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RATIONAL EQUIVALENCE
ON SOME FAMILIES OF PLANE CURVES (*)

by J.M. MIRET and S. XAMBO DESCAMPS

Introduction.

For a given irreducible n-dimensional family C of plane curves of
degree d, there is interest in enumerative geometry to know the number of
curves in C that satisfy n simple conditions. Geometrically this often can
be reduced to finding the number of intersection points of n hypersurfaces
of C, and the solution of problems of this type usually involves a complete
knowledge of Pic (C).

For the family Cd of all smooth plane curves of degree d, Pic(Cd)
is a cyclic group of order 3(d — I)2, for plane curves of degree d "are
parameterized by a projective space of dimension d(d+3)/2 and the singular
curves fill a hypersurface of degree 3(d-1)2 in that space (the discriminant
hypersurface).

Another interesting example is the family V^ of irreducible plane
curves of degree d with exactly 6 nodes as singularities. This variety
is irreducible (Severi [8], Harris [4], Ran [7]). Unfortunately, the group
^^(Yd^) is not known. However, it has been conjectured by Diaz and
Harris [1] (see also Diaz and Harris [2]), that Pic(V^) is a torsion group.

The main goal of this note is to study rational equivalence on some
families of plane curves, or closely related families, and to determine,
as an application (see Theorem (22)) the group Pic(Vd,i), obtaining, in
particular, that it is a finite group of order 6(d— 2)(d2 — 3d+1) (cf. Miret-
Xambo [6], where it is proved that Pic^i) is a cyclic group of order 6).

(*) Partially supported by DGICYT projects PB87-137 and PB90-637.
Key words : Rational equivalence - Plane curves - Intersection rings - Singularities.
A.M.S. Classification : 14C15 - 14C22 - 14N05 - 14N10.
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To be more specific, we determine, among others, the intersection
ring of natural compactifications of the following families of plane curves
of degree d : curves with an ordinary multiple point of multiplicity m > 1
and no other singularity (section 1; the compactification is denoted Xd,m);
curves with an ordinary cusp and no other singularity (section 2; the com-
patification is X^^); and curves with two ordinary nodes and no other
singularity (section 3; the compactification is X^0^). The compactifica-
tions we consider are projective bundles over varieties naturally related
to the corresponding problem (for example, the point-line incidence corre-
spondence for the cuspidal curves) and the determination of the intersection
ring relies on the construction and geometric interpretation of explicit reso-
lutions of the vector bundles involved (incidentally, in a remark at the end
of section 2 we point out a bug concerning Pic^011^) that slipped into
Miret-Xambo [6]). The baring of these varieties on the Severi variety Vd,i
is, roughly speaking, that Xd^ is a compactification of V^i with boundary
divisors X^P and X^°^. This fact, and the knowledge of the rational
equivalence of all the objects involved, allows us to calculate Pic(V^i).

Notations. — The term variety will be used to mean an algebraic
variety defined over a fixed algebraically closed ground field k and a
morphism of varieties is a Jc-morphism.

If /: X —> X' is a morphism of varieties and E ' is a vector bundle
on X', we shall write f * E ' to denote the pull-back of E' with respect to
the map /. If / is clear from the context, we shall also write E'\X. In
particular, if X is a variety and W is a vector space (which we will regard
as a vector bundle on Speck), the trivial vector bundle on X whose fiber
is W is the pull-back W\X to X of W with respect to the constant map
X-^Spec(Jc).

In the sequel we take V to denote a vector space of dimension 3 over
an algebraically closed field Jc, P2 = P(Y) the projective plane associated
to V and P2* == P(Y*) the dual projective plane. If v € V - {0}, we shall
write [v] to denote the point in P2 defined by v. As usual, we shall identify
the points of P2* with the lines of P2 : if w € V*, w -^ 0, [w] is identified
with the line whose points [v] satisfy w(v) = 0. Dually, given a point [2;],
the lines [w] such that w(v) = 0 are just the pencil of lines through [v}.

The tautological line subbundle of the trivial rank three bundle y|P2

over P2 will be denoted by L. Thus the fiber L^ of L over the point [v] e P2

defined by the non-zero vector v e V is the vector line {v) C V spanned
by v. The quotient of V\P2 by L is, by definition, the tautological quotient
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bundle Q. Thus Q is a rank 2 bundle and we have an exact sequence

(1) 0 -. L -^ V|P2 -> Q -> 0.

Dualizing we get an exact sequence

(2) O-^Q^V*!?2-^*-^.

Q r i is the space of linear forms w € V* that vanish on (i;), that is, such
that w(?;) = 0. Thus we see that P(Q*) is embedded in P(V*|P2) = P2 xP2*
in such a way that the fiber of P(Q*) over [v} € P2 is identified with the
pencil of lines through [v}.

In what follows we shall write h = ci(0p2(l)) = -ci(L). The
exact sequences above give us that c(Q) = (1 - h)~1 = l + f a + / i 2 and
c(0*)=l - / i+fa 2 .

In order to simplify the appearance of some expressions that will be
needed often, for any positive integer m we set

/ . fm-{-l\ /ci(m)-H\ , , ,,
ci(m)=l ^ 1 and c^m) = I lv ^ j=ci(ci(m)).

1. Plane curves with a distinguished multiple point.

We study the variety whose closed points parameterize (point) plane
curves of degree d >, 3 with a distinguished multiple point of multiplicity
m > 0. Here we consider any m, even though in later Sections we will
be concerned only with the case m = 2, both because the case m = 3 is
needed, in part, in the proof of 9, and also for future reference.

Let 3d V* denote the d-th symmetric power of V*. Then S^V* has
dimension N + 1 over Jc, where N = d(d + 3)/2, and the closed points of
the projective space P^ = P(5dV*) parameterize (point) plane curves of
degree d.

We shall write Ed,m to denote the subbundle of fi^Y*]?2 whose fiber
over [v] € P2 is the linear subspace of S^V* the elements of which are the
forms (p that have multiplicity at least m at [v] . It is clear that Ed m has
rank N + 1 — ci(m).

Define Xd,m = P(^d,m)- It is clear that Xd,m has dimension N —
ci(m) + 2. Since P^V*]?2) == P^ x P2, Xd,m is the incidence subvariety
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of P^ x P2 whose closed points are pairs (/, a) such that a € P2 is a
point of multiplicity at least m for the plane point curve / C P^. Thus
the fiber over a of the projection TT : Xd,m —^ P2 (that is, the restriction
to Xd,m of the projection P^ x P2 -> P2) is naturally isomorphic to the
(7V-ci(m))-dimensional linear system of plane curves of degree d for which
a is a multiple point of multiplicity at least m.

Let

gd-m-ly^ ̂  ̂ 2Q* ̂  5^-lQ* ̂  ̂ -^V* 0 5^Q*

be the unique map such that

^ 0 (€l A $2) 0 ̂  ̂  (<^l) 0 (^) - (<^2) 0 (^)

and

^d-my* ̂  gmQ^ ̂  ̂ V*|p2

be the unique map such that y?0^ \-^ (p^. If there is no danger of confusion
we shall write simply a to denote any of the "alternating maps" o^yn and f3
to denote any of the "product maps" f3d,m' Notice that from the definitions
it follows that a maps ^S'̂ "771-^* (^A2^* (g)^"1^* into Sd~'mQ* (g^O*
and that /3 maps S^-^* 0 ̂ '^Q* onto E^ and 5d-m0* 0 ̂ '''Q* onto
^Q*.

Next proposition gives a resolution of Ed,m in terms of the maps a
and (3 :

(3) PROPOSITION. — The sequence

0 ̂  ̂ d-m-ly* ̂  ̂ 2Q* ̂  ̂ -lQ* -^ ̂ -my* ̂  ̂ mQ* _^ Ed,m -^ 0

is exact.

Proof. — From the definitions of a and /? it is clear that f3a = 0.
To see that a is injective, it is enough to establish this property for the
fiber map over an arbitrary point a. Given the point a, choose projective
coordinates [x^.x^.x^} so that a = [1,0,0]. Thus xo,x^,x^ is a basis of V*
and a*i, a-2 a basis of (%• Take an element

m-l

^ = ̂  ̂  0 (^i A ^2) 0 a;!̂ -1-1

%=0
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in ,S'd-m-ly* (g) A2^* 0 S^-^*. Then

m-l

a(Q = ( î) 0 x^ + ̂  ( î - ̂ _^) ̂  x\x^-^ - (^-1X2) ̂  x^.
1=1

If a($) = 0, then we must have ̂ i = 0 (hence ^o = 0), $ia;i - $0^2 == 0
(hence $1 =0), and so on. This shows that ker(a) = 0.

To end the proof it is now enough to show that the difference of the
ranks of the middle and left bundles is equal to N + 1 - ci(m). But this
can be checked with a straightforward computation.

The two lemmas that come next about Chern classes will be used
below to determine the total Chern class of E^m'

(4) LEMMA.

c^Q*) = 1 - ci(m)/i + C2(m)h2.

Proof. — Let s and t be the roots of Q*. From the exact sequence (2)
it follows that c(Q*) = (1 + ciL*)-1 = 1 - h + h2 and therefore s +1 = -h,
st = h2. The roots of S^Q* are is + (m - i)t, 0 < i < m (Fulton [3], Ex.
3.2.6), and so

c^m0*=f;^.+(m-^)t=(m^ l)(.+t)=-(m^ l),.

Similarly we have that

c^Q^ ^ (is+(m-i)t)(js+(m-j)t)
0<i<j<m

= ^ (zjs2 + (m - i)(m - j)t2 + i{m - j)st + j(m - i)st)
0<i<j<:m

= ^ ^'(52 +12 - 2st) + m ^ (i+j)st
Q<i<j<m 0<,i<j<,m

= Pm((s +1)2 - 4:st) + mqmSt = (-3pm + rnqm)h2,

where we set pm = E '̂ and Qm = E (^ + J')- Now ^ is ea^y to
0<i<j<m 0<i<j<m

see that

/m\ , g /7n\
p^ = pm-i + m 1 ^ j and ^ = ̂ _i + m2 + ^ j
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and hence we see that pm and Qm are polynomials of degree 4 in m (for
non-negative integers m). Since the proposed coefficient of h2 (let it be km)
is also a polynomial of degree 4 in m, to end the proof it is enough to see
that km and —3pm + ^Qm have the same value for 0 < m < 4, which is
indeed the case and easy to check. Alternatively, it is straightforward to

obtain the expression mqm — 3pm = m + 4 ( ) + ^ ( o ) ~ * ~ ^ ( A ) anc^
to check that this coincides with km-

(5) LEMMA.

^A2^* (g) S^Q")-1 = 1 + ci(m)/i + C2(m)h2.

Proof. — We first calculate the Chern classes of A2^* 0 S^-^Q" :

ci(A20* 0 S^Q") = rank S^-^c^A2^*) + ^(S'771-1^*)
= m(—h) — ci(m — 1)^
= —ci(m)/i,

and
C2(A20* 0 5m-10*) = C2(^m-10*) + (m - l)cl(5m-10*)cl(A20*)

+(m)c,(A20*)2

V z /

= (c^m - 1) + mci(m - l))/i2.

From this calculation it follows that
^A2^*^^-1^*)-1 = l+Cl(m)/l+(cl(m)2-C2(m-l)-mcl(m-l))/^2

= 1 + c\{m)h + c'2(m)h2.

(6) PROPOSITION. — The totaJ Chern class of Ed,m is given by

c{Ed,m) = 1 - {d - m + l)ci(m)/i + (d - m + l)2C2(m)/^2 .

Proof. — According to the exact sequence (3),
, /d-m+2\ ^ /d-m+l\

c(^,m)=(l-Cl/l+C2^2)(< 2 J(l+Cl/l+C2ft2) l< 2 /,

where for simplicity we have written c\ and 02 instead of ci(m) and C2(m).
Since (1 - ci/i + C2fo2)(l + ci/i + C2fa2) = (l + (2c2 - ̂ )A2),

C(^^) = (1 + (2C2 - C^fa2) (d-^1) (1 - Ci/^ + C2/l2)d-m+l

= 1 - (d - m 4- l)ci/i + (c? - m + l)2^2.
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The intersection ring of Xd,m' — The previous corollary allows us to
describe explicitly the Chow ring of Xd,m-

(7) THEOREM. — The ring A*(Xd,m) is isomorphic to the quotient of the
polynomial ring Z[/x, h] by the ideal

(/i3, ̂ +l-cl(m) - (d - m + l^m)/^-01^)

+(d - m + l)^^2/^-^771)-1).

In particular Pic{Xd,m) is a ranic 2 free group generated by /z, h. Moreover,
the following- relations hold :

^N-c.(m) ̂

^v+i-c,(m) ^ ̂  _ ̂  l)ci(m),

^V+2-c,(m) ̂  _ ̂  + l)2^!^)2 - C2(m)).

Proof. — Given a line u in P2, the pullback of h = [u] e Pic(P2)
to Xd,m by the projection Xd,m —^ P2 will be still denoted h. Since this
projection is flat, h is the class of the pullback of u, that is, the class of the
hypersurface whose points (/, a) satisfy a € u. Similarly, the pullback to
Xd,m of the hyperplane class u. = ci(0pjv(l)) of P^ under the projection
Xd,m —> ̂ N will still be denoted /^. Since the condition of going through a
point is linear, fi is the class of the hypersurface whose points (/, a) satisfy
that / goes through a given point. Moreover, ji coincides with the class
Ci(Oxd,mW)^ by tne functoriality of the hyperplane class.

Now we know (see, for example, Fulton [3], Ex. 8.3.4) that A*{Xdm)
is isomorphic to

A^P2)^]/^1-^) - {d - m + l^m)^-^)
+(d - m + ̂ ^(m)/^-^771)-1.

Since A*(P2) = Z/(/i3), the result follows.

We define X^ = Xd^' This variety contains the open set Vd,i whose
points parameterize plane curves of degree d with one node and no other
singularities. In the next two sections we introduce and study varieties
^usp and ̂ mod. These will be used in section 4 to show that X^ - Vd,i
is the union of two codimension one irreducible subvarieties X^ and X^
whose generic points are plane curves of degree d that have, respectively, a
cusp and two nodes as only singularities. Furthermore, X^ and X^ will in
turn play a key role in the determination of Pic(V^i).
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2. Cuspidal curves of degree d.

Let F = P(Q*) c P2 x P2* be the flag variety, that is, the variety
whose closed points are pairs (a,£) € P2 x P2* with a e L Define ̂ usp to
be the subvector bundle of E^\F C S^V'I.F whose fiber over (a,^) e F
is the linear subspace of 3d V* consisting of those forms (p for which a is a
cusp and £ is the cuspidal tangent. The rank of E^P is N - 4. Then the
fiber of ̂ usp := P^^P) over (a, £) is canonically isomorphic to the linear
system of curves of degree d that have a cusp at a whose cuspidal tangent
is i (that is, a is a double point for / and H is a double tangent to / at a).

By the definition of ^usp, there exists a map of vector bundles

5fd-2V*00^(-2)-^^usp

given by composing the map 1 0 i with the product map S^2^ 0
S'^Q^F -^ S^^F. Adding this map and the product map

5d-3y* ̂  s^Q^F -^ S^^F

yields a surjective map

(5^-3y* 0 5'3(3*|^) e (^-V* (g) (9^(-2)) -^ E^.

(8) PROPOSITION. — There exists a resolution of ̂ usp of the following
form :

0 ̂  ̂ ^V* 0 A2^* 0 0^(-2)

^ (^^V* ̂  A2^* 0 ̂ Q^F) e ( l̂̂ * 0 Q* 0 0^(-2))

-^ (5d-3v* ̂  53Q*|F) e (5d-2y* 0 CM-2)) -^ ̂ usp -^ o,

where 0^(-2) ̂  520*|F is the natural inclusion map,

= ( a - ° ^p~\1^0 -/3(g)iy

with Q* (g) (9^(-2) —^ 6f3Q* the map obtained by composing 1 0 % with
the product map /3, and 6 = (-1 (g) 1 (g) z, a (g) 1).

Proof. — As explained before, TT is surjective, and from the definition
it is clear that 6 is injective. Furthermore, it is straightforward to check
that the sequence is a complex.
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Let us now check that ker(p) C Im(6). Given (a,£) e F, take
projective coordinates so that a = [1,0,0] and t = [x^ = 0}. Assume
that $ 6 ker(p). Then we can write

$ = ($1 ̂  ̂ i A a-2 (8) x\ + $12 0 a-i A x^ 0 a-i^
+$2 0 ̂ i A a;2 (8) a;|, ̂  0 a;i 0 ̂ | + $2 ̂  ^2 ̂  a;i)

and by definition of p we must have

$1^1 (g) a;2^? - $1^2 ^> ̂  + $12^1 ̂  a;i^| - $12^2 ̂  ^^2
+$2^i 0 a;! - 6^2 (8) ^ia;i + ̂  0 x^ + $2 ̂  ̂  = 0

and

($^i + $2^2) (g) a^i = 0.

The second relation yields that there exists rj G S^"4^* such that

$2=^1. $1 =-^2.

If we now perform these substitutions in the first relation we get that

($1^1 - $12^2) ̂  X^X2 - $1^2 <3) X\

+($12^1 - r]X2 - ̂ 2X2) ̂  x^ + ($2 + rj)x^ 0 x^ = 0.

From these we get immediately that $1 = 0, $12 = 0 and $2 = —77 and so

$ = <?(7y 0 x-t A a;2 (^ a;i).

Notice that the argument actually shows that ker(p) = Im(^). Finally it is
easy to check that the alternating sum of the ranks of the bundles of the
sequence in question is zero, which is enough to complete the proof.

In next proposition we determine the total Chern class of E^^.
Notice that (7) yields, since Q* = £'1,1 and so F = Xi,i, that A^F =
Pic(F) is rank 2 free group generated by c and ^, where now c and q are
the pullbacks to F of the hyperplane classes of P2 and P2*, respectively.

(9) PROPOSITION. — The total Chern class of E^^ is given by the
following formula :

c^^) = 1 - 5(d - 2)c - 2q + 15(d - 2)2c2 + 12(d - 2)cq - 42(d - 2)2c2g.
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From the preceding proposition we get that cf^E^) can be written
as follows :

c(Sd-3V^ S^Q^F)
^d-4y* ̂  ^2Q* (g) S^Q^F)

c(Sd-2V 0 CM-2)) c(Sd-^ 0 A2^* 0 CM-2))
c(Sfd-3y*(g)0*(g)0^(-2))

Now the first fraction in this product is equal to

c(Ed,3\F) = 1 - 6(d - 2)c + 21(d - 2)2c2.

To find the value of the second fraction, define G = S^^* / Ed-2 i, so
that we have the exact sequence

0 -^ S^-4^* 0 A2^* -^ 5^-3^* (g) Q* ̂  S^-2^* ̂  G -, o.

Then it is clear that the second fraction is equal to

c(G (^ CM-2)) = c(G) - 2g = c(^-2,i)-1 - 2g = 1 + (d - 2)c - 2g.

From this our formula follows readily.

In the following we shall write ̂ usp = P^815). Thus the points of
X^P may be thought as triples (/, a, £) such that / is a plane curve of
degree d having a cusp at the point a with cuspidal tangent £.

The intersection ring ofX^. — The pullbacks of the classes c and
q on F to X^^ will be denoted c and q, respectively. Thus c and q are the
classes of the hypersurfaces of triples (/,a,^) such that, respectively, a lies
on a line and q goes through a point. On the other hand, the hyperplane
class on X^^ will be denoted /^. It is easy to see that IJL is the class of the
hypersurface of triples (/, a, £) such that the curve / goes through a given
point.

(10) THEOREM. — The ring A1'(X^1SP) is isomorphic to the quotient of the
polynomial ring Z[/^, c, q} by the ideal

(c3,c2-cg+g2,^-4-(5(d-2)c+2g)^-5

+3(d - 2) (5(d - 2)c2 + ̂ cq)^-6) - 42(d - 2)2c2^N-7).

In particular, Pic^X^) is a rank 3 free group generated by /^, c, q.
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Proof. — Let p, be the hyperplane class on X^P. Then

AW^) = A^FM/^^c^E^)^-4

where TT : ̂ usp —^ p is the natural projection and the statement follows
from the preceding proposition in a straighforward manner.

(11) COROLLARY.

c2^-5 =1 c2/^-4 = 2
cg^-4 =2+5(d -2 ) ^N-4 = 5(d - 2)
c^-3 =4+8(d-2) g^-3 = 8(d - 2) + 10(d - 2)2.
^-2 = i2(rf - 2) + 12(d - 2)2

Proof. — The first relation is obtained from the fact that the curves of
degree d that satisfy the condition c2q form a linear system. The remaining
follow from the basic relation

^v-4-(5(d-2)c+2g)/^-5

+3(d - 2)(5(d - 2)c2 + 4cg)^-6 - 42(d - tl)2c2q^N-7 = 0

and straighforward calculations.

Remark. — Let ^cusp be the variety of non-degenerate plane cuspidal
cubics. Then we claim that Pic^011^) is an infinite cyclic group generated
byc-q. This statement corrects the assertion in Miret-Xambo [5], Theorem
1.3 : the last sentence "and from this the claim follows" of the proof of
that theorem is incorrect, for the argument up to that point only allows to
conclude that there exists an exact sequence Z —> Pic^0115^) —^ Z/(5) —^ 0,
but not that this sequence is split. It is also to be remarked that this error
affects no other statement in the quoted paper, for there Theorem 1.3 is
used only in the last sentence of Remark 10.1.1, as a cross-checking, and
this sentence is in fact correct, for it relies only on the correct part of the
proof of Theorem 1.3.

Now let us prove our claim. Let E ' be the subbundle of S'2V^\F
whose fiber over a point (a,^) is the vector subspace of S^V* consisting
of forms that are tangent to t at a. Let E" = S3Q*\F C S^yiF. Then
a = P(£" 0 0 ̂ (—1)) C ^usp is the hypersurface whose generic point
consists of a non-degenerate conic with a distinguished tangent, the contact
point being the cusp and the tangent the cuspidal tangent, and r = P(^")
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is the hypersurface of ̂ usp whose generic point is a triple of lines through
a. With these notations it is easy to see that

X^-V^^aUr.

Now by (10) we can express a and r as an integral linear combination of
JLA, c and q. In fact it is not hard to see that

a == ^ — 3c + 3q
r = /ji + c — 2q

(independently, these relations are a consequence of the first and fifth
relations of Theorem 10.1 in Miret-Xambo [5]). These relations imply the
relations

/1=3(C-9)+<T

q = 4(c - q) + a - r
c = 5(c — q) -(- o- — r

and since there exists an exact sequence

A°((T U r) -. Pic^^P) -^ Pic^"815) -. 0

we see that Pic (V^^) is generated by c — q. To end the proof of the claim
we only have to see that Pic^011815) is not a torsion group. Let us argue by
contradiction. Assume that n is a non-zero integer such that n(c — q) = 0.
By the above exact sequence, this implies that there are integers r, s such
that

n(c — q) == ra + ST.

Substituting a and r in this relation by their expressions above in terms of
/A, c and g, we would get a relation

(r -+- s)p, - (3r - s + n)c + (3r - 2s + n)q = 0,

which is impossible if n 7^ 0.

3. Binodal curves of degree d.

In this section we introduce a variety X^^ that parameterizes plane
curves of degree d with an ordered pair of double points. In fact, Ĵ 111^ will
be defined as a projective bundle over the variety G whose closed points
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are triples (a, 6, m) € (P2)2 x P2* such that a, b G m. We write M to denote
the line bundle on G that is the pullback of Op2* (—1) under the projection
mapG^P2*.

The bundle E^. — In order to study the vector bundle ^inod

such that P^1110^ = X^^ we introduce first an auxiliary vector bundle
^isec Q^ o . ̂  ^g ̂  gubbundle of S^V* [G whose fiber over (a, 6, m) € G
is the linear subspace of 3d V* whose elements are forms (p of degree d
whose restriction to m vanishes on a + b (as a divisor on the line m). It is
clear that E^ has rank N+1-2=N-1.

Next statement provides a resolution of ^lsec. We use the following
notations :

- Q^ (resp. Q^) for the pullback of Q* to G under the projection map
G —^ P2, (a, 6, m) i—^ a (resp. (a, 6, m) ^—> b);

- 5ab = 0: C Q^ and Pab = Q: ̂  Q^;

- p:M (g) 5'̂ * —^ ^"^y* (product map) for the inclusion map given
by m 0 uj !—)• mo;;

- % a : M —> Q^ and ib:M —^ Q^ for the natural inclusions and A: M —^
Sab tor the map (za-> ib) ;

- r: M (g) Sa5 —>• Pab for the map such that m 0 (o;, /3) i—>- a 0 Zfo(m) —
Za(^) ^/?;

- ^:5'ab0S'A;y* -^ fi'^1^* for the map such that (a,/?)(g)o; ̂  auj-13uj\
and

- q ' ' P a b ^ > S^ —^ S^^V* the map such that a (g) /3 0 ̂  i-̂  a^.

To simplify notations we also make the convention to denote with the
same symbol than any of the above maps the maps that it induces after
tensoring by any bundle on the left and any other bundle on the right. For
example, the map

p : M2 0 Sab 0 S'̂ y* -^ M (g) Sab ̂  fi^Y*

is to be interpreted as the composition of the transposition isomorphism

M2 (g) Sab 0 S^V* 2± M (g) Sab 0 M (g) S^V*

with the map IM ^ 1.5'ab ^P-
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(12) PROPOSITION. — The following sequence is exact :

0 -^ M3 0 S^V* ̂  (M2 ® S^V*) (B (S^ ® M2 ® S^V*)

-^ (Sab 0 M ® ̂ -̂ ^ © (Pab (g) M 0 5^-^*)

^ (M ® .S^V*) e (Pab <S S^V*) -^ E^ -^ 0,
where

-0). -(-^). -M. —)•
Proof. — Since p is injective, 71 is injective. Now

7271 = (-Aj?+j?A,rA) = (0,0)

as follows directly from the definitions. Similarly,

/ -<^A -6p + <7T \
^2 = [ -_^A r p - p r ) and 7473 = (^ + ̂ T5W - qp^

which are both zero, as it is easy to check. So the stated sequence is a
complex. On the other hand a straighforward calculation shows that the
alternate sum of the ranks of the bundles is 0, so that to prove exactness
it is enough to see that 74 is surjective, that ker(72) C Im(7i) and that
ker(74) C 1111(73).

That 74 is surjective follows from the definition of ^isec : a form of
degree d whose restriction to m vanishes at the divisor a + b of m, for a
given (a, 6, m) C G, either vanishes identically on m, in which case it is in
74 (M 0 ̂ S^^y*), or else it is, up to a form that vanishes identically on m
ir^Pa^^-2^*).

The other two relations are established by a straightforward calcula-
tion. To illustrate we shall prove that ker(72) C Im(7i). Let uj e ker(72)
and (a, &, m) € G the point over which uj lies. We shall assume that a ̂  b.
The case a = b can be done in a similar way. Fix projective coordinates so
that a = [0,0,1], b = [0,1,0] and m = {xo == 0}. Then

^ = (^ (g) 0:0, x^ (g) XQ (g) cj[ + a-2 (g) rri (g) ̂ /, x^ (g) XQ (g) ̂  + x^ (g) x^ (g) ̂ /),

where ̂  € ^S^V* and ^uj'{,uj'^^ e 5^-3^*. Since

72 (^) = {xo <^XO^^Q-XO^XQ<S) XQUJ[ - XQ (g) a-i 0 a;o^//,

-a-o ̂  a'0 ̂  0:0 + .TO ̂  XQ (g) rro^2 - ̂ o ̂  a'2 (^ ^0^2^
•z-o ̂  XQ (g) .ro^^ + .z-o ̂  ̂ i 0 rroo;'/ -XQ^XQ^ XQ^ - XQ (g) x^ 0 ̂ o^)
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the relation

72(^)-0

is easily seen to be equivalent to the relations

^ = ct/>' = 0 , and c<;o = Xouj[ = XQUJ'^.

Therefore u}[ = uj'^ (say = a/) and

^ = (x^ (g) XQUJ' , x^ 0 XQ (g) cV, a^ (g) .TO (^ ci/),

and from this it is clear that

^=-yi(^(W).

Next we apply the resolution above to calculate the total Chern class
cW).
(13) PROPOSITION. — The total Chern class of c^E^1^) is given by the
following expression :

l-m-(d-l)(o+b)-(d2-l)m2+ (d-ly+4) m(a+b)+ (d-1^-2) (a+fe)2

z ^

+(d + l)(d - l)(d - 3^(0 + b) - (d ~ l)(d ~ 2)(d + 3) m(a + b)2
z

_ (d-l)(d-2)(d-3) ̂  ̂  ̂ 3 ̂  ̂  _ ^^ _ 2)^2 ̂  3^ _ 3)^2^
6

Proof. — From the resolution in the previous proposition we obtain :

^bisec^ ^ C{M2 ® S^V-Wa^ S^V-)
c{ d ) C^M^Sab^S^V^

c(M2 (g) ̂  (g) ̂ -^^^M (g) y^y*)
' C(M (g) Pab 0 ̂ -^^(M3 (g) ̂ -3^*) '

Define Ra = Q^IM, Rb = Qt/M and Rab = Ra ^ Rb- From the exact
sequence

(*) 0 -> M2 -> M (g) 5afc -^ Pab ^Rab-^0

(obtained tensoring the exact sequences 0 —> M —^ Q^ —^ Ra —> 0 and
0 —> M -^ Q^ -> Rb -^ 0), we see that the first fraction of the expression
above is c(Rab 0 -S^"2^*). Therefore we see that

/ b,ec. _ c(fl^ ® S^V^M2 ® S^, 0 S^V*) ,_,
{ d ' C^M^Pab^Sd^V^M^S^V*)' '
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To evaluate the fraction in this expression, consider the obvious exact
sequence

o -> M 0 .s^y* -> .s^y* -> S^V/M <g) .s^y* -. o
and tensor it with Rah' Since the first term of the resulting exact sequence
is M 0 Rab 0 S^^y*, which is the last of the result of tensoring (*) with
M 0 S^^y*, we get the exact sequence

0 -^ M3 (g) S^V* -^ M2 0 Sa6 ̂  S^V* -^ M 0 Pab <8) fi^Y*
-> Rab 0 S^y* -> Rab 0 S^V/M (g) 5'd-3y* -^ 0.

Now with this sequence the fraction of the expression of ^E1^1®^) is
c{Rab ̂  {S^V/M 0 5rd-3y*)) and so

îsec) ̂  ̂ .̂  ̂  S^V^Rab 0 (^-^VM 0 ̂ -3y*)).

From this the result follows by a straightforward computation of which we
indicate the main steps. It is clear that c(M) = 1 — m. Using this and the
relation c(Q^) = 1 — a + a2, we obtain that c(Ra) = 1 — a + m. Hence
c{Rab) = 1 — a — & + 2m. On the other hand,

0(^5^) = c(M)(^2) = 1 - (̂ ÎK^2^
^

fe(A;+l)(fc+2)(fe+3) 2+——————g——————m

and

c^yVM^^y*)^^)-^1) =i+ ^-tAlm
fe( fe+l ) ( fe2+fe+2) 2

+ g m .

Finally c(M (g) 5^-^*) and c(J?a6 ^ (5fd-2y*/M 0 5'd-3y*)) can be
evaluated, the latter using the fact that Rab is a line bundle (see Fulton
[3], Example 3.2.2). Putting everything together yields the stated formula.

The intersection ring ofX^18^. — We are going to study on the variety
j^»isec ^ p^^163^) the following conditions : the characteristic condition ^
and the conditions a, b and m (for example, and as usual, a denotes the
condition that the point a of a quadruple (/, a, &, m) 6 X^0 lies on a line).
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(14) THEOREM. — The ring A*^18^) is isomorphic to the quotient of the
polynomial ring Z[/^, a, 6, m\ by the ideal

(a3, a2 - am + m2, &2 - &m + m2, ̂ N-1 - (m + (d - l)(a + 6))/^-2

-((^-1)^- ̂ ^(a^)- (d-1^-2) (a+5)^-3
z z

+((d+l)(d-l)(d-3)7^(0 4^)- (d-l)(d^2)(d+3)^^

_ (d - l)(d ̂  2)(d - 3) (^^3^N-4^^_^^_^^2^3^_3^2^7V-5) ^

Jn particular, Pic(X^lsec) is a ranic 4 free group generated by /^, a, b, m.

Proof. — Let fi be the hyperplane class on X^^. Then

A*^—)) = A^GM/^c^E^)^-^

where TT : X^18®0 —> G is the natural projection. Using the resolution of the
previous proposition the theorem follows in a straightforward manner.

(15) COROLLARY. — In A:¥(X^sec) the following relations hold :

/^+2 =0 a^1 =0
7n^+1 =0 ab^ =d2

a2^ =0 ma^ = d{d - 1)
m2^ =d{d-l) a2^-1 =d

mab^-1 =2d-l m2a^N-l =d-l
m^ab^-2 -1.

Proof. — Use (14) and the fact that a2^2/^-2 = 1.

The bundle ̂ mod. — Now we define ^ino(i as the subbundle of the
trivial bundle 3d V* \G whose fiber over (a, 5, m) G G is the linear subspace
of 3d V* whose elements are forms (^ of degree d whose restriction to m
vanishes on 2a + 2& (as a divisor on the line m). It is clear that ^mod has
rank 7 V + l - 6 = 7 v - 5 . Define also Tab = (Q: ̂  ^Q^) C {S2Q^ (^ Q^)
andn^^O;^2^.

Next statement provides a resolution of .E^1110^ We use the following
notations :

- k: M (g) Pab —)> Tab, the map m(g)a(g) /?^-^(a(g) m{3, ma (g) /3);
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- w: M 0 Tab —^ llab, the map m 0 (ai 0 /?2, a2 0 /?i) i-̂  mai (g) /?2 -
0^2 0 m/?i;

- i'.Tab^ ̂ V* -^ ̂ 1^ the map (ai 0 /^02 0 A) 0 ̂  ̂  (0^2 -
^2/^1 )^;

- ^ : ̂ ab 0 ̂ ^V* -^ E^, the map a (g) (3 (g) a; ̂  a/3^ ;

- recall also that p'.M^S^ -^ ^+ly* (product map) denotes the
inclusion map given by m (g) uj \—^ muj.

Moreover, we use similar conventions to those explained before Propo-
sition (12) to simplify notations.

(16) PROPOSITION. — The following sequence is exact :

o-.M3^?^^-5^* ̂  (M20^^05d-5y*)©(M20p^^-4y*)
-^ (M ^ T^ 0 y^y*) © (M 0 n^ 0 ̂ -^^

-^ (M ̂  ̂ ec) e (IL, 0 ̂ -4^*) A, ̂ binod _ o

where

"•'C). ^c -s). ^=(-: -n. A'(-).
[In the definition of /?4, note that the image of the map j-.Hab <8>

S^V* -^ ^isec is contained in .E '̂"0*1 and that we denote the corre-
sponding map j: Tl^b <8 S^V* -^ £'y"od ^y ̂  gg^^g symbol j.}

Proof. — It is similar to that of Proposition (12) and we omit it.

(17) PROPOSITION. — The total Chern class c '̂"0'1) is given by the
following expression :

l-(5m+(3rf-8)(a+6))

-(3(d2-2d-5)m2-^(3c?2+29d-102)m(a+6)-l(d-3)(9ri-26)(ffl+6)2)

+(3(3d3 - 19d2 + 8^+62)7^(0 + b) - J (d - 3)(9ri2 + 40rf - 204)m(a + b)2

- ̂  (d - 3)(3d - lO)^ + b)3) + 36(d - 2)(d - 3)(d2 +d- 13)^6.
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Proof. — From the resolution given in the last proposition we have
that

c(M2 ̂  pgb 0 s^v^cCHgb ̂  y^y*)
^M^r^^-4^*)

c(M2 (g) Tqb 0 y^y^M (g) ̂ LT)
' c(M 0 iiab <g) s^v^M3 0 Pab 0 s^y*)'

Define ̂  = S^Q^M 0 Q:, Ub = S^Q^/M 0 Q^ and £/ab = Ua 0 £/b.

There exists an exact sequence

(*) 0 -^ M1 0 Pafc -> M 0 Tab -^ nab -> ^ab ̂  0

which is obtained tensoring

O-^M^O:-^2^:^^-^

with the analogous sequence for £/&. So the expression above is

r(M ^ F^n C[M2 0 Tab 0 ̂ "5y*)c(^ 0 ̂ "4y*)v " d - 1 ) c(M 0 n^ <g) ̂ -^^(M3 (g) Pab 0 s^y*)'
Now we are going to see that there is an exact sequence

0 -̂  M3 (g) Pab ̂  6^-^* ̂  M2 (g) Tab (g) 5^-^* -^

M^n^^^^-5^ -^ ^(g)^-4^* -^ ̂ ^(^^yVM^-5^*) ̂  o.
Indeed, the kernel of (j) is M^l/ab^S^^Y* and this bundle coincides with
the rightmost non-zero term of M 0 (*) 0 S^^V*, so that our sequence is
just the result of splicing together this last sequence with the sequence

0 -^ M^Uab^S^V -^ Uab^S^V -^ Uab^S^V'lM^S^V^ -^ 0.

Finally, the last displayed exact sequence allows us to evaluate the fraction
in the expression of c^^1110^ and hence we obtain

^inod) ^ ̂  ^ E^)c(Uab ̂  S^V/M 0 ̂ l^*).

By definition, Ua = S2Q^/M (g) Q^, and so, using previous formulas,
c(Ua) == 1 + 2m - 2a and c(Uab) = 1 + 4m - 2a - Ib. Using this, and the fact
that (^(-E1^18^) is already known, the proposition follows by a staight forward
computation.

The intersection ring ofX^0^. — We shall set X^°^ to denote the
projective bundle P^1110 .̂ Thus X^°^ is smooth and has dimension
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N — 6 + 4 = N — 2. We are going to calculate the intersection ring of
joined ^g^g ̂  knowledge of the Chern classes of E^110^ in terms of the
following classes : the characteristic condition fi and the conditions a, b and
m (for example, and as usual, a denotes the condition that the point a of
a quadruple (/, a, 5, m) € X^^ lies on a line).

(18) THEOREM. — The ring A*(X^mod) is isomorphic to the quotient of
the polynomial ring Z[/x, a, 6, m] by the ideal

( a3, a2 - am + m2, b2-bm+ m2, ̂ N-5 - (5m + 3(d - 8)(a + &))^~6

- (3(^-2^-5)7712- 1 (3^+29^-102)^(0+6)- 1 (d-3)(9d-26)(a+&)2)/^-7

^ ^
+ (3(3d3 - 19d2 + 8d + 62)m2 (a + b) - 1 (d - 3) (9d2 + 40d - 204)m(a + b)2

-l(d-3)(3(^-10)2(a+6)3)^-8+36(d-2)(d-3)(d2+d-13)m2a^-9).^j /

In particular, Pic(X^lnod) is a rank 4 free group generated by /z, a, 6, m.

Proof. — Let ^ be the hyperplane class on ̂ inod. Then

A^X^)) = A^GMlY^^c^E^V-1-^

where TT : ̂ lnod —» G is the natural projection. Using the resolution of the
previous proposition the statement follows straightforwardly.

(19) COROLLARY. — In A^X^1^) the following relations hold :

^-2 = 3(^ - i)(3^3 _ 9^2 _ 5^ _^ 22) ^v-3 ̂  9^3 _ 3^2 _ ^ + 30
m^-3 == 2(d - 2)(9d2 - 34d + 27) ab^-4 = 9d2 - 18d + 2
a2^-4 =3^-6^-4 ma^-4 =12^-49^+46
m2^-4 = (d - 2)(9d - 25) a2^-5 = 3(d - 1)

ma^-5 =6d- l l m2a^N-5 = 3d - 8
m2^^-6 =1.

Proof. — Use (18) and the fact that a2^2/^-6 = 1.

4. The group Pic(y^i).

Recall that we set X^^ to denote be the variety X^^- Now there
exist natural maps ̂ usp -^ X^ and xynod -^ ̂ od whose images will
be denoted X^ and X^ respectively. From our analysis in the previous
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sections it follows that X^ and X^ are the closures of the sets V^ and
V^2 of plane curves of degree d that have a cusp or an ordered pair of
nodes as only singularities, respectively, so that in particular this yields
the irreducibility of V^ and V^ (the irreducibility of V^ implies the
irreducibility of Vd,2? for the former is a double cover of the latter; cf.
Harris [4], Ran [7]).'It follows that X^-V^i = X^UX^. We set 7 = [X^]
and ^ = [X^], so that 7, ̂  e Pic^X^).

(20) PROPOSITION. — The group Pic^X^06) is a rank two free group
generated by JLA, h. Moreover, the following relations hold in Pic^X^) :

7=2^+2(d-3)fa
$ =(3d2 - 6d - 4)/z + (-7d + 18)/i.

Proof. — By the second part of Theorem (7), there exist integers
r, s such that 7=7-^4- sh. If we multiply this relation by /i2/^"4 we get
r == h2^'^. To evaluate this, let (/? be the map from ̂ usp to X^. The
image of this map is X^ and so <^*(1) = m^, where m is the degree of (p.
So, by the projection formula and mr = (99*/i)2^*/^)^"4 = c2|^N~4 = 2
(Corollary (11)). On the other hand, since ip is generically bijective, m
has to be a power of the characteristic of the ground field, which we have
assumed to be not 2. Thus we conclude that m = 1 (this means that (p is
a birational morphism onto its image) and r = 2. If we now multiply 7 by
h^'3 we get (Corollary (11) and Theorem (7))

s = h^-3^ - 2h^N~2 = 2(d - 3).

Similarly, there are integers r', s/ such that ^ = r ' ji-^-s'h. Multiplying
by /i2/^"4 and using Corollary (19) we get r ' = 3d2 — 6d — 4, and
multiplying by /^N-3 we get s' = —7d + 18, this time using Corollary
(14) and Theorem (7).

(21) COROLLARY.

6(d - 2)(d2 - 3d + l)/^ ={7d - 18)7 + 2(d - 3)^

6(d - 2)(d2 - 3d + l)/i =(3d2 - 6d - 4)7 - 2^.

Proof. — If follows immediately from Cramer's rule.

(22) THEOREM. — Ifd is odd, then

Pic(Vd,i) = Z/6(d - 2)(d2 - 3d + 1)
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and if d is even then

Pic(^,i) = Z2 x Z/3(d - 2)(d2 - 3d + 1).

Proof. — The two relations of (20) above yield 2/2 = 2(3 - d)h and
(3d2 - 6d - 4)/^ = (7d - 18)/i. If d is odd, then 3d2 - 6d - 4 is odd,
say 3d2 - 6d - 4 = 2n + 1, and in this case the two relations imply that
^ = (3d3 - 15d2 + 22d - 9)h. Thus Pic = Pic(Vd,i) is cyclic generated by
h and the second relation in (21) implies that the order of Pic is at most
6(d - 2)(d2 - 3d + 1). Now let r be the order of h (or of Pic), and let s be
such that rs = 6(d - 2)(d2 - 3d + 1). Then, because of the exact sequence

A°(7 U 0 - Pic^) - Pic(y,,i) - 0,

there exist integers p, q such that rh = p^ + ̂ . Therefore 6(d - 2)(d2 -
3d + l)h = srh = sp^ + sq^. It follows that sp = 3d2 - 6d - 4, sq = 2, and
hence that 5=1. Notice that 7 and ^ are linearly independent over Z.

Assume now that d is even, d = 2k. Cancelling the factor 2 in the
first relation above, which is possible by (20), we get the relation

3(d - 2)(d2 - 3d + l)h = (6k2 -6k- 2)7 - ̂ .

In particular, 3(d- 2)(d2 - 3d+ l)h = 0 in Pic. As before, it is easy to see
that 3(d - 2)(d2 - 3d + 1) is the order of h.

In Pic we also have 2fi = 2(3 - d)h (the difference of both expressions
is 7). Hence if we set // = ^ + (d - 3)/i, then 2// = 0 in Pic. Since //
and h generate Pic, there are two possibilities : either // e Z/i, in which
case Pic would be cyclic of order 3(d - 2)(d2 -3d+ 1), or else // ^ Z/i, in
which case Pic would be the product of two cyclic groups of orders 2 and
3(d - 2)(d2 - 3d + 1). To complete the proof it is enough to see that the
first possibility cannot occur.

Since // = ̂  + (d - 3)h if // e Z/z there would exist integers p, q and
r such that

[i + ph = 97 + T^.

Substituting 7 and $ as expressed in (20) we would obtain

^ + ph = (2q + (3d2 - 6d - 4)r)^ + (2(d - 3)q + (-7d + 18)r)h.

But this is a contradiction, for the coefficient of ^ on the right hand side
is even.
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