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INFINITESIMAL CONJUGACIES
AND WEIL-PETERSSON METRIC

by A. FATHI and L. FLAMINIO

0. Introduction.

Let M be a closed manifold M and denote by MM the space of C°°
Riemannian metrics on M. For two Riemannian metrics g\ and p2 in M.M
we define their intersection (or geodesic stretch) as in [CF].

Let v be a pi-unit length vector and let 7(1) be pi-geodesic with
initial velocity v parameterized by pi-arclength. For a fixed t > 0, define
^(v,t) as the lower bound of p2-lengths of paths homotopic to 7[0,t] with
endpoints fixed. Denote by Liou^ the Liouville measure obtained from pi
on the tangent unit bundle S^(M), note that we do not normalize this
measure as a probability measure. The intersection z(p2?pi) is defined by

^2,Pi)= lim - / ^(z^)dLiou^(z;).
^ ^ t J S g ^ M

For surfaces of genus at least 2, the intersection for metrics of negative
curvature coincides, up to a universal constant, with the intersection of their
Liouville currents as defined by Bonahon [Bo]. Thus it is symmetric and
it depends only on the orbit of the metrics under Diffo(M), the group of
diffeomorphisms of M isotopic to the identity.

Before Bonahon, Thurston gave a definition of 1(91192) f01' 9i and p2
metrics of constant negative curvature —1 on a surface [Wo]. He observed
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that the map g^ i—> i(gi^ 92) has a unique critical point on Teichmiiller space
at g\. Moreover the second derivative of the above map at the critical point
is a (strictly) positive definite form and thus defines a Riemannian metric on
Teichmiiller space. Wolpert in [Wo] showed that this metric on Teichmiiller
space is proportional to the Weil-Petersson metric which is defined in the
following way. The tangent space to MM at g is the space of sections of
the symmetric bilinear forms on M. Thus the formula

(5,r)^p- ( ^5^dVol,
21 JMIM

defines the Weil-Petersson metric on M.M. The tangent space to Teich-
miiller space at a point, represented by a metric g in M.M^ can be
identified with the orthogonal complement in the tangent space TgM-M
of the subspace tangent to the orbit of g under the action of Diffo M on
M.M. Due to its invariance under that action, the Weil-Petersson metric
is well defined on Teichmiiller space.

In this paper we study the infinitesimal version of the Morse-Anosov-
Gromov conjugacy of geodesic flows for manifolds of negative curvature. We
apply this study to compute derivatives of the intersection. This, together
with some elementary theory of the representations of 5L(2,R), yields
another proof of Wolpert's theorem which does not use Complex Analysis.
Our proof is closer in spirit to the variational point of view on Teichmiiller
space described by Tromba in [Tr].

1. Background.

Let M be a compact manifold. Denote by SM the bundle of oriented
directions on M, i.e. SM = [v 6 TM \ v ^ O}/ ~, where v ~ v ' if and
only if 3c > 0, v = cv ' .

Given a Riemannian metric g on M there is an identification of SM
with the unit tangent bundle SgM = {v G TM\g(v,v) = 1}. Thus the
geodesic flow gt on SgM determined by g can also be considered as a flow
on SM. With abuse of notation we will also denote this flow by g t ' .

Generalizing a definition of Bonahon [Bo], we define, for g of strictly
negative curvature, the space of geodesic currents C on M as the space
of positive transverse invariant measures to the (^-orbit foliation of SM
endowed with the weak topology. The fact that C is independent of the
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choice of the metric of strictly negative curvature g is due to the following
theorem ([An], [Gr] and [Mo]) :

THEOREM 1.1 (Morse-Anosov-Gromov). — If go and g^ are two
Riemannian metrics of strictly negative curvature on M, there exists a
homeomorphism h : SM —^ SM homotopic to the identity which sends
orbits ofg^ to orbits ofg\ bijectively. Moreover, ifh\ and h^ are two such
homeomorphisms then there exists a real valued function t(v) on SM such
that V^ G SM, h^oh^v) = g^ (v). We shall call such an homeomorphism
a (go, g\) -Morse correspondence.

The space of geodesic currents C is in bijection with the set of
positive finite measures on SM invariant under the geodesic flow ^*. The
correspondence is given in the following way : if u is a geodesic current, T
is a small transversal to the geodesic flow (f in SM and dt is the measure
on the orbits of the geodesic flow obtained from the parameterization gt,
the measure on SM that corresponds to ^ is given locally by the product
IJL 0 dt. We will denote this measure on SM by ^g(p).

In particular, the Liouville measure obtained from g defines a current
that we will denote by A^, or just by g , if there is no ambiguity. Closed
orbits of gt in SM define geodesic currents which we will call the Dirac
geodesic currents. They are in bijection with homotopy classes of oriented
closed curves in M, since for metrics of strictly negative curvature there
exists a unique closed geodesic in every homotopy class of curves. If a is an
oriented homotopy class of closed curves, we will denote the corresponding
current by Ac, or just by a, if there is no ambiguity. The following theorem
is a form of the Anosov closing lemma for Anosov flows [An].

THEOREM 1.2. — Multiples of the Dirac geodesic currents are dense
in the space of geodesic currents.

We define the intersection i(g, p) of the Riemannian metric of negative
curvature g with the geodesic current ^ as the total mass of SM for the
measure ^p(^). The following theorem is clear from the definition.

THEOREM 1.3. — If g is a Riemannian metric with negative curva-
ture and a is an oriented homotopy class of curves in M, we have :

i(g,a) =lg{a).

An equivalent definition of i(g, p) is given by the following theorem :
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THEOREM 1.4. — Let g\ and g^ be two Riemannian metrics of
negative curvature on M. For v 6 SM let ^f(t) be a g\ -geodesic with initial
velocity v parameterized by g^-arclength. For a fixed t > 0, define ^p(v^t)
to be the infimum of p2 -lengths of paths homotopic in M to 7(0, t] with
endpoints fixed. For every geodesic current ^, we have

%(p2,AO = lim - / y(v,t)d^g^)(v).t-^00 t J S M

Proof. — Without loss of generality (see the construction in [Gr],
[Gh] page 78, or the lemma on page 187 in [LM]), we can assume that
the conjugacy h from the geodesic flow of g\ to the geodesic flow of g^
is at least C1 along the orbits of the geodesic flow of pi. For v € Sg^M

define ̂ ) by h(g[{v)) = gR^^v)) and let 0{v) = -^(^==0. From
the definition it is not difficult to see that (h'^^g^^) = O^g^). It
follows that z(p2^) = fsM^W^si^^' Since the measure ^g^(^)
is invariant under the geodesic flow of pi, for every t > 0 we have

/ e(v)d^g^){v) = \ ( (i'e(giv)dsd^W(v). If p : SM -. M
J S M b J S M Jo
is the projection, note that J^ 6(g{v) ds is the ps-length of the ^-geodesic
s i—> phg^v.O < s < t, and (p(v,t) is the ^-length of the pz-geodesic
homotopic to s ^ pg{v^ 0 < s < t with fixed endpoints. Since h is
homotopic to the identity, we can find a homotopy hy,^ 0 < u < 1 which
is C1 with respect to u. By the compactness of M, the supremum K over
v € SM of the ^2-length of the C1 paths u »—^ phy,v^ 0 < u <: 1 is finite. For
every v € SM and every t > 0 we have \(p(v, t) — f^ 0{g{v) ds\ < 2K. D

From the above theorem, it follows that the intersection of g\ with
the Liouville current of g^ coincides with the intersection of g\ and g^ as
defined in the introduction.

THEOREM 1.5. — Let M.-M be the space of Riemannian metrics
of negative curvature on M. The map

(g, )Ji) € M-M x C ̂  i{g, /x) € R

is jointly continuous if M-M x C is given the product topology of the
uniform topology on the first factor and the weak topology on the second
factor.

Proof. — Observe that for g fixed p, i—> i(g,p) is continuous by
definition of the weak topology on measures. On the other hand if g\ is
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a Riemannian metric such that C'^g^ < g < C2g\ then from the previous
theorem V/A € C, C-^^i, /^) <, i(g, p) < Ci(g^p,). D

2. Infinitesimal Morse correspondences.

We will now give more details on Morse correspondences. Throughout
this section g will denote a smooth Riemannian metric of negative curvature
on a compact manifold M and g^ will be a smooth one-parameter family
of smooth metrics on M of negative curvature with go = g. We will identify
the bundle of oriented directions SM with the tangent unit bundle SgM.
The generator of the geodesic flow of g on SM will be denoted by X.

For a proof of the following theorem see [MML], Appendix A, page
591.

THEOREM 2.1. — There exists a one-parameter family ha of (g, ga)-
Morse correspondences such that the map a ^-> hais smooth with values
in the Banach manifold of continuous maps SM —^ SM. The tangent to
the curve ha is a smooth curve of continuous vector fields 2^ on SM. Two
different smooth choices h^ and h'a of (g^ga)-Morse correspondence yield
tangent vector fields 5^ and 2^ which at a = 0 differ by a continuous
multiple of the generator X of the flow g1.

Notation 2.2. — The tangent bundle T(SgM) to SgM has a Whitney
sum decomposition T(SgM) = 7-0 V, where V is the vertical subbundle i.e.
the subbundle tangent to the fibers of the projection p : SgM —> M, and
7i is the horizontal subbundle for the Levi-Civita connection of the metric
g. The subbundle H is the kernel of the connection map K : T(SgM) —>
T(M). The restriction to the fiber Vv of the connection map K is the
canonical identification of the Vy with the ^-orthogonal complement of v
in Tpfy\(M). With respect to the standard lift g of the metric g to SgM
this decomposition is orthogonal and the projection p : SgM —> M is a
Riemannian submersion.

The vector X{v) is, by definition, the horizontal lift of v. We denote by
X1- the subbundle of T(SgM) of vectors ^-orthogonal to X. Thus X(v)1-
is the subspace of Tv(SgM) spanned by V and the horizontal lift of the
^-orthogonal complement v1- of v.

Remark 2.3. — From Theorem 2.1, it follows that the X1- component
of the vector field So is independent of the choice of a smooth curve ha of
(g^ga)-MoTse correspondences.
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Remark 2.4. — The (^,pi)-Morse correspondence, as we have seen,
is not unique. For a sufficiently small ^, if g\ is in a sufficiently small C2-
neighborhood of g we can choose the correspondence h so that the footpoint
of h(v) belongs to the hypersurface of points {exp X\X 1. ^, ||X|| < e}.
This choice makes the (^,pi)-Morse correspondence unique for every g\ in
a G2-neighborhood of g.

Remark 2.5. — If ga, \a\ < ao, is a smooth curve of C°° negatively
curved metrics on M and the (^,^o)-Morse correspondence ha is chosen
as in the previous remark, then the derivative 5 of ha with respect to a
at a = 0 satisfies Tp(E(v)) ± v for all v € SgM. Thus, by Remark 2.3, it
coincides with the X1- component of the vector field 5' for any other choice
h'a of (<7,(/a)-Morse correspondences.

DEFINITION 2.6 (Infinitesimal Morse correspondence). — Let ga,
\a\ < OQ, be a smooth curve of C00 negatively curved metrics on M and
let ha be the {g,ga)-Morse correspondence chosen as in Remark 2.4. We
call "infinitesimal Morse correspondence at g for the curve ga?? the vector
field 5 given by the derivative of ha with respect to a at a = 0.

Our goal now is to find the relationship between the curve ga and the
infinitesimal Morse correspondence at g for the curve ga- We denote with
V0' the Levi-Civita connection of ga- For g == go we will denote its Levi-
Civita connection simply by V and R will be its curvature tensor. Remark
that Qa^ is a (1,2) tensor field.

PROPOSITION 2.7. — Let 5 be the infinitesimal Morse correspon-
dence at g for the curve ga and let ^ = Tj)(2) be the projection of E in
TM along a unit speed g-geodesic ̂ (t). Then $ satisfies the equation

(*) v^ + R{^ y)y + iw - 7W. IVY) = o,
where we have set 7'(t) = —^(t) and V = c^V^c^o- Equivalently, withdt
S = 9aga\a=0,

(**) v^+ R^Y)Y = -Vy^(Y) + ̂ v^W)^ + Ivy^y.W.
Moreover ^ is the unique bounded solution of (*) satisfying g(^Y) = 0
along 7(t). The vertical component of 2 is given by Vy^.

Proof. — Denote by M the universal cover of M and, to simplify
notation, let ga also denote the lift to M of the metric ga on M. Let 7^)
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be a unit speed ^-geodesic and let (a,t) e] — ao,ao[xR \—> ^a(t) € M be a
smooth map satisfying the following conditions :

• . s.

1) for each a the map t € IR i-̂ - 7a(^) is a geodesic for ga and 70 = 7;

2) for each a and t the point 7a(^) belongs the hypersurface of points
{expgX\X±Y(t)^\\X\\<e}.

Note that the geodesies 7^ are not parametrized by arc-length.

The map (a, t) i-̂  7a(t) is jointly differentiable in a and ^. This follows
from Theorem 2.1 and standard facts on ordinary differential equations.
Define $(a,t) = 9a^a(t)'

In the computation below we should pull back the Levi-Civita connec-
tions on TM to ] — ao, ao[xlR using the map (a, t) i—> 7o:(^) see [Kl], pages
46-47. As customary, in order to minimize notations we will proceed as if
the map (a,^) i—^ 7a(^) were an embedding.

Let V be a smooth vector field on M with compact support. From
the equation of the geodesies V^, 7^) is a scalar multiple of 7^(t). Thus
for every a we have
(i)
/oo

gc.[V^W,^,^(t)}dt
-00

/oo

^[^(7c.(*)),7a(t)]ffa[7aW,V^7a(t)]ffa[7a(<),7a(*)]~1 dt.
• -00

Differentiating equation (1) with respect to a, at a == 0, we obtain
for the left hand side
(2)

/oo

{ff(V^V, VyV) + g(V, V^7ala=o) + S(V, VyV) + ffW 1^')} dt
-00

where for clarity we have suppressed the dependence on t.

Since $ and 7^ commute we have that V^V^ = ^y^^ + ^(^7a)-
Using this and the fact that Vy7' = 0 the above expression becomes

(3) F {9(V^^^=o)+g^R^V)V)+g{V^Y)} dt.
J—00

Since V^7^ = Vy $ we conclude that (2) equals

/oo

(4) {^V^+.R^y+lW)} dt.
-00

In order to evaluate the derivative with respect to a of the right hand side
of (1) at a = 0, it is convenient to observe that, since Vy77 = 0, the only
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non zero contributions come from the derivative with respect to a of the
term V^. Taking also in account that 9aW)^(t)) = 1 when a = 0,
the derivative with respect to a of the right hand side of (1) at a = 0
simplifies as

(5) / g(v,Y) {g(y, V(V^la=o) + <?(Y,rvy)} dt.
</ —00

As before we can rewrite (5) as

/oo

(6) g{v. VW, v^ + R^W + IVY) dt.
-00

Now since $ is orthogonal to 7' also V^ and R(^Y)Y are orthogonal to
Y and (6) becomes

/oo

(7) 9(V,Yg(Y,r^'))dt.
-00

Putting together (4) and (7) we have that differentiation of (1) for
a = 0 yields that for all V

/•oo

/ {s(v, v^ + R(^ y)Y + r^y - yg(y, r^y))} dt = o.
J —oo '

Thus the field ^ along 7 satisfies the equation
v^ + R(^ Y)Y + ryy - y^(y, ryV) = o

which proves the first statement.

Notice that from the definition of Levi-Civita connection it follows
that

g(Z, FxY) = |[Vx5(r, Z) + Vy5(X, Z) - Vz^(X, V)].

FYom g{V^Y) = Vy^(y,y) - ^Vy^y^7) and g^1 ̂ ) =
1
^VyS^^'), the above equation becomes

(**) v^+^y)y = -v^(y) + j(v5(7^7/))y + jv^y^Qy
proving the second statement.

Since by hypothesis (M,g) is negatively curved, the operator ^ e
^-L ̂  ^(^, v)v e v1- is negative definite. It follows that Equation (**) has
a unique bounded solution which is perpendicular to 7' at all times, namely
the projection of the infinitesimal Morse correspondence 2 at g along the
curve g^. The vertical component of 2 is given by

V^^)-17^
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evaluated at a = 0. Taking into account that g(^,Y) = 1, that V^ =
V^$ and that Vy$ -L 7' one sees that the vertical component of 5 is given
by

Vy$

concluding the proof of the proposition. D

Remark 2.8. — As expected the infinitesimal Morse correspondence
along the variation g^ depends only on g and S = <9c^cja=o. Thus we can
simply speak of the infinitesimal Morse correspondence at g in the direction
ofS.

Notation 2.9. — For a negatively curved metric g on M, let us
introduce a new norm on sections of X^ by setting for a section \

Illxlll2- / {9[Kx(y).Kx(v)]-g[R(Tpx(v),v)v^Tpx{v)}}dLioUg{v)^
•JSM

where K is the connection map and R the Riemann curvature tensor of the
Levi-Civita connection for g.

PROPOSITION 2.10. — In the hypothesis of Proposition 2.7 we have

|||S|||2- / L^S(v^)dLiong(v)
z JSM

where L^S(v, v) denotes the Lie derivative of the function v C SM \-^
S{v, v) in the direction of the vector field S.

Proof. — Let v be a point in SM. Let 7(t) be the unit speed geodesic
with initial velocity v. Define 7^) as in the proof of Proposition 2.7, and
W = 9a7a(^)|a=o. Observe that ^ = Tp(E(V)) and Vy$ = KE(Y). We
pull back the connection V to ] - ao,ao[xR. We have

(8) Ls^^^^^5^^-^
I I /al l a=0,t=0

Since ^IKII'l^o = 2^(V^a7^7.)a = Wa/Ot^Y) = 2c^,y)) -
^(^ ̂ 9/atY) and since $ -L 7' and Va/^7' = Vy7' = 0 by the equation
of geodesies, we have that <9cJ|7^||2 = 0 at a = 0. Thus

(9) ^(^^))=^5(7,,7.)|a=o,<=o.

From

9aS{^ 7a) = (V9/^5)(7,,7a)+25(Va/^7a,7.),
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using Va/a^l^o = Vy^ and VyY = 0, we obtain
(10)
^(7^7a)lo=o = (v^)(y,y) + 25(Vy^,y)

= (v^)(y,y) - 2(vy^,y) - 2^,Vyy)
+2^(5($,y))

= (v^)(y,y) - 2(Vy5)(^,y) + 2^(5(rp(s(y)),y)).
From equation (**) we see that

(v^)(7W) - 2(v^5)(^y) = 2b(^v^) +^(^y)y^))j
(11) -^^v^-^v^v^)

+^(^7/)7^0)]
and using (11) m (10) we obtain

2^5(7^ 7aL=o = -^(Vy^VyO+^(^,y)y^))

+^[5(^p(2(7/)),7/) +^(Tp(2(7/))^5(y))].
Thus from (9)
(12)

^s(^M) = -9(KE(v),KE(v))+g{R(Tp(E{v))^)v,Tp(E(v))))

+ Lx[^(rp(5(^)), ̂ ) + g(Tp(E(v)), KE(v))].

Integrating (12) over SM, the term Lx[S(Tp(E(v)),v) + g(Tp(E(v)),
KE(v))} integrates to zero, since the geodesic flow preserves the Liouville
measure. The proposition is proved. Q

3. Surfaces.

In the case of surfaces the equation for the infinitesimal Morse
correspondence can be simplified further.

Notation. — Let (M, g) be an oriented Riemannian surface of ne-
gative curvature. As before we identify SM with the unit tangent bundle
S g M .

Let J be the complex structure determined by g and the given
orientation. Then T(SM) has a trivialization (X,X\Q) where

1) X(v) is the horizontal lift of v, i.e. the generator of the geodesic flow
c^ ^;
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2) X-L(v) is the horizontal lift of Jv,

3) 6 = -j^Re-) where Re(v) is the rotation of v by an angle 0, orienteddu
so that J = R^/'2.

We denote by K the Gaussian curvature of g.

PROPOSITION 3.1. — Let S be a symmetric tensor field. Then the
infinitesimal Morse correspondence 2 at g in the direction of S for the
variation g^ is given by

5 = fX± + (W)6

where / is the unique bounded solution to the equation

(13) (L2xf+f^op)(v)=-Lx(S(v^Jv))+^Lx±(S{v^)).

Proof.— Let ^(t) be a (/-geodesic, Vt = Y(t). Let ^(t) = p*2(^).
Then ^(t) = f{vt)Jvt' Since V-^J^ = 0 , equation (**) becomes

{L^f(vt))Jvt + K op{vt)f(vt)Jvt

= -^S^Vt) + |(V5(^))^ + ̂ ^S^Vt)vt.

Taking the (/-inner product with Jvf we obtain the equation for /

I^xf^t) + KOp{Vt)f(Vt) = -Vv,S{Vt,JVt) + -^J^S{Vt^t).

Since Vf and Jvt are parallel along 7(^)5 V^5'(^t,^t) = L x S { v t ^ J v t ) ) '
Now from the relation between parallel transport and covariant derivative

^j^S(v^Vt) = ̂ (P^P^OI^o

where P8 is the parallel transport along the geodesic with initial velocity
Jvf. But PSVt is also the ^sx±^ where ^x± ls t^e ^ow g^^^d on 5'̂
by X^. Hence V^6'(ft, J^) = ^^(^(v,?;)), concluding the proof. D

4. Riemann surfaces.

We need to introduce some generalities on metrics of constant ne-
gative curvature. Refer to [Ta] and [La] for details. In this section g is
a Riemannian metric of constant negative curvature —1. Thus the vector
fields (X,X-L,Q) satisfy

[X,9].= -X^ [X±,Q}=X [X,X^\= -9



290 A. FATHI AND L. FLAMINIO

and thus are generators of an action of 5'L(2,R) = 5T/(1,1). The corres-
ponding embedding of su(l, 1) in the vector fields on SM is given by(^y)"^ (,?.T)^1 (T./y^-
In fact every metric of constant curvature on a compact surface M induces
an identification of M with r\S'l/(l, l)/-ftT, where F is a discrete group
of 577(1,1) determined up to conjugacy and K = (7(1) is the subgroup
of diagonal matrices. With respect to this identification the unit tangent
bundle of M rests identified with r\S77(l, 1) and the above action with
the right action of SU(1,1) on F\SU(1,1). Furthermore, the lift of the
Liouville measure of g under the covering map 577(1,1) —> r\5E/(l,l)
is a Haar measure on 5 (7(1,1). Thus Liou^ is invariant under the action
of 5E7(1,1) on SM == r\5'£7(l,l) and L2(SM,Liong) decomposes as an
orthogonal sum of irreducible unitary representations of 677(1,1). The
occurring representations are of two types, indexed by the eigenvalues of
the Casimir operator : the principal series and the discrete series. Cyclic
vectors for the irreducible representation of the principal series are the lifts
to SM of eigenfunctions of the Laplacian on M. Cyclic vectors for the
irreducible representations of discrete series are the holomorphic sections
of the powers r^M of the canonical line bundle rM and their complex
conjugates. These, as all symmetric tensors, yield functions on SM by
evaluation along the diagonal.

We introduce the complex vector fields on SM given by ^+ =
(X - zX-^/2 and rj~ = (X + 1X^/2. The derivation ^+ is the formal
adjoint of —rj~. The holomorphic (resp. anti-holomorphic) sections of-^M
(resp. r^M) are given by the kernel of rj~ (resp. rj^) [GK]. They are also
called holomorphic (resp. anti-holomorphic) differentials. In particular the
holomorphic sections ofr2M are called holomorphic quadratic differentials.
Complex conjugation is an anti-linear automorphism of L2 {S M ̂ lAoMg). It
sends holomorphic sections of r^M to anti-holomorphic sections of T^M,
where r^M is the bundle of differential of type (dz)171. We denote by
HQ (resp. HQ) the irreducible representation generated by a holomorphic
differential Q (resp. anti-holomorphic differential Q).

LEMMA 4.1. — For a given m, all irreducible representations HQ
generated by holomorphic sections Q of r^M are equivalent. If Q is such
a section, for every h e Hq we have (h^h) = 0 and \\h\\ = v^H^H =
V2\\Qh\\.

Proof. — The first statement is a standard fact of the Representation
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Theory of 5L(2, R) (see [Ta] or [La]). Now, for n € Z, let Hn be the subspace
of L'^^SM^LioMg) of eigenvectors with eigenvalue m for the operator 6.
From the commutation relation of T]^, rj~ and 9 it can be easily seen
that T^ : Hn —> Hn±i. For a given holomorphic section Q of r^M, an
orthogonal basis for the irreducible representation HQ containing Q is given
by (^O^x). Thus HQ c Q) Hn. Since Q e H-rn it follows that Q is

n>m
orthogonal to HQ and thus that HQ -L HQ.

Since Qh = _(h - h)/2i and SR/i = (h + h)/2 we have \\Qh\\2 =
{Qh^h) = { h - h ^ h - h}/4. = (\\h\\2 + [|/i||2 - 2^^))/4 = l^l2^.
Similarly ||SR/i||2 = 11/1112/2. D

For proofs of the following two lemmata see, for example, the paper
of Fischer and Tromba [FT], pages 336-337.

LEMMA 4.2. — Let M be a compact connected oriented surface and
ga, (for | a | < ao) a smooth curve ofC°° Riemannian metrics of curvature
—1 with go == g. The symmetric tensor S = 9a9o.\a=Q decomposes uniquely
as a sum

S = Lyg + STT)

where V is a C00 vector field on M and STT is a trace free divergence free
symmetric tensor.

LEMMA 4.3. — A trace free divergence free symmetric 2-tensor field
on a compact connected oriented Riemannian surface of curvature —1 is
the real part of a holomorphic quadratic differential.

Remark 4.4. — By 4.2 and 4.3, if ^cn (tor |a| < ao) is a smooth
curve of C°° Riemannian metrics of curvature — 1 with go = g and S is the
symmetric tensor field Q^a at a = 0, we can write S = Lyg 4- ^StQ with V
is a C°° vector field on M and Q holomorphic quadratic differential. The
linearity of the equation (13) allows us to split its solution as a sum or the
solutions for S = Lyg and S = ̂ StQ.

We will now study the solution of equation (13) for S = SRQ.

PROPOSITION 4.5. — Let S == ^Q be a symmetric tensor field
which is the real part of a holomorphic quadratic differential Q. Then the
infinitesimal Morse correspondence 2 at g in the direction of S is given by
S = fX1- + (Lxf)Q where f = ^sF is the imaginary part of the the unique


