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MULTISUMMABILITY FOR SOME CLASSES
OF DIFFERENCE EQUATIONS®™

by B.L.J. BRAAKSMA and B.F. FABER

1. Introduction.

This paper concerns linear and nonlinear difference equations whose
linear part involves the difference operator

(1.1) Ty(z) :==y(z + 1) — A(z)y(x)

where z € C, A(z) is an invertible (n x n)-matrix meromorphic near co and
y : C — C". We are interested in multisummability properties of formal
solutions of Ty(z) = G(z,y) where G(z,y) is holomorphic at (c0,0) and
does not contain linear terms in y.

To formulate the results we need a formal fundamental matrix Y ()
of the linear homogeneous equation T'y(z) =0 :

(1.2) Y (z) = M(z) @ T'(z)* cFe% @zl

Here

M(z) € Gl(n, C[[z~"/?]|[z'/7]),p € N,
L; € End(n;,C),n1 + ... + nm = n,

1
(1.3) { Aj € 5Z,,\l <o € A,y € CF,

gj(z) = 0 or gj(z) is a polynomial in z'/? of degree less than p
with leading term b;jz#/,0 < pu; < 1,b; # 0.

(*) Part of this work has been performed in the University of Southern California.
The authors want to thank the Department of Mathematics of USC and in particular
Professor W.A. Harris, jr, for their hospitality and support.

Key words : Difference equations — Formal power series solutions — Normal forms —
Multisummability — Borel and Laplace transforms — Gevrey series — Stokes phenomenon.
Math. Classification: 39A10 — 40G10 — 44A10.
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(cf. [Tur60], [Pra83], [Duv83], Imm8&4]).

In general M(z) cannot be lifted to a meromorphic matrix but only on
suitable sectors there exist corresponding holomorphic lifts which exhibit
a Stokes phenomenon.

The levels of the difference operator T are said to be ki, ..., k; where
0 <k <..<ky=1andk, € (0,1) occurs iff there exists j such that
/\j =0,Cj = I,Qj 3_60,/6}, = Uj.

A direction ¢ (interpreted as a real number or as a half line
arg z = ¢) will be called singular for this operator if exp{z log(c;)+g;(z)}
has maximal descent in the direction ¢ as |r] — oo in case \; =
0,zlog(c;) + g;(x) # 0. Here all possible determinations of the logarithm
are taken into account. These directions are said to be of level 1 except
if A; = 0,¢; = 1,gj(x) # 0. In the latter case it is said to be of level ;.
In case A\j = 0,¢; =1, also ¢ = 7/2 mod 7 are singular directions of level
1. Note that in case A\; = 0,|c;| # 1 there are infinitely many singular
directions which have 7/2 mod 7 as accumulation points.

With these definitions our main result is

THEOREM 1.1. — Let A(z) be as above and let G(z,y) be holomorphic
in z7'/? and y in a neighborhood of (00,0) and such that it does not
contain a linear term in y in its Taylor expansion with respect to y. Let
§(x) € C*[[z~1/7]] be a formal solution of y(z + 1) — A(z)y(z) = G(z,y).

Let (I, ..., 1) be a multi-interval such that I D ... D Iy, |In| > 7/kn
and I;, does not contain a pair of Stokes directions (¢ — m/(2kr),d +
m/(2ky)), where ¢ is any singular direction of level ky,.

Then §(z) is (k1, ..., kq)-summable on (I1, ..., 1) in the following cases:

1. Am > A 20,1 ¢ Iq‘mod 2.
2. Al =An =0.
3. A1 < Am <0and0 ¢ I, mod 27.

Moreover, {j(z) is 1-summable in upper and in lower halfplanes if
lcj| # 1 in case A\j = 0.

For the definition of multisummability we refer to section 3. In case
q = 1 we have l-summability and so Borel-summability. In this case the
Borel sums of the formal solutions may be represented by convergent
generalized factorial series. The theorem may be extended to cases where
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A(z) and G(z,y) correspond to multisums of formal series in z as in the
case of differential equations (cf. [Bra92]). Theorem 1.1. remains valid if
G(z,y(x)) is replaced by G(z, y(x+1)) as can be seen by expressing y(z+1)
by means of the difference equation in terms of y(z).

The result may be reformulated for left-difference equations w(z —
1) — A(z)w(z) = G(z,w) by means of the substitution w(z) = y(—=z)
and A(z) = A(—z),G(z,w) := G(—z,w). Moreover, this implies that
Ty(z) = G(z,y) corresponds to w(z+1)— A~ (—z—1w(z) = ~ A~ (~z—
1)G(—z — 1,w(x + 1)) and thus it follows that the statement in case 3 of
the theorem is a consequence of that of case 1.

Different (slightly more general) formulations of the main result are
given in sections 4 and 10. In section 10 we also consider the reduction of a
general nonlinear difference equation to one of the type considered in Theo-
rem 1.1. Section 11 contains an application to normalizing transformations
for the difference operator T

The method of proof of the main result is similar to that for the
multisummability for meromorphic differential equations in the style of
Ecalle (cf. [Eca87], [Eca93], [Bra91] and [Bra92]) with a modification due
to Malgrange (cf. [Mal]).

Multisummability of formal solutions of difference equations does not
always occur and one has to apply the more general notion of accelero-
summability of Ecalle in such cases (cf. [Eca87], [Eca93] and [Imm]).
However, our method shows that formal solutions 7 always can be lifted to
holomorphic solutions in upper and lower half planes with i as asymptotic
expansion, the lifts need not be uniquely determined by ¥ (cf. Remarks 4.1
and 10.1 and [vdPS]).

The paper is arranged as follows. In section 2 we introduce some
notations and recall properties of Borel and Laplace transforms and in
section 3 we recall two equivalent definitions of multisummability. In section
4 we give an alternative formulation of the multisummability result for the
linear difference equation. In section 5 we derive the convolution equation
which corresponds through Borel transform with this difference equation
and in section 6 we prove the result in the linear case by means of
these convolution equations. This proof depends on two lemmas which
are proved in sections 8 and 9. For this we need to study an auxiliary
operator associated with the difference operator. To this study section 7
is devoted. In section 10 we consider the nonlinear difference equation.
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Section 11 concerns the normalizing transformations mentioned above and
a fundamental matrix of a linear difference equation in a special case.

We want to thank G. K. Immink and M. van der Put for useful
discussions.

2. Preliminaries.

Here we present some concepts and results which we use lateron. For
more details we refer to Balser [Bal94], Ramis [Ram93] and Malgrange
[Mal].

By Co we will denote the Riemann surface of the logarithm. For I
an arbitrary, bounded interval in R, we define

S(I) ={z € Cx; argz € I}.

We call S(I) a closed (open) sector, if I is closed (open). Sometimes we will
write S(a,b) for S(I) with I = (a,b), or just S if no misunderstanding is
possible. Throughout this paper intervals and sectors will be open, unless
stated otherwise. By |I| we will denote the length of interval I.

Let A(0,7) be the open disc around 0 with radius » > 0 and
S(I,r) :=S(I)NA(0,7). A neighborhood of 0 in S(I) is an open subset U
of S(I) such that for every closed subinterval I’ of I there exists an r > 0
such that S(I’,r) C U. A neighborhood of co in S(I) is an open subset
U of S(I) such that for every I’ as above there exists r > 0 such that
{z e S(I)||z| >r} CU.

If I is an interval then we define O(I) as the set of germs of functions
holomorphic on a neighborhood of 0 in S(I) and the corresponding sheaf
on R is denoted by O. Replacing 0 by co we define in the same way a sheaf
Ooo-

The subspace of f € O(I) with the property that f has an asymptotic
expansion f(z) ~ f(z) := 3. anz™?,z — 0,z € S(I), where {a,} is a

n=0
sequence in C, and p is positive, is denoted by .A(I). Replacing /P by
z~™/? and 0 by oo we define in the same way Ao (I). The corresponding
sheaves on R are denoted by A and Aw.

From here on k¥ will always be a positive number.
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A function f in O(I) (Ox(I)) is said to be exponentially small of
order k at 0 (oo) if to every closed subinterval I’ of I corresponds a b > 0
such that

f(z) = O(exp(=blz|™")), & — 0 (f(z) = O(exp(-blz|*)), & — o0),
z e S(I').

The subspaces of such functions are denoted by AS~*(I) and A *(1)
and the corresponding sheaves on R are denoted in the same way with
deletion of the symbol (I).

If f € Ox(I) and for every closed subinterval I’ of I, there exist
positive constants A, B, R such that

|f(2)| < Aexp(Blz|*), if |z| > R,z € S(I'),

then we say that f is exponentially large of order < k at oo on S(I).
By £(I,k) we denote the set of these functions, which, moreover, are
holomorphic on the complete sector S(I) and belong to A(I).

If I is a bounded interval in R and {I;};cs, where J is an interval
of Z, is a family of open intervals with I; N I; = &, if |j — | > 2, and
UjesI; = I, then we call {I,};cs a good covering of I.

Now let {f;};es be a family of functions, with f; € O (I;) and
fiv1 — fi € ASF(Ij N 1jt1), 4,5+ 1 € J. Then {f;}jes is called a k-
precise quasi-function at oo on I with respect to the (good) covering
{I;}jes. Two such k-precise quasi-functions {f;};es and {g;},c; with
respect to good coverings {I;};es and {ii}ie 7 are said to be equivalent, if
fi—gi € ASR(I;N ;). With this equivalence relation ~ the quotient sheaf
(0)ASTF) o 1= O/ ASTF is given by the equivalence classes of k-precise
quasi-functions at oo on I.

In an analogous manner we define the quotient sheafs (A/A<%),, and
(ASTF/ASTY o, for 0 < k < L. If {fj}jes form a representative for f €
(A/AS7F) oo (I), with respect to a covering {I;} ;e as above, all f; € A(I;)
have the same asymptotic expansion f, as exponentially small functions
have asymptotic expansion 0. Therefore, we write f ~ f . Similarly we may
give a meaning to f = O(z?) for f as above.

LemMA 2.1 (cf. Malgrange and Ramis, [MalR92]). — Let 0 < k < [,
and I an open interval of length |I| > 7/k. Then (AS™%/ A< (I) = 0.
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Now we are able to give the definition of the (generalized) Borel
transform of order k, denoted By. Let I = (a, b) be an interval in R, with
Il =b—a > n/k, and let f € (0/AS7F)(I) with f(z) = O(z?), T — oo,
for some real q. Let I' := [a’,b'] be a compact subinterval of I with
[I'| > m/k. Let {f;}7L,; be a representative of the restriction of f to
a neighborhood of I' w1th respect to a good covering {I;}7L; of that
neighborhood.

Suppose that f; is holomorphic on the neighborhood Uj of oo in S(I;).
Choose z; € U; NUjt1, if j =1,...,m —1, 3o = Re!® € Uy, x,, = Ret™ €
Up, where by —a; > w/k and R > 0. Let fo = finy1 = 0. Then we define

8(t) = Brf(t) 2 / (=" £,(z) d(a*)

m oo(arg ;) R
(2.1) - ~1— Z / T (1~ 1) (@) d(ab).
=0

21

Here oo(a) means that the path of integration ends at oo in the
direction argz = a. Thus ¢ is holomorphic on a neighborhood U of 0 in
S (f ), with I= ( b+ — 5 k ,—a1 — 27;) and independent of the choices for
the ;. However, variation of a; and b; gives analytic contmuatlons of ¢.
By variation of I’ we obtain ¢ € O(I*), with I* = ( b+ %, —a- 2k) It
f can be represented by a single holomorphic function on a neighborhood

V of 0in I (i.e. if all the f; are analytic continuations of each other), then
this generalized Borel transform equals the classical one :

Buft) = [ e f(z) da¥),
where T is a contour in V' from oo(a1) to oo(by). In particular,
(2.2) Bz (t) = t* % /T(\/k).
On the other hand, if ¢ is holomorphic on a neighborhood U of 0 in S(I*)
where I* := (—b*, —a*) and ¢(t) = O(t"),t — 0 in U, for some r > —k,

and for j = 1,. ,m t; € U with —b] = argt,, . < argty = —aj,
argt;_; —argt; < — 1f j > 1, then the family { fj} , defined by

(2.3) fi(z) = /0 ’ e~ g(7) d(r*), t; € U,
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™

—- ). Varia-
2k)

tion of a] and b] gives continuation of {f;} in the sense of k-precise

quasi-functions. Hence we obtain an element in (O/Ag_k)oo(I) where

I = (a* — %,b* + g’;), which we denote by Lr¢, the finite Laplace
transform of order k of ¢. If ¢ is holomorphic on the full sector S(I*),
and has exponential growth of order < k at oo on this sector, then the

classical Laplace transform of order k of ¢ :

. . . . = 7T
is a k-precise quasi-function at oo on I = (a’{ - —,b1 +

oo
Led(a) = [ e 6(r) d(r)
0
is equivalent (in the sense of k-precise quasi-functions) to the finite Laplace
transform of order k of ¢.
As in the classical case we have, under certain conditions, that

Ly=B;":

THEOREM 2.1 (Malgrange [Mal91]). — Let m > 0,1 > k > 0,5 =
(1/k —1/1)7Y,I = (a,b) an interval in R, with b —a > w/k and I* =
(=b+7m/(2k), —a — 7/ (2k)).

Then By, is an isomorphism
from x=™(A/AS%) o (I) onto t™ % A(I*) and
from z~™(A/ASY) () onto t™*E(T*, k),

with inverse Ly and Efc respectively. Here Efc can be represented by finite
Laplace integrals of the form (2.3) with t; replaced by expressions involving
the independent variable z (cf. [BIS]).

~ 5,51 .
Let f(z) =2™™ Y. a,z~**. We define the formal Borel operator

n=0

By, of order k by applying the Borel operator termwise using (2.2) :
> a
2.4 Bif(t) :=tm* SR M—

If now f(z) € =™ (A/ASF)(I) and f(z) ~ f(z),z — oo, then we have
(2.5) By f(t) ~ Bif(1).

The formal Laplace operator Ly of order k is defined as the inverse
operator of Bg.
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We define the k-convolution of two functions. Let f,g € O(I) and
ft) = O(t*=%), g(t) = O(t*~%), t — 0,t € S(I), for some a, 3 > 0. Then
(cf. Martinet and Ramis [MarR91])

Umww=lfw“wﬂmmma#>

defines an element f *; g € O(I) with (f *x g)(t) = O(t*+P~%),t — 0,t €
S(I). The convolution property of the classical Borel transform (of order
k) extends to the generalized transform :

Ifl > k,m>0,|I| >n/k and f,g € 2 ™(A/AS ) (I) then
(2.6) Bi(fg) = (Bi.f) *x (Brg) € t™ FA(I*), I* as before.
Finally, we define the ramification operator of order k :

(2.7) prf(@) := f('/).
Note that, in fact, By = py ' Bpk , Lk = py Lok, and fxxg = py " (pkf*pkg).

3. Definition of multisummability.

The following definition of multisummability is due to Malgrange and
Ramis [MalR92] (for a slightly different formulation see Balser and Tovbis
[BT93]).

DeEFINITION 3.1. — Let r e N, 0 < k1 < ... < kr < kpy1 :=00,p > 0.

n o)

A formal power series f(z) = 3. c,a™™P is said to be (ki,..., ky)-
n=0

summable at oo on a multi-interval (Iy,...,I.), I D I, D ... D I,

\I;| > /k;j, if there exist f; € (AJAS*)oo(I;), § = 0,...,r with
Iy := R satisfying the following conditions:

e fo(z) ~ f(z),z — oo on S(Ip), fo(z) has period 2pr in argz.
) fj—lllj = f] mod A(fo_kj, J = 1,. L, T
Then by definition the multisum of f on (I, ..., I.) is (fi,..., fr).

This multisum is uniquely determined by f and (Iy, ..., I,). Note that
fr € A (I) is an ordinary function on a neighborhood of oo in S(Z,.), and
that

fi(@) ~ f(z), z — o0 on S(I;), Vj € {1,...,r}.
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Moreover, the existence of fy is equivalent with the condition that f (zP) is
Gevrey of order pk;.

There exists an equivalent definition which is closer to the original
definition of Ecalle’s (cf. [Eca87], [Eca93], [Eca94], [Mal]) :

DEFINITION 3.2. — Let Ih,...,I,. denote open intervals satisfying
the conditions in Definition 3.1, and let If, j = 1,...,r be the following
interval: if d; is the center of I; then —d; is the center of I}, and |I}| =
|| — 7/kj. Let 0 < k1 < ... < ky < kpy1 = 00, £ = (k; ' — k)7,

J+1
j=1,...,r, and f(x) =3 caz™P € Cllz /7).
n=1

We say that f is (k1,...,kr)-summable at oo on multi-interval
(Il,...,IT), if:

o H(t) := By, f(t) =t™™ iél cat™? /T (n/(pk1)) is convergent for small

positive |t|, and its sum can be continued analytically to a function
$1 € tY/PRE(TY Kky).

o fi(z) := [,:;“qu(x) € z~V/P(A/ASTF*Y) (I;) has the property
that Bg,,,f; can be analytically continued to a function ¢;41 €

tl/p"kj+18(I]’?‘+1, Kj+1), for j running from 1 to r — 1, respectively.

Define f, := Ly, ¢r € Aso(I;). Then the multisum of f on (I1,...,I.) is
defined to be (f1,..., fr)-

A formal series with a constant term, §(x) = co + f(x), is said to
be (ki,...,k.)-summable at oo on multi-interval (Iy,...,I,) if f(x) has
multisum (fy,..., fr) on this multi-interval, and then the multisum of § is
(co+ f1,---yc0+ fr)-

The equivalence of the two definitions follows from the isomorphism
Theorem 2.1 of Malgrange.

4. Reformulation in the linear case.

First we consider normal forms T for the difference operator T.
From the formal fundamental matrix (1.2) of Ty = 0 it follows that the
substitution y(z) := M(z)y(z) transforms T to the normal form T°:

(41) Ty(z):= y(z+1) - A%(z)
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L.
where A°(z) = @x*’c % (#+1)=a;(2) (1 + 1) "
Jj=1

From this one may derive a related normal form 7¢ (cf. [Tur60], [Pra83],
[Duv83], Imm84]):

(4.2) Ty(z)=y(z +1) - F(z)y(z), F(z) = @m*fFj (z),

FJ((I)) = f](.’E)I] + x_lilj,

where f;(z) = ¢; if ¢;(z) = 0 and otherwise f;(z) is a polynomial in z~1/P
of degree less than p, f;(z) ~ ¢;(1 + pibjz*i~t) (c; # 0) as £ — oo, and
where L; is a constant (n; x n;)-matrix and \j, u;,bj,c; are the same as
in (4.1). The formal normalizing matrix M(z) now is modified to M(z).

Using a truncation My of this matrix we see that T’ can be mero-
morphically transformed by y(z) := My(z)z(z) to T where

(4.3) Tz(x) = T°2(x) + z#F(z)2(z),
with g < min;{)\;} — 1, F(z) € End(n, C{z~'/?}).

In order to prove the linear case of Theorem 1.1. it is sufficient to
consider the linear difference equation

(4.4) Tz(zx) = é(z),

where &(z) is meromorphic in z~/? at co. We may rewrite this equation
in the following form:

(4.5) Az(m <® zl- k"Ih) z2(z + 1) — z(x))

- (@ A+ a:‘””B(x)) z(z) = c(z),
h=0
where
(4.6)
reN; 0=k <k <..<ky=1<...<k,,1<qg<rm;
kn€ep IN,h=1,..r; peN;
A, h=0,..,r, is an (ny X ng)-matrix;
ny, is a nonnegative integer , np > 0 if ky, #0,1; ng + ... + n = n;
A, is invertible if 1 < h < r and np > 0;
B(z) € End(n, C{z~'/?}), c(z) € C*{z~/P}[z!/7].
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The translation of (4.4) into (4.5) runs as follows: If \; > 0 then
there exists k, = A; + 1 and Ay consists of blocks c;I; corresponding to
all j with k, = A\; + 1. If A\; = 0,¢; # 1 then ngy > 0 and A, contains
corresponding blocks (¢; —1)I;. If A; < 0 then also nq > 0 and A, contains
corresponding blocks —I; whereas if none of these cases occurs we have
ng = 0. In case \; = 0,¢; = 1,g;(xz) # O there exists k, = p; and
A}, consists of blocks p;b;I; corresponding to all j with kp = p;. The
case A\; = 0,¢; = 1,g;j(x) = 0 corresponds to ko = 0, and A, contains
corresponding blocks fJ]‘. In general the ny’s of (4.6) will not be the same
as the n;’s of (1.3).

The assumptions (4.6) include also cases where in the original differ-
ence operator T the matrix A € End(n, C{z~'/P}[z!/?]) is not invertible
(corresponding to a block F; which is 27! times a nilpotent matrix).

In agreement with the definitions of singular and Stokes directions in
section 1 we now define:

DEeFINITION 4.1. — A direction @ will be called a singular direction
of level k; of the difference operator A (cf. (4.5)) where j = 1,...,q—1,
if Aj + kj;t*i1; is not invertible for some t with argt = —6. Moreover 6
will be called a singular direction of level 1 ifng > 0 and Ag+ (1 —e™t)I,
is not invertible for some t with argt = —6, or if ny, > 0 for some h < q
and § = /2 mod 7. If § is a singular direction of level k; then the pair

g ,0+ T Visa pair of Stokes directions of level k;.
2k; 2k;

Then we have

THEOREM 4.1. — Let the assumptions (4.6) concerning the difference
equation (4.5) be fulfilled and let 3(x) € C[[z~'/P]] be a formal solution
of (4.5). Let (I1,...,1;) denote a multi-interval satisfying the following
conditions:

(4.7
I DI, D...D 1y, |I;| > 7/kj(cf. Definition 3.1);
{ I; does not contain a pair of Stokes directions of level k; (1 < j < q).

Then %(z) is (ki,...,kq)-summable on (Iy,...,1;) in the following
cases:

(i) kr>1,I,n{(2j+1)m:j €2} =2 and if ng > 0 then Ag +1,
is invertible.

(ii) k. =1 and either n, > 0 and A, + I, is invertible or n, = 0.
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(iii) kr =1, n, >0and I, N{2jm: j € Z} = 2.

If (21,...24) is the corresponding multisum then z, is a holomorphic
solution of (4.5) in a neighborhood of oo in S(I,) and z; is a solution of
(4.5) in (AJASTRi)n (L) if 1< j < g— 1.

Moreover, %(x) is 1-summable in upper and in lower halfplanes if
ng =0,¢ =1, and if n; > 0 then A, does not have an eigenvalue A on the
circle | A+ 1| =1.

It is easily seen that this theorem implies Theorem 1.1. in case G(z, y)
is independent of y. Note that presence of a level k. > 1 causes obstruction
in the summapbility process in the left half plane, presence of level 1 with
A, +1, not invertible causes obstruction in the right half plane (cf. [Imm]).
However, we will show that

Remarks 4.1. — The formal solution 2(z) can always be lifted to
analytic solutions z4(z) in Hy := {z € C : £Imz > R} for some R > 0
such that z4(z) ~ 2(z) as z — oo in Hy with 0 < targz < 7w — ¢ for
any € > 0. Similarly there are solutions as above with the condition on
arg z replaced by € < targz < 7 (cf.[vd PS]). These solutions need not be
uniquely determined by §.

It is sufficient to prove the theorem for the case that the formal
solution 2(z) and the right-hand-side c(z) of (4.5) are both of order
O(z~N/P),z — oo for sufficiently large N € N with at least N/p > 1.
This follows by subtracting from the formal solution Z(z) a partial sum of
some sufficiently high order. Then the remainder satisfies again (4.5) with
¢(z) replaced by another function which has a zero of that order at co.

The proof of Theorem 4.1 will be given via convolution equations
corresponding to the difference equation (4.5). These equations will be
derived in section 5. In section 6 we then give the proof for case (i) of
Theorem 4.1 and of Remark 4.1. The proof for case (ii) and case (iii) is
similar (cf. also the correspondence between cases (i) and (iii) mentioned
in sect.1). '

5. The convolution equations.

We apply Borel transforms to the difference equation (4.5) with
1
c(x) = O(z~N/P) with N sufficiently large. Let k € EN N (0,1]. Suppose
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that z(z) € - N/P(A/AS %) (I) for some open interval I with length
> w/k. Then also the difference z(z + 1) — 2(z) is in this set (cf. [Imm84,
§16]). Let u(t) := Bgz(t). Then u(t) € t¥—kA(I*) where I* and I are
related as in Definition 3.2.

The convolution equation associated with (4.5) involves the operator
Fy defined by

(5.1) Fyu:= Bp{z' *(2(z+1)—2(z))}, where k € %NO(O, 1], z = Lyu.

1t follows that Fyu(t) € t%u_lA(I*).

If k = 1it is easy to see that z!7%(z(z + 1) — 2(x)) simplifies to
Li{(=1+ e *)u(t)}(z), and therefore

(5.2) Fiu(t) = (=1 + e Hu(?).
In case k < 1 we rewrite the difference z(z + 1) — z(x) as a perturbation of
the derivative z'(z) of z(z):

T+1

(5.3) z(x+1) — 2(x) = 2/ (x) +/ (x+1-19)2"(y)dy = 2'(z) + Wz(z).

T

Now, as z(z) € 2~ N/P(A) ASF) oo (I), also the derivative 2/(z) is a member
of this set. Hence, so is Wz(z). We have 2/(z) = —kz*~1Li{tFu}(z) and
as a consequence we may write:

(5.4) Fru(t) = —kt*u(t) + Hyu(t), if 0 < k < 1,
with
(5.5) Hyu(t) := Be{z' *Wz(2)}(t) = Br{z' "W Liu}(t).
We will investigate the operator Hy in section 7.
Next, we define (n x n)-matrices M; as follows:
Mj = J)ko_kjlo D... @(Ekj_l_kjlj_l @Ij d...0I.,1<75<q.

Then Az — ¢ = 0 in (A/AS%)2 (I;) is equivalent to By, M;(Az —c) = 0
in A™(I7), if I; and I are related as in Definition 3.2. The lefthand side
of this equation may be expressed in terms of

(5.6) u = By, z, Bj = By, {M;z~/PB},7; := By, {Mc}.
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Utilizing (5.1), (5.2), (5.4), (2.2) and (2.6) we get a convolution equation
Qju = %; where

(5.7) Qj = BijjAﬁkj, ] = 1,‘ ey q

We can rewrite these convolution equations in the form Tju = u. Denote
by v(") the components of n-vector v corresponding to the ht* block and
let

(5.8) Gj = Hk..

Then we get
e if0<j<gqgandk:=k;

—kp,
(Tru)™ = (kt*)~H(Gju) P — Ah(—)?'_r(tl Ery *k u)
(B #x w)® — 7],
0< h<y;
5.9) { @D = (A + kL) [(Gu) D () = (B #.w)?) — 3,
_ - kp —2k
(Tyu)® = _Ahl[(ﬁ:j,ﬁ x5, tku) (W) — (th *x Gju)®
+(B; +ku)® + 3],
L j<hgr
eifj=g¢q
(5.10) h —ty—1 t=kn (h) o (73 (h) 4 ~(h)
(Tw)® = —(1—e ) An(rhmpy * W™ + By x )™ + 3],
0<h<ug
Tu)® = —(Ag+ (1—e ) (B, *u)@ +79);
q q q
- kp—2 (h
(Tw)™ = _Ahl[(rfk: 1) *(1“6 D)) + (Bg % u)® +’Y )]
qg<hg

The equations with h = 0 and h = q are deleted if np = 0 and
ng = 0 respectively. We will prove Theorem 4.1 by means of the convolution
equations

Tiu=u, j=1,...,q.
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6. Proof of Theorem 4.1.

The proof of Theorem 4.1, case (i), follows easily from the two lemmas
below, that we will prove in sections 8 and 9, respectively.

(e
LemMA 6.1. — Let 2(z) = Y. amz~™P be a formal solution of
m=N

(4.5). Let 4, = Bklé. Then 4, is a convergent power series in t/P in a full
neighborhood of 0 with sum u,(t) € t/P=%1C™{t!/?}, which is a solution
of

(6.1) Tru(t) = u(t).

Moreover, L, uy =: 2 is a solution of (4.5) in (A/AS™*)™ (R). In
particular 2(zP) € C[[z™ )1/ (pk1)-

Define

1 1\
(6.2) @::(—— > J=1...,g—1,kg:=kg=1.
ki kjn

Let (I1,...,1;) be a multi-interval satisfying the conditions in (4.7) and the
additional one of Theorem 4.1, case (i). If d; denotes the center of I, let
I and I; be the intervals with center —d;, and length |25 | = |L;| — 7 /kj,
\I;| = |I;| = n/kjy1 ( = 1,...,q); I := R. Since I; does not contain
any pair of Stokes directions of level k;, and I, N {(2j + 1)m;j € Z} = o,
it follows that —I7 does not contain a singular direction of level k;, and
I; C (—=m/2,7/2) mod 27. Using these conditions and notations we have

LEMMA 6.2. — Let j € {1,...,q} be such that there exists a
solution u; € tN/P=ki AM(I;_) of Tju = u. Then u; possesses an analytic
continuation in S(I}), which will be denoted by u; as well, and which has
exponential growth at oo of order at most ;. Moreover, z; := E:j“uj is
a solution of (4.5) in (A/As‘k"“)g‘o(Ij), 1<j<q—1;2y:=Liug is a
holomorphic solution of (4.5) in A% (I4).

Ifj < q—1thenwu;; := By,,, 2; satisfies Tj1u = u in a neighborhood
of 0 in S(I;), uj41 € tN/P=kit1 An(L}).

Remark 6.1. — Also if the cases (i), (ii), (iii) of Theorem 4.1 do not
necessarily occur the previous lemmas remain valid except for the statement
on ug and z,. However, if g =1 or ¢ > 1, +7/2 € I;_; then uy(t) if g =1
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and u,(t) = Bi24-1(t) if ¢ > 1 are analytic in a strip around the imaginary
axis where £t > 0 except for values of ¢ where A, + (1 — e™*)I, is not
invertible or ¢ = 2gni,g € Z*. Moreover, ug has exponential growth of
order at most 1 in this strip.

The proof of Theorem 4.1, case (i), now proceeds as follows: The
conditions of Lemma 6.2 are satisfied for j = 1 because of Lemma 6.1.
Then Lemma 6.2 implies a.o. that its conditions are satisfied for j = 2.
Repeating this reasoning for j = 2,...,q consecutively we get solutions u;
of Tju = u and solutions z; of (4.5) in (.A/As_k"“)go(lj) forj=1,...,q.

Since z; = E:;“Bkaj_l and z; € (A/Ag"“f“)go(fj) we see that
zj_1|1; = z; mod AS~*i_ Hence (z1,...,2q) is the (ki,...,ky)-sum of 2 on
(I1,...,14). This proves Theorem 4.1, case (i).

The proof in the cases (ii) and (iii) is similar. Remark 4.1 follows from
Remark 6.1 by choosing the intervals I; suitably and defining 2+ as Laplace
transform of u, with path of integration in the strip around the imaginary
axis. The last assertion of the theorem concerning the case ng = 0,9 =1
is obtained in the same way but now we may take the positive or negative
imaginary axis as path of integration in the Laplace integral for z.

Remark 6.1 will be proved in section 9.

7. Properties of the operator Hy.

In this section we will investigate the operator Hy defined in section
1
5 for k € (0,1) N =N. The results are summarized in Lemma 7.2 at the

end of this section. They will be of use, when proving Lemmas 6.1 and 6.2.

We will write H in stead of Hy in this section. H operates on functions
N
u€ t%’k.A(I), > > 1 (cf. (5.5), (5.3)), where I is some open interval (in

section 5 this was the interval I*). Let z := Lxu with u as above. Then
2"(x) = —k(k — Dz 2L {tFu} (z) + E222*D L {t%*u} (z)
and
T+1
Waz) = [ (@+1-p){k(s = * 2Ll o)
T

+k2PED L (R u} (y) Y.
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For convenience we will use the following notations:
v=pu, W =pWpi ', H = ppHp, ', and z* =: £,t" =

where py is the ramification operator defined in (2.7). Let J be the
interval defined by 8§ € J < 6/k € I. Choose M in the neighborhood
of 0 in S(J) where v is holomorphic, and choose fOM exp(—=&1)mv(T) dT
as a representative for £L{7®v(7)}(£). Substituting this in the expression
for Wz we obtain by means of a change in the order of integration if
|arg(§M)| < 7/2:

M
S KW a(z) = £ WLu(E) = / e ro(rw (€, 7)dr,
0
with
w(é, 7) = w(z*, )

z+1
t= ko' / (@ +1—y)y* {1 — b+ kyktr}e 0"~ gy,
x

Obviously w(£P*, 7) is holomorphic in ¢ € C\{0}, and entire in .

We substitute y = = + s in the last integral. As 1/2 < |1 + s/z| < 3/2, and
|(1+ s/z)* — 1| < c|z|~! for some constant ¢ > 0, for all 0 < s < 1 and
z € C with |z| > 2, we obtain an estimate for w:

(e, m)] < Kal€] =41 + [ereXelmIerF ig g/k > o,

Now, recall that Hu(t) = Br{z' " *Wz(z)}(t), i.e. Hv(t) = B{¢ "t /*WLw}
(7). This implies

1) = o [ e [ Smtaute ) dn
=/O mo(mh(r —n,m) dn
with
h(r) = Blun)He) = 5 [ eu(enae

So, also h is holomorphic on C,, in the first variable, and entire in the
second, and h(Te?Pk™t 1) = h(T,n).

For C' we choose a contour consisting of halfrays (co,2¥R)e®! and
(2¥R,00)e?? (6; < 63), such that cos(arg(r€)) < —e along these rays
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(for some € > 0), connected through the arc Cg : |£] = 2*R, 6; <
arg¢ < 03. Then, if R > 1, we can estimate the integrand above with
K1 |€]7/*(1+ |€n]) exp(|7€| cos(arg(r€)) + K |ng = *|). The exponent takes
its maximum on the arc when argé = —argr, and this maximum is
minimal for R = |n/7|*. Hence we choose R = max{|n/7|¥,1} and obtain
the following estimates:

1
omi / e"w(€,n)d¢| < LiR'™* (1 + Rln|) exp(L2R]7|),
R

and

1 1

— / e w(é,n)de| < L — R™Y*(1 + Rn|) exp(LzR|7|).

21 C\Cr 'Tl
Thus

|h(r,m)| < LiR™*(R+ %)(I-I-le)exp(LgR]’rl), if R = max{[n/7|*,1}.

But this means that L{h(-,n)}(7) makes sense, and L{h(-,n)}(1) =
w(r,n). If we substitute this in the expression for &~ '*V*WLy(£) we
obtain:

M 00
—14+1/k _ —€7 (T —¢o
I3 WLv(E) /0 e *Try( )alT/0 e *%h(o,T)do

M t o M
= / e‘gtdt/ Tu(T)h(t — 7, 7)dT + / e_ftdt/ Tu(T)h(t — 7,7)dT.
0 0 0

M

As the second term in this last expression is exponentially small
for R(ME) large positive, we see that £~ 1T1/*W Ly and [J{fot Tu(T)h(t —
7,7)dr} define the same element in (A/ A1) (J) where ¢ € J iff [p+ 6| <
m/2 for some @ € J. That is,

Ho(t) = (BETHYEWLY)(t) = /Ot Tv(T)h(t — T, 7)dT.

However, this last expression still has meaning for functions v(t) that belong
to the set of holomorphic functions on S(J,7) (for some open interval J,
and some r > 0), that are bounded on S(J’,r’) for any closed subinterval
J' of J, and any ' € (0,7). Moreover, H maps this set into itself.

Hence we have proved the following lemmas:
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LEmmA 7.1. — Let 0 < k < 1 and
F—1 (7t 1/k 1/ky, —1/k
wi(§,7) == EF /£ (k41— *)p= V(1 — k4 knrye "= dp,

and

hi(1,m) == B{wg (-, ) }(7).

Then hy(P*,n) is holomorphic in T, 7 € C\{0}, entire in 1, and there exist
positive constants K; and K, such that

1
(7.1) |he(rym)| < KoR (R n H) (1+ Rin]) exp(KRl7)),

if R = max{|n/7|*,1}.

LEMMA 7.2. — Let J be an open interval. We define Hy, = pkapgl,
where Hy, is defined by (5.5). Then Hj, can be extended to a mapping of the
space of holomorphic functions on S(J,r), that are bounded on S(J',r")
for any closed subsector of J' of J and any r' € (0,r), into itself. If v(tP*) is
holomorphic in a (full) neighborhood U of 0, and continuous on the closure
U, then also Hyv(tP*) has this property.

Moreover, if v is an element of the function space described above,
then

(7.2) Hio(t) = /0 nv(n)hk(t —n,n)dn,

where hy, is the function defined in the previous lemma.

8. Proof of Lemma 6.1.

For convenience we rewrite the system Tju = u to T;v = v, where
T = pijjp,:jl, v = pg,;u. Writing
(81) Gi = pk;Gipk, = pi;Hi;pz,,
(cf. (5.8), (5.5),(5.3)), Bj = px, B, Vi = ;s> 50 (cf. (5.6))

(8.2) Bi = B{px,M;z~V/PB},y; = B{px; Mjc},
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the new system looks as follows:

e if0<j<gqandk=k,

o (T)® = (67 [G0)" — A e *0)®
(B %)™ =",
0<h<j;
(T)D = (A +ktL)7(G)D(t) — (8, * v)@) — 4P,
(To)® = —A (s b)) = (s G0 ™
+(8; % 0)® + 7",
L j<h<r,

e if j = g then 7, = T since kg = 1 (cf. 5.10).

Let us define k := ki, and 91 = pg, U1. We may choose N so large that
the formal solution 2(z) € C™[[z~!/?]] is uniquely determined. So 9, is the
unique formal solution of 7yv(t) = v(t). We will prove that it is convergent.

If w is an l-vector, w = (wy, ..., w;), then by |w| we denote its 1-norm,

We will frequently use the property below of the convolution opera-
tor : Let o, 8 > 0, and f, g holomorphic functions on a sectorial neighbor-
hood S = S(I,8) of 0 with |f(t)| < K|t|*71, |g(t)| < L|t|P~1,if t € S, for
some constants K, L,6 > 0. Then (f % g)(¢) is holomorphic on S, and

|(f *9)(1)] < KL B(a, B)|t|**771, t € 5.

Here B is the beta function. From Stirling’s formula it follows that, given
w > 0, > 0, there exists C > 0 such that for all z with Rz > 0

|B(w, z+ a)| < Clz|7".
From (8.2) it follows that
B () = 0t%), t =0  (h=0)
{ﬂih)(t) =0(t* ™), t—0 (1<h<r)

As ¢(z) = O(zN/P), we have t74{”(t) = O(tN/®¥)-1), and
7§h)(t) — O(tN/(pk)-l), 1<hgr
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Choose p such that 0 < p < 27 and such that for 0 < [t| < p the
matrices A + k1tI; and A + (1 — e~ *)I; are invertible in case ¢ > 1 and
q = 1,n; > 0 respectively. Define p; := p'/(P*) and let W, n be the Banach
space of functions f, for which tP*=¥ f(¢P¥) is a holomorphic function from

A(0, p1) to C™ with continuous extension to A(0, p;), provided with the
norm

I£llp,v = max{|t"*=N f(£P%)|; ¢ € A(0, p1)}.
We will show that 7; maps W, n into itself, and is a contraction if N is
large enough. Therefore, from now on v will denote a function in W, n.

Let us first assume ¢ > 1, i.e. k3 < 1.

1
Let w be a function such that t» Pw ¢ Wy n for some 8 € —N. If

pk
N 1
a+ — € —
D

- pkN’ then (w * t*v)(t) € W, n, and

|(w * t20)(8)| < B[t Pwl|, nl|v]lpn NPl 7271 1] < p.

Hence

- {It‘l(ﬂl*v)(”)(t)l < an||p,NN*#—1f|ft-‘-l, (h=0)
[(Brxv)®P (@B < Blol,nN"F |t 1, 1<h<r)

- { l(Lx)® @) < B||vnp,NN—1k|tf%, k (h=0)
(#5525 t) D (1)) < Bllofl,n N~ [FHFTL (1<h<r)

for all t € A(0, p), and some B > 0. Hence, t (8, *v)(®, t=1 (B xv)™ (1 <
h <r), etc. are elements of W, n.

Finally, we need to take care of the expressions in 73v containing Gyv.
To do this we use Lemma 7.2. From this lemma we know that G;v(tP¥)
is continuous on A(0, p;) and holomorphic in its interior. Moreover, that
lemma implies the following estimate for Gyv : If g(7,n) := hg, (7,7) then
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t
Go()] = | /0 mo(m)g(t - m,17) dn|
K N
< wllpw /O [n|N/®R)|g(t — n,m) dn|
[tl/2 1
< IIvIIp,N/ o™/ () (1+——>(1+n)e"2"”"’)dn
0 It —n
It] k
_ Ui 1
ol [ O ] = ( . )
27 D2 1t =) (|t|—77) [t/ —mn
X (14 0" R(jt] — m)F)eKen"(e=-n'"" gy
[tl/2
< Liflvllpnlt™ / /) g
0

|t]
+Lallollpn /l MO )
t|/2

for some constants L, L2, independent of N and . The last expression can
be estimated by utilizing the estimates for a convolution product and the
beta function as given above. Thus we obtain:

1G10(t)] < Ljvllp,n N~ Pt 7%, vt € A0, ),

and it follows that t='G; maps W, y into itself if N is sufficiently large.
From the estimates for a convolution product mentioned in the beginning
of the proof it follows that also t~2*»/k1 x G, v belongs to W), n if v belongs
to that space and h > 1.

Ifg=1wehave Ty =T, =T, As1—e~* = Ot, t — 0, all expressions
occurring in T, are essentially of the same order as the corresponding
expressions in 77 in the case ¢ > 1.

So by choosing N large enough we can make 7; into a contraction on
W, n. Hence equation 7;v = v has a unique solution v, in W, n.

Its Taylor expansion in powers of t}/(P¥) is its asymptotic expansion
and is therefore a formal solution of this equation. As the equation has only
one formal solution in C™[[t}/(P¥)]], we must have that v; is the sum of ;.

Moreover, we have the following relationships (cf. section 5): Tyv; =
1o Nu =u © Qruy =5 © Azp=cin (A/As_kl)go(R)

This proves Lemma 6.1.
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9. Proof of Lemma 6.2.

We will prove this lemma in terms of the ‘ramified’ operators 7}, g],
etc.. Let J; (J5, J;) be the interval defined by the relation ‘6 € J; (J7, J;)
if and only if 0/ kj € I; (I3 I;)’. As I; does not contain any pair of Stokes
directions of level k;, and I,Nn{(2j + 1)m;j € Z} = @, T is regular in
S(J7), and Jg = I; C (—77/2,77/2) mod 27. Define (cf. (6.2))

(9.1) pi = Kj/k; = T ) Mg =1.
kel — Ky

We have a solution v; = pg,u; of the singular Volterra integral equation
Tijv = v on a neighborhood of 0 in S(J;_1) (say U;—1). Fix a €
Uj-1N S(J;). Then

Tou(t) — Tu(d) = /t K(t, 7)v(r)dr

for a certain holomorphic kernel K(t,7). Hence Tjv = v is equivalent to
the regular Volterra integral equation

olt) =Ty + [ Kt ryutra,

which has a unique holomorphic solution #; on S(J;). However, for t € U
this solution corresponds with v;, i.e. ¥; is an analytic continuation of v;.
We will write v; in stead of ¥;.

Remains to prove that v; has the right growth rate. Lgt’s first consider
the case j < q. We will write S; = S(J7) and k = k;. Let S denote a closed

subsector of S;. With the pair (vj, ) we associate the continuous function

(9.2) 9;(s) = sup{[v; (t)];¢ € S, |t| = s}, s € (0, 00);
¥; becomes continuous on [0,00) by putting 9;(0) = 0, since v;(t) ~
pijkjﬁ(t).

Next with 7; and G;, and S we will associate dominating operators
T; and G; as follows. Let v be holomorphic on S;, bounded on closed,
bounded subsectors of S;. Define v by

(9.3) ¥(s) :=sup{|v(t)|;t € S, |t| = s}, s € (0, 00).
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We now consider the expressions occurring in the definition of 7; (cf. section
8). From (8.2) it follows that there exist positive constants M; and B; such
that

(9.4) 18; ()] + 3 (8)] < Myexp(Bult]), if t € S.

Expressions in Z;v of the form (f * v)(t), with f holomorphic on S; and
|F(t)] < MeBlHl vt € S, are estimated by

(9.5) [(f % v)(t)] < (MeP® x)(s),Vt € S, with s = [t].

From Lemmas 7.2 and 7.1 and the definition of G; in (8.1) we easily
derive the following dominating operator for G; on S':

00 19001<Tue) = K [ w@er* (r+ L)+ re)

exp(K2R(s — §))dE,
¢ k
whereRzmax{( ) ,1}.
s—¢§

Let M > 0 and B > 0 which will be chosen later on. Then we define

(9.7 i
T, ¢(s) =M [eBs + (P p)(s) + D (sTF

r

+ Z (5% 2w sp)(s) + s Grp(s) + Y (s %Gy (s)

h=j+1 h=j+1

From (8.3), (9.2) and the estimates above it follows, that 9;(s) < Z;9,(s)
if s > 1, if we choose M and B large enough. Since ¥;(s) is bounded on
[0, 1) we may choose M and B such that this inequality holds for all s > 0

From here on we will omit the indices j if no confusion is possible,
i.e. we will write p = p; (cf. (9.1)), T = T}, etc.. Note that G and T are
monotone operators.

Let
(9.8) Wo(s) = Moe®"

for some positive constants c and M. We will first show that for sufficiently
large ¢ > 0 and all My >0

(9.9) Trho(s) < to(s),Vs € [1,00).
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Finally we will prove that we may choose My such that
(9.10) 9(s) < ¥o(s), Vs € (0,00)

where 1 is defined in (9.2). This implies that v; has the right growth rate.
For the proof of (9.9) we use two inequalities from [Bra91]:
Ifa,b,e,p>0,and 0 < a+b—1<ay, then

S
(D) / (s —0)* to* e do < Ke™(aH0=D/Bees” for s > 0,
0
and, ifc>cog+1,c0 >0,u > 1, then
S
(1) / eoo(s=) " +eo¥ g < K1 /P e | for s > 0,
0

where K is a constant independent of s and c.

From these inequalities it follows that all terms in the expression for T(s)
involving 1o, but not Gig, can be estimated by Kc~%y(s), Vs > 0, for
some constants K, a > 0 independent of ¢ and s, provided ¢ > B + 1.

Next we consider the contribution from G (as defined in (9.6)) to 7. By
splitting the path of integration in the definition of G in a part from 0 to
s/2 and a part from s/2 to s, we may write G as a sum of two operators :

G =G1 +Ga, with

_ s/2 1
Gri(s) = Kr [ 9O+ T5)(1+ ) expl(Kals — €)dt,

and
Gop(s) := Ky , PE{E (s — )1 + seF(s — &) F + 1}

exp{Ka€" (s — €)' 7*}de.

As¢ (1 + S—é-g) (1+&) exp(Ka(s—&)) < Brexp(Ba(s—£&)*), Vs > 0,

V¢ € (0,s/2), for some positive constants B; and Bz, we obtain the
following estimate by applying inequality (II):

(9.11) G1to(s) < Le™Y#apo(s),V¥s > 0, provided ¢ > By + 1,

for some constant L > 0 independent of ¢ and s.
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Next consider G,. Since £'*¥(s — €)% is uniformly bounded for
& € (s/2,s), s € (0,1], we may deduce from inequality (I) witha =1—k
and b =1+ k the following bound:

(912) §2¢0('3) < Mlc_l/”"(ﬂo(S),\V’S € (0, l]a

for some M; > 0 independent of ¢ and s. If s > 1 we have

Gav(s) < K / ; $(E) exp{Kas(1 — £/5)'*}
{s2(1—¢/9)'"* + (1 —¢/s)™F + 1} de.

Next, we substitute ¥ = 1 and £ = s(1 — ¢)!/# in this integral. Then
o € (0,6) with § :=1—27# < 1, hence (1 — 0)* is bounded for any «,
and mio < 1 — (1 — 0)'/# < mgo, Vo € (0,6) for certain mi,my > 0
(dependent on ). Furthermore, (&) = 1o(s) exp(—csto). All this yields
us the estimate

s
Gatbo(s) < M'sapo(s) / exp(—csto + K}so'7%)(s?0' "% + 567 + 1) do.
0

Observing that x> 1/(1 — k) (cf.(9.1)), hence so*~* < (s#o)1~* for s > 1,
we see that exp(—csto + Kjsol™%) < exp | — %cs”a if ¢ is sufficiently

large. Utilizing this in the last integral and substituting w = cs#o we
obtain a final estimate for Gat/o(s):

(9.13) Gotho(s) < Masc™ 1 Fapg(s), Vs € [1, 00),
if ¢ is sufficiently large.
From (9.11), (9.12), (9.13), and 1/p < 1 — k we may conclude that
Gyo(s) < Cre™ /(s + 1)o(s), ¥s € (0, 00),

and, utilizing inequality (I) twice, with a = —1 4+ kp/k,b =1 and b = 2,
that

(s"/%72 x Guo) (5) < Cac™/Haho(s), Vs € (0,00), i A > j +1,

for some positive constants Cp, Cy independent of ¢ and s.

The discussion above implies that there exist positive constants K, a
such that T (s) < M (eB*" +Kc=*y(s)), for all s > 1 if c is large enough.
So (9.9) holds if c is sufficiently large positive.
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To obtain (9.10) we choose My > maxggs<1 ¥(s) (cf. (9.2) and (9.8)).
Let s1 := sup{s € (1,00]; 9(t) < 9o(t), if 0 <t < s}. Thus 1 < 81 < oo. If
51 < 0o we deduce from the monotonicity of 7 that

9(s1) < TY(s1) < To(s1) < o(s1)

which is impossible by the definition of s;. Hence s; = oo and (9.10) follows
which completes the proof of the lemma in case j < g.

This proof also applies to the case j = g, with

Tai(s) = M [7° + (€7 x9)(s) +Z (575 x ) (s)

(9.14) + Z s =2 x h)(s)

h=q+1

Here we have used the fact, that in the right hand side of 7, = T (cf.
(5.10)) (1 —e~*)~! and if ny > 1 also (A4 + (1 —e~?)I,)~! are bounded on
S(Iy) for |t| > 1. Moreover, we have used that the factor 1 — e™* occurring
in (5.10) for ¢ < h < r is bounded since I; C (—m/2,7/2) mod 2. In fact,
operator 7, does not contain G, and we could have estimated the growth
rate of the terms in Tyv immediately, utilizing inequalities (I) and (II).

Now assume 1 < j < g — 1, and the existence of a solution u; of
Tju =u,ie Qju; = 73 on S . We have proved the statement in the lemma
about the growth rate of u; at oo on this sector. Thus we may restrict
zj = Lguj to z; = [Z:;“uj. Since Az; —c¢ =0 in (AJASTR)n (), and
Azj—ce€ (A/ AR+ (1) we deduce from the relative Watson Lemma,
2.1 that Azj—c=0in (AJASTF+1)n (1), In particular, 24 is a holomorphic
solution of Az = ¢ on a neighborhood of oo in S(I).

The last statement of Lemma 6.2 now easily follows and the proof
is completed. The proof of Remark 6.1 is an obvious modification of the
previous proof, since (9.14) also holds on vertical strips away from the
singularities.

10. Nonlinear difference equations.

Let p,v € N. Consider the following nonlinear difference equation:

(10.1) z7/Py(z + 1) = F(2'/,y(x)), = € C, y(z) € C",
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with F(z,y) holomorphic in a neighborhood of (0o, a).
Suppose that (10.1) has a formal solution

oo
9(z) = Z amm_m/p, am € C", ag = a.
m=0
We will rewrite (10.1) to a linear, inhomogeneous difference equation of
the form (4.5) plus a perturbation which is nonlinear in y. Let y(z) =
M+p—1
P(z) + = #/Pj(z), with P(z) = Y. amz~™P, where M, € N are to

m=0
be chosen later in order to control the orders of the nonlinear part, while

bringing the equation to a suitable normalized form (cf. transformation
g(z) = S(z)y(z) below, and equation (10.3)). This yields the following
difference equation for §:
(10.2)

2=7(z + 1) = 2~ M/PFy(a?) + A(a/7)j(a) + 2/ Fy(a/?, §(a)),

where
Fo(z'/P) = gM+w)/p(1 4 1/z)n/P {F(z'/?, P(z)) — 2*/PP(z + 1)};
A@z/P) = (1+ 1/z)*/PD, F(z'/?, P(z)), i.e. A(z) s holomorphic inz = oo;
Fo(z'/?,§) = a®#/P(1 + 1/x)#/? { F(z'/?, P(z) + 2~ #/?§) — F(z'/?, P(x))
—DyF(z/?, P(z))z~*/Pj}.

Hence Fj(z, ) is holomorphic at (co,0), and

Fy(z,5) = O(§*>), § — 0, uniformly in z.

R 00
Equation (10.2) has of course §(z) = . amiuz ™P as formal power

m=M
series solution. By substituting this series in (10.2) we see, that Fy(z), too,
is holomorphic at x = oo.

The homogeneous linear part z="/P§(z + 1) — K(zl/p)ﬁ(x) is of the
form z=¥/?Ty(z), T defined by (1.1), and can be transformed to a normal-
ized form z=*/PTy (cf. (4.3)) by a transformation () = S(z)z(z) with
S(z) € Gl(n, C{z~'/Pa}[z1/P4]) for some positive integer g. This transfor-
mation can be obtained by applying a method of Turrittin (cf.[Tur60]).
It consists of block-diagonalizations up to some order in the series expan-
sion and shearing transformations. There exists a bound for the number
of these transformations which only depends on n and v/p. The block-
diagonalizations only involve transformation matrices S(z) ~ I, but the



MULTISUMMABILITY FOR DIFFERENCE EQUATIONS 211

shearing transformations involve matrices S(x) which are regular at oo but
with S7!(z) = O(z*) where X has an upper bound which only depends
on (n — 1)/p (cf. [Tur60], sect. 7). Hence S™1(z) = O(z"/P9), x — oo
for some pg € Z which is only depending on n,p and v. Then also
S~z + 1) = O(zHo/P9), 2 — 0.

So, writing p in stead of pg, we have transformed (10.2) into a
difference equation for z(z) of the following form:

(10.3) Az(z) = c(z) + E(z, 2(2)),

with A the difference operator as defined by (4.5), and

ela) = (@ ””1’kh1”) 208 (4 1) Fo(a ),

k=0

E(z,z) = <é xl_khIh) z=mIPg(g 4 1)_1ﬁ2(x,S(x)z),

k=0
and we choose pu, M > v+ pg + p. Then we know the following of ¢ and E':

c(x) is holomorphic in =1/ at oo, and c¢(z) = O(z~N/?), £ — oo, where
N =M — (v+ po +p) > 0 (cf. remark at the beginning of section 5);
E(z, z) is holomorphic in =1/? and z in a neighborhood U of (o0, 0) and
E(00,2) =01if z € U. We choose U = A1 (00, p) X Ar(0, po), A1(00, py) =
{z € Cwo; lz| > po}, An(0,p0) = {(¥1,---,yn) € C% |y| < po}. In
particular we may expand F(z, z) in powers of z:

E@z2)= Y, En(@)2™, (z,2)€U.

meN™,|m|>2

The levels of equation (10.3) are defined to be the levels of the linear part
Az(z). As before we will associate a system of convolution equations with
each level of (10.3). Let z(z) € z=Y/P(A/AS™®)n (I), and u(t) := Byz(t) €
t—k+1/p An(1*), T and I* related as in Definition 3.2. We define

(10.4) Eu(t,u() == Bi, EC,Le,u()(®) = D (Emyg *k, tjum) (D),
meN™,|m|>2

where &, = By;Em, and Ujum(t) := By, (Lx;u)™, the ‘m-fold’ kj-
convolution of u. Let matrices M; and convolution operators @; be defined
as in section 5. Then

Az(z) = c(z) + E(z, 2(z))
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in (.A/.Ag-k")go(Ij) is equivalent to
Qju(t) = Br,{M;c}(t) + (Bi, My i, €;.(t, u(t))(t)

in A™(1 j*) Rewriting these convolution equations in the form X;u = u thus
yields the following convolution equations where k = k; :

o ifl<jg<qg—1:

—k
(Xu® = Tu® — (k) (s & s (t,u)®,
0<h<y;
(10.5) ¢ X;ul) = Tju® — (A + kthL) 1. (t, u)9);
X;u® = Tu® — AT (8 u)P,
\ j<hgr,
e if j=gq:
—k
( Xqu(h) = Tqu(h) -(1- e—t)_l(l‘(tTZT) * Equ(t, u))(h)1
0< h<g
(10.6) { X,ul) = Tu@ — (A, + (1 — e H)I,) 1 Eu(t, u)9;
Xu® = Tu® — AJTEL(t,u)™),
g< h<r,

and we define X; := py, X; p,;jl. Analogous to Lemma 1 in [Bra92] we now
have the following lemma which can be proved in a similar manner.

LemMmA 10.1. — If f € W, y (cf. sect. 8), and m € N, |m| > 2, then

N/pki\|m|
o< BB

’

where f.., is the m-~fold convolution of f.

Moreover,
|Em, ()] < KB™ |t 7Rt /P expleoths], j=1,...,q,

where K, b,and cqg are certain positive constants.

Utilizing this lemma we may show as in [Bra92] that X; — 7; is a
contraction in W, y with norm tending to 0 if N — ococ. In sect. 8 we saw
that 77 is a contraction with norm remaining away from 1 as N — oo
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and therefore the same holds for X;. Hence Lemma 6.1 remains valid for a
formal solution 2(x) of (10.3).

Next we may prove an analogue of Lemma 6.2. First we may show that
a solution u; € tN/P=% A™(I;_;) of Xju = u can be analytically continued
in S(I7) (cf. Lemma 3 in [Bra92] and its proof in sect.5 in that paper).
That this solution u; has exponential growth at oo of order at most &;
can be shown using the majorant method as in sect. 9 and [Bra92], sect 6.
We now use a dominating operator Tj of X; which is an extension of the
dominating operator _’fj of 7; as defined in (9.7) and we may deduce from
Lemma 10.1

J 00
(10.7)  Xjp(s) = T9h(s) + LD sTrntt/Pksgeor o N cmapyn)(s),

h=0 m=2
where L and c are positive constants. From this the order of exponential
growth of u; can be deduced as in sect. 9.

Thus we may show

TaEOREM 10.1 — Theorem 4.1 also holds if the linear difference
equation (4.5) is replaced by the nonlinear difference equation (10.3)
under the assumptions that E(xz,z) is holomorphic in z~'/? and z in
a neighborhood of (00,0), E(c0,z) = 0 if |z| is sufficiently small and
E(z,2) = O(|2]?) as 2 — 0 for  in a fixed neighborhood of co.

It is clear that this result implies Theorem 1.1. Moreover we see
Remark 10.1 — Remark 4.1 is also valid for the nonlinear equation

(10.3).

11. Multisummability of a ‘normalizing’ transformation.

Consider the difference operator
(11.1) y(z+1) - A(2)y(z),
under the assumptions, that A(z) = F(z) + z*F(z) where F(z) is of the

form as in (4.2) with all \; =\, u < A —1—1/p and F(z) is holomorphic
at infinity in 2z~ 1/P.
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Let T(z) = I+ 2 /?T(z) € Gl(n,C[[z=2/7]]) be a ‘normalizing’
transformation matrix for (11.1), i.e. the transformation y = T(z)w
conjugates (11.1) with the operator w(z + 1) — F(z)w(z). Hence

(11.2) T(z + 1) *A(z)T(z) = F(z).
Then

THEOREM 11.1. — The normalizing transformation matriz T(z) is
multisummable in all directions, except at most countably many. In any
case 7 /2 mod m will be singular directions of level 1.

For general results concerning normalizing transformations see [Imm84,
§18], [Imm91], and [GLS].

Proof. — From (11.2) we obtain a matrix difference equation for T(z):
T(z+1) = A(z)T(z)F(z) "},

where

(11.3) = @Pg;(@)1; + = ' H;(z)),
j=1

p
9i() =Y guz~Y?, gjo # 0, H;(z) € End(n;, C{z~1/7}).

If X denotes a (n X n)-matrix, we will write X,, for the (n x n,)-
matrix consisting of the n, columns corresponding with the v*® block in
the partition of F(z) above, (so 1 < v < m), and X, will denote the v*"
diagonal block. Using (11.3) we obtain a difference equation for T, ()
that we can write as follows:

m

Too(z+1) = | (P hjo(@)L;) + 27 'R() | Tey(z)+2' A(z) Tey(z)H, (z),

j=1
where hj,(z) is the polynomial in z71/? of degree < p — 1 given by
fj(m)gv(x) = hjv(m) + O(m—l)’ T — 05

in particular hj,(00) # 0 and hy,(z) = 1.

So Tey(z), considered as a (n x m,)-vector, formally satisfies a
difference equation of the form as in Theorem 4.1, case (ii), with a
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non-degenerate block of level 0, which causes m/2 mod 7 to be singular
directions of level 1 of this difference equation. The result now follows from
that theorem.

THEOREM 11.2. — Under the assumptions made above the difference
equation y(z + 1) = A(z)y(x) possesses a formal fundamental matrix

() G (x)eQ@) A,
m
where Q(z) = @ g¢;(z)1;, ¢;(z) a polynomial in z~1/P of degree at most p,
j=1

A= A;, Aj an (n; x n;)-matrix, and

1

G(z) € C[[z~/?)] is multisummable in all directions except at most
countably many.

To show that G(z) is multisummable we first derive a difference
equation of which G(z) is a formal solution and then show that Theorem
4.1, case (ii) is applicable, similarly as in the proof of Theorem 11.1.

Remark 11.1. — This theorem implies that y(z) = G(z)w(z)
where G(z) is the multisum of G(z), conjugates the difference opera-
tor (11.1) with the normal form w(z + 1) — C(z)w(z) where C(z) :=

A
z? (1 + %) exp{Q(z + 1) — Q(z)}.

Remark 11.2. — In case A(z) is as in (11.1), but with not all A; equal
(and p < min{\;} — 1 —1/p), the normalizing transformation matrix T(z)
J

of Theorem 11.1 (considered as a n2-vector) satisfies a difference equation
T(z+1) = (@ % F;(z) + z9F (2))T(z),

where F;(z) is as in (4.2), F(z) is holomorphic in /7, d; runs through
the set of differences of A;’s, and d < miin{d,-} — 1. Hence positive and
negative numbers d; occur and therefore Theorem 4.1 is not applicable (cf.
section 4). However, Remark 4.1 is applicable and thus formal normalizing
transformations T can be lifted to analytic transformations in lower and
upper half planes.
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