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QUANTUM UNIQUE ERGODICITY FOR
EISENSTEIN SERIES ON PSL^)\PSL^(R)

by Dmitry JAKOBSON

0. Introduction.

Let r denote PSL^) C G = PSL^K) and let X = T\H be the
usual Riemann surface of constant negative curvature (with the metric

—^—) in the upper half-plane. We denote by ̂  an orthonormal basis of
£/

I^-eigenfunctions of a Laplacian A = y2 ( ——^ + —— ) with the eigenvalues
\9x2 o x 2 )

Xj == ^ +rJ on X (discrete spectrum), and by E(z, s) the Eisenstein series,
which correspond to the continuous spectrum (eigenvalue ^ + t2) when
s = i + it.

We write Iwasawa decomposition of an element g of SL^(R) (cf. [K])
as

(0.1) g=n(x)a(y)k{e)^ n{x) = (^ ^V a(y) = ( y ^ ^V

/cos0 -sin0\
^-{smO cos0 )'

Then E can be identified with G / K (where K = S0(2)/ ± I ) and
r\G can be considered as the unit tangent bundle S^X of X = r\HI. We
denote by z = x + iy points in HI.

Key words: Eisenstein series — Cusp forms — Wigner function — L-functions — Generalized
hypergeometric functions - Hecke operators - Quantum ergodicity.
A.M.S. Classification : 43A85 -58C40 - 11F72 - 11M41 - 33C20 - 81Q50.
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Let A be a pseudo-differential operator of order zero on r\(?, a A
be its principal symbol. Zeiditch has shown in [Z2] that one can find a
subsequence jk of j-s of density one such that

(0.2) ^(A^,y,J - ̂ ^^A^,

where duj = ——7— is a Liouville measure^ on r\6' and ( , ) is a scalar
27H/2

product on S*X. This is a generalization to finite-area surfaces of a well-
known result for compact surfaces due to Shnirelman, Zeiditch, and Colin
de Verdiere (cf. [CdV], [Sni], [Sn2] and [Zl]). Actually, Zeiditch showed
that Maass cusp forms ipj and Eisenstein series E { z - + it) become "on
average" equidistributed in S^X (cf. [Z2] for the precise definitions).

While results in [Z2] are valid not only for r = SL^ (Z) but also
for an arbitrary finite-area surface F\G, the question of individual equi-
distribution for cusp forms and Eisenstein series remained open. One can
reformulate this questions for r\H. Namely, it is a consequence of (0.2)
that if n is a Jordan set in X, then

f ,2 area(^)
hm / h.J -——7—^^k^ooj^ " J k l area(X)

where area means hyperbolic area in HI and jk is a subsequence of j of
density one. The question then arises whether the above is true for all j.
This question hasn't been settled, but an analogue of the above statement
for Eisenstein series was proved by W. Luo and P. Sarnak in [LS] (for
congruence subgroups of SL^(R)). Namely, it is shown that for arbitrary
Jordan f^i and Q,^ m X^

^ J^lgM+^l2^ ^ area(»Q
^^J^i+^P^ area(^)

(area(^2) 7^ 0), which follows from

(0.3) / F(.)|̂ , 1/2 + it)^ - ̂  / F(.) ̂  in.,
v J\. £7 v y\. {7

where F(z) is a continuous function of a compact support and E(z^ s) is
an Eisenstein series.

The above result is proved without considering 5*X, so it becomes
natural to generalize (0.3) by proving an individual P5'-L2(Z)-version of
Zeiditch^s "average" results in [Z2], which we do in this paper.

(1) In this paper functions on PSL^(1S^) are identified with functions on <S'Z/2(M) that are
invariant under the action of SL'z (Z), and "integration" means integration over SL^ (M)
in coordinates (0.1).
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To formulate an analogue of (0.3) for S * X one has to "lift" the
distribution \E(z, ̂  +it)\2 to S*X. One can formulate it as follows : given
a pseudo-differential operator A of order zero with a principal symbol a A ?
we want to find such a distribution d/^i on S * X that

(A^,J+zt),E(^,J+zt)) = ( OAd^

The answer was pointed out by Zeiditch in [Z2] (it first appeared in
[Sa] in a different context). It is given (in the notation of [Sa] and in the
coordinates (0.1)) by
(0.4)
d^ = ^(•,l/2+^)E°°(.,l/2+zt)da;, ^°°(^M ~ ^E^s)e2^ke.

k

Here E{z^s) = E^z^s) = ^ y(^^)8 is tne usual Eisenstein series,
7<=roo\r

and E^s) = E yW{e^z))2^ where e^z) = (c^+d) with
7eroo\r 1̂  + "1

/* *\7 = | , ) . In the preceding formulas F = PSL^W) and Foo =\c d )

1 ( n ) |m € Z^. The distribution d^t can be called a Wigner dis-
tribution or a Wigner function (cf. [Sn2]) since the usual Fourier-Wigner
transform satisfies the defining property of dp,t ([Fo], Proposition 2.5).

As remarked by Zeiditch, d/^, though useful for asymptotic compu-
tations, is not a positive distribution. To make it positive, one uses the
technique of Friedrichs symmetrization. A new distribution dp.f is defined
(cf. [Zl], [Z2]) by

(0.5) (a.^f) = (^,d^)

for a € Cc(r\G), where a^ is a Friedrichs symmetrization of a (cf. [Zl],
[Z2]). The expression d^ is now a positive distribution and is asymptoti-
cally equivalent (cf. §4) to djit ([Z2], Proposition 3.8).

While first defined for compactly supported symbols, dfjLt and d^f can
be proved to lie in <S'(r\G), where S is a Schwartz space ([Z2], Proposition
3.6).

The analogue of W. Luo and P. Sarnak's result for r\G can now be
given in terms of measure c^f :

THEOREM 1. — Let Oi and ^2 be arbitrary Jordan sets in F\G.
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Then

lim ̂  d^ = v01^1)
tmo f^ d^ vol(^)

(voW ^ 0).

The proof of Theorem 1 follows the general outline of W. Luo and
P. Sarnak's proof of (0.3). Namely, one establishes the asymptotic estimates
of (/, dp,t) (^ t —> oo) for functions / constituting orthonormal basis
of L^I^G) : holomorphic cusp forms, "shifted" Maass cusp forms, and
incomplete Eisenstein series. In section 1 we find Fourier expansions of all
relevant objects (analogous calculations can be found in [Z2] and in Fay's
article [Fa]). In section 2 we consider holomorphic and Maass cusp forms,
and in section 3 we turn to incomplete Eisenstein series. In section 4 we use
the estimates obtained in sections 2 and 3 to prove an analogue of W. Luo
and P. Sarnak's result (0.3) (Proposition 4.1), from which Theorem 1
follows. In the Appendix we prove a technical lemma needed in section 3.

The arithmetical considerations in the proof of Theorem 1 are simi-
lar to those in [LS], but in order to reduce the problem to some known
estimates of L-functions on a critical lineone has to deal with generalized
hypergeometric series and their transformation formulas. The basic refe-
rence for this is Bailey's book [Ba].

1. Fourier expansions.

The author is indebted to Professors Zeiditch and Eskin for helpful
discussions. There exists a unique operator Q, (called Casimir) on functions
on G = SL^(R) commuting with the action of G. In the coordinates (0.1)
it is given by

. /92 82 \ 92 . 92

V hn^+^ +2/^-^=A+2/-——,9x2 • Qx2} ' "9x90 "QxQe'
0

This operator acts as A^k = A — 2iky— on functions "of weight 2fc"ox
(f{g) = f{x,y)e~2^ke), with g € G as in (0.1). In particular, when k = 0
Casimir becomes the usual Laplacian. Functions on r\G can be identified
with functions on G satisfying f(^g) = f{g}^9 e G,7 G r. The space of
all eigenfunctions of fl on T\G is a direct sum of spaces of functions of
weight 2k, k <E Z (cf. [K]).
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There are two operators E^. and E- (called "raising" and "lowering")
which map eigenfunctions of Casimir on r\G of weight 2k into those of
weight 2k + 2 and 2k - 2, respectively. These operators are given by

^= e-2" (2i^+ 2^+ x>.B-= e'"«-2^+ •%)
in coordinates (0.1) (cf. [L]; note that in Lang's book the angle in Iwasawa
decomposition is equal to minus that in (0.1), hence the difference in
formulas).
To every function on F\G of weight 2k there corresponds a function on T\M.

satisfying f^z) = (<fz±^} f{z) for 7 = f* *) C F (we shall say\ \cz + d| / \c a j
that such functions are also of weight 2k) and vice versa. Namely, if f{g)
a function on T\G of weight 2k, the expression /i(^) = f^e2^0 in the
coordinates (0.1) gives a well-defined function on r\EI of weight 2k (cf. [K]).
Conversely, suppose that a function / depends on g in the coordinates (0.1)
as

f(g) = A(^)/2W = h^h(e\ z = x + iy

and that /i is of weight 2k. Since the left multiplication of g by 7 =

( a ) € 51/2 (Z) can be written in the coordinates (0.1) as z —>\c d j

( {az-——)-} and 6 —^ 0 + arg(c2; + d), to get a well-defined function on
\ \cz + d\ )
r\G' we must let

f,(0) = e-2^0.

The action of E+ and E- on functions of weight 2k on G corresponds
to the action on functions of weight 2k on HI of "Maass" operators K^k and
A2fc given by

(i.i) ^ = ̂ +^+^ A^ = ^yt-y-ily-k

(our notation is that of [Ro] and different from [Fa], [Z2]). In fact, for F
and / as above,
(1.2) E^F{z,6)=2e-^k^K^f(z\ E,F(z,0) = ̂ e-2^-1^/^)
([Ro], p. 318). It is also shown in [Ro] that K^ maps eigenfunctions of ^k
into those of Aafc+2, while K^k maps them into eigenfunctions of /^2k-2 (as
well as numerous relations between X/c-s, Aj^-s, and A^-s).

Now, "shifted" Maass cusp forms on PSL2W\PSL^(R) are none
other than images of Maass cusp forms ̂  (cf. Introduction) on PSL^(Z)\M.
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under repeated applications of E^. and E-. In view of the above re-
lations, to find the Fourier expansions of shifted Maass cusp forms
it suffices to understand the action of K^k and A^k on eigenfunc-
tions of A2fc (if we know the Fourier expansion of <^j-s). Moreover,
E^k{^^),k > 0 is a function of weight —2k (which can be seen from the
definition E^k^iS) = ^ 2/(<^)s(€o•(^))2fe and an identity Ca[^z) =

crer^\r
€a^{z)/e^(z)); it is also an eigenfunction of A_2fc (cf. [K]) and is a multiple
of A_(2fc-2)—A-2Ao£'o(^5). Similarly, ^-2fc(^,5),fc > 0 is a multiple of
K2k-2^KoEo{z,s).

Before proceeding to calculate Fourier expansions, we state several
facts about the eigenfunctions of A2A; on r\HL Such functions are per-
iodic in x with period 1, so one can expand them into Fourier series

00

^ Cn(y)e(nx)^ where e(nx) = e271"177^. Moreover, by separation of va-
n==—oo
riables the equation A2fc/(^, s) 4- s(l — s)f(z, s) = 0 reduces to the second-
order ODE for the coefficients c(n^y). Solving that equation yields

c(n,y) = a(n)Wk.sgn{n),s-i/2(^\n\y),
where W\ ̂ {y) is a Whittaker function satisfying (cf. [GR] 9.220, p. 1059)'^L'^^IH^O.

dy2 [ 4 y y2 J
So, the problem reduces to finding a(n)-s.

To do this, we first write the Fourier expansion of E(z, s) as a function
of x (where z == x + iy). It is

i— 00

E(z,s) = ^+^(5)^l-s+2,^^ns-^l-2.(n)^-^(27^^^^
3 V / n=l

f(2s — 1} s s
where K is the jFf-Bessel function, c/)(s) = sv / , ^(s) = 7 r ~ 2 r ( _ ) C ( 5 ) ,

ci[2s) 2
and where (T^(n) = ̂  d^.

d\n

We now rewrite the above formula in terms of Whittaker function
WQ^ also substituting s = 1/2 + it. Functions K and W are connected by
the formula ([GR] 9.235.2, p. 1062) Wo^(y) = ̂ {y/7r)K^y/2). Also, it is
convenient for later calculations to write cos27rna; as (e(nrr) 4- e(—na;))/2,
so that the above formula becomes
(1.3) ^,1/2+zt) = ^/^^ 0(1/2 +zth/1/2-^

—————— ̂  |n|-^^ta-2^t(|n|)Wo,^t(47^|n|2/)e(^).+-
z^±+z^i) n^O
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The (even) Maass cusp forms (pj are assumed to be Hecke eigenforms,
and their Fourier expansion is given by

(1.4) ^(z) = ^^(H)Wo,^r,(47^|n|2/)e(n^,
n/O VH

where A(/?j+(l/4+r^)(^j = 0, and Cj{n)-s are Hecke eigenvalues (henceforth
simply denoted by c(n) for fixed j). Recall that c(l) is normalized to be
1 and c(n)-s satisfy c(mn) = c(m)c{n) for (m,n) = 1 and c^p^c^p) =
c^p^1) +pn~lc(pn-l) for p prime and n ̂  1. The odd Maass cusp forms
have a similar expansion (each term is multiplied by sgn{n).)

We are now ready to make the computations. The basic question is
how operators K^ and A^k act on Wfc.sp^)^(47r|n|2/)e(n:r), which is a
typical term in a Fourier expansion of an eigenfunction of ASA; with an
eigenvalue 1/4 +12. The answer is given in the lemma below ̂  (compare
[Fa], (72)).

LEMMA 1.1. — With the above notation,

( -Wk+i,itWn\y),n>0

^W.̂ (n),.(4.|n|.)e(n.))=e(n.) ̂  [̂ ,2 (̂,̂ ^^^^ |̂,|,), ̂

and

( -^-l,zt(47r|n|2/), n<0

-A2.(̂ n(n),.(4.|n|.)e(n.))=e(n.) ̂  ̂ ^_^ w^^\n\y^>0.

We shall postpone the proof of the lemma until the end of section
1, and use it now to derive Various Fourier expansions. We first compute
K2k-2-K2KoE{z, 1/2 + it). Clearly, K^'^ = (1/2 + it + AQy1/^.
Using this and Lemma 1.1 we find that

(1.5)
K2k-2-K2KoE(z, 1/2 + it) = d^y^^ + dfe(-^(l/2 + ̂ y1/2-"

+2,(T^^1)\EH:^

^ \^-^W.^Wy)e(nx)\,
^o M J

(2) Since the action of E- is conjugate to the action of -2A2fc by (1.2), we give the
answer for —Aafe-
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where

^(^(J-Q..^-).
hW=(^+t2)(^+t^l.2)...^+t^(k-l)k).

We notice that ^(f) = <4(f). <4(-^).

On the other hand, we know (cf. [Sa], [K]) that the zeroth term of
the Fourier expansion of E^z, 1/2 + it) is equal to

•<•w•+'-l't^(,...^2^^^(•/^•')^••
Accordingly, we need to divide (1.5) by dk(t) (the coefficient of y1/^
in (1.5)) to get the Fourier expansion of E.2k(z, 1/2 + it). We can then
check that we get the same answer for the coefficient of yV2-1* from
(1.5) as above, since d^t) = F(l/2 + it + fc)/F(l/2 + it) and dk(-t) =
(-1)T(1/2 +,t)/F(l/2+ it -k).

Finally, we get the desired Fourier expansion of £'-2fc(-2,l/2 + it)
(where k > 0) :

(1.6)

E-2^1/2 + ") = yl/2+it + r^^^W-
__(^IU/2ĵ )__^|nĵ ^^|) . , , .
2F(5 + k + it)^(l + lit) ̂  ——^——Wk,iMn\y)e(nx)

(-1)^(1/2 +it) ^\n^a^(\r^ u^^ ^
'2r(^ - k + it)^l + lit) ̂  ——^——W^Wn\y)e(nx).

An analogous calculation yields the expansion of £'2A;(-z,l/2 + it)
(where k > 0) :

(1.7)

E2kw+it) = ̂ ^.S^^'W-
(-1)^(1/2 +it) ^\n^^

2r(| + k + rt)^(l + 2it) ̂  ——~^\——^.itWn^nx)

(-1)^(1/2 + it) ^ Inl̂ ^W)
2r(^ - k + it)^(l + 2it) ̂  ——^——ly-fc,«(47^1"|y)e(na;).
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We now turn to shifted Maass forms. Let us denote by (^ (where
k > 0) the image of (pj under K^k-2" -K^KQ normalized to have the same
norm as ^-. The expression K^-2 -• .K^Ko^j can be computed using (1.4)
and Lemma 1.1. The result is an analogue of (1.5) with rj substituted for
t. It turns out that the correct normalization for ^^ is obtained (in the
above notation) by division by dk{rj) (cf. [Zl] and [Z2], p. 25). Accordingly,
the Fourier expansion of (an even) shifted Maass cusp form is given by

(-' —) - ̂ ^E ,̂.̂ !.̂ )
(-1)^(1/2+zr,) < c , ( n^-J.; 1 ̂  ^ ^ - - f i j ^ ̂ U^UTT^ ( A I \ ( \+ rd-.^) ^ ̂ r^- î" v^-

The odd Maass cusp form has (up to a change of sign) the same
expansion with the sign of the second sum changed.

Similarly, denoting by ^-,-A; (where k > 0) the expression

A-(2fc-2)—A-2Ao^j

and normalizing correctly (cf. [Zl] and [Z2], p. 25), we get the analogue of
(1.8) for (pj,-k which will be omitted here.

Finally, we give the

Proof of Lemma 1.1. — We first remark that K^k acts on

Wk.sgn{n),it{^\n\y)e(nx)

9
as y— — 27rny + k. The first formula in Lemma 1.1 now becomes an easy
consequence of two recursion relations for Whittaker functions. The first
property ([GR] 9.234.3, p. 1062) is

(1.9a) z^[W^z)]=[\-^W^(z)- ^ _ ^ _ ^ 2 w^,{z)

and the second one ([AS] 13.4.31, p. 507) is

(1.9&) W^(z) = [2 - 2A + z] W^^z) + ^ - (\ - 3) Wx-2^{z).
\ z /

After substituting z = ̂ \n\y,\ = k • sgn{n),ii = it into (1.9a) we
get
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(1.10)
r\

y-Q^ [Wk.sgnW,itWn\y)] = [k ' sgn(n) - ̂ ^y] Wk.sgnW,it(^\n\y)

+ ^ +12 + fc2 - k' sgn{n)\ Wk.sgn{n)-i^\n\y).

Direct application of (1.10) proves the first formula in Lemma 1.1 for n < 0,
while for n > 0 we need to substitute z = 47r|n|2/, A = k + 1 and ^ = it into
(1.9b) and apply the resulting formula. The proof of the second formula in
Lemma 1.1 is analogous.

2. Holomorphic and Maass cusp forms.

We now turn to studying asymptotics of integrals of holomorphic and
Maass cusp forms against d^t (cf. (0.4). We start with holomorphic cusp
forms. A "classical" holomorphic cusp form on M./SL^(Z) of weight 2k is

a function F{z) satisfying F(^z) = (cz + d^F^z) for 7 = f * * ) e F.\c d }
Also, we assume it to be an eigenfunction of all Hecke operators, hence its
Fourier expansion is

F(z) = ̂  c(n)e(nz) = ̂  c(n)e-2^'e(nx),
n>0 n>0

where c(n)-s satisfy the same relations as in (1.4). One can check that if
we define f(x,y,0) = e~'2^keykF(x,y) (in the coordinates (0.1)), we will
get a well-defined eigenfunction of Casimir in L^I^G) with an eigenvalue
k (1 — k). It is this function that we want to integrate against d^'

We want to prove the following

PROPOSITION 2.1. — With the above notation,

|(/,d^)| «, \t\-^.

Proof of Proposition. — The Fourier expansion of f{z^0) is

(2.1) f(z,0) = e-2ikeyk^c{n)e-27^nye(nx).
n>0

It follows from (0.4) that after integrating 6 out in the expression

(/,d^) = f f{')E(^l/2-^t)EOO(^s)clw
Jr\G
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we get

/^^°^(4-^)^^5^
= ( f{z^E(z———it) ^ y^y^r^.

^^ rEroo\r c/

We change summation and integration signs and rewrite the last
expression as

^ ( /^O)^^--^)^.)5^^)2^
7e^oo\^7^\]HI y

= E / /(w^O^^1-^^)5^^\rA(r\H) V 2 / y^

(in the last equality we made a change of variables w = ̂ z and used the
transformation properties of /).

The last expression is equal to

/ , f^E^-it^r^
J |J ^(r\H) V 2 / y2

ieraa\r

= [ /(^O^^1-^^)^.
Jr^\m \ 2 / 2/2

By analytic continuation the above equality holds for s = ̂  +it. After
substituting (2.1) for /(^,0), we find that

(fM = F {^^^y^cWe-^y^nxmz^/^-it)^.
Jo Jo ^o y

We substitute (1.3) for E{z^ 1/2 — it) (with sign of t changed) into
the above expression, we change summation and integration signs, and after
integrating out x (only terms with n < 0 in (1.3) give nonzero contribution),
we get

( f ^ n } - ——2——V F „fc+l/2+^c(n)lnl"^ta2^t(|^|)y j i ^ ' p ' t ) ~ o^/-i r>-.\ 7 ^ / y n—r2^(1-2zt) ̂ 7o ^/\n\

e-^yw^^y^^
y

which after change of variables u = ̂ 7r\n\y gives us the final answer :
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(2.2)

( f d n ) = ______1______^ cWn-^a^tWw ' w 2$(l-2^t)(47^)fe- l/2+^t l^ ^+zt

/^TVo-^e-^V-1/2^.
Jo ^

The integral in (2.2) is equal to ([GR] 7.621.11, p. 861)
r(fc + 2it)r(k)
r(k + j + ̂ ) '

The infinite sum in brackets is an Euler product of degree four which
decomposes into a product of two Euler products of degree two. It can
be evaluated (cf. [LS]) and is equal to

L(F, k + 2zf)L(F, fc)
C(2A; + 2it)

where L(-0, s) is an L- function associated to a holomorphic cusp form ip.
This function can be meromorphically continued to the whole plane and
satisfies a functional equation (the critical line is Re(s) = k).

To prove that (/, d^t) —^ 0 as t —> oo we need an estimate for L(F, s)
on a critical line of the form

\L{F,k^it)\ <, 1̂ , a < J .

The trivial "convexity bound" for L (coming from applying Hadamard's
theorem) gives a = j, which is not sufficient to prove the decay of (/, d/^).
Therefore, it is necessary to "break convexity," which was done by Good
in [Go].

Good proves that L(F, s) satisfies

(2.3) \L(F,k+it)\ «, \t\^.

Now, substituting for $ in (2.2), we write

- . ^ ^ ______r(A:+2^)r(fc)L(F,fe+2^)L(F,fc)______
^? W 4^+^-1+2^^ _ ̂ ^(i _ 2it)F(k + j + ^)C(2^ + 2zt)'

Finally, we use Stirling's formula, inequality (2.3), and the estimate
(cf. [Ti])

(2.4) \n\t\~1 < |C(1+^)| < In \t\

to finish the proof of Proposition 2.1.
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We now turn to Maass cusp forms. Given ^j,fc(^) as in (1.8), define
(^(z,0) = (pj^(z)e~2^ke to get a well-defined eigenfunction of Casimir
on r\G with an eigenvalue 1/4 + r2. We want to estimate asymptotics of
(y?j^,d/^). We will make calculations only for even Maass cusp forms y?j^
with k positive. The calculations for k negative and for odd Maass cusp
forms are analogous (since their Fourier expansions are very similar).

We will prove the following

PROPOSITION 2.2. — Notation as above,

|((^^)| < ,̂, It]-*^.

Proof of Proposition. — We proceed as we did for holomorphic
cusp forms. We first integrate out 0 (again, only £^(^1/2 + it^e2^0 in
E°°(g, 1/2 + it) - cf. (0.4) - will give a nonzero contribution). Then we
"unfold" ^2^(^,1/2+%t) and the Fourier expansions (1.8) and (1.3) into
the formula to get

/»00 /*1 -\ 00 / \

(^,^)= / /^+^t(-l)fc^(j4-^r,)^c^)

Jo Jo \2 / ̂  ^/n

fWk,ir,{.^ny)e{nx) W-k,ir, {^ny)e(-nx) \
\ r^+k+irj) r(^ - k + i r j ) )

y^- + ̂ (1/2 - it)y^ + ————— f: ̂ Wo-^ny)
s v / n=l

( e{nx) -^-e(—nx)\~\ dxdy
2 ) \ ~ y ^( e{nx) -^-e(—nx)\~\
2 ) \

After changing summation and integration signs and integrating x
out, we get

(,n ^ \ (-1)^(1+^-) V- c^Wn)
(^•fe'd^= 2^(1-2^) ^ n^

'fo° Wk,ir, (47^n3/)^o,_,t(47^ny)j/-^+^t^

F^+k+irj)

fo0 W,k,ir, (47^ny)Wo,_»(47^ny)j/-^+it^'
+ r(|-fe+^)

After making a change of variable u == 4'jrny in both integrals, we
obtain the following expression for ((/7j^,d/Xt) :
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(2.5)

(-l)fcr(j+^) ^ Cj(n)a^(n)
2(47r)^-4(l - 2^) ̂  ni/2+2zt

'^^^•(^^-zt^)^"^ Jo00^-^,^)^-^^)^-^
r( j+A;+^-) r^-k+irj)

The infinite sum in (2.5) is an Euler product of degree four. As for
holomorphic cusp forms, it is a product of two Euler products of degree 2.
It can be evaluated (cf. [LS]) and is equal to

L(^,l/2+2zt)L(^,l/2)
C(l + 2it)

where L(^-,s) is an L-function associated to Maass cusp form ^-. This
function can be meromorphically continued to the whole plane and satisfies
a functional equation (with the critical line Re(s) = 1/2).

We now turn to the integrals in (2.5). Denote the first integral
in brackets by I ^ ( t ) , and the second one by I^(t). These integrals can
be evaluated explicitly ([GR] 7.611.7, p. 858)(t) in terms of generalized
hypergeometric series ^F^. I^(t) is equal to
(2.6)
F(j+ ̂ )r(j + irj + 2it)r(-2irj)

r(j - k - irj)r(l + irj + it)

3^2(^ + i r j , -^ + i r j + 2it, . - k + irj ; 1 + 2zr^ 1 + irj + it ; 1)

^r(j-^)r( j-zr ,+2^)r(2zr,)
F(^ - k + z^)r(l - zr^ + it)

3^2(^ - ̂ j, ^ - ̂  + 2zt, ̂ -k-irj ',1- 2irj, 1 - %^ + it ; 1)

and I^(t) is equal to

(2.7)
r(-+z^)r(--z^)r(2^) 1 i i

r^^+i) 3^+^-^ -^1-2^,^1 ;i)
r(^ + ̂  + 2^)r(| - ̂  + 2it)r(-2it)

~ r ( ^ - % t ) r ( A ; + i + 2 z t )+-

3^2(^ + zrj + 2^, . - irj + 2^, - + it ; 1 + 2^, k + 1 + 2%t ; 1).
Z Z 2i

(T) One can make two different substitutions in [GR] 7.611.7. The correct substitution
makes functions 3^2 convergent.
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The generalized hypergeometric function pFq is a generalization of a
Gauss hypergeometric function F = 2^1. It is defined by
(2.8)

F ( a . a ' b . h ' ^ - F ( ^ ' " ^ P . ^ , . y^ (ai)n^(Qp)n z71
p9(15•••?ap5 '15•••?6g ' ' )-PF9^,,,^^J=l^
where (x)n = x(x + l)...(x + n - l ) . I f p < g + l , the series (2.7) converges
for |^| < 1. If p = q + 1, the series (2.8) converges for z = 1 whenever
Re(&i + ... + bq - ai - ... - a^+i) > 0. When the argument z in (2.8) is
equal to one, it is usually omitted, which we will do throughout the rest
of the paper. A good reference for generalized hypergeometric functions is
Bailey's book [Ba].

We need to study asymptotics of I^(t) and I^(t) as t -> oo. It is
easier to begin with I^{t) (formula (2.7)). Asymptotics of r-functions can
be found using Stirling's formula, so we need to get asymptotics of 3^2-8.
By far, the easiest case is the first ^F^ in (2.7) :

(*) 3^2 (^ + irj, ^ - irj, ^ - it; 1 - 2zt, k + l).
Namely, it is easy to show that for every n we have |(l/2-^)^/(l-2zt)J < 1.
It means that the series (2.8) for (*) is majorized by

1 . V^ (J+^m-^n^ r ^ 1 . 1 . , , .\
+ L———(kTl)~n———^ = ^(2+^2-^^4- l ; l)5

which is absolutely convergent. Hence limit as ( goes to infinity can be
taken term by term in (*), yielding

, , f. (i_t^ui_"^-z" F p , . i . „-, n
1+^———(^-T)^———2^=2JFl(,2+^'2-^•'fc+l;2}

It is more difficult to evaluate asymptotics of the second term in (2.7)
as it stands. Fortunately, one can use transformation formulas for 3^2-8 to
transform the second term into something analogous to (*). We use the
following formula (cf. [Ba] §3.5, p. 18) :
(2.9)

Ma^c'^f) = ̂ ^^^/-T-^^

After substituting a = \ + it, b = j + irj + 2^, c = \ - ir^ + 2it, e =
1 -I- 2it and / = k + 1 + 2it into (2.8) and cancellations, the second term in
(2.7) becomes
r(j + irj + 2^)r(j - irj + 2^)r(-2^)F(j + k - it)

r (^ -^ ) r (^+fc+z t ) r (A;+ i )
^{^ + ir^ 3 - ̂  ̂  + ̂ ; 1 -h 2it, k + l).
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Now, 3^2 is again asymptotic to a constant (2^i(j +^5 j — z r ^ f c + l ; ^)),
and Stirling's formula shows that the second term in (2.7) is exponentially
smaller than the first one, so we need only to consider the first term when
estimating asymptotics for I^(t).

We now turn to asymptotics of I^(t) (formula (2.6)). Two terms in
(2.6) have the same t-dependence and differ only by the sign of 7j-, so their
^-asymptotics are the same. Accordingly, we shall deal only with the first
term. Our strategy will be again to use transformation formulas to get an
analogue of (*). We use the following formula ([Ba] 3.2.2, p. 15)

(2.10)
/a,b,c\

3^2
V e,f)

F(l - a)r(e)r(/)r(c - b) _ (b,b-e+l,b-f+l\
rs-1^r(e-6)r(/-6)r(l+6-a)r(c)' ^ i + f t _ c , l + 6 - a ,

r(i - a)r(e)rmr(6 - c) _ / c , c -e+ i , c - /+ i \
_|_ ——————————————————————————————————————————————————————————————————————— q Hf^ | |' r(e-c)r(/-c)r(i+c-o)r(6)3 2 ^ i+c -&, i+c -a ; '

After substituting a = ^ — k + irj, b = ^ + irj, c = ̂  + irj + 2it, e =
1 + 2irj and f =l+irj + it into (2.9) and cancellations, the first term in
(2.6) becomes

F(fc + j - irj)T(l + 2^)r(2rt)r(-2^) / ^ + i r j , ̂  - ir,, ̂ -it

r(,+^r(i-fc-n-,)r(fc+i) 3 2 ^ i_ 2,^+1.
r(^ + irj + 2it)T{^ +k- irj)r(-2it)T{l + 2zrj)r(-2trj)
r(i + ir, - 2rt)r(i - k - ir,)r(i - it)F{k + 1 + 2it)

+

( ~ + i r j + 2 i t l - i r j + 2 i t }

v
3F2 1

- + it 1 -+- 2it, k + 1 + 2it ^
2t /

Now, using formula (2.9) the second term in the above formula can
be written as
F(^ + irj + 2it)T(^ +k- if}T{-2it}T(^ +k- ̂ )r(l + 2zrj)r(-2z7j)

r(^ + irj - 2ii)T^ + k + it}Y{^ - it}T^ -k- irj)T(k + 1)
/ I 1 1 >

3 F , ( 2 + ^ r - 2 - ^ r - 2 + % t

\ 1+ 2it, k + 1,
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Now we utilize the above computations to estimate I ^ ( t ) and I ^ ( t ) :

(2.11) |^(t)|<^
T(2it)

T^+it)
+

F(-2it)

r(i-zt) ; 1^(*)1<^ r(2it)
r^+it)

Note that we are using

lim 3^2 ( - + zrj, 1 - zTj, 1 ± it', 1 =b 2zt, k + 1; l)
t—>oo \2 Z 2 }t-^oo

=2^1 (^+zr^-2^;A;+l ;^

established above.

Recall now that ((pj^^d^t) is equal to (cf. (2.5)) :

(_l)fcr(j+^-) L(^^+2zf)L(^,|)
2(47r)^-4(l-2zt) C(l+2zt)

[ ^ffl . W+Lr(^+A;+^.) r(i-^+^.).
(where L((^j,5) is an L-function associated to holomorphic Maass cusp
form (pj).

As for holomorphic cusp forms, to show that (y?j^, d^) —^ 0 as t —> oo
we need an estimate for -L(y?j, s) on a critical line of the form

\L{^^it)\ «^ 1^, a<J.

Analogously to the holomorphic case, the trivial "convexity bound" for L
(coming from applying Hadamard's theorem) gives a == j, which is not
sufficient to prove the decay of ((^,d/^). Therefore, it is again necessary
to "break convexity," which for Maass cusp forms was done by Meurman
in [Me].

Meurman proved that L(^-,s) satisfies

(2.12) |L(^., 1/2+^)| «^ \t\^£.

We can now substitute definition of $(1 — 2it) into the last formula
for ((^fc,d/^), and then use formulas (2.11), (2.12), inequalities (2.4) and
Stirling's formula to finish the proof of Proposition 2.2 ^.

(3) The Lindelof hypothesis |L(^, 1/2 + it)\ <j,e ̂  will imply the correct decay rate
|(<^fc,d^)| <^fe,e Itl"^6 in Proposition 2.2.
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3. Incomplete Eisenstein series.

We now turn to the consideration of incomplete Eisenstein series ̂ .
Let ip(y) 6 (^((O.oo)) and let

L^s) = F^y-8^
Jo y

be the Mellin transform of the function '0.

Then incomplete Eisenstein series of weight —2k is equal to (cf. [K]
and [Z2])

(3.1) F^0) = ——e^0 ( L^s)E^(z.s)ds^
2m JRe{s)=si>l

where z and 0 are as in (0.1). We want to find the asymptotics of (-F,/,, dp,t).
The answer for k = 0 was given in [LS]. It was shown that

48 f
{F^.d^t) ~ — / F d w ' \ n t7r J s - x

as t goes to infinity. We will show that for k ^ 0, the expression (F-0, dp,t)
is asymptotically less than that for k = 0. This will be achieved by shifting
the contour of integration in (3.1) from Re(s) == «i > 1 to Re(s) =
1/2, evaluating residue, and estimating the integral along Re(5) = 1/2.
Transformation formulas for generalized hypergeometric functions will play
a role in the proof.

We will give the proof only for incomplete Eisenstein series of weight
—2k. The calculations for weight 2k are analogous^.

We substitute the definition (0.4) for d/^. After integrating out 0, we
see that

(F ,̂) = ( F^Wz^^-i^E^k^^^it)^.
Jr\m V

We then substitute (3.1) into the above formula, change the order of
integration, and after "unfolding" £'2^(^,5) get

(4) Incomplete Eisenstein series are called incomplete theta-series in [K] and [Z2].
(5) The formulas below are not valid for k = 0 since generalized hypergeometric functions
in expressions for integrals I^(s,t) and I^(s,t) (see (3.4) below) fail to converge.
However, using a different formula in [GR] for I^(s,t) and I^(s,t) when k = 0 will
recover W. Luo and P. Sarnak's results in [LS].
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(F^d^)= I F I L^WE^ lft-it)E.^ 1/2+zt) ̂ ds
JRe(s)=si>l Jo Jo V= L..,>, r r !'•£t(•) [•'•/2-"+ w2 - •t>y?"+ w^)

s^^- îC""'4';'""')]
n=l v /

ri/2^, + (-1)^(1+^) .̂  (-1)^(1/2 +it)
[V +^(j-fc+^()^(5+A;+^t) ( p ( l / 2 + ^^ + 2$(l+2zt)

E
00 n^t<T_2^f(T^) /W^,»t(47rnt/)e(na:) TV-fc,if(47rny)e(-n.r) \ -j ctedy

n=i v^ V r(j+fc+zt) 1 r( j- fc+zt) ^ J y2 as

(the last equality is obtained by substituting Fourier expansions (1.3) and
(1.6) into the formula).

After integrating x out, we get the following :

(3.2)

f f00 dv (rapidly de - \
(F^d^) = 2 / / y«L^s)-y-ds^^

^Re(s)=si>i Jo V \ creasing in i )

,(-1)^(1/2 +it) f r00 ^v-l^Ww ( A ^+ W+W L^ L y w E ———w^^
( Wk,it^7rny) W-k,it(^ny)\ d^
\r(^k+it) r ^ - k+ i t ) } y2 s'

We use the inversion formula for the Mellin transform

^ = ^ [ L^Wds2m JRe(s)=5i

to conclude that the first term in (3.2) is equal to

(3.3) 2r^/)^.Jo y
After changing summation and integration and changing variable in

the infinite sum in (3.2), we find that the second term is equal to
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(3.4)

, r(l/2+it) 1 /• /_ |̂ (n)|2 \
v / 4|^(1 + 2z<)|2 2m J^^ L^ [2^ nW^)[r^^+^r^^-^s

+^(j-lfc+^^ly-fc•^t(^)lyo-rt(^)^^] ds-
The infinite sum in the above expression was first computed by

Ramanujan and found to be (cf. also [LS])

(35) v^ k2if(n)|2 ^ C2(5)C(a - 2it)^(s + 2it)
^i ns W

Let us denote the first and the second integrals in (3.4) by J^(s,t)
and I^(s,t), respectively. They can be evaluated (cf. [GR] 7.611.7, p. 858).
I^{s,t) is equal to

(3.6a)

r(s)F(s + 2it)r(-2it) _ ( 1 i .
^^-k-it)^(s+^it)3F2(sfs+2^t'2~k+it'fl+2^t-s+2+it)

, r(s)r(a - 2it)r(2it) _ ( ^ 1 i .
+^^-k+it)^(s+^-it)3F2^s~2^t-2~k~^t'11~2itvs+2~it)-
and I^(s,t) is equal to

(3.7a)

JW\s+2U)r(-2it) _ , 1 i .
i^-^rdTITTT^)3^ ̂ 's + ̂ '2+ ̂ 1 + ̂ '2+ k + s + it)

, r(s)r(g - 2zf)r(2rt) _ / . i i .
+^(^+^t)^(i+fc+5-^<)3 F 2^ s ' s-2 ^ t '2 - ^*' l-2 r t '2+ A ; + s - r t)•

It is convenient for later use to transform (3.6) and (3.7); this will
also yield meromorphic continuation of I^(s,t) and I^{s,t) to the whole
complex plane.

For l!^(s,t) we use the formula (2.9), substituting a = s, b = s + 2it,
c=^-k+it,e=l+ 2it, f = 1/2 + s + it for the top integral in (3.6a)
and a = s, b = s - 2it, c=^-k-it,e=l- 2it, f = 1/2 + s - it for the
bottom one. We get the following expression :
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(3.6b)
r(s)r(s + 2it)r{-2it)F{k + 1 - s) _ / l , . , . , i , o . , i . , i \
r(| - k - ̂  + Wk +1) 3F2 (s) 1 -3> 2 + k + ̂ '1 + 2^ fc +1)
r(s)r(s - 2zt)r(2^)r(fc +1 - s) / , i , . , . . . \+^(|-^^)^(|-^t)^(fc+l)3F<5 ' l- s '2+fc-^ t ; l-^^

For J^(s,t) we use the formula (cf. [Ba] §3.5, p. 18)
3^2(1 +a+b+c-e-f,b,c;l+b+c-e,l+b+c-f)

r(f-a)r(2+b+c-e-f)
r( l -a)r( l+6+c-e)

3F2{l+a+b+c-e-f,l-f+b,l-f+c;2+b+c-e-f,l+b+c-f).
After making the appropriate substitutions, the expression (3.7a) becomes

(3.7b)
r(s)r(s + 2it}T(-2it)r(k + 1 - s) _ / 1 , . , , ... , , ,\
r(, + k + W, -iW +1) 3F2 (S-1-S1-2+ ̂ 1 + ̂  k +1)

r(s)r(s-2it)r(2it)r(k+i-s) / i ^k+i}+ T^+k-itW+itm+i) ̂ l-s^-^t^-2^t^+l)•
Observe that m the above expressions for ̂ (s, t) and ^(5, t) all generalized
hypergeometric functions a-Fs converge for arbitrary s, t. Also, presence of
5 and 1 — s as the arguments makes it possible to estimate the expressions
uniformly in s along the line Re(s) = 1/2, which suggests shifting there the
contour of integration in (3.4).

As we shift the line of integration from Re(s) = «i > 1 to Re(s) = 1/2,
we pass through the poles at s = 1 and s = 1 ± 2it coming from the poles
of ^-functions in (3.5). We will prove below the following

PROPOSITION 3.1. — Let F^ be an incomplete Eisenstein series of
weight -2k. Then

\{F^d^)\ <C(k^)

as t goes to infinity.

The expression (F^^d^t) is the sum of several terms : the integral
along Re{s) = 1/2; residues at s = 1 and s = 1 ± 2it', the "top" and
the "bottom" contributions; the constant term (3.3). We shall prove the
following lemma (which has an analogue in [LS]) :

LEMMA 3.2. — Notation as above, when the line of integration in
(3.4) is shifted to Re(s) = 1/2, the resulting expression is <^.k,e^ l^l"64^-
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The proof is given at the end of section 3.

We next turn to evaluating the residue at s = 1. We prove the
following

LEMMA 3.3. — The residue in (3.4) at s = 1 is 0(1).

Proof of Lemma 3.3. — After substituting (3.5) into (3.4), we get the
following expression (the residue of which at s = 1 we have to compute) :
.2.w .fc r(l/2+^) ^,(:(s-2it)(:(s+2it)
s w(-l) i^TT^F^^————C(2^)————

( I^^t) I^t) \
Y r ( ^ + f c + ^ ) T^-k+it)}'

The above expression has a double pole at s = 1 coming from ^(s) (as in
the corresponding calculation in [LS]), but we also get a single zero coming
from the expression in brackets in the above formula.

Namely, after substituting (3.6b) and (3.7b) for 1^ and J^, we find
that the expression in brackets in the above formula at s = 1 is equal to
(3.8)

i / r(i + 2it)r{-2zt) r(i - 2^)r(+2zt) \
r(^k+it) [r^-k-it)r(^it) r^-k+it)r^-it))

, 1 / r(i + 2it)r(-2it) r(i - 2zf)r(+2^) \
r ( j - f c+z t ) Y ^ ( ^ + f c + ^ ) ^ ( j - ^ ) l ^ ( ^ + A ; - z t ) ^ ( ^ + ^ ) ;

and the resulting expression can be shown to be zero by the usual trans-
formation formulas of F-function.

This results in a single pole at s = 1. The residue again can be
computed using the formulas (3.6b) and (3.7b) and the definition (2.8)
of a generalized hypergeometric function. The resulting expression can be
estimated using the inequality (A.3) of the Appendix, and the Lemma can
be proved by calculations analogous to those in the Appendix.

We now turn to estimating integral (3.4) along the line Re(s) == 1/2.
We start by substituting (3.5), (3.6b) and (3.7b) into (3.4) and letting
s = ̂  + in. The resulting expression is
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r(i /2+zf) (-1^ F . / i , .
4|e(l+2zt)|2 27TZ y.,/^2^

P2^-^ m)C(| + m - 2zt)C(j + ZH + 2zf) F(j+ m)r(fc + j - m)
C(l + 2 m ) r ( f c + l )

f 1 /r(^+MA+2^)r(-2zt) 1 1 1
[^^^(nl-.-^r^^)3^^"^-^

r(^ + m - 2^)r(2iA) i i i \
^-^^(j-^3^^-^—-^^-^^2^^^

+ „ x .f'^^^^-'^^+^^-^^^i+^^i)r(^ - fc+z t ) ^ r ( j+ fc+^) r ( j -^ ) '2 ' 2 ' 2 '
r( ̂  + iu - 2it)r(2it) 1 1 1 M

+^(|^-^^(^^3f2(2+^^•2-^M•2-^t;l-2it•fc+l))J(i^•

We want first to estimate 3^2 (i+^ 5 j — z n , j+^ ; 1+2^, fc+1)
and 3-F2(j + m, ^ — iu, j + fc + ii\ 1 + 2^, fc + 1) uniformly in t. Since
|(1/2 + ̂ )n/(l + 2^)n| < 1 for every n, we can conclude (as in section 2)
that

3^2(^+^,^-^,^+^;l+2^,A;+l;l) < 2^l(^+^^-^;A;+l;l),

where 2^1 is the usual Gauss hypergeometric function F. By a well-known
property of F ([GR] 9.122.1, p. 1042)

„ /I 1 , \ r(A;+l)r(A;)
2Fi(,+zn^-zn;^+l;l) = r(fc + 1/2 - zn)r(fc + 1/2+^)-

and the last expression by Stirling's formula is <^k e^vT^.

Estimating 3^2 (j + iu, j — iu, ̂  4- k + ^; 1 + 2^, A; + 1) requires a
more careful analysis of individual terms and the rates of convergence of
hypergeometric series. One can estimate it crudely as follows :

CLAIM 3.4.

3 ^ 2 ( , + ^ , ^ - m , ^ + f c + ^ ; l + 2 ^ , A ; + l ^ <fe e^n2^.

The proof is given in the Appendix^.

(6) Note that the claim allows to take the limit as t —> oo in the series (2.8) denning
the above hypergeometric function term by term (as in §2) yielding (for u fixed) the
expression 3^2 (^+MA, i —iu; fc+1; ^) as the limit. The same answer, of course, is obtained
when we take the limit as t —^ oo of the function 3^2 (- +MA, - —iu- -{-it\ 1 +2^; fc+1).
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Now one can complete the proof of Lemma 3.2 by considering the
above integral applying the above estimates, inequalities (2.4) Stirling's
formula and WeyPs bound for ^-function on a critical line :

C(l /2+w) <, H^6.

To complete the proof of Proposition 3.1, it remains to consider the
residues at s = 1 ± 2it of (3.4) together with the "top" and the "bottom"
integrals coming from shifting the line of integration in (3.4). The residues
at 1 ± 2it can be shown to decay arbitrarily fast since i^{y) G C§°((0, °o))-
The "top" and the "bottom" integrals can be estimated similarly to the
integral above (the calculations are analogous to those in the Appendix)
and found to decay as t —» oo. This completes the proof of proposition
(3.1).

4. Proof of Theorem 1.

In this section we formulate and prove Proposition 4.1 (the analogue
of W. Luo and P. Sarnak's result (0.3)), which implies Theorem 1 by an
approximation argument. To prove it, we need the estimates obtained in
sections 2 and 3.

PROPOSITION 4.1. — Let f be a continuous function with compact
support in T\G. Then

—(/,^f) ~ ^ / /^,
mt TT Jr\G

where duj is a Liouville measure on Y\G (cf. (0.2)).

Before proving the proposition, we state what we mean by "asymp-
totic equivalence" of d^t and d/^f (cf. Introduction) : it is proved in [Z2],
Proposition 3.8 that for g € C'o'°(r\G) (a smooth function with compact
support) and for every e > 0,

(4.1) (p,d^-^f) <. ̂ .

This implies that one can substitute d/i^ for dp,t m Propositions 2.1, 2.2
and 3.1 and they will remain true. Also, results in [LS] and formula (4.1)
prove the proposition for / in the space of incomplete Eisenstein series of
weight zero (and hence for arbitrary weight). We now turn to the proof.
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Proof of Proposition 4.1. — One can show using Sobolev inequalities
for L°° and L2 norms (cf. [Z3], §6) that for any function / G C§°{r\G) there
exist functions g\ (a finite linear combination of incomplete Eisenstein series
of different weights), and g^ (a finite sum of cusp forms and holomorphic
cusp forms of different weights) such that \\f — g\ — g'2\\oo < e (compare
to [LS] and [DRS], Lemma 2.4). Then, as in [LS], one can show that there
exists a function h € (7°°((0, oo)) which is positive, rapidly decreasing and
such that if we let (in the coordinates (0.1))

(4.2) H(z^0) = ^ h{y(^z))
7eroo\r

then H{z,e) > \{f - g\ -g'2){z,6)\ for every (^,(9) and f^Hduj < 5e. By
previous remarks then,

lim sup .— (/i, d/if) < 5s,
t—^oo m^

and the proposition follows.

Appendix. Proof of Claim 3.4.

We want to estimate the expression

3^2 (, + iu, ̂  - iu, ̂  + k + it', 1 + 2^, k + 1; 1 )̂

uniformly in t. We shall first estimate this expression when u is fixed, and
then turn to arbitrary u.

By definition (2.8) of generalized hypergeometric series the above
expression is equal to

V^(|+^)n(2-^)n(^+fc+^)n
v ) i2^ (k+l)nn\ (1+2^), •

If we "forget" about the t-dependent terms in (A.I) we get the
expansion (2.8) of the usual Gauss hypergeometric function 2^1 (| +^; \ —
iu\ k + 1), and the n-th term in this series can be shown to satisfy (for
arbitrary 0 < a < 1)

(A 2} (J+m)n(|-m)n ,^-1-fcc.
(A2) ——(fc+l)»n!—— ̂  "
using the ratio test. The constant a will be chosen later.
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Unfortunately, the ^-dependent term ( j + A ; + ^ ) n / ( l + 2it)n is
no longer bounded (which makes estimating (A.I) more difficult than
estimating si^j + iu, j - iu, j + it', 1 + 2^, A; + 1)). However, we can still
get the bound which will depend on n. Namely, using "arithmetic mean >
geometric mean" inequality, one can show that for n > 2^/\/3<-> ^M^-^r.
and for n < 2t/V3 one can show that {^-{-k-\-it}n/(l-\- 2it)n < 1 provided
t > T(k), where T(k) is a constant depending only on k. We do not claim
that the above estimates are the best possible, but they suffice to prove the
uniform bound for (A.I).

00

Namely, by logarithmic test the sum of positive terms ^ dn converges
n==l

provided /an > (3 > 1, n > No for some (3. By (A.2) and (A.3), weInn
know that
(A.4)

( ^+^ . - i u , - - { - k ^ - i t \ ^ . . f ,, l.lnn'T
3^2 2 2 ' 2 <^ N n 1 - ^ \l+(k- ,)—— ,

• l + 2 ^ , A ; + l 7 n=i L n J

and the series on the right converges by the logarithmic test if we choose
1 — — < a < 1. This completes the computations for fixed u.

2iKi

We now turn to obtaining a bound in u. We want to make the
inequality in (A.2) explicit. We fix some 1 — .- < OQ < 1 (say, ao = 1 — — , )

ZiK ~xK
and consider the ratio of the n-th and (n — l)-st terms on the right and
left hand sides of (A.2). One can check that for n > (2n)2 + (2k + I)2 the
following holds :

\_^\l+kao. > ^ 1+fcqp ^ (n-j+m)(n-^
n ) ~ n ~ n(n + k)

/ ^ i + f c a o ^ ^ i+fcap ^ (n-j+^)(n-
\ n j ~ n ~ n(n + k)

- zu)

which means that starting from n = (2^)2 + (2fc + I)2 the right-hand side
of (A.2) decreases slower than the left-hand side. To simplify calculations
we assume without loss of generality that u > 2k + 1, and so the above
equality holds for n > 5u2.

It now remains to estimate the terms in (A.I) for n < 5u2. As before,
we proceed separately for ^-dependent and ^-independent factors. Using
(A.3) and the estimate 1 + (k — -}—— < Ci^)??^, we find that forL \ 2/ n J
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n < 5-u2, t-dependent factors in (A.I) are all less than Ci^^n2)^ =
^(fc)^.

We estimate the sum oft-independent factors in (A.I) up to n = [5u2]
and the [Sn^-th term itself trivially by the expression 2^i(j+^, \ -iu\ k-\-
1) < C^^e^u'^ (cf. end of section 3). Finally, using the above estimates
we majorize (A.I) by

( 00 r 1 1 "1 n \

W^We- 1+(5^)^ ^ n-1-^ 1+^-J)1^
n=[5n2] L J /

<C4(fc)e^^2fc+i,

which finishes the proof of Claim 3.4.
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