
ANNALES DE L’INSTITUT FOURIER

JEAN-PIERRE RAMIS

YASUTAKA SIBUYA
A new proof of multisummability of formal solutions
of non linear meromorphic differential equations
Annales de l’institut Fourier, tome 44, no 3 (1994), p. 811-848
<http://www.numdam.org/item?id=AIF_1994__44_3_811_0>

© Annales de l’institut Fourier, 1994, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1994__44_3_811_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
44, 3 (1994), 811-848

A NEW PROOF OF MULTISUMMABILITY
OF FORMAL SOLUTIONS OF NON LINEAR

MEROMORPHIC DIFFERENTIAL EQUATIONS

by J.-P. RAMIS and Y. SIBUYA

0. Introduction.

In 1978-80 the first author introduced the notion of A;-summability
of formal power series expansions. This notion is based on fundamental
works of Borel, Watson, Nevanlinna. He proved that power series solutions
of sufficiently generic linear meromorphic differential equations are k-
summable for some k > 0 depending on the equation. He remarked also
that unfortunately there exists some formal power series solutions of some
linear meromorphic differential equations which are not fc-summable for
any k > 0 (cf. J.-P. Ramis and Y. Sibuya [10] for an example). J.-P. Ramis
proved also a factorization theorem of formal solutions (J.-P. Ramis [9],
Y. Sibuya [12] : Theorem 4.2.3, p. 237) which implies that every formal
power series / solution of a linear meromorphic differential equation can
(non uniquely) be written as a sum of products of fc-summable power series,
where the occuring fc's belong to a finite set depending on the equation.
Then it is possible to get a multisum f of / in a given generic direction
d. Later J.-P. Ramis proved that this multisum does not depend on the
decomposition and that, if d is fixed, the map / i—> / is Galois. (W. Balser
obtained also independently the factorization theorem as a byproduct of
his treatment of his first level formal solutions.)

The major inconvenient of this approach is that the factorization
theorem of formal solutions is an existence theorem and is not truly

Key words : Non linear meromorphic differential equations - Multisummability - Formal
power series solutions - Non linear Stokes phenomenon - Normal forms - Resonances -
Exponential decay.
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effective. So it does not give an explicit way to compute the sum. More
recently J. Ecalle found an explicit way to compute the sum (using
analytic continuation and integral formulas). His method is based on
his acceleration theory (which is connected with previous works of G.H.
Hardy and his student Good). He named accelerosummation the very
general corresponding process of summation [4]. For a restricted class
of functions the, at this time yet unpublished, ideas of J. Ecalle were
exposed by J. Martinet and J.-P. Ramis in the first part of [8]. In the
same paper they proved the multisummability in Ecalle's sense of formal
power series solutions of linear meromorphic differential equations : this
multisummability property is a trivial consequence of Ecalle's theory and of
Ramis factorization theorem. Afterwards other proofs of multisummability
of formal power series solutions of linear meromorphic differential equations
were given by W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya [I],
B.L.J. Braaksma [2] and B. Malgrange and J.-P. Ramis [7]. The first two
papers used Ecalle's definition of multisummability. In the third paper the
authors introduced a new equivalent definition of multisummability based
on cohomological ideas (and in particular on a relative version of Watson
Lemma due to B. Malgrange).

In the non-linear situation multisummability of formal power series
solutions was independently conjectured by J. Ecalle and the first au-
thor, but the first complete proof was only very recently given by B.L.J.
Braaksma [3]. In his proof he uses Ecalle's definition of multisummability.
Afterwards in [11] the second author outlined another proof based on the
cohomological definition of multisummability (cf. B. Malgrange and J.-P.
Ramis [7] and W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya
[1]). In this paper we shall present a complete version of this analysis.
As we mentioned in [II], the main problem is to prove Theorem 2.1 of
§2, since multisummability of formal power series solutions can be derived
from Theorem 2.1 in a manner similar to the proof of Theorem 4.1 of [1]
based on Lemma 7.1 of [1]. We shall present a complete proof of Theorem
2.1. Our proof is based on the methods due to M. Hukuhara [5], M. Iwano
[6], and J.-P. Ramis and Y. Sibuya [10]. We shall also derive explicitely
multisummability of formal power series solutions using Malgrange-Ramis
definition of multisummability.

Our proof is quite different from Braaksma's. We do not use Laplace
transform, acceleration and convolution products. The idea is to perform a
sort of analytic continuation across an infinitesimal neighborhood. We get
in a finite number of steps a more and more precise estimate of the sum,
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which is defined up to exponentially small corrections of some order which
increases at each step. Our proof is not simpler than the elegant proof
of Braaksma but we hope that it will shed a new light on the problem.
In particular our approach is based on a very detailed analysis of formal
normal forms (in relation with resonances) and Stokes phenomena for non
linear systems of differential equations. This analysis extends some works of
M. Hukuhara [5] and M. Iwano [6]. It has certainly an independant interest
and it would be interesting to investigate more deeply such questions.

1. Preliminaries.

As in [II], throughout this paper we shall use the following notations :

1) \{x) is an n x n diagonal matrix :

Ai(a;) 0 0 • • • 0 0 ]
0 \2(x) 0 • • • 0 0
0 0 \3(x) • • • 0 0(1.1) \(x) =

L 0 0 0 • • • 0 \n(x)]

where either \j(x) = 0 identically or
N,

(1.2)

here

(1.3)

,-^.
^W = ]C A^

^==1

0 < l/l < V2 < • • • < V N '

1 ^ Nj ^ N ,
\j,t € C,

[ ^N, + 0 .

2)

1-Ati 61 0 • • • 0
0 fl-2 62 • • • 0

(1.4) Ao =
0 0 0 • • • ^-i 6n-i

L 0 0 0 • • • 0 IJ.n J
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where

(i) the tij are complex numbers such that the differences p.j — ̂  are
not equal to nonzero integers if \j(x) = \h(x);

(h) the 6j are complex numbers such that \j(x) + fij = Aj+i(.r) + /Zj+i
i f ^ - ^ 0 ;

(in) SR(^.)<0 0=l ,2 , . . . ,n ) .

3) The quantity /^ is a positive real number such that
/A+SRO^-/^) > 0 O ' , / i = l , 2 , . - . , n ) .

4) As in [11] 7^ denotes the set of all j such that Aj (a*) is not identically
equal to zero; i.e.

(1.5) ^ = 0'; W^Q}.

5) We set

(1.6)

and

(1.7)

Aj(x) = <

T

U

N,

E'• <=i

3 = v

-^'^ ..-̂
*L'

^

N, for

if

if

j e % .

J^,

J'€7Z,

6) Let

(1.8) 0 < kp < kp-i < • ' • < k^ < h < +00

be all of the distinct real numbers in the set { TJ ; j G 7^ }; i.e.

{ k ^ " ' , k p } = {r^ ; j OH}.

7) We fix an integer q such that 2 < q ^ j? and set

(1.9) k — k 1c' — k in/ — rvq ^ i\i — ivq—_[.
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8) We also set

(i.io) Uk = {j e n; TJ = k}.

Throughout this paper, all sectorial domains are considered on the

MRiemann surface of log x. Also, for an m-vector y = | • • • | , we define a

norm \y\ by

(1.11) \y\ = max |z/,|.
l^J^m

Furthermore, for every p = (p i , ' - - , pm) where the pe are nonnegative
integers, we set

(1.12) ipi = p i+p2+. . .+p^ ^ = 2/^^2•••^m•

2. Main problem.

As in [II], we consider a differential equation :

(2.1) x ̂  = Go(^) + [ A(^) + Ao ] y + ^ (3(a;,^),

where

(I) the n-vector C?o(^) is holomorphic in an open sector P(a,6,ro) =
{x ; a < argrc < 6, 0 < | a; | < 7-0};

(II) for every closed subsector P[a,/3,r] = {x \ a ^ argrc ^ /?, 0 < | a; | ̂
r} of P(a,6,ro), there exists a positive number p(a,/3,r) such that
the power series

<W) = E ^^(a:)ipi^i
is uniformly convergent for

(2.2) a;GP[a,/?,r], \y\ ^ p(a,/3,r),

where the coefficients G^ are holomorphic and bounded in P(a, 6, ro).
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We assume that the following conditions are satisfied :

(1) there exists a direction argx = d such that

(2.3) a < d - Tk < d + Tk < 6;

(2) for each j € 7?.̂ ., there exists a direction arg x = dj such that

(2.4)
7T - - 7Td - 2k < ^ < d + 2k

and that ^A^a;)] changes its sign across the direction arg x = dj
(cf. figure 1). This means that the direction arg x = d is not singular
on the level k.

Case A Case B

Fig. 1 : the sign of y\[Aj(x)}.

We consider the following situation : for any positive number r, set

(2.5) }Vo(r)={xeC^ \^gx-d\^ ^<\x\<r}

and let

Z^(r) = P(a,,/5,,r) (y = 1,2, • . • ,7V),
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be a covering of V^o{r) , i.e.

7T i 7r

(2.6) Wo(r) C (J .̂(r) C P (d - ̂  - 60, d+ ̂  + 6o,r) ,
2^ - e o 5 d + 2fcKi^N

where eo is a sufficiently small positive number. Let us assume that the
covering {Uv{r) ; v = 1,2, • • • , N} satisfies the following conditions :

(i) 0 < /?, - a, < ^ ( ^ = 1 , 2 , . . . , A T ) ;

(ii) a < ai < 02 < • • • < OTV and /3i < /?2 < • • • < (SN < b;
(in)

f -^ 0 if | ;/ - v ' | ^ 1,
^(r)n^(r) ^ / ' " ?

[ = 0 if | v — v I ^ 2;

(iv) there exists a positive number 7*1 and N functions f[(x), • • • , /kr(^)
such that

(a) for each v^ the function fy is holomorphic in Uv{r\};

(b) for each v, we have lim fy{x) = 0 as x —» 0 in Uy{r^);

(c) for each ^ ^ 2, we have

(2.7) Ux) - f^(x) ^^e- 6 1 ' " ' " ' in ^(n) n^-i(n)

for some positive numbers J<T and ei;

(d) for each v^ fy is a solution of differential equation (2.1) in Uy{r\)^ i.e.

(2.8)̂

x djw = Go{x) + [ \(x) + Ao ] fi(x) + ̂  G(x,fi(x)) in ^(n).

We can choose the a^ and the /^ so that, if j e 7^ and 3t [Aj(.z;)] ^ 0
on

(2.9) y^(r) = {rr; a^ ^ arg x ^ ̂ , 0 < | x \ ^ r}

for sufficiently small r > 0, then ^[A^a^e;^)] < —6 on H^(r) for some
positive number 6 and a sufficiently small r > 0 . In particular, we can
choose the a^ and the {Sy so that

ay ^ dj and (3^ -^ dj for j e ̂  , ^ = 1,2, • • • , N.
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Also we can assume that the directions mgx = dj are not in ^(n) n
^-i(n) for any v (^ 2).

We can further assume that ̂ (x)] ^ ̂ (x)] on U^r) n^(r)
if Aj(x) ̂  A^(x) on U,(r) n^(r).

As in [11] the main purpose of this paper is to prove the following
theorem :

THEOREM 2.1. — We can modify the N functions /i,..., f^ by some
quantities ofO (e-6! x I fc), where e is some positive constant, so that these
modified functions also satisfy conditions (a),(b) and (d) of(iv) given above
and that moreover they satisfy the following condition ( c ' ) : (c9) for each
y ^ 2, we have

(2.10) MX) - f^(x) ^ K ' e - ^ - ^ in U^ H^.i^)

for some positive numbers K ' , 7-2 and 62.

3. A formal solution by means of a formal normal form.

As in [11] we consider a differential equation :

'^i
du

(3J) x-^ = W + Ao]u + ^ F(^,u), u = u2

.Un

where F is a power series in z^i, • • • , Un :

(3.2) F(x^u) = A(x)u + ^ ^^(^),
|P|^2

satisfying the following conditions :

(i) A(x) is an n x n matrix whose entries are holomorphic and bounded
in a sectorial domain :

(3.3) V(a,(3,r) = { x ; a < arg x < /3, 0 < \x\ < r },

(ii) the F^(x) are n- vectors whose entries are holomorphic and bounded
inP(a,/?,r),
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(iii) the power series F is uniformly convergent for

(3.4) x € 2?(a,/3,r), \u\ < 2p .

There exists a nonnegative number L such that

819

(3.5)

for

F(x,u) - F(x,v')\ < L\u - u

(3.6) x 6 2?(a,/3,r), \u\ < p , |̂ | < p.

In particular,

(3.7)

for

(3.8)

F(x,u)\ < L\u\

x € D(a,/3,r), |u| < ^».

Let us also assume the following conditions :
7T(iv) 13 - a < ̂ - ;

(v) if, for some j € 7Z., 3t[Aj(a;)] < 0 in 0(o!,/3,r), then SR[Aj(a;)] ^ -^
in P(o;, /3, r) for some positive number 6 ;

(vi)

(3.9) Jk = 0 -eTZ fc ; SR[A,(:c)]<0 in P(a,/?,r)} = {l,---,no}.

Let us set :
(3.10)
[ \(x) + AO ]no

'Ai(a;) +^i
0

0
0

<$!

A2(^) +/A2

0
0

0
62

0
0

...

^no

0
0

-i(aO+A4io-i
0

0
0

6no-l

^noM+^no
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W ==

^1
W2

.^no-

Utilizing notations and assumptions given above, we shall state the
following lemma which will be proved in §7.

LEMMA 3.1. — For every p = (pi, • • • ,Pno) where the pf, are nonneg-
ative integers such that |p| = pi + • • • + pno ^ 2, we can find an n-vector
Py(x) and an no-vector Sp :

'P^Y

.Pp,nW.

, 3p=
' QW^) "

ap,nja:)
W ==

L^.n^J

together with ann x no matrix Po{x) in such a way that
(i) the matrix Po(x) is holomorphic in 'D(a, /?, r) and

\x\-^ \Po{x) - C\ (c = [^°])

is bounded in T)(a^ /?, r) for some positive number ^ such that

//4-SR^--/^] > 0 for 0 - , / i= l , . . - , n ) ,

where Ino is the no x no identity matrix and 0 is the {n —no) x no zero
matrix;

(ii) the Pfp{x) and S^(x) are holomorphic and bounded in P(a, /8,7*) ;

(iii) P^j{x) = 0 if\j{x) == S pe^{x) ;
W^no

(iv) a^j{x) == 0 if\j(x) ̂  ^ P(.>i(x);
W^no

(v) the formal power series :

(3.11) P(a;,w) = Po(^)w + x^ ^ ^Pp(a;)
|P|^2

is a formal solution of differential equation (3.1) if

dw
[X(x)+Ao]n,w + ̂  ̂  wPap(a;).(3.12) dx

1^2
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Note that power series (3.11) in w is a formal solution of differential
equation (3.1) in the sense that the following condition is satisfied as power
series in w (cf. (7.1)) :

^w^ ̂  ap^Q_ ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂
9x 9w

[\(x) + Ao] P(x, w) + x^F{x, P{x, w)),
M^2

9P(x, w
9w

) .- is an n x riQ

9P(x, w)
9w

matrix defi

~9P(x,w)
9wi

ned by

9P(x,w)~
9wno

The left-hand side of this condition comes from a chain-rule by means of
differential equation (3.12).

Observation 3.2. — In order to find the structure of formal solution
(3.11) of Lemma 3.1, let us first look at differential equation (3.12). Since
condition (iv) of Lemma 3.1 is satisfied, differential equation (3.12) becomes

dv
' dx

(3.13) ^ = [^o^ + xtl S^ ^cW.
|p|^2

if we set

(3.14)

where

(3.15)

= pA,(:r) (J == l , - - - , 7 l o ) ,Wi = e

r/^i ^i o • • •
0 JLA2 6^

[AOJTIO ==

0 1
0

0 0 0 • • • ,̂-1 ^,_i
0 0 0 • • • 0 ^ J

Cl

C2Let 5= be an arbitrary constant no-^ctor. If we arrange the

L^noJ
Aj{x) in such a way that

SR[Ai(a;)] ^ SR[A2^)] ^ ... ̂  ̂ [A^)]
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in a direction arga- = 0 in V(a,(3,r), a general solution of (3.13) is given
^

(3.16) v, = ̂ ;c) = c,̂  + ^(x;c^,...,c^) 0-=l , . . . ,no) .

where the ipj are holomorphic in T)(a,(3,r) and

(3.17)

where

(3.18)

and

(3.19)

^ = E ̂ ^p 1^1

no
^jp(x) = 0 if Aj ^ ̂  p^A^

t=i

1^(^)1 < ̂ ola;!"0

in D(Q-, /3, r) for some positive number 70 and some real number /^o. In fact,
the ijjj are polynomials in ci, • • • , Cng.

Putting (3.14) and (3.16) together, we can find a general solution of
(3.12), i.e.
(3.20)

r^;c)i
w=^x;^ = (t>2^ , ^(.rs^e^^c) (j=l,...,no).

\.(t>no(x;S)\

By utilizing (3.18), we can write (j>(x\ S) in the following form :

(3.21) ^x;S) = x^oe^x^oS+ ^ [elA^inoc.r ̂ei-wjnoc-l" ^(a;),
I P 1^2

where

[A(a;)]no = diag(Ai(a;)....,A^(^))
and

(3-22) hMaOl^ola-r'

for some positive number 70 and some real number ^o in 'D(a,/3,r).
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As an analytic justification of Lemma 3.1, we shall prove the following
lemma :

LEMMA 3.3. — For any positive integer M and any positive number
p, differential equation (3.1) admits a solution of the form :
(3.23)

UM(X'^ = Po(x)f(x',!S) + x^ ^ (J)(x\S)^P^x} + EM^X'.S),
2^|^M-1

where

(a) EM{X\ c) is holomorphic in a domain :

(3.24) x e V(a,f3,r{M,p)) and \S\ ^ p

where r(M, p) is a suitable positive number depending on M and p,

(b) we have

(3.25) \EM{X^\ < KM ^M e-60^^

in domain (3.24) for some positive numbers 60 and KM' Furthermore
SQ is independent of M and p.

Proof. — Set

UM^S) = Po^fcc) + ̂  ^ <^;c^P^) .
2^|^|^M-1

Then, since

Po(^)^;c) + ^ ̂  ^x'^P^x)
|P|^2

is a formal solution of differential equation (3.1), we have

^UM^ c) _ ̂  ^ Ao)^M(^; c) - ̂ F(rr, UM^ c)) ^ HM^X-^
dx

for x e T>{a,f3,TM) and |^(rr;c)| ^ RM? with sufficiently small positive
numbers TM and RM? where ^"M is a suitable positive number. Note that

\^x'^\ ^ H{\W°e-^~ )
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in domain (3.24), where 6 is a suitable positive number and /^o is a
suitable real number. Therefore, changing (3.1) by the transformation
u = UM(X\ c) + EM and utilizing the results of J.-P. Ramis and Y. Sibuya
[10] on the differential equation for EM) we can prove Lemma 3.3. (See, in
particular, §3.3 (pp.78-79) of [10].)

4. A normal form of a linear system.

The results in this section will be used in §5 where we shall consider
the situation on the intersection of two sectors P(ai, /?i, r) and 'D(a2, /?2^)-
Actually Lemmas 3.1 and 3.3 will be used in Step 2 of the proof of Lemma
5.1, whereas Lemma 4.1 will be used in Step 3 of the proof of Lemma 5.1.
We shall finish the proof of Lemma 5.1 by utilizing Observations 4.2 and
4.3 in Steps 4 and 5. In this section the intersection of these two sectors
is denoted by P(a,/?,r). The notation no of this section and that of §3
are totally unrelated. Rather, no of §3 corresponds to n\ and 712 of this
section. Keeping these in mind, we start explaining a normal form of a
linear system.

As in [11] let us assume that

{1, • • • , ni} e l^k and {no + 1, • • • , HO + ^2} ^ ̂ k and that

(4.1) ^[A^)] < 0 in P(a,/3,r)

for j = 1, • • • , HI and j = no 4-1, • • • , TIQ + HI. Let

<?i(^;ci) =

' 0i(^;?i) "
<^2(^;Cl)

.^mO^Cl),

<?2(^;C2) =

" ^no+lO^) '

0no+2(^;C2)

.^0+712(^^2).

be general solutions of the following two differential equations :

dw-t—— = [ X(x) + Ao ]i wi + x^ ̂  w^Si^(x)dx
|P|^2

and

^ = [ A(^) +AO ]2W2 + X^ ^02,^),
dx

|P|^2
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respectively where

[ X(x) + Ao ]i

'Ai(;r)+/ii
0

0
0

6i
\2(x) + IJ,2

0
0

0
62

0
0

0
0

^711-1

• • • Ani (^)+^m.

and

[ \(X) + AO ]2

Ano+l^+^no+l ^no+1 0

0

0 0 0
0 0 0

°no+yi2—l

^no+n2 (a;) + Afcno+n2

Set

r ^i,fp,i(^) 1 r ^2,p,no+l(^) 1

^ (<^ _ ^^W - /^ _ ^2,^,no+2(^)
<^l,pW — 5 ^2,p^; —

L^l,p,m(^)J

We assume that

^i.pij(^) = 0

(4.2)
^^no+J^) =°

L^^no+r^O^J

if A^ ^ ^ pi^A^
l̂ ^ni

^ ^no+J 7^ Y ^ P2,no+^^no+^
1^^712

where pi = (pi,i, • • • ,pi,nJ and ^2 = (p2,no+i^ • • • ,P2,no+n2)-

The following lemma will be proved in §8.

LEMMA 4.1. —Let an n x n matrix

(4.3) A(^0i^2) = ^ ^F^A^^^)
|pl|+|p2|^0
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be given as a power series in ̂  and ̂  , where the A^ (x) are holomor-
phic^and bounded in P(a,/3,r). Then for every pi = (p^,... ̂  ̂ ) and
P2 = (p2,no+i. • • • .P2,no+n2), where |pi| + \^\ ̂  1, we can Gnd n x n ma-
trices ^(p^(x) and B^ wp^x) together with another nxn matrix ̂ (x)
in such a way that

(1) ^(pi^W ? B^v>2 (x) and ^o(x) are holomorphic and bounded in
P(a,/3,r)

(ii) if we denote by ̂ ^(x) and B^^(x) the UJ^-th entries of
^pip2 and B(pl^2 respectively, then
(4.4)

<^,^)=0 if A,-A,,= ^ ^^+ ^ P2^\n^
W^ni 1̂ 712

B^,^(x)=0 ifX,-X^ ^ p^+ ^ Pw\^;
W^ni l^n2

(iii) there is a positive number u; such that // + SR[^- - ̂ ,\ > 0 for
3-> 3 ' = 1, • • • , n and that, if we put

f^,<?i,<?2)=j4-^^o+^ ^ <?r<?r^w^
|pl|+|p2|^l

(4.5) {

B{x^^)= ^ ^^B^
lpll+1^21^1

we have
d<S>

^'6) ^ = [ x(x) + Ao + ̂ B] ̂  - ^ [ A(^) + Ao + ̂ A]

as formal power series in 0i and (j)^.

Observation 4.2. — We can construct a fundamental matrix ̂ (x, ci, 03)
of the system :

(4-7) ^ = -V[\(x)+Ao+x^B],

where V is an n-dimensional row vector, in such a way that

e^(x^) = ^ (eW^Y1 (eW^Y2 ̂ ^
|PI|+|P2|>0
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where

( A ( x ) = diag(Ai(^),...,A,(a;)),
(4.8) ^ [A(x)], = diag(Ai(:r),...,A^)),

I [A(^)]2 = diag(A^+i(:r),...,A^+^(a;)),

and the ̂ ^^{x) are holomorphic in P(a,/?,r); furthermore

(4-9) l̂ p^)l ^p^M^2

in ^(Q!, /3, r) for some positive numbers 7pip2 and some real numbers ^pips •

Observation 4.3. — More precisely speaking, if we set

(4.10) V = Wx-^e-^,

differential equation (4.7) changes to

dW -r
(4.11) x-— = -W x^x-^Bx^,dx
where

(4.12) B == e-^Be^.

Since the matrix B satisfies condition (4.4), we have

(4.13) |B| ^ 70 W0

in P(a,/3,r) for some positive number 70 and some real number p,o.
Furthermore if we assume that

(4.14) SRtAi^)] ^ ̂ {x)} ̂  . . . ^ %[A,(^)],

and if we denote by B^i the (jj^-th entry of B, we have

(4.15) B,y = 0 if ^[A,(x)]^^(x)}.

The matrix ^(a;, 01,02) has the following form :
(4.16)

^,ci,C2) = fj + ( ^r^B^c^c^0^ + ••^-^e-^),

where • • • denotes terms of 0(|<?i[2 + [c^l2).
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5. Stokes multipliers.

We shall utilize the same notations as in §2, and consider the following
situation : let

U^r) = P(c^,A.,r) (^=1,2)

be two subsectors of 'D(a, b, ro) of §2 which satisfy the following conditions :

(i) 0 < A. - ̂  < "- (^=1,2) ;
ki

(ii)^i(r)n^2(r)^0;

(iii) there exist a positive number ri and two functions fi(x) and ^{x}
such that

(a) for each ^, the function fy is holomorphic in Uy{r\);

(b) for each ^, we have lim fv(x) = 0 as x —>• 0 in Uy(r\);

(c) we have

(5.1) h{x) - f[{x) ^^e- 6 1 ! " ' " ' in ^i(ri)n^(n)

for some positive numbers K and ei;

(d) for each ^, fy is a solution of differential equation (2.1) in Uy(r\)^ i.e.

(5.2)̂

x dMX}- = Go(x) + [\{x) + Ao] MX) + ̂  G{x\f^{x)) in ^(n).
arc

As in [11] we want to prove the following basic lemma :

LEMMA 5.1. — We can modify the two functions f\ and f^ by some
quantities ofO (e"6! x;! ), where e is some positive constant, so that these

modified functions also satisfy conditions (a),(b) and (d) of (iii) given above
and that moreover they satisfy the following condition (c7) :

(c7) • we have

(5.3) A (;r) - f^x) ^ K ' e-62' " I"'' in U^ 0^2)

for some positive numbers Kf, 7*2 and 62.
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Proof.

Step 1 : For each v = 1,2, changing differential equation (2.1) by

(5.4) y = f^x) + u^

we derive another differential equation :

(5.5-z^) a;—^ = [\(x) + Ao]^ + x^ F^(x,u^) in ^(ri),

respectively, where

F.M = G(x,Mx) + n) - G(xJ,(x)) = ̂  ^ F^(^)
Ipl^i

is a power series which is uniformly convergent in the domain :

x € Z4(ri), |z?| < pQ

for some positive number po ^d the coefBcients Fy^(x) are holomorphic
and bounded in U^{r\).

Step 2 : We shall apply Lemmas 3.1 and 3.3 to each of two differential
equations (5.5.^). To do this, let us assume that
(5.6)
f^fc(l) = {je^fc; ^[Aj(x)}<0 in ^i(n)}={l,...,ni},
[ J4(2) = {j € TZfc; % [Aj(a;)] < 0 in ^(n)} = {no + 1, • • • , no + "2}.

Then we can construct two differential equations :

x-p- = [A(a;) +Ao]iWi + x^ ̂  wfai^(a;),ch*
|p|^2

(5.7)
(ZW2 r \ / \ ^ i - * X—^ -»o -» / \a;—— = [A(a;) +Ao]2W2 + ^ ^ ^^^W?da;

|p|^2

respectively, where
wn W2,r^o+l

(i) wi = and W2
L^^iJ L^2,no+n2j

(ii) the two matrices [\(x) + Ao]i and (A(a;) + Ao]2 are the same as in
§4:
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(iii) if we set
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^P,!̂ ) 1 0'2,p,no+l(^) 1

a^(x)= a1^ , 5^x)= ^^(x)

L^l^niO^J L^2,p,no+n2(^)J

then

^l^ij^) = 0 if ^ 7^ ^ Pl,^,

(5.8) { l^^m

a2,p2,no+J(^)=0 if Ano+jT^ ^ P2,no+^A^+^

l^^n2

vhere pi = (j?i,i,... ,pi^) and p2 = (p2,no+i, • • • ,P2,no+n2) . Let

"^i(^ci) " -^+i(rr;C2) '

te?l) = ^^^ , ^;?2) = ^°^^?2)

-^i^^l)- -^no+n2(^;C2).

be general solutions of differential equations (5.7) respectively as con-
structed in §3.

The most important meaning of differential equations (5.7) is that
there exist two formal power series

(5.9) P^,w^ = P^o(x)w^ + x^ ̂  <P^(a
JP|^2

such that

(1) the Py^(x) are n-vectors and the P^o{x) are n x n^ matrices
respectively;

(2) the entries of Py^{x) and P^o(x) are holomorphic and bounded
in^(ri) respectively;

(3) moreover the quantities

\x\-^ \P^{x) - C,|

are bounded in Uy{r^) respectively for some positive number // such that

// + ̂  - ^] > 0 for j ^= l ,2 , . . . , n ,
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where

r^ -rii

[ o . C-z =
' 0'

-^712

. 0
here 7^ is the n^ x n^ identity matrix and the 0 are the zero matrices of
suitable sizes;

(4) if we set

P^W =
'P^iW

. -^l/,p,yl(^) _

then we have
ni

(5.10)
R^^jW = ° if A^ == ^^1^^'

^=i
^2

. P2,p,no+J(a;) = ° if ^o+J == ̂  P2,no+^^no+^;
^=1

(5) the formal power series

Pv(x,4>y{x,Sy)) = P^o{x)^(x,^) + x^ ̂  ^(a;,^)^?^)
|P|^2

are formal solutions of differential equations (5.5.^) respectively.

Set

(5.11) UM^(X,^) = Pvft(x)(j)^{x,Sv) + x^ ^ (j)y{x,SyYPv^(x).
2^|p|^M-l

Then each of differential equations (5.5-^) admits a solution of the form :

UM^(X,E^) = UM^{X^Sy} + EM^(X^S^)

such that

(a) EM,v{x\Zv) is holomorphic in a domain :

(5.12-;/) x C U^(M,p)) and |c| ^ p

where r^(M,p) is a suitable positive number depending on M and p,
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(b) we have
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(5.13) \EM^X^)\ ^ KM ̂  e-60^^

in domain (5.12-^) for some positive numbers 60 and KM ; further-
more So is independent of M and p.

Now we modify the two solutions f[ and f^ by

(5.14-z/) ^M^{x,E^) = ^(a;) + UM,y{x,5y),

respectively.

5^ej9 3 : If we set

(5.15) VM = ^M,2(^C2) - '0M,l(^,Ci)

in the domain

(5.16) a; € ^i(ri(M,p))n^2(^(M,p)) and |c1 ^ p

YM satisfies a linear homogeneous system :

(5.17) x^- = [A(rc)+Ao+^^M(^?i,C2)] VM,

where
/*i a/^ ^ ^

^M^,?!,^) = / o^(^^M,2+(l-^M,l) ^

= ^0^) + ^ 0r^2 ^i^(^) + WM^,?i,C2);
j(Pl|+|ip2|^l

here

(i) ^o(^) is holomorphic and bounded on U\{rM) n^^M) for some
positive number TM ;

(ii) the ^pi ,p2 {x) are holomorphic and bounded on U\ (r^) H^2 (^M) and
the series on the right-hand side of (5.17) is uniformly convergent for

(5.18) X^U^(TM)^U^[rM), |<?l(^;Ci)| <pM, |<?2(^;C2)| <RM

for some RM > 0;
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(hi) WM^^I^C^) is holomorphic in (re, 01,02) and

(5.19) |WM(^,ci,C2)| ^ KM |^M e-^l^l"'

in domain (5.16) for some positive numbers So and KM ; furthermore So is
independent of M and p.

Set

?01,02) = ^ <?Nr î,p^).
|pl|+|p2|^l

Let us apply Lemma 4.1 to the differential equation :

d^
(5.20) x^ = [A(a;)+Ao+^B]$ - <S>[\(x) + Ao +^(So + Gi)}.

Then we can construct two n x n matrices ^ and B of the form (4.5)
which satisfy conditions (i) and (ii) of Lemma 4.1 (in particular (4.4)) and
equation (5.20). Note that the matrix <I> is a formal power series. However by
utilizing an idea similar to the proof of Lemma 3.3, for any given sufficiently
large positive integer M and any positive number p, we can construct an
actual solution ^^(^5 ̂ ii %) of the differential equation

(5.21) x^ = [A(^)+Ao+^B]^M-^M[A(^)+Ao+^^M(^,?i,C2)]

of the form :

^M(^?1,C2)= J+^o+^ ^ ^^F^i^+^M^?!,^)

l^|pi|+|p2|^M-l

such that VM^^S^^S^) is holomorphic in (^,01,02) and

(5.22) |VM(^ci,?2)| ^ KM ^M e-60^^

in domain (5.16) for some positive numbers SQ and KM ; furthermore So is
independent of M and p.

This means that, if we set

Z = ^M(^Ci,C2)YM(^,Ci,C2),

then Z satisfies the linear homogeneous system :
i ry

x— = [\(x) + Ao + x^B\ Z.
o/x
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Therefore, if we utilize the fundamental matrix ^(rc, ci, 02) of system (4.7),
i.e.

dV
(4.7) x-^ = -y[A(^)+Ao+^B],

the vector FA^O?!,^) defined by
(5.23)

FM(Cl,C2) =^(a;,Ci,C2)Z = ^(^,Ci,C2)^M(^,?l,C2)yM(^,Ci,C2)

is independent of re. Furthermore

6^1^(01,02) = e^)^,?!,^)^^,?!,^)^^?!,^)

can be written in the following form :
(5.24)

e^r^ci,^) = ^ (e^1^)'31 (e^^Y2 f^x)^M{x^5^
|pl|+|p2|^0

where

(i5)

A(x) = diag(Ai(a;),...,A,(^),
[A(^)], = diag(Ai(;r),...,A^)),
[A(x)}^ == diag(A^+i(^),'-,A^+n2(^)),

(ii5) the r^^rc) are holomorphic and

ir^MI ^7pxp2 l^l^^1

in ^^2(ylM)n^^l(rM) for some positive numbers 7^ ̂  and some real numbers
^Pl^25

(hi1) £M(^5?i5C2) is holomorphic in (a*, 01,02) and

(5.25) |fM(^ci,C2)| ^ ^M |c1M e-6^'^"'

in domain (5.16) for some positive numbers 60 and KM ; furthermore 60 is
independent of M and /?.

Remark. — If we set ci = 0 and 02 = 0 in (5.23), we get

(5.26) fM(0,0) = x-^e-^ [l + x^^o(x)] (f^x) - /i(^)).
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Step 4 : Suppose that M is sufficiently large. Then letting x tend to zero
in U^(TM) n^i(rM) we can compute FA^CI,^). To start calculation, let
us denote by ^•(01,02) the j-th entry of FM, i.e.

FM^I,^) =

Ti(Ci,C2)'

F2(?l,C2)

.I\,(C1,C2).

and look at (5.24) or

(5.24-j) rj(ci,c2) =

^ e-^) (e^^ (e^)'2 [r^^ML.+e-^^-)^^,^.^)],
|pl|+|p2|^0

where [ff\j denotes the j-th entry of a vector v. Note also that we have
(5.26). From (5.24-j) we can derive immediately

(5.27) rj(ci,C2) = 0 if TJ < k.

If TJ = k and j ^ J^(l) U J^(2), then ^[Aj(x)} > 0 on U{TM) H^^M).
Here we use assumption (2) of §2 (cf. figure 1 of §2) and assumption that
the directions arg.r = dj are not in Z^(ri) nZ^_i(ri) for any v {y ^ 2).
Hence we have

(5.28) r^(ci,C2) = 0 if r,=k and j^^( l )U^(2) .

Let us look at Tj for j such that Ty = k and that j e J^(l) 'J ^(2).
For such j, we have

(5.29) r,(ci,c2) = ^ cTcTr,,^^
|P1|+|P2|^0

where r^p^ = 0 if

r ni na ~[
(5.30) SR A,^) - ̂  pi,̂ (a;) - ̂  ^,no+^A^+^(a;) >0

^=1 ^=i

in U(rM) n^^M)- This means that the right-hand side of (5.29) is a
polynomial in ci and 03 if M is sufficiently large.
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Step 5 : More precisely speaking, for j e ̂ (1) U Jifc(2) we can derive
(5.31)

p + ̂  + • • • if jCJkW andj^^( l ) ,
r , (c i ,c2)=< ^ + c2j - cij + • • • if j e^( i )n j fe(2) ,

l^ - dj + • • • if J e J k W andj^(2),

where ^ = r^(0,0) and • • • denotes terms containing only those Cy g such
that 9t[Aj(x)] < 9t[Ae{x)} in ̂ 2(^)^1^). In fact, (5.31) can be derived
by a straightforward computation based on the following facts :

(1) ^ + a?[/^ - ̂ ] > 0 for j, h = 1 , . . . , n,

(2) // + SR[̂ . - ̂ ] > 0 for ^, h = 1, . . . ,n,

(3) (5.26),

(4) the quantities \x\~^' \P^o(x) - Cy\ are bounded in U^TM}
respectively,

(5) (3.21), (4.15) and (4.16).

The main ideas behind this calculation are

(a) we look only for those terms with |pi| + |p2 =1 and
ni ri2

^ A^Qr) - ̂  PiM^) - ̂  P2,na^na^W =0 ,
^=1 ^=1

(b) we ignore those quantities that tend to 0 as x —> 0 in U^ (TM ) H^i (T-M ).

For example, if we ignore those terms of 0(|ci|2 + |c2|2), we have

\YM(C^S^)= f^(x) - /l(a;)+[C2+0(^ /)]02(^C2)

-[Gl+0(^/)]^(^,Cl)+••. ,

^M(^,Ci,?2) = I-^0(x^lf)

+x^ [terms linear in 0i and ̂  with bounded coeffi-
cients] + • • • ,

^MM,C2) = [^r^r^^ci,^)^0^ x-^e-^ +... ,

I <^(:r, ̂ ) = .z;^0]- etA(a;)]- ^ + ... ,

where [Ao]^ = [A(.r) +Ao]^ |A(a;)=o (cf. §4) .

Now if we further ignore those terms which tend to 0 as x —> 0 in
^(^M) n^i(r-M) and those terms corresponding to ^[Aj^x)] < ^[A^rc)],
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we conclude that the terms from C^c^ — C\c\ are the only contribution to
the terms linear in ci and 02 of Fj (01,02). In this last step we utilize (1),
(2), and (3) together with the structure (4.15) of the matrix B . Thus we
can derive (5.31).

Therefore we can fix arbitrary constants ci, ?2 in such a way that

r^(c i ,C2)=0 for je^( l )U^(2) .

This completes the proof of Lemma 5.1.

6. Proof of Theorem 2.1.

We shall utilize the same notations as in §2, and apply Lemma 5.1 to
{^(^1)5 ^i/-i0"i)} and {fy(x)^ fy-^(x}} for each v. To do this, set

(6.1) Jk{v) = O'CTZfc ; sft[A,(aO] < 0 in ^(ri)} = {^,1, • • • , j^J,

and

(6.2) C-v =

l-^j^n^ J

Then for each z/, we have the following system of equations :
(6.3-^)
o = r^(c^-i,c^)

' ̂  + c^j + • • • if j C Jk{y) and j ^ J4(^ - 1),

^ + c -̂ - c^-ij + • • • if jeJkW^ J^{y-V),

^ ̂  - c^-ij + .. • if j e Jk(v - 1) and j ^ Jk^)

where ^j = r^^(0,0) and • • • denotes terms containing only those c^ and
<^_i^ such that ^[^(x)} < ̂ [A^)] in ̂ (n) n^-i(ri) (cf. (5.23)).

Let us classify those j in 7^/c according to Case A and Case B of figure
1 of §2. Then, since the direction d is not singular on the level A;, we can
choose, for each ^, a point Xy in Uy(r\) n^-i(r-i) in such a way that

(6.4) SRIA^)]
< SR[A,(^+i)]
> sR[A,(^+i)]

if j is in Case A,

if j is in Case B
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(cf. Lemma 1.4.1 on p. 56 and Lemma 1.7.1 on p. 66 of J.-P. Ramis and
Y. Sibuya [10]). Let us order all of equations (6.3-i/) (y = 2,3, • • • ,AQ by
the order of {3t[A^)] 'J e J^(y}, v = 2,3, • • . , N }. Then we can solve
those equations successively. Thus we can complete the proof of Theorem
2.1.

7. Proof of Lemma 3.1.

Let us consider the following partial differential equation :

9P(x,w) 9P(x,w)
[\(X) + Ao]noW + ̂  ̂  W^ 5^(X)•+9x 9w(7.1)

|p|^2

= [\{x) + Ao\P{x, w) + x^F(x, P(x, w)) , ^. ^, w ) ) i

. 9P(x,w) .
where ———;— is an n x no matrix defined by9w v

9P(x,w) ^ \9P(x,w) 9P(x,w)
9w ~ '"9wiuw ^ u'W\ OWno9wr.

Denote by (Po}(.(x) the £-th column of Po(x) and set

^ = (e^i, e^2, • • • , e^no) ? where e^/i =
1 if h=£,
0 if / i^^.

Then
9P(x,w)

Qwi {Po)e(x) + ^ ̂  p^ ^-e< P^x)^\^h
|P|^2

and hence

QP{x, w)
9w

Also we have

= Po(x)+x^ ̂  ^(^[piw^-61 paw^-62 ... pno^"6710].
|P|^2

[A(a;)+Ao]no^ =

(Ai(a;)+/zi)wi +^iW2
(A2(^)+^2)^2 +^2W3

(\no-l{x) + ̂ o_i)Wno-l + 5no-iW^

(^noM+^no^no
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Therefore

a-P^UJlW^A^
[" /no \

= Po(x)[\{x) +Ao]noW + ^ ̂  ^ ̂  (A,(^) +/,,) ^
1^2 LV=I /

no-1 "|
+ ̂  P^ ^P-^+ew p )̂.

^=1

Thus we derive from (7.1) the following recurrence relations :
(7.2)

r xdp^ = [x{x) + Ao + xtlA{x)} w ~ po(x) [x(x) + Ao]n05

f]$ (r^
x-^ = [\(x) + Ao + x^A{x)}^(x)

^ Pi (X^x)+^)]^^x)
<^=i /\^=i

no—lo-l

- ^ (P^ + 1) ̂  ^p+e,-e,+i(^)
^=1

- x^(Po(x)5^x) + JW),

where

^{x) = x^P^x)^
and, for each p, the entries of ^(x) are polynomials in the entries of
<I>p/ and o?p/ dp'| < |p|) with coefficients holomorphic and bounded in
P(o;,/3,r). Note that ^^e^-ee+i = 0 if some entries of p + en — e^+i are
negative. We shall determine Po, <&p and a^ by (7.2).

Step 1: Set Po(x) = C + X, where G = |^° [ (cf. condition (i) of Lemma

3.1). Then from (7.2) we derive

x^ = [A(^)+Ao+^A(^)]X-X[A(^)+Aok

(7l3) + [\{x) + Ao + ̂ A(^]C - C[\(x) + Ao]no
= [X(x) + Ao + ̂ A(^)]X - X[A(o;) + Ao]no + x^A(x)C.

Choose any positive number // < /^. Then by utilizing the assumption that
ti + SR[^- - ̂ ] > 0 (j, /i = 1, • • • , n) and the method in §2 of [10], we
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can construct a solution X(x) of (7.3) such that x~^X(x) is bounded on
V(a,(3,r). Actually, we can choose // so that

/^a^--/^] > 0 for ^=l,.. . ,n.

ste?2 : L^ us denote by P(m) the set of all p = (pi, • . . ,p^) such that
the pi are nonnegative integers and |p| = m, i.e.

P(m) = {p == (pi,... ,py^) ; thep^ are nonnegative integers and |p| = m}.

For p, p' e 'P(m), we define an order :

P=(Pl,"-^no) > ^=(^•••^0)

if and only if, for some So e {1,2, • • • , no}, we have

^=p^ for £<io and p^ < p^.

Let

Pi < P2 < • • • < pM(m)

be all p's in P(m), where

pi = (m,0 ,—,0 ) and pM(m) = (0, • • • ,0,m).

Furthermore

p > p + e^ - e^+i.

We determine ^p and Sy starting from p = pi successively according
with this order. Note that ^+e,-e,+i (x) = 0 for £ = 1,.. • , no - 1. We set

^,j(^) = ^P^j(x) = 0 if A^(a;)=^ p^(rc)
^=1

x ) = ^^jW = 0 it' W=^p,\^x)
e=i
nono

^jW = 0 if \j(x)^^ p^{x).
£=1

no
Then, if \j(x) = ^ P^A^(a:), we derive

^=1
(7.4)

no—1

0 =^[A(a;)$p(a;)]j - ̂  (p< + 1) 6t ^+e,-e^,j(x) - x^P^x) 5y(x~}}j
e=i

- x^(x)],,
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where [Y}j denotes the j-th entry of the vector V. It is easy to see that
no

j € Jk = {1,2, • • • ,no} if Xj(x) = ̂  pe\e{x)
^=1

and
[Po(x) a^x)}, = [Ca^x)}, + [(Po(rr) - C)a^x)}j

-^jW+[(Po{x)-C)a^x)},.

Also we can assume recursively that ^^e^-e^+iW = x^P^ee-e^{x),
where the entries of P^a-e^W are holomorphic and bounded in
P(a, /?, r). As a matter of fact, we have

no

(x) = U it Aj(x)=Y^
e=i

^p+e,-e,+i,j(^) = 0 if Xj(x)=^p^(x) and ^ ^ 0

since X^ = A^+i if ^ -^ 0. Therefore, (3) determines a^ in a form :

cW = ^(^)^p(^) + fp(^),
where Q^(x} is an no x^ matrix whose entries are holomorphic and bounded
in P(a,/3,r) and £^(x) is an no'-vector whose entries are holomorphic and
bounded in Z)(a,/3,r) (because of recursive assumption).

Now (7.2) yields a system of differential equations :

(7.5)

d^> • no, no
X~T^ = AJ(•r) - X, p^^(^) + ̂  - ̂  p^^ ^p,j

^=1 ^=1

+ ^^+i + x^[(A(x) + PO^)^^))^].

+ x^Q^(x)
TlQ

for j such that \j{x) -^ ^ ^A^(.r), where the Q(pj(x) are holomorphic
^=1

and bounded in P(a, /?, r).

Finally we can construct ^p(^) = x^P^x) in such a way that the
P^(rr) are holomorphic and bounded in P(a, /?, r) by utilizing the methods
and results in J.-P. Ramis and Y. Sibuya [10]. (In particular, see, §2.1 (pp.
66-70) and Lemma 1.7.2 (p. 66).) Note that, in equations (7.5), we have

no
w-Y.<=iw-Y^piW^Q.
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8. Proof of Lemma 4.1.

Let us determine two formal series ^(^,^1,^2) and B(x,^,^) of
(4.5) by differential equation (4.6). Note first that

^ d(^^o) _ d(<?r<?r)
x— =x—^———/- 4- ^ x—^-———L r^

dx dx 1 ^ x dx x qw2
|P1|+|P2|^1

-4- \^ /7P1^2 - ̂ ^^P ig^)
+ 2 ^ ^1 ^2 : r — — — — , — — — — .

|P1|+|P2|^1

where

d(^1^2} ni n2 „
^ \, / = E ̂  ̂ -el€^2 ̂ +E PW ̂ -e2e x^.

Here

ei^ = (^i, • • • , <5Lj and e^ = (<$|i, • • • , ̂ ),
with

^K ;̂;; -1.2-
Note also that

xd^ = [ x{x) + Ao ]1 ^ + xti ̂ IPÎ  ̂  "^P^)'

. xd^ =[ A(a>) + Ao ]2 02 + ̂  ̂ PÎ  ̂  ̂ •P^-
Therefore,

^i-eie,fp2 ^
^)\ ^2 ^"j—dx
, , /

= ̂ 'l-e"<^2 (A^(a;) + ̂ )^ + S^e+i + ̂  ̂  ^ ai,p/(.r)
\ MS»2

= ( A,(a;) + ̂  )^^ + 6^-elt+elt+l^

+a•^rl-e"<?r E ̂ "i,̂ )'
|p|?2
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and

r^i,Tp2-e2€ ^^no-^-e
^1 ^2 da;
= ( A,,̂ ) +/^ )<?r<?r +^o+^r<?2)2-e"+e"+l

+^1^2-e2'E ^2^no+^),
lfp|^2

where

r ^1,^1^) r ^^^o+i^) 1
Si^{x) = and (?2,p(^) =

L^i^ni^J LQ'2^,no+n2(a')J

Thus we derive

d(^1^2)
^——,——-dx

r ni n-2

^ Pl,€ (A^(a;) +^) +^ P2,no+^ ^no^x) + f.Lno+£) <??l<?2)2

. -^==1 ^=1 J

1-1 712-1
i \ ^ K ^ .^?^l—el^+el<4-l rp2 i \ ^ c „ .Tpi .Tp2—62^+62^+1
+ 2^ ^ p1'^ ^1 ^2 + ̂  c)no+^ P2,no+^ 01 02

^=1 ^=1

+^ pi,, ̂ ^l-eu^2 E ̂  al,^(a;)
^=1
712

1(P|^2

+^ p2,no+^ ̂ ^^r"6" E ̂  ^2,^o+K^).
^=1 llpl^2|p|^2

Set ^ = J + 1>, A = Aoo(^) + A. Then

[\{x) + Ao + ̂ B]^ - ̂ [\{x) + Ao 4- ̂ A]

=[A(.r) + Ao + x^B]^ - ̂ [\(x) + Ao + ̂ (Aoo^) + A)]
+xtl{B-Aoo(x)-A)

=[\{x) + Ao]l> - Wx) + Ao + ^Aoo(^)]
+ x^B^ - x^^A + x^(B - Aoo(x) - A).
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If we write [A(a-) + Ao + x^B}<S> - <S>[\(x) + Ao + x^A} in the form :

[\(x) + Ao + x^B}^ - $[A(a;) + Ao + x^A}

=Wo(x)+ ^ fP^W^x),
?l|+lp2^1

we have

^ Wo(x) = [\(x) + Ao](a;^'$o) - (a^'$o)[A(a;) + Ao + a;^Aoo(a;)]
-^Aoo(a-),

Wp^(x) = [\(x) + Ao](^$^pJ - (x^^)[\(x) + Ao + ̂ Aoo(-r)]

+x^B^(x)[I + ̂ '$o] + x^^(x),

where ̂ y^x) is a polynomial in B^{x) and $p'^(a;) (Ip'il + \^\ <
Ipil + \V>2\) with coefficient holomorphic and bounded in 'D(a,/3,r).

Thus we derive the following differential equations :

d(a^$o)
dx

[\(x) + Ao](a^'$o) - (a^o)[A(a;) + Ao + ̂ Aoo(a-)] - ̂ Aoo(a-),

^d(x^^)
dx

[\{x) + Ao](^$p,pJ - (x^^)[\(x) + Ao + ̂ Aoo(.r)]

-[E^i Pi,e(W+^)
+ E l̂ P2,no+i (\no+e(x) + ̂ no+l) ] (•E'*^pipJ

-E?i71 ^ (Pl^+1) (^^+e«-e^,,pJ

-E?^1 ^"o+< (P2,no+<+l) (^^pl.pz+ea^-ez^i)

+^Bp,p,(a;)[/ + ̂ '$o] + x^^(x),

where ^p, ̂  (a-) is a polynomial in B^ ̂  (x) and $p^ ̂  (a;) (| p'l | + | pa | <
I Pi I + |p2|) with coefficient holomorphic and bounded in 'D(a,/3,r).

Writing the equations on a^<i>pip;> componentwise and utilizing an
argument similar to the proof of Lemma 3.1, we can complete the proof of
Lemma 4.1.



MULTISUMMABILITY OF FORMAL SOLUTIONS 845

9. Multisummability of formal power series solutions
of non linear meromorphic differential equations.

We will prove multisummability of formal power series solutions of
differential equation (2.1) according to the Malgrange-Ramis definition of
multisummability [7]. This definition is slightly different from those of [I],
[2], [3], [8] : one replaces the notion of multisummability in one direction
by the notion of multisummability on a family {J i , . . . , In} of nested closed
arcs of the unit circle S (or more generally of its universal covering 5'). In
this paragraph we will use the definitions and notations of [7].

DEFINITION 9.1. — Let h C ... C Ip be a set of nested closed intervals
of the circle S with \Ij\ ̂  7- (j = 1,.. .p). We set Jp+i = S. Let (f> G C[[x}}

be a formal power series expansion. We will say that (j) is ( A ; i , . . . , kp)-
summable on (Ji,... Ip), with sum 0i, if :

(i) ^C[[x]]^,
kp

(ii) there exists a sequence ( < ^ i , . . . , <^p, 0p+i) where :

a) <^p+i e r^S'.A/A^^) and </>p+i corresponds to (f) by the natural
isomorphism

^A/A^^W}^,
kp

b) (j)j e r(I^A/A^-1) 0=1,. . . ,p+l), and ̂  = ̂ +i|^. modulo
^-fcJ, for j =!,...,?.

We denote by d^ the bisecting line of Ij {j = 1,... ,p). If d[ = ... =
dp = d ' , we will say that 0 is ( f c i , . . . , A;p)-summable in the direction d ' .
(This definition is equivalent with the definitions of [I], [2], [3], [8].)

If / € ((^[[a;]])71 is a formal solution of the differential equation

(2.1) x ̂  = Go(rr) + [ \(x) + Ao ] y + ^ G(x^y)^

then it is proved in [12] (Theorem A.2.4.2, p. 209) that fe (C^x}}^)71.

Observation 9.2. — We can choose q = 1 in (1.9) and set k = fci, k' =
ko = +00. Then we can replace the condition (c5) by fi(x) == fi-i(x) in
^(^2) n^_i(r2). Then the theorem 2.1 remains true.
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THEOREM 9.3. — Let (f> e (^[[a;]])71 be a formal solution of the
differential equation

x ̂  = Go(^) + [\{x) + Ao] ^ + ̂  G(^).

Let Ji C . . . C Ip be a set of nested closed intervals of the circle S with
\Ij\ > •?- {j = !,...?). Let us assume that the bisecting line arg x == cK of
Ij is not a singular line of the level kj (that is ̂ [^(x)} does not change its
sign across the direction arg x = cK for j == 1,..., p). Then (j) is ( f e i , . . . , kp)-
summable on (Ji,... Ip).

We will build a sequence ( < ^ i , . . . , <^p, (j>p+i) with

a) (f)j G (r^^l/.A^'""^-1))7'1 by a descending recursion on j.

First we get <^p+i from <^ using the natural isomorphism

(cM^r-^A/A^r.
Kp

Now we suppose that we know (<^, . . . , 0p, ̂ p+i) for 3 < r < p -j-1, such
that ̂  € (r(^-; A/^-^-1))71 (j = r, . . . ,p+l), and ̂  = (^•+i(^. modulo
^-k^n f o r j = = r , . . . , p .

Then we set kr-i = fc and fey—2 == k^ I = J^r-i, d == d^_i.

We can represent ^rjj^-i by a 0-cochain / == { / i , . . . , f^} associated
to a covering {Uy{r)} of a closed sector Wo(^) == {x e (7; [arg re — d'| <
— , 0 < | a ; | < ' r } (corresponding to the closed arc I on 5) as in §2. The
^iK

coboundary of / takes its values in (A^"^)71. Then applying Theorem 2.1
we get a 0-cochain g == {^i , . . . ,^v} representing also (f>r\ir-i but such
that its coboundary takes its values in (A^"^)71. Therefore g defines an
element ^-i € (^(Ir-i^A/A^"^-2))71' such that (j)r-\ ^ <?r|Jr-i modulo
rA^—kr-i\n

Utilizing the Observation 9.2 we can do the same construction with
r == 2. Finally we get a sequence (^i , . . . , 0p, 0p4-i) satisfying our conditions.
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