
ANNALES DE L’INSTITUT FOURIER

ERIC STADE
The reciprocal of the beta function and
GL(n,R)Whittaker functions
Annales de l’institut Fourier, tome 44, no 1 (1994), p. 93-108
<http://www.numdam.org/item?id=AIF_1994__44_1_93_0>

© Annales de l’institut Fourier, 1994, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1994__44_1_93_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
44, 1 (1994), 93-108

THE RECIPROCAL OF THE BETA FUNCTION
AND GL{n,R) WHITTAKER FUNCTIONS

by Eric STADE

1. Definitions; statement of results.

Our first result will concern the classical beta function
r{x)F{y)

^^WTy)'
In §2 below we will prove:

THEOREM 1. — IfRe(x+y - 1) > 0, then

(̂ DBSD - 55 /,.,<1 + W" C + "'"-1 ̂
the integral taken counterclockwise in the complex plane.

We note that, by the functional equation of the gamma function, the
left-hand side of the above expression equals F(x + y - l)/{r(x)r(y)}. We
also remark that the result of Theorem 1 is similar in form to the classical
formula

B(^,2/)= / ^(l-^-1^,
Jo

and even more so to the expression

B(^)= r(i+1/^-^1+^-^
Jo u
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(which follows from the first integral for B(x^y) by the substitution t =
(l+l/^)-1).

The remainder of the work in this paper will concern the application
of Theorem 1 to the study of GL(n, R) Whittaker functions. We begin by
recalling some basic facts regarding these functions.

Whittaker functions for arbitrary reductive groups were first studied
by Jacquet [6]; we will consider in this paper only the groups GL(n^ R). In
fact, the results we obtain will pertain specifically to GL(3, R) and GZ/(4, R)
Whittaker functions; even so, some terminology in a general setting will
be helpful. We introduce the following notation. Let X C GL(n, R) be the
group of upper triangular, unipotent matrices: if x G X, we write x = (a^j).
Also let y C GZ/(n, R) be the group of diagonal matrices y of the form

y = {diag(^2 • • • Vn-i, V^Vs ' • • Vn-i,.. • , Vn-i, 1) I Vi > 0 for all %}.

We will be interested in functions on the "generalized upper half-plane"
7^, which is a homogeneous space for GZ/(n,R):

Hn=GL{n,R)/(KZ),

where K is the orthogonal group and Z the group of scalar matrices. By
the Iwasawa decomposition, every z € ̂ n has a unique representation

z = xy (mod KZ)

with x € X, y e Y. In what follows, functions on T-C^ will be defined in
terms of these coordinates.

In particular, we will want to study eigenfunctions of the algebra D
of GL(n, R)-invariant differential operators on W\ One such eigenfunction
is given (cf. [11]), for v == {y\,v^... ,^n-i) € C71"1, by

n-l n-1

H^z)=H^y)=\{ n^
%=i j=i

where bij = mm{ij, (n — i)(n— j)}. If we denote the eigenvalues of Hy by
\y{d)—that is,

dH^=\v{d)Hv

for all d G D—then these eigenvalues are known to be invariant under
a certain group action. Namely, let W be the Weyl group (identified
with the group o f n x n permutation matrices) of GL(n,R). Also, for
an arbitrary t = (^1 ,^2 , . . . ,^n-i) C C""1, let t - - denote the elementn



THE RECIPROCAL OF THE BETA FUNCTION 95

(ti - -,^2 --,..., tn-i - - ) . If we define an action uj{v) of W on C71"1
\ Ti Tl Ti j

by requiring, for each uj e W, that

^-^(y) = ̂ (z.)-^^^"1)
for all 2/ € r, then A^)(0 = A^(d) for all LJ e W, d € D.

Now Whittaker functions arise as eigenfunctions of D that transform
under the "superdiagonal" character 9 of X. Namely, if

Q(x) = e(a;i,2 + X2,3 + • • • + Xn-l,n),

where e(t) denotes e27"*, then we make the following

DEFINITION 1.1. — A GL(n,R) Whittaker function is a function
fy (z), smooth on W and meromorphic on C7'1"1, such that

(a) df^=\y(d)fv VdeD;

(b) Ux^z) = Q{x^)f^z) V^i e X, z e ̂ n.

Casselman and Zuckerman (in unpublished work), and independently
Kostant [7], have shown that the space Sn,v of GL(n,R) Whittaker func-
tions with fixed eigenvalues A^(d) has, for almost all values of v, dimension
n\ = |>V|. Further, Hashizume [5] has demonstrated the existence of a "fun-
damental" Whittaker function Mn^(z) that may be used to generate Sn,y.
Specifically, let K = (A;i, k^..., kn-i) and, for y e Y as above, let Try de-
note the matrix product of diag(7^n~ l,7^n-2,... ,TT, 1) with y. Then there
exist complex coefficients GK^ v} and a GL(n, R) Whittaker function
(1.1)
Mn^(z)

oo

= Q{x)H^y) ^ GK^ v) (Tn/i)2^^2 ... (Tr^.i)2^
fci,fc2,...,fcn-l=0

such that the set [M^^{z)\uj G W} spans 5^. (Of course, the
quantities Q{x) and H^y) in equation (1.1) depend on n as well, but
we suppress this dependence in our notation.)

Before stating our main results (cf. Theorems 2 and 3 below) on
Whittaker functions, we recall their relevance to the theory of automorphic
forms. By a GL{n, R) automorphic form of type v, we mean a smooth
function (^(z) on T-i71 such that, if r = GL{n, Z):

(i) (p(-/z) = ̂ p(z) for all 7 G F, z e TV;

(ii) d(p = \y{d)^p for all d C D\
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(iii) (p is of at most polynomial growth in each yi.

Such a function ^ has a "Fourier expansion" (cf. [10], [12]) whose Fourier
coefficients are given by a certain Whittaker function in 5^ (in addition,
some of the Fourier coefficients of (p may involve "degenerate" Whittaker
functions, which are eigenfunctions of D that do not satisfy condition (b)
of Definition 1.1).

The Whittaker function arising in the above Fourier expansion is
not in fact the fundamental Whittaker function Mn^(z), but rather the
"cla^s one principal series" Whittaker function Wn^(z). This function
corresponds to a certain principal series representation of GL(n, R) induced
from the subgroup XY (cf. [4]). (That W^(z) should be the unique
Whittaker function occuring in the Fourier development of an automorphic
form follows from work ofShalika [12] and Wallach [17].) Of course, Wn^(z)
may be expressed as a linear combination of the M^(^)(^S.

Automorphic forms of particular interest are the cusp forms, whose
expansions contain no degenerate terms. These eigenfunctions give rise to
the discrete spectrum of D acting on C2^^). (^(r^) denotes the
space of automorphic functions that are square-integrable, with respect to
the GL(n, R)-invariant measure, over a fundamental domain for F in W\)
Thus the cusp forms (and consequently the GL(n, R) Whittaker functions)
play a central role in the spectral theory of /^(I^T^).

One may relate Mn^(z) more directly to the study of automorphic
forms, by considering the Poincare series

Pn{z'^)= ^ Mn^z)

7eroo\r

(where Foo = F D X). This series has been studied when n = 2 (cf. [8] and
[9]) and n = 3 (cf. [14]); there is found in either case a correspondence bet-
ween the poles of Pn(z; v) and the eigenvalues of cusp forms in /^(r^71).
(When n = 3, the series does not actually converge, but makes sense as a
linear functional on spaces of cusp forms.) Moreover, a certain linear com-
bination (over uj e W) of the P^;^))^ yields an "Eisenstein series;" the
latter is an automorphic form (of type z/) whose eigenvalues belong to the
continuous spectrum of D acting on ^(T^71).

Let us now turn to the statement of our results concerning Whittaker
functions. If we write M^(z) = Q(x)M^_^(y^... ,^_^) then, in
§3 and 4 below, we will prove:
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THEOREM 2. — If Re (z/i + v^} > 0, then

-^i,^) (2/i ^2/2)
2 3—?

= 7T2 ̂ -(^-^)/2 l+(^i-^)/2 TT TT rf3^ + —— + 3^+J-l - U - 2) \

j=lfc=l V 2 /

• . . / Jo^^-^^TH/i^l+l/n)
Z7n ^|u|=l

• ^+3^-2)/2(27n/2^TT^) ̂ -3^/4 ̂ ,

the path of integration being the same as in Theorem 1.

We also have:

THEOREM 3. — Jfp=2i / i+2^2+ 2^3 - 3/2 and Re p + 1 > 0, then

^1,̂ 2 ,^3) (2/1. 2/2, 2/3)

^ ^^3/2)-..^3^^3/2)^.-.3 J^ JJ r (^

j=l fc=l v

_ 5 (3/2)-t.i+^2 (3/2)+^i-^ TT T-T p^4l/fc + ' " + 4^+j-l - U - 2) \
— ^ 2 / 1 2/22/3 11 11 \————————————9————————————/

-1—1 ^—1 v ^

—^ / / ^Wi+i/^i)
^^^^ ^|ui|=l ^|Z12|=1|ttl|==l J[zt2|=l

• Jp(27^2/2V /( l+^l)(l+V^2)) ̂ Tr^V^TT^)

• ̂ -l/2(27^^V/^2) <l-I/3^1-l/3 d''ldn2.u\u^

the path of integration in each variable being as in Theorems 1 and 2.

Theorem 2 (a form of which we have previously stated, with only a
brief allusion to the proof, in [14]) has already been applied to the study of
the Poincare series P^(z\ v) discussed above. Moreover, Bump and Huntley
[3] have used the result of this theorem to deduce asymptotics, as y\ or
2/2 —^ oo, for M(^^)(^/i,2/2)- It is hoped that the expression for M^(z)
embodied by Theorem 3 will prove equally useful.

Regarding possible generalizations of Theorems 2 and 3 to GL(n, R),
we expect that there should be an integral formula giving us Mn^(z) in
terms of Mn-2,i/{z)- To state our conjecture precisely, it is convenient
to divide out by some powers of the ^'s, and by some gamma factors.
Specifically, let v e C""1 as above. We define

r^k == (nvk + • • • + n^+j-i - ̂ ')/2
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for 1 < j < n - 1 and 1 ̂  k ̂  n - j, and p, = 7n_i,i . If we write

QnAy) = T^"3-")/12^) U n^ro + r,,,)}
J==l fc=l

and
M^ (y\ - M^'^-l){y^"^yn-l}^n^yy} ~ ~^——.—.—-————,Qn^(y)

then we have

CONJECTURE. — Letn>2.Ifi^e C—1, put A,_i = nv,/(n - 2)
for 2 < j < n - 2 and X = (\^\^... ̂ -3). A7so, formally define
UQ = 1/Un-i = 0 and {un-i)° = 1. Then, if Re (^ + 1) > 0,

M:^y)

=(27^^::2^^•"
p ri-l

' ' ' ̂ -.1=1 P {^r^ ' l-r^ 'n-^)/2 ̂  (2^V/(1 + ̂ -i)(l + l/^) ) }

(each integral taken counterclockwise), where I denotes the I-Bessel func-
tion (1.4).

We remark that the GL(n - 2, R)-Whittaker function appearing on
the right-hand side of this conjecture is understood to equal the constant
function one when n = 2 or n = 3; we also note that, when n = 2, the
"zero-fold" integral arising denotes the integrand itself. Our conjecture is
then supported by two observations: first, that it does indeed hold for n ̂  4
(as Theorems 2 and 3 above, and equation (1.3) below, attest). Moreover,
we have shown [15] that an analogous statement concerning the class one
Whittaker function Wn^(z), as described above, in fact holds for all n.
Namely, if one replaces the fundamental Whittaker functions Mn y and
^n-2,A appearing in our conjecture by the corresponding functions Wn v
and TVn-2,A, while simultaneously replacing each J-Bessel function by the
corresponding K-Besse\ function, and finally replacing each integration
around the unit circle by one on the positive real axis, then one indeed
gets a true statement. This statement is embodied by Theorem 2.1 in [15]
(which takes a slightly different form than just described, due to different
normalizations and the replacement of each u^ by u2).
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Our proofs of Theorems 2 and 3 will rely on knowledge of the
coefficients G?<(3; v) and Gj<(4; v) of the Whittaker functions in question.
It is, in fact, only for n < 4 that the Gj<(n;^)'s have been determined
explicitly. For this reason, we are unable at present to supply a proof of
the above conjecture that is valid for general values of n.

We close this section by recalling the relevant information concerning
GK^'I ^) for n = 2,3,4: we first define, for e € C,

(1.2) ( e ) f c = ( ^ + e - l ) ( A ; + e - 2 ) . . . ( l + e ) e {k € Z^; (e)o = 1.

It then follows from work of Whittaker and Watson [18] that

^(2;^)=———————.
fci!(^i + ^)fci

That is, writing x for a;i, y for ^/i, and v for v\ (and recalling (1.1)):

(1.3) M^{z) = e{x)Y{v + ^) ̂ y ̂ -1/2(2^)

where

^ W-EHT^T)
is the classical J-Bessel function. Next, Bump [2] has shown that

/ 3^i+3^2^
(1.5) GK(S; v) = ̂  ̂  ̂ ^ (S^^^^a,^^ •

Since r(s 4-1) = <sr(5), and thus

(1.6) (e)^^

(also A;! = r(k + 1)), we find that Gx(2; ̂ ) and Gj<(3; v) are in fact ratios
of gamma functions. (The gamma function actually has simple poles at the
nonpositive integers; if e is such a number then the right-hand side of (1.6)
is defined by taking the appropriate limit.)

The expression for Gj<(4;^) is somewhat more complicated. Surpri-
singly, Gj<(4; v) is not expressible as a ratio of Gamma functions, but rather
takes the form of a finite sum of ratios of Gamma functions. Namely, we
have shown [16] that

(1.7) G^(4;^)

(_l)fci+fcs(^ (^ ̂ (^ ̂  i_^ _ ̂  _^ c^l-a -fc2, 1- b- fc2; 1)
fci! fc2.' h\ (a),, (6)^ (c)fc, (a + a')^ (6 + ̂
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where
(1.8)

a = -fci - 2^3 + 1/2; 6 = -A;3 - 2^. + 1/2; c == 2^ + 1/2;
a'=fci+p+l; b '=fc34-p+l; c'=p^l

(p as in Theorem 3), and 4^3 denotes a generalized hypergeometric series
(cf. [13]). This series terminates because of the —k^ appearing as a "nume-
rator" parameter, and in fact we may write

4F3<y, b\ 1 - c - k^ -A;2; c', 1 - a - k^ 1 - b - k^ 1)

(1.9) ^/fc^ (a^(^(l-c-^ ,
Z^\i )^(l-a-k^{l-b-k^ ) '

We now proceed to the proofs of our theorems.

2. Proof of Theorem 1.

Let us rewrite the statement of Theorem 1 according to the remark
immediately following that theorem: we get

<2-1' ^L^1^'^""^'^)^
for Re(.r + y — 1) > 0. We will prove (2.1) initially under the assumption
that Re(a; — 1), Re(?/ — 1) > 0. The principle of analytic continuation will
yield the complete result because, as

(1 + l/uY-^l + n)^-1 = ̂ (l + 1/u)^-2,

both sides of equation (2.1) are seen to be holomorphic in x ^ y for
Re{x-^-y- 1) > 0.

To prove equation (2.1), we recall the binomial theorem

(i-^-E^^
k=0

The radius of convergence of this series, for an arbitrary complex number
a, equals one. Moreover one checks (using, for example, Stirling's formula
[18] for the gamma function or Raabe's test [l]),that Re (a) > 0 is sufficient
for absolute convergence on the boundary |r| = 1.
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Assuming that Re (x - 1), Re{y - 1 > 0, we may then apply the
binomial theorem to each of the factors (1 + l/u)x~l and (1 +^)!/-l in our
integrand. We find

— : f (l+l/^-^l+u)1/-1^2m J|u|=i u

- _L f fv ^--^i f_ui-fci1 ff" (1 - y)fc2 / ^1 ^^-^L^ ^ ( ) JL^o"^ ) J^
V (1 - x)k, (1 - y)k^ f 1 / / ^ - f c i + f c s ^ l

Ao ^'^ l^-^i^ ";•
The interchange of integration and summation is justified by the fact that
each integral in braces is bounded by 1, and by the absolute convergence
(again, by Stirling's formula or Raabe's test) of

E°° (i - ̂ )fci (i - y)k^
fci!^!fei,fe2=0

Since, for integers fci,A;2,

-1- ( ( u}-^^2 du -^ .9-y / V ^ —— -°ki,k^zm J\u\=l u

we have

— [ (1+1/^-1(1+^-1^
2m 7|n|=i u

^ ( l - x ) k ( l - y ) k ^ ( .== 2^ ———k^——— = 2JFl(l - x, 1 - y\ 1; 1).
fc=0

Here

^-^E^
is the hypergeometric series or Gauss function. But the Gauss summation
theorem (cf. [13]) gives

p / . , . r(7)r(7-a-/3)2Fi(a,^,7,l)=^_^^_^,

provided the parameters of the series satisfy Re (7 — a — f3) > 0. If
Re(a:-l),Re(z/-l) > 0, then Re(l-(l-x)-(l-y)) = Re{x-{-y-l) > 0,
so by (2.2)

— — / (1+1/^-1(1+^-1^
2^ J\u\=i u

^ r(i)r(i - (i - x) - (i - y)) ^ r(x + y -1)
r(i-(i-:r))r(i-(i-^)) r(x)r(y) '
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This proves equation (2.1) (under the assumption Re(x - 1) > 0,
Re (y - 1 > 0); as already noted, Theorem 1 follows.

3. Proof of Theorem 2.

By equations (1.1), (1.5), and (1.6), we have
^1,^2) Q/i^2) = r((3^i + i)/2)r((3z^ + i)/2)r((3^i + 3^)/2)^1

00_ r (Tn/i)2^^2^ 1 r (Tr^)2^2^^
~^ ^ !TVZ- -l- 3^1+3^2 \ 7 , -p / , , 3i/i+3^2>

fci,^^1-^!-1 W +——2——)-* LA;2!r(A;2 + ——2—-^

3^i+3^2 >r r(A;i+A:2+—^-2) i
Lr^T^m^T3^]'

To the third expression in brackets, we may apply Theorem 1. Putting
x = k^ + (3^ + 1)/2 and y = k^ + (3^i + 1)/2, our theorem tells us that
this bracketed expression is equal to

—— f (1 + l//^i+(3^2-l)/2 ̂  _^ ^2+(3^-1)/2 ^^
Z7rz ^|u|=l ZA

Since
(^i)2^^2^^)2^2^^2

=7T2 ̂ -^-^)/2 ̂ +(l/l-^/2)/2^^2^+(3^+3^-2)/2^^2fc2+(3^+3^-2)/2^

our most recent expression for M^^(y^,y^) becomes

^1,^2) (2/1 ̂ 2)

= Tr2^1-^1-"2)/2^^1-^)^ -rr inr p/3^ + . » . + 3^+,_i - (j - 2)\

j=ifc=i v 2 y
— [(TT^)^^^^3^2-2)/2] r^^)^^^^3'2-2^2]

^ tTV^ i 3^l+3^/2^ , , ^ / , , 3^i+3^2 \A;i,/c2==01- ^ l - i^ i+——^——^ J L A '2 '1( /C2+——o—-) J2 ; J L A/2. 1^2-1-——2~

dn
iz

1 /*
• —— / (1 + l/^i+O^-l)^ (1 + ^)^2+(3^-1)/2 ̂

zm J\u\=l U

We now wish to interchange integration and summation. To justify
this, note the following:

f (1 + l/^i+(3z.2-l)/2 ̂  _^_ ^2+(3^i-l)/2 ̂
^|n|=l U

^ 2^1+^2 /* ^ _^_ 1/^(3^2-1)/2 ̂  _^ ^(3^-2)/2 ̂

^M=l u
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since |l+l/zt|, |1+^| ^ 2. The arguments of 1+1/n and 1+u are bounded,
so the latter integral is

< [ 1 + l/u\ Re((3i.2-i)/2)^ _^ ^i Re((3i.i-i)/2) du

J\u\=l U

(the implied constant depending on ^1,^2)- Writing u = e^, the integral
directly above becomes

/>27r |2 + 2cos0|Re((3'l+3^/2-2)/4) d0 = F ^cos^)!^31^3'2-2^.
Jo Jo

The last integral converges for Re(^i 4- ^2) > 0, so all told we find

( (1 + l/^^3^-1)/2 (1 + ̂ 2+(3^-1)/2 ̂  ^ ^l+fc2.
7|n|=l ^

Substituting this estimate into the above expression for M(^^)(^/I, ^2)5 we
are left with a series that is easily seen (e.g. by the ratio test) to converge
absolutely. Thus our interchange is allowed.

We therefore have
M^!^) Q/1^2)

2 3-j
1_(^_^)/2 i+(^-^)/2 T-T TT T^^3^ + " ' + 3^fc+j-l - U - 2)^
1 2/2 11 11 ^————————————^————————————I

^—1 ^._1 \ - /

_ -2 l-(^i-^)/2 l+(i.i-^)/2
— 7r t/! ^2

1 /• °°

'-L Y2m J^^ , 4-

j=i fe==i
[-/- x2fci+(3^i+3^2-2)/2-i r / ^2fc2+(3^i+3^-2)/2-

3^i+3i/2 >/ ^ i t-p/l, i •^1+'^2\ 7 i y^ /7 i •:>^l+=1 fci,fc2=o1- ^i 'r(A;i+—2—) J 1- A;2!r(A;2+—2
/ / .2fci+3^-i y /.——x2fc2+3^i-i dn
(yl+l/u) (Vl+n) —

u
2 3-j

= ̂ 1-(.1-.2)/2^1+^-.2)/2 ̂  ̂  p

j=lfc=l

'3^+•••+3^+^•_l-(J-2)N

2fci+(3^i+3^2-2)/2.

•-L/ E^ [(Tr^^TTTTn)

27rz ^1=1 ^=0
7 I T / 7 i 3^1+3^2 >A;i'.r(A;i + —2—,

r / /i———\2A;2+(3^i+3^2-2)/2-
. [(^^^————] (1+1/,)(3^>/-(1^)<3^,)/^

2 3-j ' 3^fe+. . -+3^+,_i - ( j -2) '= 7r2 ̂ -^-l/2)/2 ̂ +(^-^)/2 JJ JJ r
j==l A;=l

'^-. / J(3^+3^-2)/2(27T2/i\/l + 1/n)
^m J\u\^l

• I(^^-2)/^y,VYTu) u^1-3^ ̂ ,
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by the definition of the J-Bessel function (cf. (1.4)) and the fact that

( l+nKl+l /nr 1 =u.
This concludes the proof of Theorem 2.

4. Proof of Theorem 3.

From equations (1.1) and (1.7), we see that

(4J) M^!^ ,^3) (2/1^2^3)

f. [_______(-l)^s (a)^ (^______1
^^3=0 ̂ 1! A:2! ̂ ! ̂ 1 ^3 (c)^ (^ + ̂ 2 (^ + ̂ 2 J

•4^3(^ &', 1 — c — A;2, —A-2; c', 1 — a — A'2, 1 — b — k^ 1)

• (Try )2fel +I/1 +2l/2 +3l/3 f7r'?/2)2/c2 +2!/1 +4l/2 +2I/3 f7r^)2/c3 +3l/l +2^2+^3

We wish to examine the sum in k^. We note that, in this section, all
interchanges of sums and integrals with other sums and integrals may be
justified using arguments similar to those employed in §3.

So let us write, according to equations (4.1) and (1.9),

(4-2) M(^ ̂  ̂ 3) Q/i, 2/2,2/3)

^ ^_n^i+A;3 ^^-\2A;i+^i+2^2+3i/3^^\2fc3+3^i+2^2+^3
= ^ J^I^^,, (h},.fci!A;3!(a)fc,(6)fc3fci,A;3=0

00
(a)fc, (6)fe, (^)2^+2^+4.,+2.3•Êo ^!(c)^(a+a0^(6+y)^

^(^\ (a'),(b')^l-c-k^ ,
'^{e }(c')^l-a-k^(l-b-k^{ ) '

We recall that

(4.3) r(5)r(i - s) = -q—sin 71-5
so that, for e any complex number and 0 < £ < k^,
(1 - e - k^)(, F(l - e - A;2 + £) F(e) sin7r(e + k^) F(e)

(e)^ r(l - e - A;2)r(e + ^2) F(A;2 - ̂  + e) sin 7r(fc2 - i + e)

(-^^sin^ne) ^ (-1)^(6) ^ (-1)^
r(fc2 - H + e) (-1)^-^ sin7r(e) r(A;2 - ̂  + e) (e)^-^ •
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(The above calculations are valid for e not a negative integer or zero; by
analytic continuation, the result is true for all e.) Let us apply this equation,
with e = a; 6; c respectively, to the inner double sum (in k^ £) that appears
in (4.2). Writing m = k^ — ^ this sum becomes

f. (^ (^ {a)m (b)m ̂ y^Wm^^^

^ i\ m\ (c7), {c)m (a + a'^m (b + b^m '

so that (4.2) may now be written

(4-4) ^i,^3)Q/1^2,2/3)

y. [(-1)^ (a^(a)m] [(-^(^(^t
k^rn^^ (a + af^^ LW^ (&+ ̂ +mJ

[" ̂ ^)2fci+^i+2^2+3^3^^^2^+2m+2^i +41/2+2^3 (^)2A;3+3^i+2^+^31

' [ A - i ! A ; 3 ! ^ ! m ! ( c ' ) , ( c ) ^ j -
But from (4.3), we find that

(-1)^(0^(0)^ ^ (- l ) f c l ^(^+a / )^(m+Q)^(a+Q / )
(a)fci (a + a'^+m - ^(a/) r(A;i + a) r(^ + m + a + a')

(-1)^(0+0^ r____r^w)____1
^(a/) r(A;i + a) sin 7r(m + a) [r(l - a - m] F(£ + m + a + aQ J

^ (-^^(a+aQni-a-fci) F______r^+a7)______1
r(a') [r(l - a - m) Y(£ + m + a + <)J

j-irr^.w-.-t.). (î ,,)-.-̂ ,̂̂ ..-,̂
27rzr(a') ^|iti|=i "i

the last equality following from Theorem 1 and the remark immediately
below it. (The application of Theorem 1 is valid because our assumption
Re (p + 1) > 0 implies Re (£ + a ' ) > 0.) Similarly,

(-l)^),^
(b)k,{b+b')^

^-^T-^1"'"^/ (i+v^—d^.)——'-1^,27^1^) J\U2\=1 ^2

so that (4.4) reads
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(4.5) M(^^,^) (2 /1 ,1 /2 ,2 /3 )= - ^^2 Z^
v ' k].,k3,t,m=0

1' (^yi) 2fel +l/l +21/2 +3'"3 (^"y'2} 2^+2m+2'/l +4l/2 +2'/3 (^y \ 2ks +3vi +2i/2+^3-|

L k i \ k 3 U \ m \ ( c ' ) e ( c ) m j

f^aW a-k^ r ^,^-^^^.M

I L ^ a ) ^|m|=l ^l J

fr(^TO >-.,) r ^,^-^(,^^^A1
I i ( -o -> -'|U2|=1 "2 J

or, by (1.8) and some rearranging:

(4.6) M ,̂,̂ )(yi, y2,y3) = (W3^"'1^3^)2^/372^1"'3

•r(2^i + i/2)r(2^ + i/2)r(2i/3 + i/2)r(2^i + 2i/2)r(2^ + 2^3)
•r(2^i + 21.2 + 2i/3 - 1/2)———

(27n)'"

f f ^ r(7^yl)2fcl+P(7ry2)^+P)+(2m+2'/2-l/2)(7^j/3)2fc3+P1
7|ui|=iy|u2|=î ^^J ki\k3\e\m\r(£+p+l)r(m+ 2i/2+l/2) J

[(1 + l/Hi)^-"^-2^-!^ ^_^^+m+2^+2^-l-]

L r ( f e i + p + i ) J
[(1 + l/^2)fc3-m+2^-l/2^ ^^^+m+2^+2^3-l-j (fo^

[ r(A:3 + p + 1) J UiU2

o 4_ „
^ ^5^(3/2)-^+^^2^(3/2)+r.i-i.3 TT TT p/^4^ + • ' • + 4^+j-l - (j - 2) \

j=lfc=l v 2 )

1 /» /» r 00 / r-\—i—T"^——\2A;i+p-
1 /^ ^ [V^ (TTl/l^/l+l/m) 1

(27^^)27|^|^y|^^l[^ fci!r(fci+p+l) J

^f^(W(l+"l)(l+^2))2 '+p1
I-& ^!r(^+^+i) J

[
00 ^/, /I—TTT——^s-^-, r oo / .———\2m+2^2-l/2-
V^ (^3 V 1+1 /^2 ) 1 r^ (7^^2V/^^2)________

' fc—o ^! r^3 + ̂  + 1) J l̂ o ^!r(m+2^+l/2)

^-.3 ̂ 3-.i ^1^2 ^ Tr5^37^-'^'3^^3/2^^-173

1 2 ^1^2 3
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. n n r ̂ fc+^+4^+,_i-o--2)\1-L Ll \ 2 yj=ifc=i \ ^ /
• - — — — /* / ^(27rWl + l/^i )^(27T^^(1 + ^l)(l + 1/^2) )
\Z7^^) J\ui\=lJ\U2\=l

•Jp(27^/3^/^4:-^2) • ̂ -i/2(27r^\/^2) <~'3 ̂ 1-'3 dnld^.
^1^2

(At the last step, we have applied the definition (1.4) of the J-Bessel
function, and the change of variable u^ —> u^1.) This completes the proof
of Theorem 3.
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