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CONGRUENCES BETWEEN SIEGEL MODULAR FORMS
ON THE LEVEL OF GROUP COHOMOLOGY

by Karsten BUECKER

Introduction.

In this paper we study congruences occurring between Siegel modular
forms of degree two for non-parallel changes in weight. Such congruences
are central to the questions of attaching Galois representations to modular
forms and computing special values of L-functions, and they have been
studied in similar contexts by Hida (see e.g. [Hil] to [Hi3]) and others. Our
work extends Hida’s cohomological methods and complements results of
R. Taylor and Tilouine & Urban. Our results should lead to corresponding
applications, in particular an analogue of Hida’s theory of A-adic forms for
the symplectic group.

General vector-valued Siegel modular forms of degree g are holo-
morphic functions from the Siegel upper half-space (a subset of complex
g X g matrices) to a finite-dimensional complex representation of GL(g).
They transform under symplectic transformations with an automorphy
factor which is described by an integral g-component “weight” vector
k= (k1y...,kg) (see §1). g = 1 gives classical elliptic modular forms;
our objects of study are forms with degree g = 2.

Now it is known that the space Sk, k,(I") of Siegel cusp forms embeds
in a cohomology group H3(T,Vi,—3k,—3), where Vi, , is the irreducible

Key words: Vector-valued Siegel modular forms — Congruences of Hecke eigenvalues —
Group cohomology.
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representation of the symplectic group Sps(C) with “highest weight”
(m,n), plus a suitable action of the centre. The embedding respects the
action of the Hecke operators. We lose track of the full set of Fourier
coeflicients of a modular form, but in many applications, for example to L-
functions, Hecke eigenvalues are all one needs. The approach of this paper
is based on this natural embedding.

One motivation for the study of congruences in this context are
the results of Ash and Stevens for the degree one case, which build on
older work of Shimura and others. They describe how systems of mod p
Hecke eigenvalues occurring on spaces of weight k£ and level N modular
forms (N prime to p) can also occur in weight 2 and level Np, with
a twist by a character. In [AS] it is also shown how to translate this
into congruences between special values of L-functions associated to the
corresponding modular forms.

The theory of A-adic families of modular forms was invented by Hida
in the 1980s in the GL(2) case. Such a family consists of a g-expansion
with coefficients in the Iwasawa algebra A = Z,[[X]], which specialises to
ordinary modular forms of weight k, level Np™ and character x at prime
ideals of A of the form (X — x(1 + p) (1 + p)*¥ + 1) (where X is a character
of 1 + pZ, of conductor p"). Here “ordinary” refers to the subspace of
forms on which the Hecke operator T}, acts invertibly. The point is that
whilst Eisenstein series are “easy” to interpolate thanks to our knowledge
of their Fourier coefficients, for cusp forms one needs to resort to more
abstract methods. Hida defined a “universal Hecke algebra” as a limit of
ordinary Hecke rings of increasing levels, and his A-adic forms are the dual
of this Hecke ring. In order to recover spaces of modular forms of finite
levels and arbitrary weights from this space, one needs three ingredients:
the independence of weight of the universal space, a study of its A-module
structure, and a control theorem allowing one to lower the levels.

One can then associate Galois representations into GL2(A) (or finite
extensions of A) to such p-adic families of modular forms by patching
together the representations coming from the specialisations of the family at
different weights (see for example the exposition in Chapter 7 of [Hi3]). This
has proved an extremely useful tool in associating Galois representations to
modular forms, and verifying certain predictions of the Langlands program.
For example, the techniques have been adapted by Wiles, in [W], to attach
Galois representations to ordinary Hilbert modular forms and check their
local behaviour at a decomposition group at p.
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In the degree two Siegel case, we encounter several notions of or-
dinarity, because there are now two Hecke operators at p: T, = [['g:T]
and R, = [['gT'], where g; = diag(p,p,1,1) and g, = diag(p, p?,p, 1). Let
M; be the centraliser of g; in GSp(4). Let B be the minimal parabolic
subgroup consisting of 4 x 4 matrices which are upper triangular in block
form, whose top left block is lower triangular and whose bottom right block
is upper triangular. Its conjugacy class is uniquely determined. Then R,
and T, correspond to two different maximal parabolic subgroups Py, P,
via P; = M;B. Depending on with respect to which Hecke operator we
demand ordinarity, one obtains a A-adic family interpolating cohomology
groups whose coefficient modules have weights ko + (a,b), where (a,b) run
through the dominant (i.e. b > a > 0) weights of characters of M;. Thus
in [Tayl], R. Taylor worked with the operator Tj, making P; the Siegel
parabolic of matrices which are upper triangular in block form, and M; its
Levi subgroup of matrices which just have two 2 x 2 blocks on the diagonal.
All characters of M; N Sp4(Q) are powers of the determinant on the top left
block, so the weights (a, b) take values (A, A) with A € N—the case we call
parallel weight change. In that case, the necessary congruences could be
obtained by multiplication by complex-valued Eisenstein series congruent
to 1 modulo p, although one still needed a bound on the ordinary compo-
nents to be able to recover congruent Hecke eigenforms. This bound was
obtained by cohomological means.

In this paper, we consider forms that are ordinary with respect to R,
and consequently obtain weight changes in the direction (0, 1). Since we are
now dealing with vector-valued forms, we can no longer simply multiply by
Eisenstein series. Instead we need to refine the cohomological methods of
[Tayl].

Finally, in [TU], Tilouine and Urban impose p-ordinarity with respect
to both T, and R, so their theory corresponds to the Borel subgroup
B. Consequently they obtain families interpolating all weights in a cone
b > a > 0. They prove a control theorem under conditions on the order of
the torsion subgroup in the cohomology of degrees one to four. Using recent
results of Weissauer on the existence of Galois representations attached
to Siegel modular forms, and of Louise Nyssen and R. Taylor on the
theory of pseudorepresentations (to carry out the “patching”), Tilouine
and Urban can construct a Galois representation into GSp4(A) lifting a
given representation into GSp4(Z,).

The results of this paper give the independence of weight of the
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analogous universal Hecke algebra which is ordinary with respect to R,.
However, the control theorem is not unconditional because of an error
term arising from H? (we can show that the ordinary part of the H'!
error, with torsion coefficients, is zero, and we hope to publish a more
concise proof than we have at present in a future paper). The remainder of
the theory would be a fairly straightforward algebraic consequence of the
control theorem. Because of its incompleteness, we have not included this
work here.

Our method is basically an abstraction of earlier works. For example,
in [AS] Ash & Stevens use multiplication by a polynomial f between various
symmetric powers of F? to carry over systems of mod ! Hecke eigenvalues,
in analogy with the classical Hasse invariant. Similarly Hida uses simple
maps between different symmetric powers to prove his congruences in [Hil]
(Theorem 4.4).

We construct a map j between (the mod p" reductions of) lattices
in Vipn and Vi nypr-1(p—1) and by applying functoriality, we show that
j induces a Hecke equivariant map on cohomology groups, which is in
fact an isomorphism on the ordinary (with respect to R,) components
(Theorem 4.2). Thus we obtain congruences modulo p” between systems of
eigenvalues occurring in different weights.

In Section 1 we give the definitions of Siegel modular forms in our
context. In Section 2 we set up the Hecke algebra most suitable to our
needs: big enough to contain most interesting operators but small enough
to make our method work. In Section 3 we explain the representation theory
which lies at the core of our argument. In Section 4 we use the setup of §3
and a formal cohomological lemma to compare the ordinary components of
the cohomology groups in question. The idea here is to use an intermediate
coefficient module V,:m which embeds into both V,,, , and Vi, n41. Finally,
in Section 5, we mention the corresponding (unpublished) results obtained
in [Tayl]. We also explain an interesting computation on the eigenvalues of
R, occurring on the L-packet at p.

I would like to express my deep gratitude to Richard Taylor for the
time and effort he has expended on introducing me to this subject, and for
his manifold assistance. This paper is based on parts of my thesis ([Buck])
which was completed under his direction. I would also like to thank Kevin
Buzzard for countless enlightening discussions, and Fred Diamond for many
useful suggestions on later drafts of this paper.

I have enjoyed the financial support of SERC, Trinity College Cam-
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bridge, and an EC Human Capital and Mobility grant. I also thank the
Institut Fourier in Grenoble for their hospitality during the writing of this
paper.

Notation. — We employ little more than what is standard usage.
M, (R) denotes n x n matrices over the commutative ring R, I, the n x n
identity matrix, and for a matrix X, X;; refers to the (¢, ) entry of X.

1. Preliminaries.

We begin with a review of the theory of Siegel modular forms. Our
definitions follow those in Shimura [Shim]. We repeat these here since the
vector-valued version of modular forms is perhaps less well-known.

For any commutative ring R and integer g € N, we consider the group
of symplectic matrices

GSpag(R) = {M € GLyy(R): M (_(}g I(;’) MT = y(M) <_(}g %) ,

v(M) € R*}
and define Spyg(R) to be the kernel of the multiplier map v. Also let
GSp2g(R)* be the matrices in GSpyg(R) with positive multiplier v. A
matrix (é g) (where A, B,C, D are g x g blocks) lies in Sp, if and only if
(1) AT C is symmetric, BT D is symmetric, and ATD — CTB = I,

(or equivalently DCT is symmetric, ABT is symmetric, and DAT —CBT =
Iy).

We have the Siegel upper half space of degree g

Zy={Z € My(C): Z" = Z,Im(Z) > 0}
where for a hermitian matrix S we write S > 0 or S > 0 according to
whether S is positive semi-definite or positive definite, respectively. Z, is a
convex, simply connected, symmetric domain. The group GSpag(R)™ acts
transitively on Z, by the rule
v = (é‘ g) : Z— (AZ+ B)(CZ+ D)™,
Now let p be an arbitrary finite-dimensional representation of GL4(C)

on a complex vector space W, and let f be a function from Z; to W. For
v € GSps(R)* we define an action on f:

(Flen(Z) = p(J(v,2))" f(72)  (Z € Zy)



882 KARSTEN BUECKER

where the automorphic factor J is defined as usual by J((55),2) =
CZ + D (again A, B,C, D are g X g blocks).

For a congruence subgroup I' C GSp24(Q)™*, we write M,(I") for the
vector space of holomorphic functions f : Z, — W which satisfy f|,y = f
for all v € I" and which are finite at cusps (by the Koecher principle, this
finiteness condition is automatic for g > 1). If in addition

i (3 8))=0 emar seze
we call f a cusp form, f € S,(T).

Notice that the representation W = C, p(X) = (det X)* € GL,(C)
(k € Z) returns us to the classical situation of scalar-valued Siegel modular
forms.

In the case of g = 2, which is the setting of our results, the irreducible
representations of GL2(C) are given by an irreducible representation of
SLy(C) twisted by some power of the determinant. If W & Sym"™™ C?
with the centre AIy acting as A"*™ (n > m > 0), we speak of M,(T')
as “modular forms of weight (m,n)” and write M(y, »)(T'). In particular,
parallel weights (k, k) correspond to scalar-valued weight 2k Siegel modular
forms.

There is also an alternative definition of Siegel modular forms in terms
of automorphic representations of GSpy4(A), which is equivalent to that
given here. We will say a little about this in §5.

Our method relies on the following result. We do not know to whom
it is originally due, but a convenient reference is Falting’s paper [Falt].

Recall from the representation theory of Lie groups (see eg. [Hmph])
that the weights of a representation are the characters of a maximal torus
occurring in the representation. Further, the roots of a Lie group are the
nonzero weights occurring in the adjoint representation of the group on
its Lie algebra. If we fix T' C Sp4 to be the diagonal matrices, we have
Hom,g (T(C),C*) = Z? via (diag(e, 8,071, 871) +— a™f") « (m,n).
The Lie algebra sp, is ten-dimensional and the roots of Sp4(C) are given
by (£1,41);(£2,0); (0,£2) € Z2. Choose the Weyl chamber n > m > 0,
corresponding to the Borel subgroup of Sps(C) consisting of elements of
the form

O O * %
O O ¥ O
O ¥ ¥ ¥
* X ¥ ¥
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Then the irreducible representations of Sps(C) are parametrised by
their highest weight in this Weyl chamber; let us denote the unique
irreducible representation with highest weight (m,n) by V,, . The other
weights of V;, , which occur are precisely the ones congruent to the highest
weight modulo the root lattice, and which lie in the convex hull of the
images of (m, n) under the Weyl group. (In this case one obtains an octagon
centred on the origin, whose top right face joins (m,n) and (n,m).)

Now let I' C Sp4(R) be a discrete subgroup. An irreducible Sp4(C)-
module V,, , as above is automatically a I'-module, and from a standard
construction we can define cohomology groups H*(I', V5, ). Then it follows
from Theorem 10 in [Falt] (see also [Tayl], §2.3) that there is a natural
embedding

(2) Smun(T)=—H*(T, Vin—3,n-3)-
Here “natural” signifies that the embedding respects the action of the Hecke
operators (see below) on each side.

This is, of course, an extension of the well-known Eichler-Shimura
isomorphism for SLy(C). Unfortunately we do not have an explicit identi-
fication of the image of the embedding (2) as in the parabolic cohomolgy
of H.

2. Hecke operators.

We will be using a Hecke algebra defined as follows. Let p be a prime,
T a positive integer and N an integer coprime to p, and put:

— for ¢ Np, let Uy = GSpsa(Zy) and Dg = My(Zg) N GSps(Qq);

— for ¢ | N, choose U; C GSp4(Z,) to be any subgroup such that
GSps(Zg) > v = I4 (mod N) = v € U, v(Uy) = Zj, and also
diag(p”,p?",p", 1) € Uy, (i.e. basically a congruence subgroup of level N);
let Dy =Uy;

— for g =p,

Up = {g € GSp4(Zy) : g = ("), pz’!sm}

O * ¥ ¥
O O *x O
O ¥ ¥ *
—_ % % %
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(recall that g42 denotes the (4,2) matrix entry of g), and D, is the set of
all matrices of the form a.u with u € U, and « lying in the set

ap O 0 by
_flas as by by .
x={|T O & a&|cM@)ncsn@,)
0 0 0 dy

ord,(as) = 2 ordy(a;) = 2 ordy(d1); ds € z;;}.
The idea here is that our only Hecke operator at p should be
[Up diag(p", ", 0", 1) Uy).
Let U = [JU; as an open compact subgroup of GSps(Z) and D =
1D, C GSps(As) (Af = finite adeles). Further let I' = I'y = U N Sp4(Z)

q
and A = D N GSps(Q). One can check that D (and hence A) is in fact a
semigroup.

Then the Hecke algebra H(I'\A/T') (resp. H(U\D/U)) is the free
Z-module generated by double cosets I'gI" with g € A (resp., UaU with
a € D). One can define a multiplication law on such double cosets in a
standard way (see eg. §2.1.7 in [Pan]), and we extend it to the whole Hecke
algebra by linearity.

LEMMA 2.1. — We have a canonical isomorphism of rings
H(IT\A/T) 2 H(U\D/U)

given by the map
[Cal'] — [Ual]

(where a € GSp4(Q) is embedded diagonally into GSp4(Ay)).

Proof. — We appeal to the criterion of Lemma 1.3.8 in [KPS], viz.
it suffices to prove

(@) D=AU
(b)) UaU=Ual foralla € A
(¢) UanA=Ta for all o € A.

Condition (a) is just the Strong Approximation Theorem, which
applies because v(U) = Z*.

Condition (c) is easily seen as I' = U N Sp4(Z) = U N GSp} (Q).
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To prove condition (b), we need to show that U C o !Ual, or
equivalently, that U C (UNa~U«a).GSp} (Q). This follows from the Strong
Approximation Theorem, provided that v(U Na~Ua) = Z*.

We will now show that v(U, N a~'Uya) = Z} for all primes q.
For ¢ | N, we know that a € Uy; but v(U,) = Zj.

For ¢ t Np, we can decompose a = ujtup with u;,us € U, and
t diagonal. Then v(U, N o 'Uza) = v(U, Nt~'U,t), and given X € Z,
diag(A, A, 1,1) € U, commutes with ¢ and hence lies in the intersection.
But v(diag(A, A, 1,1)) = A

For ¢ = p, write o = z.u with z € X,u € U, as in the definition.

Then
v(Up, N o~ tUpa) = v(Up N u™ 'z~ Upzu)

=v(zulpu~ 'z~ NUp)
= v(zUpz~ ' NUp).
Again, given ) € Zj, consider diag(A, A, 1,1) € Uy: then one can calculate

directly that for any z € X, we have that zdiag(\, A, 1,1) z™! lies in Up,
hence in zUpz~! N Up, and has the desired multiplier value A.

This verifies condition (b), and completes the proof. a

LEMMA 2.2. — H(U\D/U) is a commutative ring.

Proof. — This is performed locally. The only problem is at p, where
we will exhibit an anti-automorphism of D, satisfying

(a) ot =a, (af)'=p'a" Va,B€ Dy,

() vyeU, =7 €U,

() UpalU,=Upa'U, Vo€ Dy.
By Satz IV.1.10 of [Frei], this is enough to prove commutativity. The anti-
automorphism ¢ is defined by

a1 a2 b b2\°* a1 plaz ¢ c3/p”
az Qa4 b3 b4 _ az / pT Qg C2 / pr C4 / p2r
c1 ¢ di dp | b1 p'bs  dy  d3/p”
c3 c4 dz dy P pTby pTda dy
and one can check that the above conditions are met. O

If M is a A-module, then the cohomology groups H*(T', M) come
equipped with an action of H(I'\A/T): if T'gl' = [] @I, define maps in
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degree zero
[[gl] : HY(T', M) — HO(T, M)

T — E QuT
u

and extend functorially. (For details see e.g. Brown [B].) In general, suppose
[¢] € H¥(T', M) with ¢ a w-cocycle. For each (71,...,7,) € T* we let
0y, = ay and successively pick ay,,, such that a;il'y,-“aui o €T, for
0 <i<w-—1. Then set

Gty Vo) = 3 0 (05 110 -, 0L Yol )-

We denote g,~ the special element diag(p",p*",p", 1) of A, and write
R, for the corresponding Hecke operator [I'g,-T'].

3. Representation theory.

For this section, fix an irreducible representation p : GSps(C) —
GL(V) with V = V., ,, a finite-dimensional complex vector space having
highest weight (m,n) (as an Sps(C)-module) and the action of the centre
M, C GSp4s(C) being A™. We have n > m > 0 and assume throughout that
m is even.

V' decomposes as a direct sum
= T,y
V=@vah
T,y

so that an element diag(a,B,v/a,v/B) acts as v™/2~%/2-¥/24%3Y on a
weight space V2%

p gives rise to a representation p’ of the Lie algebra spy on Vi, .,
determined by

d
P(X) = [ZpeN)]| | (X ey,
There is an exponential map taking sp, to Sps(C), with
1
plexp X)(v) =v+p' (X)(v) + 5 (¢ (X)*(v) +--- (X €spgv € V).

sp, has a Chevalley basis consisting of the matrices

0010 0000
oo o0 o0 {000 o0
X20=19 00 0 X20={1 00 0]

0000 0000
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000 O 0001 0000
100 o0 oo 10 ~[o o0 o021
Yai={g 00 1] Y1={0 000 Y2={0 0 0 0"
000 O 0000 0000
01 0 O 0000 0000
7. |00 00 z o o0oo0 o0 7o .- [0 000
L-1=1o0 0 0 o “ 1T lo100]) “2%1000 0]
00 -10 1000 0100

(we will use the letter W to denote an arbitrary one of these eight) together
with the elements diag(1,—1,—1,1) and diag(1,1,—1,—1). The action of
the Wi on weight spaces V®¥ is then easy to understand; for example if
v € VoY then p'(Yo2) v € V=¥+2 etc.

Denote by U the universal enveloping algebra of sp,. By the Poincaré-
Birkhoff-Witt Theorem, sp, embeds in U, and if we identify the elements
W with their images in U/, then U has a C-basis consisting of vectors

i‘? tf: with the Wi’s in a fixed order. Further let Uz be the Z-
subalgebra of U generated by elements of the form Wtft'/ (rg) : this will
allow us to construct a useful lattice in V;, », as required in order to find

congruence properties. Uz inherits an action on Vy, 5.

A Z-lattice L C V is called admissible if it is preserved by Uz. Then
it is known (see e.g. [Hmph] §27) that any finite-dimensional irreducible
sp4(C)-module contains an admissible lattice, for example Uz v for any
lowest weight vector v, and moreover that any admissible lattice is equal
to the sum of its intersections with the weight spaces V*¥.

Let R stand for Z or Z/NZ. We note the following facts:

0 0
(a) The set S(R)

Il
—~—

€ Sp4(R)} is generated by

O ¥ O %
S O =
O ¥ O *
= O

exp(X2,0) and exp(X_2,).

(b) The set P(R) = { € Sp4(R)} is generated by

O O = O
O % ¥ ¥
— % % *

O ¥ ¥ ¥

the exp(X;) and the exp(Y7).
(c) The set Sps(Z) is generated by all eight exp(Wy).

We prove these using row and column operations. We employ the
obvious notation: R, stands for the nt* row, C,, for the m** column, and a
dash ’ denotes the corresponding new terms after the operation in question.
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Consider the matrices

1 0 00
0 0 01
‘A = exp(YOyz) eXp(—ZO’_2) eXp(Y0’2) = 0 O 1 0 )
0 -1 0 O
B = exp(Zp,—2); C =exp(Y-11);
0 -1 0 O
1 0 0 O
D =exp(Y_1,1) exp(—2Z1,-1) exp(Y_1,1) = 0 0 0 -1
0 0 1 o0

These have the following effects:
A: R,=R4 R),=-R; (premultiplying);
Cy = —Cy, Cy = Cy (postmultiplying);
B: Rj= R4+ R, (premultiplying);
Cy =Cy+ Cy (postmultiplying);
C: C{=C1+C, Cy=Cy—C3; (postmultiplying);
D: C|=0C, Cy=-C1, C;=0C4 Cy=-C3 (postmultiplying).

Now suppose we are given v € Sps(Z); premultiplying by a suitable
sequence of A and B, we can ensure y4; = 0. Then use postmultiplication
by A and B to make y42 = 0, and postmultiplication by C and D to further
ensure 43 = 0. But then it follows from the conditions (1) for symplecticity
that in fact, y32 = 112 = 0 and 22 = 44 = £1. Thus we have reduced (¢) to
(b). (b) may be reduced to (a) by successive postmultiplication by exp(Y3,1),
exp(Y_1,1) and exp(Yo,2), again using the relations (1). But statement (a)
is easy.

As a consequence, Sps(Z) will preserve any admissible lattice.

Remark 3.1. — Let R again denote Z or Z/NZ. Let L be an
admissible lattice in V', and define G (R) to be the subgroup of GL(L® R)
generated by elements of the form exp X, exp Y; and exp Z;. Denote by
Pr(R) the subgroup of G(R) generated by the exp X and the exp Y,
and by S7,(R) the one generated by the exp X;. It is known (see [St]) that
if L; and Ly are two admissible lattices in different representations with
Ker p; C Ker py, then there is a unique map Gy, (R) — Gp,(R) taking
each exp Wy € Gr, (R) to exp Wy € G,(R), so it maps Pr, (R) to Pr,(R)
and Sg, (R) to Si,(R). In particular we see that G (R), Pr(R) and SL(R)
depend only on Ker p up to canonical isomorphism.
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Now let L = Lyyn = Uzv (v € V,;7™") be an admissible lattice.
We set Ly = LO®Z(p) (Z(p) = QN Zy). Then A will preserve L(,): indeed,
if T denotes the diagonals of GSpy, the elementary divisor theory for the
symplectic group (see e.g. [Frei] Hilfssatz 4.1.12) tells us

®3) GSp? (Q) N My(Z) C Spa(Z) T(Z) Spa(Z)
and each factor preserves L ).

Now consider the projection map j : V — V', where V' =€i) Voo™ is
the bottom line of the weight diagram of V. Using the general theory, one

sees that all the weight spaces in V'’ are one-dimensional. V' is isomorphic
to the unique irreducible representation of SLs(C) of highest weight m, via

SLy(C) — Spa(C)
a 0
(&)

Let L' = j(L). Our aim is to compare cohomology with coefficients
in L and in L’. Of course, L’ is no longer preserved by Sps(Z); however,
we shall see that after reducing mod p", it is preserved by I'. This is the
motivation for our congruence restrictions at p.

o Qo
= O O O

1
0
0

o0 O

Sp4(Z) inherits an action on LOZ/p"Z = L,y ®Z/p"Z by Z-linearity.

LEMMA 3.2. — The Sps(Z)-action on LQZ/p"Z factors modulo p".

Proof. — We apply Remark 3.1 with p; the standard faithful four-
dimensional representation of Sps(C) and p, = p. For p; the result is
certainly true. Thus the vertical map in the following commutative diagram
exists and is unique:

Sps(Z) — G, =Sps(Z/p"Z) C  End(Z/p"Z)*
P\
GL,(Z/p"Z) C End(L®Z/p"Z),
i.e. for v € Sps(Z), p(7) only depends on the reduction of v modulo p™. O

But after reducing modulo p”, I" can be factorised into exp(X-) and
exp(Y?); each of these preserve Ker j. Furthermore, the action of A also
factorises modulo p” (using (3) and the known action of diagonals), whence
one checks from the definition of A that it also preserves Ker j: we can
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factorise any element of A into diagonals with multiplier coprime to p, a
power of g, and some factors of exp(X-) and exp(Y?).

We therefore obtain an action of A on L' ® Z/p"Z from that on
L®Z/p"Z.T C A acts through the projection

r —  SLy(Z/p"Z)
a 0 b x
* 1 % % . a b
c 0 d x (mod p") +— (c d)’
0001

and diagonals diag(a, 8, v/a,v/B) will act as v=2/2 o® (v/B)".

4. Change of coefficient module.

We are now able to form cohomology groups H*(T', Ly, » ® Z/p"Z)
and H*(T, Ly, »' ® Z/p"Z) which are equipped with an action of the Hecke
algebra H(I'\A/T'). The projection j covariantly induces a map

jax 1 HY(T, Linn ® Z/p"Z) — H (T, L' ® Z/p"Z).
Note that j restricts to an isomorphism g, (LQZ/p"Z) — gpr (L'QZ/p"Z).

‘We have thus satisfied the conditions of a group cohomological lemma
of Richard Taylor ([Tayl] Lemma 1.1; see also [W] Theorem 1.2.2):

LEMMA 4.1. — Let A be a semigroup, I' C A a subgroup, g € A
with T' and gT'g~! commensurable, M and N < T,g >-modules, and
j:M — N a<T,g >morphism such that j : gM — gN. Then there
exists I : HY(T', N) — H*(T', M) such that

Io3j, = [CgT]
and j.olI = [[gl).

Proof (sketch). — Let g, be the map on cohomology induced from
conjugation by g on I'n gI'g~! and let i, be the map induced by i : gM —
M. Then one can factorise the Hecke operator [I'gT'] as cor o4, o g, (where
cor is the corestriction operator). Defining I = cor o ix o (j|gan); ! © gx, for
the first part one checks that the diagram

HYD,M) 9 H{Nglg~!,gM) * HYT'Nglg~!,M) °* HY(T, M)

I ) ) Tcor
HY(T,N) % H'(TNglg~',gN) 7+ H ('nglg~!,gM) ** H'(T'Nglg~!, M)
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commutes, i.e. that i, commutes with cor and j, commutes with g.,.
For the second part one has the diagram

HY(T',N) 9« HY(T'Nglg~1,gN) *+, HYT'Nglg~!,N) °* H(T,N)
(' X . T JIx
HY(TNglg~1,gN) 7* H'(TNglg~',gM) **, H(TNglg~!,M) °* HY (T, M)
and we have to check that j, commutes with cor and with i,. All these
verifications are straightforward. 0O

In our application, M = L Z/p"Z, N = L' ® Z/p"Z, and g = g,r.
Therefore we obtain a map I : H(T, Ly’ ® Z/p"Z) — H'(T,Limn ®
Z/p"Z) satisfying I o j. = [['gyrI'] = Rpr on HY(T, Lyn ® Z/p"Z), and
JeoI =[Tgyl]) =Ry on H(T, Ly, Z/p"Z).

It is well known that these cohomology groups are finitely generated
abelian groups, so we can associate a Hida idempotent e to R, (and hence
to Rpr, since we can show R, = Rp). Recall that this is an element of
the endomorphism ring End (H3(T, X)) such that R, is invertible on
e H3(T, X), and topologically nilpotent on (1 — e) H3(T, X). It may be

constructed as e =klim R’;’. Then e is a projector onto ordinary modular
— 00

forms. For general facts on these projectors see e.g. [MW] Chapter 2.
We have a commutative diagram
H(T, L, ®Z/p"Z) 2 H{T, Ly, ®Z/p'Z)
[ |
H{(T,Lypn ®Z/p'Z) L5 HYT,Lmn' ®Z/p"Z).

On the ordinary components, the vertical maps are isomorphisms. Hence
so are the horizontal ones.

One can check explicitly that all other Hecke operators T'e H(I'\A/T")
commute with j,, because j is a map of A-modules in degree zero.

Now consider changing the highest weight of our representation from
(m,n) to (m,n +1). V;, , and V,, ..., (defined in the obvious way) are
both just isomorphic to the unique irreducible SLs(C)-module with highest
weight m, hence Ly, , ® Z/p"Z = L, ,, .1 ® Z/p"Z, preserving the action

of Xg and I'.

On the other hand, from the description at the end of §3 one can see
that the action of the diagonals differs: altering n to n + 1 changes the
action of g € A by a factor x(g), where x : A — (Z/p"Z)* is the character
given by M +— My4(mod p”).
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We need to change the action of the centre on V' by letting A\I4 act as
A™t™ instead of as A", in order to obtain the correct Hecke action carried
over from Sp, ,(I'). However, this simply twists the action of the Hecke
operators [['gI'] on cocycles by a scalar v(T')™/? (consider the factorisation
[['gIl] = cor oy 0 g4), and m is fixed throughout. Our only Hecke operator
at p is R, so this will not interfer with our congruences.

Putting our results together, and repeating them sufficiently often to
remove the twist by x, we obtain

THEOREM 4.2. — We have an isomorphism of H(I'\A/T')-modules
€ Hz( T, Lypn® Z/pTZ ) Ze Hi( L, Lm,n+p"1(p—1) ® Z/pTZ )

Remark 4.3. — Unfortunately, one cannot simply lift the above
result to characteristic zero because of torsion in H*(T', L,(Zp)). In the
SLj case, as long as ' C SLy(Z) is torsion-free, one has H(T, L,,(Z,)) = 0
and thus HY(T', L, ® Z/p"Z) = HY(T', L,(Z,)) ® Z/p"Z. We can, however,
deduce the following result:

COROLLARY 4.4. — dim eSk, x,(T) is bounded independently of k.

Proof. — By (2), it suffices to show that dim eH?*(T',V;,,) is
bounded independently of n. It is enough to show that dim eH3(T, Linn®
Qp) is so bounded. Now consider the short exact sequence

0 — 2,252, — Z/p"Z — 0,
which induces
0 — eH'(T,2Z,) ® Z/p"Z — eH (T, Z/p"Z) — eH*(T', Z,)[p"] — 0.
We have shown that dim eH*(T', L., ® Z/p"Z) is bounded independently

of n. But dimeH3(T, Lim,n ® Qp) = dimeH (T, L » ® Zp) ® Qp, and we
are done. O

Also, if one assumes that a given system of eigenvalues \:H(I'\A/T') —
F, corresponding to an eigenform in eH*(T, Ly n(Zy)) does not oc-
cur in cohomology of degrees other than three (i.e. the localisations
e HY(T, Ly n(Zp))m, = 0 whenever i # 3, where m, is the maximal ideal
of H(I'\A/T') corresponding to A), one can deduce that A also occurs on
eH3(FaLm,n+p—l(ZP))'
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5. Other results.

As was pointed out in the introduction, Theorem 4.2 and Corollary 4.4
complement results for parallel weight changes. We take this opportunity to
record two unpublished results of R. Taylor which are obtained by similar
cohomological methods. We thank him for his consent to including them
here.

PropPosITION 5.1 ([Tayl] Proposition 2.1). — Let

(") = {(gg) € Spy(Z):C =0 (mod p"),det(A) =1 (mod pT)},

and let er be the Hida idempotent associated to the Hecke operator
[['y(p") diag(p,p,1,1)T1(p")]. Suppose that ko > ki > 0. Then there is
a constant C such that for all A > 0,

dim epSk, 42,k,42(T1(p"7)) < C.

One can construct a family of cusp forms congruent modulo p” in
Sky+2,ka+2(L1(P7)), for A a multiple of (p—1)p"~1, simply by multiplication
by a suitable theta series. Then using Proposition 5.1, one can apply
a Fitting ideal argument to recover a family of eigenforms which have
congruent Hecke eigenvalues. However, in doing so one again loses control
of the Fourier coefficients which do not appear as Hecke eigenvalues.

The next result employs the standard notations for elliptic modular
forms.

PROPOSITION 5.2 ([Tayl] Theorem 1.1). — Fix a prime p and an
extension of the p-adic valuation on Q to the algebraic closure Q. Fix also
an integer N and a constant D. Then the sum of the dimensions of the

eigenspaces in Si(I'1(IN)) for the Hecke operator [Fl(N )((1)2)I‘1(N )] for

which the corresponding eigenvalue has p-adic valuation less than D (i.e.
eigenspaces with “slope” < D) is bounded independently of k.

Because we have no analogue to the ordinary projector e for forms of
positive slope, this is insufficient to construct families of modular forms as
in the work of Coleman ([Cole]).

We finish by giving an interesting criterion for ordinarity in the sense
of the previous sections.
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Define another congruence subgroup

* 0 x x
*x kX%
To(p) = {7 € Spa(Z) : v = £ 0 * = (mod p)}.
0 0 0 x
ProroSITION 5.3. — Let I' be a congruence subgroup of level

N prime to p. Suppose f € Spn(I') is an eigenvector for T; =
[l diag(1,1,1,)T), R, = [T diag(l,1%,1,1)T], and S; = [['lI4T) for all
primes I { N, say f|T = AT) f. Let Qp(X) be the Hecke polynomial

Qp(X) = X* - TpX3 + (pRp + p(p2 + I)Sp)X2 - panSpX + PGSIZ;-
Let the roots of A(Qp(X)) be o, B,7,6, labelled so that a6 = (v, and
suppose these are distinct and the ratio of no two of them is p.

Then there are eigenforms fi, -+, f4a € Sma(I' NTo(p)), satisfying
T =AT) f; for all T = T;, Ry, S; with [t Np, and with eigenvalues a?ﬂ,

) 6
l, ﬂ, and ﬂ—, respectively, under R,,. In particular, if any of these has

p-adic valuation m, then the corresponding f; lies in e Sp (I’ N To(p)),
where e is the Hida idempotent associated to the Hecke operator p"™R,
on modular forms, and we have e f # 0.

Proof. — We use the automorphic setting for modular forms. So
recall that the space of automorphic forms of weight k is a direct sum
@®o of admissible irreducible representations o = Qo, of GSps(Ay). The
local factors o, may be found as irreducible subquotients of principal series
representations.

The unramified principal series m = m,, , 4 corresponding to a triplet
(X1, X2,%) of unramified characters on Qj (i.e. they are trivial on Z7)
is defined as follows. Give the triplet an action on a minimal parabolic
subgroup of GSp4(Q,) by
A0 % *
0xa®): | g 0 ya x| =X xmYE)
00 0 v/
and define a character § := |\2u*v~3|, on such a matrix.

Then 7 has as underlying space the set I, .y, Of maps ¢ :
GSps(Qp) — C which are locally constant and satisfy

(bg) = ((x1, x2,%)8"/2)(b) 6(9)
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whenever b € B(Qp), and the (left) action is given by right translation:

7 GSpa(Qp) — GL(Iy, ,xz,3)
(m(9)¢)(h) = ¢(hg).

Let U be an open compact subgroup of [][GSp4(Z;) such that
UNGSps(Q)" =T. Then f € Sy, pn(I') corresponds to an automorphic
form ¢ € Sz(U), and we may assume ¢ € o,V, where oy, is a subquotient
of ™ = My, x,,4 88 above.

First we compute the roots of A(Qp(X)) in terms of the characters
X1, X2, and ¥. Asp{ N, we have ag = wG5P4(Z») Then the Iwasawa decom-
position GSp4(Q,) = B(Qp). GSpa(Zy) ensures that the space mF5P+(Z») ig
one-dimensional, spanned over C by ©, say, where

O(bk) = (01, x2,9)6"%)(b) (b€ B(Qp), k € GSpa(Zy)).

Then we can read off the eigenvalues of the Hecke operators from their
action on 6.

Using the double coset decompositions given in [Tayl], one computes

0|T, = p**p(p) (1 + x1(p) + x2(p) + x1X2(p)) ©

9|Sp = X1X2¢2(p) S

O|R, = p*¥2(p) (x1(p) + x2(P) + x1x2(P) + X1X5(P) + X3x2(P)) ©
- xix2¥*(p) ©

= @‘Qp(X ) = (X - %)) (X - p**x19(p)) (X — p**x2%(p))
(X = 2 *x1x29(p))

Le. the roots of A(Qp(X)) are p*%y(p), P*2x1%(p), P*/*x2%(p) and
3/2x1x2%(p). Then the argument of Lemma 2.4 in [Tayl] uses the hy-

potheses on these roots to show that 7 is irreducible and so 7 = o,

Then the Hecke eigenvalues on ol(UﬂU° ()

will still be given by A, and
our task is to compute the eigenvalues of Rp on a,f,UnUf’(p D o 7To(p) . Here
the tilde is merely a reminder that after adding p to the level, the action

of R, changes.

Now we have the decomposition GSps(Q,) = [IB(Qp) wi To(p),
where the w; for 7 = 1 to 4 are running over representatives for the Weyl
group Wep,(z)/ Wy (p)- £ €770P) implies f(bwiy) = ((x1, X2, %)6Y?)(b) f (w;)
when b € B(Qp) and «y € T'y(p), so it suffices to specify f(w;) to define f.
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Hence 7lo(® has a basis fi, f2, f3, f4 with fi(w;) = 6;;, and to determine
the matrix of R, = [[o(p) diag(p,p? p,1) Lo(p)] is to find f;|Rp.

For this we need the coset decomposition I'g(p)gpLo(p) =11 argplo(p),
where the a, run through

1 0 0 =z

t 1 2z w . 2
< < < .

00 1 —t with 0<t<p, 0<2z<p, 0L w<p

0 0 0 1

Then
(fil B ws) = (£5][TergoTo®) i) = I fi(wiargy).
To be able to evaluate this sum, we write w;crgp, = b(i,7) Wi,y Y(3,7)
with b(i,r) € B(Qp) and v(i,7) € T'o(p), so that
Fi(wiargy) = ((x1, X2, )82 (b(3, 7)) Sjk(ir)-

Then with respect to the basis f1, f2, f3, fa, the (¢,7) matrix entry
of R, is reduced to 3 ((x1, X2, %)6/2)(b(i, 7)) 8;k(i,r). After the necessary

T
calculations, one obtains the matrix

P*x1x3(p) p(p — Dx1x4(®) p(p — 1)x1xi(@) (»* — Dxax3(p)

() 0 Pxixa(p) (@ —21)X¥Xz(p) (» — Dxixz(p)
0 0 p*x2(p) p(p — 1)x2(p)
0 0 0 p*x1(p)
In particular, its eigenvalues are as claimed. The final statement of the
proposition follows because f is a linear combination of the f;. a
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