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CENTRAL SIDONICITY FOR COMPACT LIE GROUPS

by Kathryn E. HARE (*)

0. Introduction.

Suppose G is a compact group with dual object G. It is well known
that if G is an abelian group, then every infinite subset of G contains an
infinite Sidon set [8]. In contrast, there are non-abelian groups which admit
no infinite central Sidon sets [11]. For central p-Sidon sets the situation is
quite different; even in the non-abelian setting these are plentiful. Indeed,
Dooley [3] showed that every compact, connected group admits an infinite
central p-Sidon set for all p > 1, however he was unable to determine if
every infinite set contains an infinite central p-Sidon subset.

The main result of our paper answers this question affirmatively. In
fact, we prove formally more. We study certain weighted generalizations of
Sidon sets, introduced in [5], called (central) (a,p)-Sidon sets, which arise
by considering classical Sidonicity with the Fourier transform weighted by
the a'th powers of the representation degree: (central) (l,p)-Sidon sets are
(central) p-Sidon sets. We prove that every infinite subset of the dual of a
compact, connected group contains an infinite subset which is central (a,p)-
Sidon for all p > 1 and a < 2p - 1. Our method is essentially constructive:
we show that certain "lacunary-like" sets have the desired property.

(*) This research was partially supported by NSERC. It was carried out in part while
the author enjoyed the hospitality of the University of New South Wales. She is grateful
to David Wilson for many helpful conversations.
Key words: Sidon set - Lacunary set - Representations of compact Lie groups.
Math. classification: 43A46 - 43A80 - 22E46.
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When G is a compact, simply-connected, semisimple Lie group of rank
£, the dual object can be identified with the set of dominant weights and
consequently with (Z"*")^. Our examples of central (a,p)-Sidon sets in the
duals of these groups correspond to Sidon sets in Z^. A natural question
to ask is if all Sidon sets in (Z^Y correspond to Sidon-type sets in G. We
show that such sets are always central (0, l)-Sidon, but need not be central
(a, l)-Sidon for any a > 0, and that there are central (a, l)-Sidon sets in G
which do not correspond to Sidon sets in (Z^)^.

1. Preliminaries.

If G is a compact group, G will denote a maximal set of pairwise
inequivalent, unitary, irreducible representations of G. The degree of a € G
will be denoted by d^.

The following generalization of Sidonicity was introduced in [5].

DEFINITION. — Let a C R, 1 < p < oo. A subset E of G is called
a (central) (a,p)-Sidon set if there is a constant /<(a,p) so that whenever
f = ^ da TrAa(T is a (central) trigonometric polynomial on G, then

aCE

ll^l(a,p) = (Y^d^TrW)^ < ̂ (a,p)||/||c
.I/P

L^ -Li 1^1- ) < ^(a,p)||/||oo.

(Central) (l,p) -Sidon sets are usually called (central) p-Sidon and (central)
1-Sidon sets are simply referred to as (central) Sidon sets.

Obviously if E consists of representations of bounded degree there
is no distinction between (a,p)-Sidonicity for different values of a; if G is
abelian then central p-Sidon and p-Sidon properties coincide; and (for all
groups) it is easier to be (central) (a,p)-Sidon as a decreases or p increases.
There are other relationships between (a,p)-Sidon sets. For this paper we
only need note that since (q C ffl if q < p, then any central (a, g)-Sidon set
is central (&,p)-Sidon provided (b + l)/p < (a + 1)/9. In particular any set
which is central (a, l)-Sidon for all a < 1 is also central (6,p)-Sidon for all
p > 1 and b< 2p- 1.

One reason for the interest in (a.p)-Sidon sets is the scarcity of
(central) Sidon sets: a compact, connected group admits an infinite central
Sidon set if and only if it is not a semisimple Lie group [II], [12].
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It is seen in [5] that if G is an infinite compact, connected group then
G is never central (0, l)-Sidon, but there are examples where G is (-£, 1)-
Sidon for any given e > 0. Also, every central (l4-£, l)-Sidon set for e > 0 is
a set of representations of bounded degree; consequently our interest (when
p = 1) is in the range 0 < a <: 1.

There are a number of equivalent characterizations of (central) (a,p)-
Sidonicity (see [5]). For example, analogous to [6], 37.2 we have

PROPOSITION 1.1. — Let G be a compact group. A subset EofG
is central (a, l)-Sidon if and only if whenever (f) e (°°{E) there is a central
measure p, on G with

A(W^=^ forall.cE.
JG ^O- UCT

Next we recall some notation and basic facts from Lie theory. The
reader is referred to [7] or [14] for more details. Let G denote a compact,
simply-connected, semisimple Lie group of rank <, T^ a maximal torus for
G and t its Lie algebra. Let <I> denote the set of roots for (G, T^) and ^+ the
positive roots relative to a fixed base A. To each A = (ni , . . . , n^) G 7/- we

i
associate the weight A = ^ rijXj where \j are the fundamental dominant

j=l

weights relative to A, and we denote by A"^ the set of all dominant weights
i.e. the set of all A with non-negative integer coefficients. We view <I> as a
subset of it*. The lattice of weights A is isomorphic to f^ : A = Y,nj\j
determines a character on T1 by the map: exp H ^—> e^^ = e^'^'W for
H € t. The set G is in a 1 - 1 correspondence with A4'; a\ e G is indexed
by its highest weight A C A"^. Thus if E is a subset of (Z"^, then E indexes
a subset of G in a canonical way, and we refer to this subset of G by E
as well. It should be clear from the context which set is actually meant.
A partial order is defined on A by the positive roots: p. -< o- if and only if
a - p. is a non-negative integral sum of positive roots. The Weyl group will
be denoted by W and the weights of a € A4' by

n(cr) == {/^ e A : w(p) -< a for all w € W}.
The set II((T) consists of all p, € A"^ with p, -< a, together with all their

i
Weyl-conjugates. Lastly, we set p = ^ Aj; p is also half the sum of the

j=i
positive roots.

One reason for the success in studying central (a,p)-Sidon sets is that
there are formulas for Tr a restricted to the torus. One of these is the Weyl
character formula:
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Y, det^e""^^)
Tra(x) = wew-__________ y ^ T ^

' q(x) ' x e'
where

g(a;) = ̂  de^e^^)
wew

= e-^) ]~I (e^) - l).
ae^

Related to this is the Weyl dimension formula which states:

d^ ^{a±p^.
1 {P^}Q^+ ^) /

A final fact which we will record here is that the weights in n(a) correspond
to the irreducible subrepresentations of (T|^, and so we also have the
formula

Tra(x)= ^ m^)ei^x\x^Te

^en(a)

where m^) is the multiplicity of p, in a|r<.

2. Main result.

In [3], Dooley constructs in the dual of any compact, connected
semisimple Lie group examples of infinite sets which are p-Sidon for all
p > 1. By making the obvious modifications to his proof these examples can
be seen to be central (a,p)-Sidon for all p > 1 and a < 2p-1. Consequently,
every compact, connected group G admits infinite central (a.p)-Sidon sets
for any a and p as above. The main objective of this section is to prove
that these thin sets can be found in any infinite subset of G.

We first construct examples in the case when G is semisimple.

THEOREM 2.1. — Suppose G is a compact, simply-connected,
semisimple Lie group of rank L Choose 0 < t < £/\^\ and 1 -t/2 < a < 1.
There is a constant C = C(t, G) so that if {a,} is any set of representations
in G whose degrees, d^ = dj, satisfy

(l^^for.^l,

(2) ^-a)/2 ^ ^C\ogCd,Y forj > 1, and



CENTRAL SIDONICITY FOR COMPACT LIE GROUPS 551

Wdj^Cidj,^ forj>2,

then {aj} is a central (a, l)-Sidon set.

It is useful to prove two lemmas.

LEMMA 2.2. — There is a constant Ci = Ci(G) so that if a e G
a e.

and 11 e n(cr) with ^ == ̂  /^ and a = ̂  c^Ai, then
%=i 1=1

max \p.i\ <, C\ maxcTi < C\da'

Proof. — The second inequality is immediate from the Weyl dimen-
sion formula so we only need prove the first.

i
Suppose A = {oLjYj^. Then each \k = ^ o'kj^j for some ajcj =

j'=i
o'kj(G) > 0, and because \k 7^ 0 there is an index jk such that a^ > 0.
Since ^ -< a with respect to the partial order induced by the positive roots,

e t
y^i^j < ̂ ^ ( T i C L i j for all j .
i==l i=l

If p, is a dominant weight, taking j = jk above we get

1 e

Q < P'k <: —— ̂  cr^jfc
ak^ i=i

<,C(G)moxai.
i

Otherwise [L = w(v) for some dominant weight v € n(a) and w € W. Since
the Weyl action is linear,

max |/^| < C'(G) moxvi
i i

for some constant C'{G). Now take C\ = CG7. D

LEMMA 2.3. — There is a constant C^ = C^t, G) so that ifaeG
and /A € II(cr), then m^(/i) < C^d^.

Proof. — This is a straight forward calculation. We begin with the
fact that

m^) == / Tra(x)e~ifl(x)dx.
JT€
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By the Weyl character formula and standard inequalities
E det^e^^W^^ ^^/^w^

m^) ̂  / w ^———————— dx
JTt q(x)r<| q(x) F

^ |[ S detHe^+ îr Ik-Î IITMT^
W6W

^ WllT'llL^)^-*.

Since <?-* e Li (7^) for any « ^/|$+1 ([13]) the proof is complete. D

Proof of Theorem 2.1. — Throughout the proof we will use the
following notation: m,(^) = m^.(yn); 0, = n(<7j); and

f ^ 1B! = ^ ^"z»A, : |m,| <, Cidj, m, e Z ^ C A.
U=i J

For C'i and Ca as in the lemmas, put

r / N2/* /II E e""!! ..
C = max { (2Gi+l)^ , sup f-^^——ILL^2^ ̂

l\ 7 Jv \ ^g^ y j
Lemma 2.2 obviously implies IT, C Bj. The key idea of the proof (which
we make precise below) is that "most" of H,, counted by multiplicity, lies
outside 5,_i. This we are able to obtain from Lemma 2.3 and property
(3). To be precise we have, if k > j,

S m* (^) ̂ W max "ife W^eiikAleiiti-iB,

(*) < (2Gidj + 1)^2^-'
< d1"*72
-= "fc »

and thus

S mfc(/i) = ̂  mkW - ^ mfc(/,)
M6nfc\Bj ^eiifc ^enfcnB,

M ^dfc-d^2

^J^.
Let Dn be the ^-dimensional Dirichlet kernel supported by Bn (thinking
now of B« as a subset of T1 rather than of A),

Dn(xi,...,xt)=]]^ ^ e1^),
fc=lj=-Cidn
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and let Hn=Dn - Dn-i. Then Hn=XB^\B^ and \\Hn\\z<2(C\ogCdnY.
N

Suppose / = E cl'jajr^raj ls a central trigonometric polynomial with
j=i

11/II oo < 1- With our notation

/|T^)=I>^- E^w^-
j=i /xenj

Notice that jHyi * ^ rrij^e'1^^ = 0 i f j < n (here the convolution is over
/ieo,

T^), and so if n < A^,

^ 11/lT^^nlloc „ |/|^*gn(0)l

- ||iUl - ll̂ nlll

E^-a, E m,(^)e^)*^(0)
__ J'=n____At€nj________________

ll̂ nlll

E ̂ ^ E )̂|j=n ^enjn(Bn\Bn-i) '
>

2(C\ogCdnY
An application of the triangle inequality yields

N

dn\an\ E mnW<2(C\ogCdnY+ ̂  ^|aj| ^ m )̂.
^enn\Bn-i j=n+i /ienjn(Bn\Bn-i)

Combined with our estimates (*) and (**), and property (2), this gives

^Kl^-^^ f; d]-^.
J=n+l

For j = 1,2,.. . , N set Sj = E ^"-Tl^-fcl and set ^o = 0. This
fc==o

gives
^|an|<41-a)/2+25^-„

and since (1) guarantees c^2- ^ 2,

^+i<2^+^-y
where £ = (1 — a)/2. By induction,

3
E 2^-Ja^_^, lur j = i, ̂ ,. .. ,.
%=1

Sj < E 2^-14-_% for j = 1,2,..., N.
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Property (1) also ensures Sj; < 1, thus
d2M<d^/2+2.

It is now easy to see that {o-j} is central (a, l)-Sidon:

ll/ll(a,i)-E^l0"!
n=l

v_J_ -A
- 2^ .(l-o)/2 + //1-.
-^^-a)/2 ^-a'

and this sum is bounded over N since {dn} is lacunary and a < 1. D

Remark. — An application of the Weyl dimension formula shows
t

that if (TJ = ̂  (7jzA^, then {(cr^- i , . . . , cr^)}^- is the union of a finite set and
i=l

a dissociate set in Z^, and hence is a Sidon set in the dual of the torus.

COROLLARY 2.4. — If G is a compact, simply-connected, semisim-
ple Lie group, then every infinite subset of G contains an infinite central
{a^p)-Sidon set for all p > 1 and a < 2p — 1.

Proof. — As remarked in the first section it suffices to prove this for
p = 1 and all a < 1.

Let ^=rank G and fix 0 < t < i/\^\. Set ai = 1 - - and choose

an increasing sequence {an}^i with dn < 1 and limit one. Let E C G be
infinite. Since G contains only finitely many representations of any given
degree we can choose an infinite subset {o-j} of E satisfying (where C is as
in the theorem):

(1)d^>^ f o r j > l ,

(2) d^"0^72 ^ ̂ (ClogCdjY for j > 1, and

(3) dj > C(^-i)2^ f o r j > 2 .

Choose a < 1. Then a < aj for all j > J and by the theorem {c?j}j^j
is a central (a, l)-Sidon set. It is easy to see from Proposition 1.1 that the
union of a finite set and a central (a, l)-Sidon set is again central (a, 1)-
Sidon, and therefore {oj}j^i is central (a, l)-Sidon for any a < 1. D

Remark. — As noted previously, these groups admit no infinite
central Sidon sets. It is unknown if they admit infinite central (2p — l,p)-
Sidon sets for any p > 1.
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The next step towards our main result is to consider the case when
G is an infinite product group.

00

THEOREM 2.5. — Let G = ]~[ Gj be a product of compact, simply-
j=i

connected, semisimple Lie groups, and suppose o-j is a non-trivial represen-
tation ofGj. Then {ai x • • • x crjj^ is a central (a, 1)- Sidon set for all
a < 1.

N
Proof. — Suppose /= ̂  djOjTra^x " ' x (TJ where dj=d^ • ' ' d^.

j'=i
Without loss of generality assume ||/|[oo < 1. For the duration of this proof
we will use the following notation: m^) == m^.(^); nij = m^(0); II' ==
^jAW; T03 = torus of Gj', and TN = T01 x ' ' ' x TGN. With this
notation we have

N j / \

f\T^(x^... ,^) = Y,dja, II mfc + Z^ mkW^ for ̂  e T^.
j=i fc=i\ ^en^ /

Viewing / as a function on TN, we can read off the Fourier coefficients:
N

/(O,..., 0) = ̂  djdjm^ • • • rrij',
j=i

( N \/(/^i, . . . ,^,0,. . . ,0) = ^ dfcafc+^ djajmk-^r"mj jmi(^i) • • -m^k}
\ j=fc+i /

if ^ € n(or,) for i = 1,..., k - 1, ^ € 11̂ ;
and /(/^i , . . . , ^7v) = 0 otherwise.

For Xj = (a^i,... ,a^-)) C T '̂ (here ̂ ) == rank G^-), and M very
large, let

^0") M , .^.)=n E(i-^)^^
fc=ln=—M

and for n < N let
71-1

Kn{x^ . . . ̂ N) = IJ Hj{Xj)(Hn(Xn) - 1).
J=l

Observe that if ̂  e T^ for j = 1,..., A/^, and ^n(/^i,. • . , AAN) 7^ 0, then
^ = 0 for j > n and /^ ^ 0. Consider the convolution of Kn and /|r^. If
M is chosen sufficiently large then

1 N

2 > |/*^n(0)| > ^ dn0n+ ̂  ^^-^n+1 • • • ̂ J ̂  ^1 (/^l) • • • ̂ n(^n)
j==n+l n
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where ̂ ' denotes the sum over all ̂  e II(^) for j = 1,..., n - 1, and
/in € n^. Clearly

E mi(^i)... mn^n) = d ^ ' " d^_, (d^ - mn)

=dn-i(d^ -mn).
Thus

N
Kan! ̂  dn-i(^-mn) + .E ̂ î • • • m,

j=n+l

Furthermore,
N

E djajmn^i'-'mj
j=n+l

N

dn+iOn+i + ̂  djajirin^ -'mj m -̂n
J'=n+2

4m.•n+l<
~ ^n(^n+i -^n+l)

(where the empty sum and m^+i equal 0). Thus
4_ , 4mn+i

|rinan| ̂ +
dn-l(da^ - mn) dn(ri<7n+i - ̂ ^+1) '

In [4] Gallagher proves that if a is any non-trivial representation of
a compact, simply-connected, semisimple Lie group then Tra has a root,
say x, in the maximal torus. Evaluating Tr a at x we derive the formula

m^0) = - E m^)e ,̂
^€II(<7)\{0}

from which one readily sees that m^(0) <, da/2. Hence \dnCLn\ < 12/dn,
and so

ii/ii(a,i) =E<+ala^E ̂ .j=i ^=ia^
Since dn > 2n, this sum converges provided a < 1, and thus {a^ x " ' x
crj}^ is a central (a, l)-Sidon set for all a < 1. D

This set of representations is independent in the sense that if
N( nci^ix-x^r^o

^^l
for some N e N and £j = 0,±1 for j = l , . . . , 7v , then necessarily all
£j = 0. This independence condition is not sufficient to be Sidon [1]. It is
not sufficient for central-Sidon either as the next example demonstrates.
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Example 2.6. — Suppose Gj = 5(7(2), G = [I G, and ^ = 2Ai.
.7=1

The set {o-i x • • . x (Tj}^ is not central (2p - l,p)-Sidon for any p > 1.

Proof. — It is well known that the torus of 577(2) is the circle group
T and that Tr2Ai | r= l+ e^ + e-^ ([6], 29.25). Therefore Tr2Ai|r takes
on precisely the values in [-1,3]. Let

N (-IP"
fN=^7T/p^Tr^x"'xa^2-̂  jl/P3J

N 1ll/N||(2p-i,p) = S - which diverges as N -> oo.
j'=i 3

Being a central function, ||/jv||oo = ||/N|r||oo, and from the remark
above the latter equals

^ (-ip-sup y , wi • • • w.
w.e[4.il h ̂ p

We will now prove that this supremum is bounded over N which certainly
suffices to prove {o-i x • • • x ffj}^ is not central (2p - l,p)-Sidon.

Set ji = 1 and inductively define jk to be the least integer greater
than jk-i with

(-1)̂ 1 • • • w^ (-1)^-^1 • • • w^_, < 0.
Consider first the alternating sum

V- (-1)^z^—ur^'"^'
k 3k

Since ——./ 3k decreases to zero, this sum is bounded in absolute value
3^

=1.by ^

^3 ^ {Ji} then (-Ip'wi • • • Wj and (-Ip'-^i • • • w^'-i have the same
sign. This can occur only if Wj < 0, but then \w^'-Wj\ < -|wi • • • w^-i|.
As \Wi\ < 1 for all z, it follows that

y-( n^r"^ <v-l<1
^ L) j i / p -Z^sk ^ 2

J^J'i •/ fc=lIĵ 'i

These estimates clearly combine to give

^ ^(-ip-E \~1 ^ o
-^-^•••^ <^sup

^e[-i,i]|^ 3^ - 2 D
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THEOREM 2.7. — Let G = Y[Ga be a product (possibly finite) of
ex.

compact, simply-connected, simple Lie groups. Then any infinite subset of
G contains an infinite central (a,p)-Sidon set for all p > 1 and a < 2p — 1.

First we introduce some notation and prove a lemma.

Notation. — Let Oj € G. Then (Tj = xaja where Ojo: G Ga and only
finitely many crja are non-trivial. Denote by suppaj the set {a : o~ja 7^ 1}-
We will say aj is orthogonal to Ok 5 and write aj J- a^, if supp <7j D supp a^
is empty. Recall that Parker [9] has shown that if {<7j } consists of mutually
orthogonal, non-trivial representations then {crj} is a central Sidon set.

LEMMA 2.8. — Let a < 1 and suppose {oj} is a central (a, l)-Sidon
set in G. Suppose {rj} C G and TJ -L Ok for all j,k. Then {rj x Oj} is
another central (a, l)-S'idon set.

Proof. — This is an easy consequence of the fact that
ll/lloo >. sup ^ \f(x)\: x = (xo) and Xa = 1 if a e [Jsuppr, ^. D

3

Proof of Theorem 2.7. — It suffices to show that any countably
infinite set, E = {oj}^!, contains an infinite subset which is central (a, 1)-
Sidon for all a < 1.

Suppose first {aja : (TJ € E} is infinite for some a. By Corollary 2.4
we can find an infinite subset of {^ja}^! which is a central (a, l)-Sidon
subset of Go,, for all a < 1. The corresponding subset of E has the same
property.

So we may assume {ffja : <Jj € E} is finite for each a.

Case 1. — For each index a, {aj : (TJQ 7^ 1} is finite.

Set j\ = 1 and inductively assume mutually orthogonal representa-
tions (TJ^ , . . . , o-j^ C E have been picked. Since there are only finitely many

n
representations aj with Oja 7^ 1 for a 6 |j supper^;, we can choose (Tjn+i

k=l
orthogonal to each of a^,..., a^. By Parker [9] {o^ }k is central Sidon.

Case 2. — {o-j : aja ^ 1} is infinite for some a, say a = a\.

Since {ojc^ : crj 6 -E'} is finite there must be a non-trivial represen-
tation <^i of G^i? with <^i = o'ja^ for all cry c -FI, an infinite subset of E.
Select (TJ^ C Fi.
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If {(TJ e FI : aja -^ 1} is finite for all a ^ suppa^, then by
arguments similar to case 1 we can obtain an infinite subset of Fi of the
form {rk x Wfe}^2 where suppT^ C supp^ and the representations Wk
are non-trivial, mutually orthogonal, and all orthogonal to o^. By [9] and
the lemma this set is central Sidon.

Otherwise we repeat the argument to produce infinite sets Fn C
Fn-i (FQ = E), representations a^ G Fn and (j)n orthogonal to a^ for
k < n—1, and an index On with the property that o-jc^ = ^>n for all (TJ € Fn.

n
If {(TJ e Fn : (TJQ 7^ 1} is finite for all i ^ |j suppo^ we quit this process

k=i
and produce an infinite central Sidon set in Fn by standard arguments.
Otherwise, as in the first step of case 2, we choose Fn+i, On+i, <^+i and
°'jrz+i wltn ^ne properties above.

If this process never stops we produce an infinite set {o^} C E. By
construction a^ == <^i x • • • x (f)n x Tn where ^n -L (^i x • • • x ̂  x Tj for all
n > j. From Theorem 2.5 {(^i x • • • x ^n}^=i is central (a, l)-Sidon for all
a < 1 and hence so is {o^}.

In either case we can find an infinite central (a, l)-Sidon subset of E
and thus the proof of the theorem is complete. D

The main result will now be seen to follow from the structure theorem
([10], 6.5.6): If G is a compact, connected group then there is a continuous
epimorphism ( j ) : T x Y[ Ga —^ G where T is a compact abelian group and

ex.
each Ga is a compact, simply-connected, simple Lie group.

THEOREM 2.9. — If G is a compact, connected group then any
infinite subset ofG contains an infinite central (a ,p) -Sidon set for allp > 1
and a < 2p — 1.

We need only one additional lemma whose proof is obvious.

LEMMA 2.10. — If (j) : H —^ G is a continuous epimorphism of
compact groups then E C G is a (central) (a, p) -Sidon set if and only if the
same is true for E o 0 = {a o (f): a G E} C H.

Proof of Theorem 2.9. — Let E C G be an infinite set and let
<j) : T x }\Ga —> G be the structure theorem epimorphism. Since 0 is

a
onto E o (f) is also infinite. For a o (f) e E o 0, write a o (f) = r^ x ̂  where
Ta € T and ̂  € Y[Ga. If {r^r : a G E} is infinite, then since T is an
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abelian group there is an infinite Sidon subset of {r^}, and by Lemma 2.8
the corresponding subset of E o (j> is central Sidon. If {^a} is infinite we
appeal to Theorem 2.7 and Lemma 2.8 to obtain an infinite central (a, 1)-
Sidon set for all a < 1. In either case the corresponding infinite subset of
E has the required property. D

COROLLARY 2.11. — Suppose G is a compact, connected group.
Any infinite subset of G contains an infinite set which is central p-Sidon
for allp > 1.

Remark. — This answers the open problem left in [3].

3. Central (0, l)-Sidon sets.

In this section we investigate the relationship between weighted
central Sidonicity for a Lie group G and Sidonicity for its abelian torus. This
investigation is motivated in part by the fact that both Dooley's examples
[3] of central p-Sidon sets and our examples from Theorem 2.1 correspond
to Sidon sets in Z^"^.

THEOREM 3.1. — Let G be a compact, simply-connected, semisim-
ple Lie group of rank i, with torus T^. IfEC (Z-^ is a Sidon set for T^
then E viewed as a subset ofG is central (0, l)-Sidon.

Proof. — Let / = ^ d^a^ Tr a be a central trigonometric polyno-
(T€E

mial on G. Since \q(x)\ < |W|, the Weyl character formula implies

oo > T^ sup ̂  d^da ̂  det(w)e
\vv\ x^ ^^ ^^

^iw{(T-\-p}{x)

Because the representations a + p, a C G, belong to the fundamental
Weyl chamber, the weights w(a + p) are distinct as w varies over W and
a over E ([7], ch. 10). Furthermore, the family of Sidon sets in an abelian
group is closed under linear transformations and finite unions ([8], p. 44) so
this set of distinct elements, (J {w(a + p) : a € £'}, forms a Sidon set in

wew
Z^ (with the natural identification). With these observations it is straight
forward to check that E is central (0, l)-Sidon. D
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Our next result shows that Theorem 3.1 cannot be improved. Recall
that 5(7(2) has one fundamental weight so its dual can be identified with
Z^. The degree of the representation indexed by n is n + 1.

PROPOSITION 3.2. — There is a Sidon set in Z, which is contained
in 7^, and is not a central (a, l)-Sidon set in 577(2) for any a > 0.

Proof, — Let E be any infinite Sidon subset of Z contained in
{2,3,4, . . .} and disjoint from E- 2. Certainly EUE- 2 is a Sidon set in Z.
If it was a central (a, l)-Sidon set in 677(2) for some a > 0, by Proposition
1.1 there would be a measure p, on 577(2) satisfying

- / \ I 7——TT".— for n € £'^(n)= < (n+l)1-0

[ 0 for n € E - 2.
Coifman and Weiss [2] have shown that ^ is a measure on 577(2) if and
only if

^((n 4- l)/i(n) - (n - l)/^(n - 2)) cosn<9
n>2

represents a measure v on T. But for n € E, v(n) = (n + 1)° which tends
to infinity, so this is an impossibility. D

It is natural to ask if the converse to Theorem 3.1 is true. It is not.

THEOREM 3.3. — There are subsets of 7^~ containing arbitrarily
long arithmetic progressions which are central (a, l)-Sidon sets in 5E/(2),
for all a < 1; consequently a central (a, l)-Sidon set need not be a Sidon
set in Z.

Proof. — The second statement follows from the first since sets
containing arbitrarily long arithmetic progressions are never Sidon sets in
Z ([8], p. 77). We follow the strategy of [3] to produce examples of central
(a, l)-Sidon sets with this property.

Let {rij}^^ be a sequence of positive integers, aj the representation
N

of 5[/(2) indexed by 2n^, and let / = ^ (2rij + l)a^Trc^ be a central
j'=i

trigonometric polynomial on SU(2). It is well known ([6], 29.25) that for/e10/2 0 \ u j. ^
te=[ Q e-^J^

Tra,(te) = sm(n, + |)0/sin^ = D,,(0),
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where Dn is the n'th Dirichlet kernel. Thus
I N

oo = 11/Hloo = sup ^(2^-+l)a^,(0)
0€[0,27r) J=l

For even integers a < 6, let Fab denote the translated Fejer kernel with
transform supported on (a, b). One easily sees that

(i) if k < a then Fab * Dk = 0; while

(ii) if b < k then Fab * 2^(0) = F^(0) = ̂ -a.

To simplify notation we write F^ = ^n,_i,n, (taking no = 0), Bj =
(UTV-J - nN-j-i)/2 and Xj = (2n^-^ + l)|a^-[. With this notation

N-l

(*) ll/ll(a,i) = ̂  (2n^_, + 1YXN-,.
j=o

Without loss of generality we may assume ||/||oo = 1, so, for m = N - k,
N

1 ̂  I/ * ̂ (0)| = ^(2n, + l)a,< * D,,(0)
j=i

> (2^+l)|a^l(nyn-^m-l) - E^+l)^^^"^-1)I am

fc-i
j>7n

^XfcBfc-^X.Bfc.
j=o

Thus
k-l

x^-^x,,
~ B, j=o

and simplifying this yields the estimate
k-i

Xk<^<7^E
v

^ ^^-i-/B.

Obviously there are many ways to choose a sequence {rij} containing
arbitrarily long arithmetic progressions, and yet have Xk sufficiently small
so that (*) bounded over all N and all a < 1. One choice, whose verification
is routine, and is left for the reader, is to set n^k^ = A^l + z) for
i = 0,1,. . . , 2^ - 1, where A is sufficiently large. D

There is however a partial converse to Theorem 3.1. We state it for
SU(2), the context in which we will apply it to show the failure of the
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union property, but similar results hold more generally for all compact,
simply-connected, semisimple Lie groups.

PROPOSITION 3.4. — Suppose E and E -2 are disjoint subsets of
Z4" and that E U E - 2 is a central (0, l)-Sidon set in 577(2). Then E is a
Sidon set in Z.

Proof. — Let (f> e e°°(E). Since E U E - 2 is central (0, l)-Sidon,
there exists a central measure p. on SU{2) with ji{n) = <^(n)/(n + 1) for
n e E and ji = 0 on E - 2. As in Proposition 3.2, [2] implies that there is
a measure v on T with i>(±n} = (n + 1)A(71) - (n - ̂ A^ - 2) if n e Z4".
For n € £', z>(n) = <^(n), and consequently E is a Sidon set in Z. D

In contrast to the situation for abelian groups it is known that the
union of two central Sidon sets need not be central Sidon [12]. This extends
to central (a, l)-Sidon sets.

PROPOSITION 3.5. — The union of two sets which are central (a, 1)-
Sidon for all a < 1, need not be a central (0, l)-Sidon set.

Proof. — Consider the example E = {n^}, where r^+i = ^Afe (l+i)
for i = 0,1, - • • ,2^ — 1 and A sufficiently large. This example is seen in
Theorem 3.3 to be a non-Sidon set in Z"1" which is a central (a, l)-Sidon
set for all a < 1. The set E — 2 clearly has the same properties and is
disjoint from E. By the previous proposition their union is not central (0,1)-
Sidon. D

Remark. — Our understanding of weighted Sidon sets is much less
satisfactory in the non-central case. It is known that any set of representa-
tions whose degrees tend to infinity sufficiently fast is (—£:, l)-Sidon for any
given e > 0, and that a compact Lie group admits no (s:, l)-Sidon set for
e > 0 [5], but we do not know if any of our examples of central (a, l)-Sidon
sets, or any other infinite sets in the dual of a compact, simple-connected
semisimple Lie group, are (0, l)-Sidon.
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