally disconnected. Then E
contains a non-empty interval (7, and every idempotent in B(E) is constant
on U. On the other hand, B(E) separates the points of E, so B(E) is not
generated by its idempotents, and the result thus follows from (2). D

Let E C T be a closed set and suppose that F C E is both open
and closed in E. It follows directly from the regularity of B that there
exists an idempotent e € B(E) such that e = 1 on F and e = 0 on
E \ F. Also, if I is any closed ideal in B with h(I) = £1, then it follows
from Shilov's idempotent theorem (see [3], Theorem 5, p. 109) that there
exists an idempotent e e B / I such that ? = 1 on F and e = 0 on E \ F,
where e is the Gelfand transform of e. If E is totally disconnected, then
the subsets of E which are both open and closed form a base for the
topology ([15], Corollary, p. 371), and we thus deduce that B / I contains
many idempotents. In the following sections we study whether there are
enough to generate B / I .

We shall now give a simple characterization of idempotents in restric-
tion algebras, and show that, in some sense, the linear span of idempotents
in B(E) does not depend on the algebra B. Hence the problem of deter-
mining whether B(E) is generated by its idempotents becomes a problem
about approximation in the norm on B.

LEMMA 1.2. — Let B be a Banach function algebra on T and
suppose that C°°(T) C B. Let E C T be a closed set and let g e B.
Then g\E belongs to the linear span of idempotents in B{E) if and only
if g(E) is finite. In the case where this condition is satisfied, there exists
f e C°°(T) such that g\a = f\E'

N
Proof. — If g\E = ̂  c^e^i, where Cn is a constant and On € B(E) is

n=l
r N

an idempotent for n = 1,... ,A^, then g{E) C < ^ Cn£n-> where On = 0
^n=l

or 1 ^, so g(E) is finite. Conversely, suppose that g(E) is finite, say
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g{E) = {2/1,...,^}. Let En = g-^^n) H E and choose e^ e C°°(T)
such that en = 1 on ̂  and en = 0 on E\ En. Then eyj^ is an idempotent

N
for n = 1,..., TV, and g = ^ ^/n^n, which finishes the proof. D

n=i

IfBCC^T^then

JB(E) C {/ e B : / = /' = 0 on E}

for every closed set E C T. Hence, if e e B is such that e + JB^E) is an
idempotent in B/Je(E), then e{E) C {0,1} and (2e - l)e7 == (e2 - e)' = 0
on £'. Thus e' = 0 on £', so we deduce that B / J e ( E ) is not generated
by its idempotents; even when E is finite. The algebra B(E) is obviously
generated by its idempotents when E is finite. If, however, E is infinite
and x is an accumulation point of -E, then e\x) = 0 for all idempotents
in B(E), so B(E) is not generated by its idempotents. For these reasons,
we restrict ourselves to algebras B such that B g C^T). In particular, we
shall discuss only the Beurling algebras A/3 with 0 < /? < 1.

2. IDEMPOTENTS IN QUOTIENTS
OF BEURLING ALGEBRAS

The main result in this section is that, for /? > - there exists a
closed set E of measure zero such that A^/JA^E) is not generated by its
idempotents. In contrast, Zouakia ([18], Corollaire 5.13) has proved that
Aft(E) and A/3/JAo(E) are generated by their idempotents whenever E
is of measure zero and /3 < j. Since this source is rather inaccesible, we
include a proof of the result. We complement these results by showing that,
for (3 < j, there exists a closed set E C T of positive measure such that
AP/JA^^E) is generated by its idempotents, and that there exists a totally
disconnected, closed set E C T (necessarily of positive measure) such that
Aft^E) is not generated by its idempotents for 0 <: /3 < 1.

The Beurling algebras are defined in terms of their Fourier coefficients
and not directly in terms of properties of the functions involved. This
often complicates matters, but it does, on the other hand, allow a simple
description of their dual spaces. Let /? > 0 and write PM^ (pseudomeasures
with weight (1 + \n\)(3) for the dual space of A/s. It is easily seen that the
map

r^(r(n)),
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where f(n) = (e-^.T) for T e PMp and n e Z, identifies PM^ with the
set of all sequences (T(n)) for which

'" '̂'̂ (i?^00-
Also,

00

E An)T(-n)
n==—oo

</,r)= ^ f(n)f{-n)

for / € A/? and T e PA^.

We define the support of a pseudomeasure r € ^./M/3 to be the
support of the corresponding distribution T on T, that is, the complement
of the largest open set U C T for which (/, T) = 0 for all / € C°°(T) with
supp / C U. We denote the support of T by supp T and, for a closed set
E C T, let PMft(E) = {T e PMo : supp T C E}. A proof almost identical
to [7], p. 29, shows that, if / € Ap and T e PMp with supp /Hsupp T = 0,
then (/, T) = 0 (so we could as well have defined the support of T e PM(3
by means of all Ap functions). Hence it follows that, for a closed set E C T,
the dual space of the quotient algebra A^/JA^E) is PMp(E).

2.1. Quotient algebras generated by their idempotents.

Let 0 < f3 < j. To T e PMft, associate OT € L^T) defined by

0T(t) = f(0)t + y T^le^ for - TT < t < TT2—' in
n^O

(convergence in ^(T)), that is, the formal integral of T. Since t =
^ (^(-l)71/^1^, we have
n/O

(3) Ord) = E ̂ -^^"^e^ for -.<t<n.
vTii

n^O

We need the following simple partial integration result.

LEMMA 2.1. — Let 0 < (3 < j. For / e C°°(T) and T e PM^.we
have

^ f f{t)0T(t) dt = -(/, r) + /(7r)r(o).
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Proof. — Since /', Or C ̂ (T), we have

^ /* f/(t)0T(t)dt= ^ nn)0r(-n)
^ n=—oo

.̂nAn)"'-'-.̂ "™
n^O

=- § /(n)T(-n)+ ̂  /(n)(-l)"f(0)
n==—oo n=—oo

=-(/,r)+/(7r)T(0),

as required. D

The proof of the following result is omitted, since it is basically the
same as that of [2], Proposition 3.2.5.b).

LEMMA 2.2. — Let 0 < f3 < \ and let T € PMp with f(Q) = 0.
Suppose that T e PM^T \ V) for some open interval V C T. Then Or is
constant on V.

The following proof of Zouakia's result is very similar to his own proof,
although we use a different representation of PMp.

THEOREM 2.3 (Zouakia). — Let 0 < /? < | and let E C J
be a closed set of measure zero. Then A^/JA^E) is generated by its
idempotents.

Proof. — We may assume that TT € E. Let T € PMp(E) and
suppose that (e, r) = 0 for every idempotent e € A ^ / J A / S (E). In particular,
T(0) = (1, T) = 0. Let a, b e T \ E with -TT < a < 6 < TT and choose e > 0
such that [a - e, a], [6, b + e] C (-TT, TI-) \ E. Choose / € 0°°^) satisfying
/ = 1 on a neighbourhood of [a, b] and supp / C (a — e,b -h g). Then
/ - f2 e JAp(E), so / + JAo(E) is an idempotent in A/3/J.4^(£'). Also,
/' = 0 in a neighbourhood of £', so it follows from the two previous lemmas
that

o = (/ + J^(E), r) = </, T) = -^ y /'(^rW ̂
1 /-a -. /.6+e

= -7r / ^W dt • ̂ (a) - ̂  / f'W dt' W27r Ja-e: ^ Jb

=^(0T(b)-eT(a)).
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Consequently OT is constant on T \ E. Since E is of measure zero, we
deduce from (3) that f(n) = (-1)^(0) = 0 for n € Z, and thus T = 0.
Since PMp(E) is the dual space of A^/JA^ (E), the result follows from the
Hahn-Banach theorem. D

We briefly digress to mention a related result by Bade and Dales. Let
0 < f3 < ^ and suppose that E C T is a closed set which is of measure
zero and not of synthesis for Ap. It follows from Theorem 2.3 and [I],
Lemma 3.3 that the non-semisimple algebra A/S/JA^^E) does not have a
strong Wedderburn decomposition. This, however, is just a special case of
[I], Theorem 4.3, where the result is shown for all closed sets which are not
of synthesis for Aft. In view of our results for (3 > j (Corollary 2.8), it is
nevertheless interesting to note that the results in [1] are only proved for
f3 < ̂ , and that it seems unknown whether they hold for f3 > -

The following is an immediate consequence of the previous theorem
and (2).

COROLLARY 2.4. — Let 0 < /3 < \ and let E C T be a closed set
of measure zero. Then Ap(E) is generated by its idempotents.

We also have the following generalization of the result mentioned in
[7], p. 43.

PROPOSITION 2.5. — Let 0 < /? < ^. Then there exists a closed set
E C T of positive measure such that A^/JA^E) and Ap(E) are generated
by their idempotents.

Proof. — Let On = (n + l)^-1 for n € No. Following [19], Theo-
rem IX.6.21, we choose a U(e)-set E of positive measure. If T € PA4p{E)
and (e,r) = 0 for all idempotents e € A^/JA^E), then it follows as
in the proof of Theorem 2.3 that OT = c on T \ E for some constant c.
Also, 0T(ri) = 0{e\n\) as |n| —> oo, so it follows from the proof of [19],
Theorem IX.6.21 that 6>r = c on T. (For /? = 0, it follows from [19], The-
orem III.3.8 that the Fourier series of QT — c converges to 0 on T \ E. For
/3 > 0, this need not be true anymore (see [19], Theorem VIII.2.5), but the
proof of [19], Theorem IX.6.21 works for OT - c e L2 with OT - c = 0 on
T \ E.) Hence c = 0 and thus T = 0, so we deduce that AO/JA^E) and
thus A/3 (E) are generated by their idempotents. D
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2.2. Quotient algebras not generated by their idempotents.

We start with the following generalization of [7], p. 42.

PROPOSITION 2.6. — There exists a totally disconnected, closed set
E C T (necessarily of positive measure) which is of synthesis for Ap such
that Aft(E) is not generated by its idempotents for 0 < /3 < 1.

Proof. — It follows from [7], p. 42 that there exists a Herz set (and
thus a set of synthesis for A) E C T such that A(E) is not generated by
its idempotents. Now let 0 <: (3 < 1. The injection L : Ap(E) <—^ A(E)
is continuous with dense range, so it follows that A{3(E) is not generated
by its idempotents. Furthermore, it can be shown that Herz sets are of
synthesis for Ap (see [13], Theorem 2.2.5). D

We now wish to prove that, for f3 > ^, there exists a closed set E C T
of measure zero such that the quotient algebra AP/JA^ (E) is not generated
by its idempotents.

PROPOSITION 2.7. — Let E C T be a closed set and let f3 > 0.
Suppose that there exists a non-zero measure p, with support contained
in E such that j£(n) = O^n}0-1) as \n\ -> oo. Then AO/JA^E) is not
generated by its idempotents.

Proof. — Defining ^ in the sense of distributions (that is, (/, //) =
-(//, IJL) for / e C'°°(T)), we have /?(n) = mj2(n) for n e Z, so // € PMp.
It follows from the definition of the support that supp // C E and thus
// € VM(j{E). Also, we may assume that E -^ T, so that p, is not a
constant function and thus /A' 7^ 0.

For g C .4/3, let g (resp. g) denote the corresponding element in
the quotient algebra A^/JA^^E) (resp. in A^E) ^ A^/IA^E)). Let
e G A(3/JA(:){E) be an idempotent (with e G A^). It follows from (2)
that e is an idempotent. Hence, with Ej = {t € E : e(t) = j} for j = 0,1,
we see that EQ^E\ are disjoint, compact sets with E = EQ U £'1. Choose
/ € C°°(T) such that / = j in a neighbourhood of Ej for j = 0,1. Then
e = /, so ____ ____

e - f € IA,(E)/JA,{E) = md(Ao/JA,(E))
(the radical of A^/JA^E)). But e and / are idempotents, so we deduce
that e = /. Since /' = 0 on E, we thus have

(e,//)^/,^-^,/.)=().
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From the Hahn-Banach theorem, we thus conclude that Aft I ' J ^ ^ i E ) is not
generated by its idempotents. D

For 7 > — H , Salem ([8], p. 110) proved that, there exists a perfect,
closed set E C T of measure zero and a non-zero measure ^ with support
contained in E such that j2(n) = 0(|n|7) as |n| —> oo. Combining this with
the previous proposition, we obtain the following.

COROLLARY 2.8. — For (3 > ^, there exists a perfect, closed set
E C T of measure zero such that A / S / J A ^ ^ E ) is not generated by its
idempotents.

We would also like to prove that the same conclusion holds for the
restriction algebras A^{E)^ or more precisely that, for /? > ^, there exists
a closed set of measure zero such that Ap(E) is not generated by its
idempotents. If the set E in the previous corollary is of synthesis for A/s,
then this is certainly the case, but we do not even know whether E is of
synthesis for A.

For / e (7°°(T) with / = 0 on E, we have /(n) = 0 on E for n e N,
because E is perfect. Hence </,//} = -</',^) = 0. If IA^E) D C'°°(T) is
dense in J^(-E), we thus have // € J^(£1)-1-, which is the dual space of
A/3(E). The proof of Proposition 2.7 would thus show that A^(E) is not
generated by its idempotents. However, for / € I^^E) H C°°(T), we have
sup{|/(^)| : d(t,Z(/)) ^ e} = O^) as e -^ 0 for n € Np, and it can
be shown that this implies that / € J^(Z(/)) C J^(E). Consequently
1'A ft (E) n C°°(T) is dense in 1^ (E) if and only if E is of synthesis for Aft,
so this idea cannot be used to decide whether Ap^E) is generated by its
idempotents.

3. IDEMPOTENTS IN RESTRICTIONS
OF LIPSCHITZ ALGEBRAS

We begin this section with the following simple result.

PROPOSITION 3.1. — Let 0 < 7 < 1 and let E C T be an infinite,
closed set. Then A^(E) is not generated by its idempotents.

Proof. — We may assume that 0 is an accumulation point of E.
Define / € A^ by f(t) = \t\^ for \t\ ^ TT. Let g € A^ with g(E) finite.
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Then g is constant on E H [—^] for some e > 0, so ||/ — g\\\^ > 1. It
thus follows from Lemma 1.2 that f\E does not belong to the closed linear
span of idempotents in A^(E). In particular, A^(JS') is not generated by its
idempotents. D

(For 0 < 7 < 1, we could as well have argued as follows. The closed
linear span of idempotents in A^(£') is contained in A/y(£1) by Lemma 1.2.
Also, X-y{E) C A^(^) since f\a ^ A<y(£'), with / as in the proof.)

Because of this result, we shall focus on the algebras A<y(0 < 7 < 1).
In this section we obtain a characterization of those closed sets E C T
for which X'y{E) is generated by its idempotents. It turns out that we can
avoid some technical difficulties by working with Lipschitz algebras on the
unit interval rather than the unit circle. We define the Lipschitz algebra
A/y on the unit interval as we defined A/y, except that we do not require the
functions to be periodic. For a closed set E C [0,1], it is easily seen that
A-y(J^) ={/ |^ : / € A / y } is isomorphic (but not isometrically isomorphic)
to A^e1271^). In particular, \^(E) is generated by its idempotents if and
only if A^e^^) is. From the point of view of this paper there is thus no
difference between A^ and A-y. For notational convenience, we write A/y as
A^. Also, we extend the standard terminology and refer to intervals in [0,1]
of the form [0, a) or (a, 1] for 0 < a < 1 as open intervals.

The following set function plays a central part. Let 0 < 7 < 1 and let
E C [0,1] be a closed set. For a closed interval F = [re, y] C [0,1], define

PE^(F) = s\ip{g(y) - g(x) : g e A<y
is real-valued, p^{g\p) <: 1 s^d g(Er\F) is finite}.

Denoting the interior of a set F by F° and the Lebesgue measure on [0,1]
by m, we have the following.

LEMMA 3.2. — Let 0 < 7 < 1, let E C [0,1] be a dosed set and let
F C, [0,1] be a closed interval. Then

(i) PE^F) < m{F)\
00

(ii) With F° \ E = (J Vn, where (Vn) is a sequence ofpairwise disjoint,
n=i

DO

open intervals, we have pE^(F) < ̂  rn(Vn)^'.
n=l

(iii) For F -^ 0, we have PE,^(F) > T^F^-^F \ E). In particular,
PE^(F) = m(F)^ ifm(EnF) = 0.
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Proof. — (i) and (ii) follow directly from the definition. For (iii), let
e > 0 and choose pairwise disjoint, open intervals Vi , . . . , VN C F° \E such

N
that ^ m(Yn) > m(F\E)-£. Let g € A<y be a real-valued function which

7i=l

is linearly increasing on each of the sets Vi , . . . , VN with slope m(F)^~1

and is constant on each of the contiguous intervals. Then p^(g\p) <: 1 and
N

g{y)-g(x)=^m(VMFr-1

71=1

>(m(F\E)-e)m(Fr-\

so the conclusions follow. D

We shall now obtain a characterization of the closed sets E C [0,1]
for which \-y(E) is generated by its idempotents. In concrete cases it is,
however, difficult to decide whether the condition is satisfied, but we shall
see that it can be done in certain cases.

THEOREM 3.3. — Let 0 < 7 < 1 and let E C [0,1] be a closed set.
Then \^(E) is generated by its idempotents if and only if

pE^F)=m(Fr

for every closed interval F C [0,1].

Proof. — First, suppose that \^(E) is generated by its idempotents.
Let F = [x,y] C [0,1] and let e > 0. Define / e Xy by f(t) = m(F)^-^
for t e [0,1]. Then ̂ (/|r) = 1 and f(y) - f(x) = m(F)^. By Lemma 1.2,
there exists g e A/y real-valued with g(E H F) finite and ||/ - g\\\^ < e. In
particular,

g{y) - g(x) > m(F)7 - 2e

and
P^|^)<1+£.

Hence PE^(F) = m(F)7.

Conversely, suppose that PE^(F) = m(F)7 for every closed interval
F C [0,1]. Since pE,-y(Y) = 0 for every open interval V C E by Lemma 3.2
(ii), we deduce that E does not contain any open intervals. Hence E is

00

totally disconnected. Write [0,1] \ E = |j Vn, where (Vn) is a sequence of
71=1

pairwise disjoint, open intervals. Let / e A/y be real-valued (it is sufficient to
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prove that we can approximate real-valued functions in X^(E) with linear
combinations of idempotents) and let e > 0. Choose ho > 0 such that

^fW < ̂  for h < ho,
and choose N 6 N such that m(Vn) < ho for n > N. In particular,

P^(f\vJ<:e {oTn>N.
N

Let F = [x, y} be one of the closed intervals constituting [0,1] \ (J Vn
n=i

(there are N — 1, TV or TV + 1 such intervals), and suppose that F is not
a singleton. Choose K € N such that K > 2(y — x)/ho. For k = 1,..., K,
choose Zk G (x -+- (k — l){y — x ) / K , x + k{y — x ) / K ) \ E and remove

K
the open interval V^ containing zjc. Then F \ (J Vy^ is a finite union

k=i
of closed intervals each of measure at most ho. If we do this for each of

N
the closed intervals constituting [0,1] \ U Vn (except for the singletons),

n=i
we see that there exists a finite number of closed intervals F\,..., FM such
that m(Fm) < ho and thus p^(f\Fm) < ^ for m = 1,... ,M, and such

M
that [0,1] \ U Frn ^s a finite union of intervals Vn including Vi , . . . , VN'

m=l
Let m € {!, . . . , M} and write Fm = [^m? 2/m]- There exists gm € \^ real-
valued with ^m(^m) = f(xm), 9m{ym) = /(^/m), 9m(E n 2^) finite and

/ I ^ ^ l/(^m)_^(^r01 ^ /r| ^ ^
P-Y{9m\Fm) ̂  ———^p ^——— <JWl^J ̂  ̂

(If Fm is a singleton, then P^(g-rn\Fm) = 0-) Define ^ € A-y by
f M
j / on[0,l]\ U Fm

v j 771=1

{ gm on Fm for m = 1, . . . , M.
M

Then ^(£7) is finite. Let h = f - g, and let x € [0,1] \ |j Fm and y e Fm
m==l

with 1 <^ m < M. We may assume that x < y , so we have
\h(y) - h(x)\ = \h{y)\ ^ p^h\pj(y - XmV < P^h\pj{y - x)\

Also, for x G Fm^ and y G Fm^ with 1 ̂  mi, ma < M and x <: y , we have
TO - ̂ (^)1 < sup p^h\pj ((y - xm,r + (^ - ̂ )7)

l<m<M

^ 2 SUp P7(^|F^)(2/-^)7.
l<7n<M

Hence we deduce that
p^(h) <, 2 sup p^(h\F^) <: 2 sup (p^(f\Fm) ̂ P^9\Fm)) ̂  4^,

l<m<M Km<M
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and thus ||/i||oo < ^h^e. Consequently \^{E) is generated by its idempo-
tents. Q

Hedberg ([5]) has given the following characterization of the closed
sets E C [0,1] for which X-y(E) is generated by its idempotents. For a union
00 7 00 v 00

U Vn ofpairwise disjoint, open intervals, let My( |j Vn) = ̂  m(Yn)^.
n=l ^n^l / n=l
Then X'y(E) is generated by its idempotents if and only if, for every a € E,
we have

,. . ,M^(a-6,a-^-6)\E) .hm mf —JL————-———/——)- > 0.
6-^0 6^

We find it quite interesting to compare Hedberg's "local" condition to our
more "global" version.

The following important corollary follows from Lemma 3.2 (iii), and
can also be deduced from Hedberg's characterization. However, we have
not been able to apply Hedberg's condition to the perfect symmetric sets
(see below).

COROLLARY 3.4. — Let 0 < 7 < 1 and let E C [0,1] be a closed set
of measure zero. Then \^(E) is generated by its idempotents.

The referee has kindly pointed out to us that the corollary can be
proved directly quite easily as follows. Let / € A/y and e > 0. Choose

N
disjoint, open intervals V^,...,VN with ^ m(Yn) < e such that E C

n==l
N
U Vn. Pick Xn G Vn and let g = f(xn) on Vn for n = 1 , . . . , N. On each

71=1

of the contiguous intervals, let g(x) = f(x) + ax + b, where a and b are
chosen so that g is continuous. Then g{E) is finite and it is easily seen that
[[/-^-^Oa^^O.

We now wish to prove that the characterization obtained in Theo-
rem 3.3 does not simply give us all closed sets of measure zero or all totally
disconnected, closed sets. To this end, we show that, for 0 < 7 < 1, there
exists a totally disconnected, closed set (necessarily of positive measure)
such that \-y(E) is not generated by its idempotents, and that there ex-
ists a totally disconnected, closed set of positive measure such that X-y(E)
is generated by its idempotents. Examples of both kinds are provided by
perfect symmetric sets.

Recall the following definition of these sets from [8], Chapitre I. Let
$ = ($n) be a sequence with 0 < ^n < \ for n e N. First, we remove
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an open interval V\ of length (1 — 2$i) from the middle of [0,1]. From
the middle of each of the two remaining closed intervals E\\ = [0,$i] and
£'12 = [(1 — $i) 51] ? we then remove open intervals Vai and 1̂ 2 each of
length $i(l — 2$2). In the n'th step, we remove an open interval Vnk of
length $1 • • • $n-i(l - 2^n) from the middle of En-i,k for k = 1,..., 271-1,
so that 2n closed intervals £ni,..., En2n each of length $1 • • • $n remain.
For n € N, let

Vn = |j Vnfc, En = |j £^,

fc=l fc=l

and define

^n^^wu1-
n=l n=l

Then £'̂  is a perfect, closed set with empty interior and

f °°
^ = \ ̂ en^' "^-i(l - $n) : £n = 0 or 1 for n e

Ln=l

Furthermore,
m(^)= lim 2^1...^.

Note that the Cantor set on [0,1] corresponds to ^n = j for n € N. When
the k in Vyi^ and Enk is not specified, we often write Vn. and £'71. instead.
Also, for n € N, let

<n=m(y,.)=$i...^-i(i-2^),
7n =m(En.) =$l'"$n.

We are particularly interested in the case where

^-( l-c^-0 7 1) f o r n e N

for some a > 0 and 0 < c < 2°. In this case, we write £(a,c) for E^y and
we have m(£(a, c) > 0. Also, In ~ 2-(a+l)n as n -^ oo.

LEMMA 3.5. — Let 0 < 7 < 1, let E C [0,1] be a dosed set and
00

write [0,1] \£" = (J Vn, where (Vyi) is a sequence ofpairwise disjoint, open
n==l

intervals. Suppose that there exists a closed interval F C [0,1] such that
m(E n F) > 0 and

^ m(y,)^ < oo.
Vr,CF
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Then there exists a closed interval F/ C F whose endpoints belong to E
such that

^ m(Vn^<m(F/r.
VnCF'

In particular, \^(E) is not generated by its idempotents.

Proof. — Write {Vn : Vn C F} = {Vn^ : m € N} (with obvious
changes in the following if {Vn : Vn C F} is finite). Choose M e N such

oo M
that ^ rn(Vn^ )7 < m(E H F). Since [0,1] \ (J Vn^ consists of M +1

m=M+l m=l
closed intervals FQ, . . . , FM (two of which are possibly empty) and since

M oo

^ ^ mW= ^ m(VnJ\
•m=OVrtCFm m=M+l

there exists mo € {0 , . . . , M} such that

^ m(l̂  < m(E H F^) < m(F^)^.
VnCF^

Since the endpoints of Fmo belong to E, we have F^ \ E = |j l^,
VnC^o

and the conclusions thus follow from Lemma 3.2 (ii) and Theorem 3.3. D

Example 3.6. — Let 0 < 7 < 1 and suppose that a satisfies
7(0 +!)>!. Then A^(^(a,c)) is not generated by its idempotents.

Proof. — With the above notation, we have

^ m(VnkV = f^ 271-1^ < C f^ 2(l-^a+l))7l < oo
^nfcC[0,l] n=l n=l

(where C is some constant), so it follows from the previous lemma that
A^(£'(a,c)) is not generated by its idempotents. D

We now wish to prove that \^(E(a, c)) is generated by its idempotents
whenever 7(0 + 1) < 1. There are a number of preparatory steps.

LEMMA 3.7. — Let 0 < 7 < 1, let f e A-y be real-valued and suppose
that f is linear on [6, c] for some 6, c e [0,1] with b < c. Then

(4) ^(/l[a,cl)<maxL^(/|^]), sup '/(c) ~ /(tg)l }
I a<o^6 (C-.K)^ J

for 0 < a < b.
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Proof. — Let 0 < a < b and write C for the right-hand side of (4). We
may assume that / is increasing on [b, c] with slope r > 0. If b < x < y < c,
then

\f(y) - f(x)\ r(y -x) ^ /(c) - f(b)
(y-x^ -(y-^-^ b) - (c-b)^ -c-

Now let x € [a, b). If /(a;) ^ /(&), then
I/O/) - f(x)\ max{/(y) - f(b), f(x) - f{b)} ^

(y-x). <——————(y-^——————<c fo^M.

If f(x) ̂  f(b), then
\f{y)-f(x)\ r(y-b)+f(b)-f(x)

(y-x). =————(y^———— ^y^^-

Considering this last expression as a function of y^ it is easily seen that it
does not have a maximum in (&, c), so the result follows. D

The following two results enable us to break up closed intervals into
smaller closed intervals, and to reduce the discussion of the set function
PE^ to these smaller intervals.

LEMMA 3.8. — Let 0 < 7 < 1 and let E C [0,1] be a dosed set. Let
0 < a < b < c < : l and suppose that the closed intervals F\ = [a, b] and
F'2 = [&, c] satisfy pE^(Fk) = m(Ffc)7 for k = 1,2. Then F = [a, c] satisfies
pE^F)=m{Fr.

Proof. — Let e > 0 and choose gk € A^ real-valued with gk(E H Fk)
finite and p^(gk\Fk) < 1 + £ for A; = 1,2, and g^(b) - g^o) = m(Fi)7 and
92(0) - g^(V) = m(F^. Let qk = (m(Fk)/m(F))1-^ for k = 1,2 and let
g € A/y be a real-valued function satisfying

/ .^f^iW onFi
'v / I q2(g2(t) - g2(b)) + qzgi(b) on F^

Then g(E H F) is finite and g(c) - g(a) = qim(F^ + q2m(F^ = m(F)^.
If 0 < s < m(Fi) and 0 < t < 771(^2), then

\g(b-^t)-g(b-s)\ ^ ,qis^q^ ^ , .
(s+t)^ -^^±e) (^^ ^^^

where the last inequality follows from elementary estimates. Hence we
deduce that p^(g\p} < 1 + ^5 and the result follows. D

COROLLARY 3.9. — L e t 0 < 7 < ! and let E C [0,1] be a dosed set.
Let Fn = [xn, Vn] (n = 1,..., N) be closed intervals with x\ >_ 0, yn < Xn-^-i
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for n = 1,..., N — 1 and ypf <, 1. Let Vn = (?/n, ̂ n+i) and suppose that
VnC[Q,l]\E torn =1,...,^-!. If p^(Fn) = m(Fn)7 torn = l , . . . , ^ v ,
then F = [.z*i,?/jv] satisfies RE^(F) = ?n(F)7.

Proof. — Note that p£;,^(V) = m(y)7 for every open interval V C
[0,1] \ E, so the result follows by induction from Lemma 3.8. D

We now return to the perfect symmetric sets. Let $ = (^) be a
sequence with 0 < ^n < \ for ri e N and let E = E^. For n € N, write
Vnk = (anfc, &nfc), with o^i > 0, bnk < ̂ +1 for fc = 1,..., 271-1 - 1 and
&n,2—i-i < 1. For fc = 1,..., 271-1 - 1, let

SE{n, k) = mm{bnk2 ~ ^fci ' ' ^ - < k \ , k ^ < 2n~l and ^2 - fci = fe},

that is, the minimum distance spanned by k of the intervals Vn.. (When
no misunderstanding is possible, we omit the subscript E.) We aim to
prove that, for suitable values of a and c, the set E = £'(a, c) satisfies
PE,^(F) = m(JF)7 for every closed interval F C [0,1] by considering, for
n € N, a function / which is linear on each Vn. contained in F and is
constant on each of the contiguous intervals. To obtain estimates ofp^(/|^),
we need to establish certain lower bounds for s(n,k). This is done in the
following rather technical lemmas.

LEMMA 3.10. — Let (^n) be a sequence with 0 < ^n < j for n e N
and consider the perfect symmetric set E^. Let n € N, 0 < k < 2n-l — 1

m
and write k = Y, £j ' 2-7, where ej = 0 or 1 for j = 0, . . . , m and where

j=0

Cm = 1 if k 7^ 0. With s = SE^ , we then have
(5)

n—l f m ^

5(n, k) = S £"-'-1 + S^ £-' • y-^-^ )lr+(k+ l)ln + 2krn.
r=n—m—l ^ j=n—r

In particular,
n-l

(6) ^n^-^ ^ 2r-(n-7n)^+2mr+2(2m-l)rn
r=n—m

for 0 ̂  m ̂  n — 1.

Proof. — In general, it is obvious that if k^ - fci = fc, then (a^fci, bnk2)
consists of 2fc of the En.'s, k + 1 of the Vn.'s and k of the Vm.'s with
m < n (since there is such an interval between any two of the Vn-'s). First,
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suppose that k = 2m for some m with 0 < m < n - 2. It is easily seen that
(ani, ̂ n^-n) contains exactly 2r-(n~m) of the Vr.'s for n - m < r < n - 1
and 1 of the Vn-m-i'^' Since the sequence (<n) is decreasing and since
there is a Vs. between any two of the Vr.^s with r > s, we deduce that
s(n, 21m) = ftn^+i — a"ni and thus

n-i
(7) 5(n,2m)=^_^_l+ ^ 2r-(n-m)^,+(2m+l)^n+2.2m^.

Furthermore, it is not difficult to see that s(n, 2771) also can be obtained as
n-2

^(^1+2"*) — ^fci» whenever £m = 0 in the expansion k\ — 1 = ^ £j • 2'7.
j=o

m
Now let 0 < k < 2n~l - 1 and write k = ̂  €j ' 23, where £^ = 1 if

j=0

k ^ 0. The fc intervals V^.. with r < n contained in (ani^n,A;+i)? and thus
in (&ni,an,fc+i), can be divided into those contained in (frni^n^+e^^771),
those contained in (^n^+e^^7"? ̂ i+^.am.^^.am-i), . . . , those contained
in (bn^+i-eo? ̂ ,^+1)5 so it follows from (7) and the subsequent remark that

m / n-l \

(8) bn^i-ani = ̂ £j In-j-i + ̂  2r-(n-^^^ + (fc+1^ + 2fc^.
j=0 \ r=n-j /

Again, it can be seen that s(n, k) equals bn,k+i - ̂ ni) so (5) and (6) follow
by rewriting (8). D

We are particularly interested in s(n,fc), when fc = 2171 - 1 for
m = 0, . . . ,n — 1, because we can express, and later evaluate, these
quantities fairly easily.

LEMMA 3.11. — Let ($n) be a sequence with 0 < $n < j for n C N.
With s = SEe ? we have

5(n, 2m - 1) = $i... ̂ -m-i (1 - 2^-^ ... ̂ )

for n € N and 0 < m < n — 1.

Proof. — Let n € N and 0 < m < n — l . B y the previous lemma, we
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have
n

s(n,2m-l)= ^ 2t-("-m)^,. + 2(2"1 - l)rn
r=n—m

n

= E 2'-("-TO)$l•••^-l(l-2$,)+2(2"l-l)$l...^
r=n—TM

=$l...^-^-l-2m+l$l...^+2(2m-l)$l...^
=$1 •••$n-m-l(l - 2$n-^'--$n),

as required, n

LEMMA 3.12. — Let ($n) be an increasing sequence with 0 < ^n < j
for n e N. Let n C N and let 2m < k < 2m+l - 1 for some m with
0 < m < n - 2. With the notation of Lemma 3.10, we then have

n—l ( m \ - i
E [Cn-r-l^ E ^•2^-(n-r)p, ^ ^-(n-^-1)^

r=n-m-l \________j=n-r__________/ ^ y.=n-^-i___________

fc - 2m+l _ 1

Proof. — The result is clearly equivalent to
n-l

^ c,<, > 0,
r=n—yn—l

where

( m \ m

^ = (2m+l - 1) En-r-l + ̂  Cj ' 2j-^n-^ - ̂ ^ . 2 '̂ . 2r-(n-m-l)

j=n-r j j=0

n—r—2 yn

=^_^-l(2m-l)- ^ ^. a^^-^-i) - ̂  ^•.2J-(n-r)
J=0 j=n-r

for n— m— l < r < n — 1. We have
m-l

c^-i = 2m - 1 - ̂  ̂  . V = ̂  2 '̂,
J=0 £j==0

m-l
Cr ^ 0 if £n-r-i = 1 and Cr ^ - ̂  2 '̂ > -2m f o r n - m - l ^ r ^ T i - l ,

j=oso
n-l

^ Crir > E y • ^———1 - 2m E ̂ -^-l-
r=n—m—l e'j=0 £'j=0
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Since ($n) is increasing, we have

l ^ ^ ^ - ' ' ^ t - ^ - 2 ^ fo r^eN,
is $r" $5-1 (1-2^)

and thus
n-l

^ c,Z, > ̂  2^'. ;̂ -i - 2771 ̂  2-<m-^-„-l = 0,
r=n—m—l £j=0 £j'=0

as required. D

LEMMA 3.13. — Let 0 < 7 < 1 and let a > 0 be such that
7(0+1) < 1. Then there exists Co with 0 < Co < 2° such that, for 0 < c < CQ,
the set £'(a, c) satisfies the following condition (with s = SE{a,c))'- f01 every
£ > 0 and p € No, there exists N € N such that

(9) (fc + 1)2-(71-^-1) ^ (1 + £)($i... $p)-^(n, fc)^
for n > N and 0 < k < 2n-P-l - 1.

Proof. — Choose b such that 7 < & < 1 — 70, choose CQ C (0,2°)
such that j(l - Co • 2-°) = 2-6/7 and choose M e N such that 1 - 2-^ >
2-(i-&)/^ Let 0 < c < Co and let p e No be given. We have

^(n^-m7 ^
I ——<:————^—— I = V^p+l • • • ̂ n-m-l (^- — ^n-m • • • ̂ n))
\ ?1 • " Sp /

for 0 < m < n - p - 1. Since $1 = j(l - c2-a) > 2-6/7, we have

(^...^(l-^))7^71-^-1 > ^-P-ic^-071)7^71-^-1

> C7 • 2-(n-P-l)b . 2-7<^ . ̂ n-P-1

= C7 • 2-7a(p+l) . ̂ (n-p-l)(l-b-7a)

so it follows that there exists IVi € N such that (9) holds with £ = 0 for
n > N-t and k = 0 (corresponding to m = 0). For 1 < m < M, we have
($p+l • • ̂ n-m-l(l - 2^-^ • . .^))7 . 27l-^-m-l

> f2-(n-P-7n-l)b/7 . _ ^ . ̂ n-P-m-1 ^ ̂ -7 ^ ^(n-p-m-l)(l-b)
~ \ 2;

so we can choose N'2 C N such that (9) holds with e = 0 for n > TVs and
k = 2rn — 1 with 1 <_ m <: M. Also, for M+l ^ m < n — p — 2, we have

(^p+l • • ̂ n-m-l(l - ̂ n-m ' ' • $n))7 • 2n-P-m-l

> ^-("-P-771-!)6/^ . ̂  _ 2-(7T^+1)^^ . ̂ -P-771-1

> ^(n-p-m-2)(l-6)

> 1 ,
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and finally, given e > 0, there exists N^ € N such that

(1 - 2^+i.. .̂  > ^—— for n > N3.

We thus deduce that, for n ̂  -N4 = max{^Vi, A^, TVs},
(10) 2-(n-p-m-i) < (^ ̂ ^ ... ̂ r^n, 2m - I)7

for 0 < m < n — p — 1.

Now choose N^ € N such that
f^ 1-2^ /5\ 1/7

a— = —o.— < m for ^ > ̂ 5,27n 2$n \2/

and let TV = max{N^ N^}. Let n > N and let 2771 < k < 2m+l -1 for some
m with 0 <,m <n— p— 2. By the previous lemma and (5), we have

s(n, k) s(n, 2m+l - 1)
~k~ - 2m+l - 1 5

so we deduce from (10) that

^-(n-p-l) ^ ̂ -(n-p-l)^ ^ 2^-1
v / 5(n, 2m+l - 1)^

^(l+5/2)($r..^)-^(n,fcr.
Also, by the choice of N-t, we have

2-(n-P-D < (^ ... ̂ )-^(n, 0)^ = ($1 • • • ̂ )-7^

< (e/2)($i...^)-^(2r,r < (^/2)($r--^)-^(n,fcr,
and (9) follows. D

LEMMA 3.14. — Let ($n) be a sequence with 0 < $n < j for n € N,
iet TV e No and define the sequence (rfn) by rjn = $n+N for n € N. Then
A^(-E^) is generated by its idempotents if and only if A/y(£^) is.

Proof. — Suppose that X^(E^) is generated by its idempotents. Let
F = [a, b] C [0,1] be a closed interval and let y?(t) = $1 • • • ̂ t for t e [0,1].
Given e > 0, there exists g € A/y real-valued with p(£^ H y?(F)) finite,
P-y(9\y(F)) < 1+^and

9W) - g{y(a)) = ̂ (b) - ̂ W = ($1 • • • W{b - d)\

Since ̂ (£^nF) = E^ H [0, $i • - • $jv], it follows that ^o<^ e A/y is real-valued
with (goy)(EynF) finite, (goy)(b)-(goy)(a) = ($1 • • • ̂ (fr-a)7, and it is
easily seen that p^go^p) <: (1 +£)(^i • • • ̂ )7. Hence PE^{F) = m(F)^,
so we deduce that A.y(£^) is generated by its idempotents.
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Now suppose that \^{E^) is generated by its idempotents. It follows as
in the first part of the proof that PE^^(F) = m(F)7 whenever F is a closed
interval contained in [0,$i • • -$7v]. For a closed interval F C [0,1], it thus
follows by similarity that PE^^EN^F) = m^^DF)7 for k = 1,..., 2^
(where Epfk corresponds to the set E^). Hence p^^(F) = m(F)7 by
Corollary 3.9, so X^(E^) is generated by its idempotents. D

We are now ready to prove the existence of a set E of positive measure
for which \^(E) is generated by its idempotents.

Example 3.15. — Let 0 < 7 < 1 and suppose that a > 0 satisfies
7(0 + 1) < 1. Then A^(£7(a,c)) is generated by its idempotents for
0 < c < 2°-.

Proof. — First, suppose that c < CQ with CQ as in Lemma 3.13 and
let E = E(a,c). Let p C N and let F = [0,$i • ••$p] . For n > p + 1,
the interval F contains Vnk for k = 1,... ,2n-p-l. Let gn € A/y be a
real-valued function which is linear with increase 2~^n~p~l^m(F)^ on each
Vnk (k = 1,..., 2n-p~l) and is constant on each of the contiguous intervals.
Then gn(E D F) is finite and gn(^i • • • $p) - 9n(0) = m(F)^. Furthermore,
it follows from Lemma 3.7 that

n (n M - "nn I 9n(bnk^ ~ 9n(anki) . 1 ^ 1 , JL ^ gn-p-llP^\9n\F) — SUp < —————————————— . i S ACl? ^2 S ^ (
I (On^-^fci)7 J

, ,„ f(t±2)r^_^w^ <»<,,-,-, _ii
I 5(n,fc)7 - - J

Given e > 0, it thus follows from Lemma 3.13 that there exists N € N such
that

P-y{9n\F) < 1 + £ for n > N,

so we conclude that RE^(F) = m(JF')7. Hence, by similarity,

(11) p^(F)=m(F)7 whenF=Ep..

Now let F = [x, y] C [0,1] be a closed interval. If (x, z) n E = 0 for
some z € (^,2/) and F\ = [^,?/], then PE^(F) = m(F)7 follows from
PE^(Fi) -=- m(Fi)7 by Corollary 3.9. Also, since E is perfect, we have
z € FI° n F. Similarly if (w, y) H £' = 0 for some w € (a;, y). Hence we may
assume that x,y C F° r\E. Given e > 0, we can thus choose HI, 7^2 € N
such that Vni., Vns- c ̂  with

a'nr<x-^e and bn^>y-e.
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With N = max{ni,n2} and U = (a^.,^.), we then have

u=( U ^.)uf U y")'
\EN.CU / \n^N, Vn.CC/ /

so it follows from (11) and Corollary 3.9 that

PE^(F) > PE^(U) = m(Ur > (m(F) - 2er.

Hence PE^{F) = m(-^')7» so ^ follows from Theorem 3.3 that \-y(E) is
generated by its idempotents.

Finally, let 0 < c < 2° and choose N € No such that 2-^0 <, CQ.
Then ^(E^a^'^c)) is generated by its idempotents, so it follows from
the previous lemma that the same is true for A^(£'(a,c)).

4. INDEMPOTENTS IN RESTMCTIONS OF THE ALGEBRA
OF ABSOLUTELY CONTINUOUS FUNCTIONS

We round off the paper by characterizing the closed sets E C T for
which AC{E) is generated by its idempotents. The result is not surprising,
considering that the norm on AC can "see" sets of positive measure.

THEOREM 4.1. — Let E C T be a dosed set. Then AC(E) is
generated by its idempotents if and only if E is of measure zero.

Proof. — First, suppose that E is of positive measure. By the
Cantor-Bendixson theorem, we can write E = PU (7, where P is a perfect,
closed set and C is countable. Let g € AC and suppose that g(E) is finite.
Then g ' = 0 on P, so it follows that

Va^e1* - g) = ( ̂  - g'(t)\ dt > [ dt = m(E) > 0.
JT Jp

Combined with Lemma 1.2, this shows that e^t\E does not belong to the
closed linear span of idempotents in AC(E).

Conversely, suppose that E is of measure zero and write T \ E ==
00

|j Vn, where (Vn) is a sequence of pairwise disjoint, open intervals. Let
71=1

/ € AC and let e > 0. Since E is of measure zero, we have

Var(/)= /l/'^ld^f^Var^k).
^ î
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oo N
Choose N e N such that ^ Var(/|yj < £, and let g = / on (J Vn.

n=N+l n=l
N

Let Pi,...,Pjv be the closed intervals constituting T \ |j Vn and let
n=i

n 6 {!, . . . , TV}. If Fn is a singleton, then let g = / on Fn. Otherwise,
there exists mn € N such that Fn =? Vm^ = (^mn^mn)- We then let
g be the continuous function on Fn = [a^,2/yj which equals f(Xn) on
[a^^J, equals f(yn) on [&mn,2/n] and which is linear on Vm^. Then
Var(^[^) = |/(2/n) - /(a?n)| < Var(/|^J. In this way we obtain g e AC
with g(E) finite. Hence g\a is a linear combination of idempotents in AC(E)
by Lemma 1.2. Furthermore, since E is of measure zero and since g = f on

TV
U Vn, it follows that

7i=l

Var(/-^)=^Var((/-^)|^)^2^Var(/|^)
71=1 71=1

=2 f; Var(/|vJ<25.
n=N+l

Also, [|/ — g\\oo < 2£, so we deduce that AC{E) is generated by its
idempotents. D

Let E C T be a closed set. It follows from Lemma 1.2 that the
idempotents in BVC(E) belong to AC(E). Since AC(E) is closed in BVC(E),
we thus deduce from the previous theorem that BVC(E) is generated by
its idempotents if and only if E is of measure zero and BVC(E) = AC(E).
We shall show that this only holds for closed, countable sets. We need the
following result.

LEMMA 4.2. — Every non-empty, closed, perfect set P C T contains
a non-empty, closed, perfect set of measure zero.

Proof. — The result is clear if P contains an interval, so we may
assume that P has empty interior. We can then write

oo 2n

^nu^
n=l fc=l

where Pyii , . . . , Pn^ are closed, disjoint intervals with Pn+i,2A;-iUPn+i,2A; c

Pn,k for fc = 1,... ,2" and n € N, and where pn = max{m(Pnk) '- k =
l , . . . , 2 r ^ } — > 0 a s n — ^ o o . Choose an increasing sequence (rrin) of natural
numbers with m\ = 2 and rrin^-i < 2mn for n € N such that mn —> oo and



1122 THOMAS VILS PEDERSEN

f^nPn —)> 0 as n —> oo. For n € N, choose mn of the intervals Pni, . . . , Pr^"
(only choosing empty sets if nothing else is left), written Py^,. . . , Pnm^^ m

such a way that each P^. contains at least one P^-^-i. and such that each
Pn+i • ls contained in a P^.. Let

oo mn^=nu^-
n=l A;=l

Then P' is a non-empty, closed, perfect set of measure zero. D

PROPOSITION 4.3. — Let E C T be a closed set. Then BVC{E) =
AC(E) if and only ifE is countable.

00

Proof. — First, suppose that E is countable and let T \ E = (J Vn,
n=l

where (Vn) is a sequence of pairwise disjoint, open intervals. Let / € BVC
and let g be the continuous function on T that satifies g = / on E and is
linear on each Vn. Then g C BVC (with Var(^) < Var(/)). Also, if F C T is
of measure zero, then g{FF\E) is countable and g{Fr\Vn) is of measure zero
(since g is linear on Vn) for n € N. Hence g(F) is of measure zero, so we
conclude that g e AC. Consequently f\E = g\E ^ AC(E). Conversely,
suppose that E is uncountable. Then E contains a non-empty, closed,
perfect set P which we may assume has measure zero, by the previous
lemma. We may also assume that P C [0,27T — e] for some e > 0. Let / be
a Cantor-Lebesgue function for the set P, that is, a real-valued, continuous
function on T which is increasing on [0,27r—£], constant on each component
of T \ P and satisfies /(27T - e) - /(O) > 0. Then / C BVC, whereas
f(E) = /(P) has positive measure, so that f\a ^ AC(E). D

Added in proof: After the submission of this paper it was pointed out
to us by J.-P. Kahane and R. Kaufman that Korner ([T.W. Korner, "On
the theorem of Ivasev-Musatov.F, Ann. Inst. Fourier 27(3), 1977, pages 97-
115], Theorem 1.2) has shown the existence of a perfect, closed set E C T
of measure zero and a non-zero measure p, with support contained in E
such that /2(n) = 0([n|~1/2) and \n\ —> oo. Hence Corollary 2.8 remains
valid for /? = |.
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