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FINITE SUMS AND PRODUCTS OF COMMUTATORS
IN INDUCTIVE LIMIT C*-ALGEBRAS

by Klaus THOMSEN

0. Introduction.

The purpose of this paper is to extend some methods and results,
which were developed by Thierry Fack [9] and de la Harpe and Skandalis
[13], [14], from the framework of A-F-algebras to a larger class of induc-
tive limit C*-algebras; a class which contains the irrational rotation (7*-
algebras, for example. The building blocks for the inductive limits we want
to handle are of the form

C7(Xi) ̂  Mn, C G(X2) 0 Mn, C • • • © C(Xm) ̂  M^ ,

where M/g denotes the (7*-algebra of complex kby k matrices and the X^'s
are compact connected Hausdorff spaces. If there is a uniform bound on
the covering dimension, dim(X), of the compact spaces involved (see for
example [7] for the definition of the covering dimension), we are able to
extend the result [9], Theorem 3.1, of Fack; in fact even slightly beyond
the case where the inductive limit is simple. The right condition for the
proof to work is that the inductive limit (7*-algebra A should satisfy that
Ko(A) has large denominators; i.e. for any a > 0 in KQ^A) and any n C N
there should be a b € Ko(A) and m € N such that nb < a < mb, see
[15], Definition 2.2. This condition is always satisfied when A is simple
and not finite dimensional (as we prove in Remark 1.9 below), but it
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occurs more generally, even among AF-algebras; for example it always
holds when A = B (g) C, where B is any AF-algebra and C is a simple
infinite dimensional AF-algebra.

In order to extend the results of de la Harpe and Skandalis we have to
restrict the doss of compact spaces further. Specifically, we need to assume
that the involved spaces X have dim(X) ^ 2 and trivial second integral
(Cech-)cohomology; i.e. that ff^X.Z) = 0. With these restrictions we are
able to generalize first [13], Propositions 6.1 and 6.7, which characterize
the kernel of the universal de la Harpe-Skandalis determinant, and then
[14], Theoreme 8.7 and Theoreme 9.1, proving the essential simplicity of
the commutator subgroup in the group of invertibles and in the group of
unitaries. In order to summarize our main results we have to establish
the following notation. When A is a unital G*-algebra, we denote the
group of invertible elements by G1(A), the unitary group by U(A) and their
connected component of the identity by Gl(A)o and £/(A)o, respectively.
The universal de la Harpe-Skandalis determinant, introduced in [12], will
be denoted by Ay and the commutator subgroup of any group G will be
denoted by DG.

MAIN RESULTS. — Let A = lim (A^, ̂ k) be a unital inductive limit
k—>oo

of C* -algebras, where each A, is of the form A, = C(X^) 0 M^i) C
C(Xi2) (8) M^2) C • • • C C(Xin,) <S> A^(^), each X,k being a compact
connected Hausdorff space.

i) Assume there is some d e N U {0} such that dim(X^) < d for
all i ^ 1, k e { l ,2 , . . . ,n j and that Ko(A) has large denominators. If
a = a* C A and 6{o) = 0 for all fractal states 6 on A, then there are d+7

d+7
elements Xi, i == 1,2, . . . , d+7, in A such that a = ^ [^, x^}.

1=1
ii) Assume dim(X^) ^ 2 and H2(Xik,l) = 0 for all i > 1, k e

{1 ,2 , . . . . n,}, and that Ko{A) has large denominators. Then D Gl(A)o =
[x e Gl(A)o : Ar(a-) = 0} and DU(A)o = {u e U{A)o : Ar(^) = 0}.

iii) Assume dim(X,fc) < 2 and H2^,!) = 0 for all i > 1,
k C { 1 , 2 , . . . , nj, and that A is simple. If G is a subgroup of U{A) which
is normalized by DU(Ao) and is not contained in the center ofU(A), then
DU(A) = DU(A)o CG. Q

We also prove the version of the last mentioned result, iii), for the
group of invertibles in place of the unitaries. The method of proof for
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these results are the same as the original ones for AF-algebras and the
main contribution here consists in obtaining the appropriate substitutes for
trivial homogeneous C*-algebras of facts about matrix algebras which are
crucial for the proofs to carry over. Consequently, we refrain from repeating
the arguments of de la Harpe and Skandalis and limit part of the exposition
to indications of how their proof should be rearranged in order to work in
the more general setting.

The authors motivation for pursuing these generalizations of results of
Fack, de la Harpe and Skandalis is twofold. One purpose is to demonstrate
that our present insight into the structure of inductive limits of homo-
geneous C7*-algebras is now detailed enough to allow some very technical
arguments from the theory of AF-algebras to extend to a larger class. Un-
doubtedly this is possible also with other methods originally developed to
handle AF-algebras. And of course it is important to know that the conclu-
sions about the structure in simple AF-algebras obtained by Fack, de la
Harpe and Skandalis extend to C*-algebras such as the irrational rotation
G*-algebras, and in fact even beyond the class of C7*-algebras which are
topologically spanned by their projections. We remind the reader that a
series of (7*-algebras which were originally introduced by other means have
been shown to be inductive limits of finite direct sums of circle algebras
(7(T) 0 Mn. This is the case of the Bunce-Deddens algebras [10], the cros-
sed product (7*-algebras arising from a minimal homeomorphism of the
Cantor set [17], [5], Remark 4.3, and quite recently also the irrational rota-
tion G*-algebras [8]. Thus all these C*-algebras are covered by the above
theorem.
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K. Pedersen and J0rgen Tornehave for clarifying remarks relating to the
matter at hand.

1. The common kernel of the tracial states.

LEMMA 1.1 (cf. [9], Lemma 3.2). — Let A be unital C* -algebra and
n

ei, 6 2 , . . . , en orthogonal projections in A with ^ e^ = 1. If a = a* G A,
1=1
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then there is an element u € A such that a- ̂  e,a^ = [u, n*].
1=1

Proof. — Let A^, % = 1,2,... ,n, be pairwise distinct real numbers.
ForiJ = l ,2 , . . . ,nset /3(zj ) = (4(A,-A,))-1 if i ̂  j and f3(ij) = 0 if
z = j. Then {Xj-\j){f3{ij)-(3(j,i)) = 1/2 for all z ^ j. Set

n n
u =^xie^- ̂  /^.^(e^-e^-ae,) . n

1=1 ij=i

LEMMA 1.2 (cf. [9], Lemma 3.3). — Let A be a C*-algebra and
61,62^3,... ,en orthogonal projections in A such that ei -< e^ -< 63 ^
• • • ^ e n . I f a = a * e A , there is an element u e A and an element y e A,
such that a = [n, ̂ *]+^/ and e^e, = 0, % = 1 ,2 , . . . , n-1.

Proof. — For each i = 1, 2 , . . . , n-1, choose a partial isometry ̂  e A
such that ̂ * = e, and v,*^ < e,+i. Set .ri = eiaei and set

Xi = ̂ ae,4-^*_ia^_i+^*_i^*_2a^-2^-i+ • • •

+^*_1<_2 • • • ̂ a^l^2 • • • Vi-2Vi-l ,

n-1 y ____ .
i = 2,...,n-l. Let u = ^ (vw)+^+^*\/(^)^), where (a-,)+ and

1=1 v /
(xi)- denote the positive and negative part of ^, respectively. Then
y = a-[u, u*} will have the right properties, n

In the following Tr will denote the usual trace on Mn obtained by
adding the diagonal entries.

PROPOSITION 1.3. — Let X be a compact Hausdorff space and
n e N. If a = a* C C(X) (g) M^ and Tr{a(x)) = 0 for all x C X, we
have elements u, v e C(X) (g) Mn such that a = [u, u*] +[v, v*].

Proof. — Let pi, p ^ , . . . , pn be orthogonal non-zero projections in Mn
with sum 1 and set e, = 1 (g) ?„ i = 1,2, . . . ,n. By Lemma 1.2 there
are elements ̂  e C(X) (g) M^ such that a = [v,v^+y and e^e, = 0,
z = 1,2,3, . . . . n-1. Applying Lemma 1.1 to y , we find ZA e C(X) 0 M^
such that y = [u, u^e^Cn. Thus a = [u, u*]+[^ ^*]+en2/en. In particular,
^(enye^x)) = 0 for all x e X which implies that enyen =0. D

While Proposition 1.3 is a quite satisfying result as far as trivial
homogeneous C*-algebras are concerned, it is of little use when dealing
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with inductive limits of homogeneous G*-algebras because the norms of
u and v increase with the size of the matrix algebra. However, it follows
rather painlessly from Proposition 1.3 that, when A is the inductive limit
of a sequence of finite direct sums of trivial homogeneous (7*-algebras and
a == a* G A is a selfadjoint element such that uj(a) = 0 for all bounded traces
LJ on A, then a can be approximated arbitrarily closely by two selfadjoint
commutators. But to obtain qualitatively better results for such inductive
limits we have to control the size of the elements in the commutators.

LEMMA 1.4. — Let X be a compact Hausdorff space of covering
dimension < d, d € Nu{0}. Let a = a* € C(X)^Mn such that Tr(a{x)) = 0
for all x € X and let e > 0. Let p e C(X) (g) Mn be a projection such that
pap = a.

Then there are elements v^,v^..., ̂ d+i C pC{X) (g) Mnp such that
lhj-11 < v^Hall1/2 for all j and

d+l

F-]L [^^l < e '
J=l

Proof. — By [9], Lemma 3.5, we can find for each re e X an open
neighbourhood V of x and an element c € pC(X) (g) Mnp such that
||c|| ^ \/2||a||1/2 and ||aQ/)-[cQ/),cQ/)*]|| < e for all y e V. Thus we get
by compactness a finite open cover {V, : i e 1} of X and elements c, e
pC(X) 0M,p such that ||c,|| < v/2||a||1/2 and ||aQ/)-[c,Q/),c^)*]|| < ^
for all y eVi.ie I . By Ostrand's theorem, cf. [7], Theorem 3.2.4, we may
suppose that

I = A U h U h U - • U Jd+i

and that V, n ^ = 0 for z , j e h, i ^ j, k = l ,2 , . . . ,d+l . Let
{fi '' i ^ 1} be a partition of unity subordinate to [Vi : i e I} . Then
set Vj(x) = ^ ^/fi(x)a(x), x e X, j = 1 ,2 , . . . , d+1. D

i^I,

LEMMA 1.5. — Let A be a unital G* -algebra. Letp e A be a projec-
tion and k eN an integer such that diag(l, 0 ,0 , . . . . 0) ^ diag(p,p,p,... ,p)
in M/c(A). Then every trace state ofpAp extends to a bounded trace on A.

Proof. — By assumption there are elements Vzj e A, ij =
1,2, . . . , A; such that E^j^*j = 1 and E<^j = ̂  It follows that

i^ ' ^j
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if (f> is a trace state on pAp, and (j) is the lower semi-continuous trace on A
extending ^, cf. [16], 5.2.7, then <^(1) = A;; i.e. 0 is bounded. D

Now we assume that A is the inductive limit C*-algebra, A =
lim (Afc,^)? with each Ai a finite direct sum Ai = C(X^) 0 M^J) (B

/C—^00

^?2) 0 ^(1,2) © • • • © (7(X^J 0 ^(^nz) °f trivial homogeneous (7*-
algebras. Assume that d € {0,1,2, . . .} and that each Xik is a compact
connected Hausdorff space of (covering dimension) dim Xik < d for all i.
Furthermore, we assume that A is unital, and can therefore assume that
each connecting *-homomorphism (j)k is unital. In the following we need
an additional assumption on the sequence (A^, <^) which ensures that the
methods from Thierry Fack's proof of [9], Theorem 3.1, can be adopted in
our setting. This condition is described in the following lemma and has the
nice property that it can be described both as a condition on the sequence
(A^,0fc), so that it is easy to realize in examples, or alternatively as a
condition on Ao(A), so that it can be checked in some situations where
the sequence building up A is not completely specified. We adopt now the
notation from [11]. In particular e^ is the unit of C(X^) 0 M^n C Ai
and fii : Ai —> A the canonical *-homomorphism. We will assume that
^ji^u) 7^ 0 for j > z, £ = 1 ,2 , . . . , r^. This is no restriction because, if
it was not the case, we could simply omit the direct summands of Ai for
which [ii(eis!\ =0.

LEMMA 1.6. — In the above setting, the following conditions are
equivalent.

a) For all i G N and all minimal non-zero central projections e^ 6 Ai,
we have

lim (min{rank(^(e^)/(; : k = 1,2, . . . ,n., rank^)^(e^)/,; 7^ 0}) = oo .
J->00

b) Ko(A) has large denominators in the sense ofNistor [15], Definition
2.2.

Proof. — a) ===^ b) : let p G A be a projection and let n € N. It
suffices to show that there is a projection q G A such that n[q] <^ [p] < m[q}
in Ko(A) for some m C N. Thus we can assume that p = /^(e) for some
projection e C A^. Write e = (ei, 6 2 , . . . , e^J, where e, G C{Xki) ̂ A^(^).

nk
Then [p\ = ̂  [/^(e-i)], so we can assume that e = en G C(X^n} ̂  M^ £}•

i=l
Choose j>_ k such that

min{rank(^/c(e), : i = 1,2 , . . . .n^, (/)jk{e)i -^ 0} > n+ d / 2 .
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For each i e {1,2,3, . . . ,nJ with the property that (f)jk{e)i ^ 0,
let qi e C'(X^) (g) M((^) be a projection of rank 1. Then n[<^] <
[0jfc(e)z] ^ (t(j,z)+d/2)[^] in Ko{Aj) by [II], Theorem 2.5, (c). So if
we set q = ^^j(^) (where we sum over z with (f)jk(e)i -^ 0) and

i
m = max{t(j,z)+ d/2 : <^(e)z ^ 0}, we have n[g] ^ [p] < m[g] as de-
sired.

b) => a) : it follows from [II], Lemma 2.4, that

min{rank<^(e^)fc : k = 1,2, . . . , n^ rank0^(e^)fc 7^ 0}

increases with j. Let n C N. Since KQ^A) has large denominators, there is a
j > i and a projection p e Aj such that n[p] < [^-z(e^)] < m\p} in ^o(A^)
for some m e N. By taking traces one finds that

min{rank^(e^)fc : k = 1,2,... ,7^, rank^(e^)fc ^ 0} > n . D

So now we assume that the two equivalent conditions of Lemma 1.6
are also satisfied. The next lemma generalizes [9], Lemma 3.6.

LEMMA 1.7. — In the above setting, there are sequences, {pn}, {<7n}
and {rn}, of projections in A such that

(i) Pi+^i+y"! = 1,

(ii) Pn ^ Qn ^ rn, {n > 1)

(iii) the Tn ^s are mutually orthogonal,

(iv) rn-l = Pn+Qn (^ > 2).

Proof. — Prom condition a) of Lemma 1.6 and the assumption that
the connecting *-homomorphisms are unital, it follows that lim min{t(fc,z):

k—^oo
i = 1,2 , . . . , rik} = oo. As soon as mm{t(k, i) : i = 1 ,2 , . . . , n^} > 5, there
are orthogonal projections p^ q[, r[ G Ak such that p[ -^ q[ -^ r[ in
Afc, 2rankr^ < ranker for all i = l , 2 , . . . , n f c , and p'l+g'i+r'i = 1. Set
Pi = /^(P'l), Qi = ̂ k(q[) and ri = ^k{r[). Now assume that p^ ^ and r,
have been constructed for i < n—1 and that ri = /^(^O for some k and
some mutually orthogonal projections r\ € Ak with 2^rank(r^• < ranker
for all j = 1 ,2, . . . , rik, i = 1 ,2, . . . , n-1. Since 2n-l rank«_i), < e^ for
all z = l , 2 , . . . , n f c , it follows from condition a) of Lemma 1.6 and [II],
Lemma 2.4, that

min{ rank e^^"1 rank ̂ fc^n-i)^ : z = 1,2,. . . ,n^-}
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becomes arbitrarily large with j. Choose j so large that the interval

]2n- lrank^(^_l),+2n^ ld/2,ranke^[

contains an element from N2n for all i = l ,2 , . . . , n^ . There is then a
projection / € Aj such that 2nrank/^ C^"1 rank^^r^i)^71-1^,
ranker for all i = l ,2 , . . . , r^ . To simplify notation, set a^ = (f>jk(^)^
£ = l , 2 , . . . , n — l . It follows from [II], Lemma 2.4, and the assumption
that the inequalities hold "at level k^\ that

2^rank(a^)i < ranker
n-l

for all % = 1,2,. . . ,r^-, ^ = 1,2,. . . ,n—l. Thus ^ rank (a^+ rank /^ <
^=1

ranker for all z. We can therefore assume, by increasing j further and
employing condition a) of Lemma 1.6 and [II], Lemma 2.4, in the same

n-l
way as above, that ^ rank(a^+rank/^+ d / 2 < ranker. Then

^=1
n-l

rank /,+ d/2 < rank fl-N^a^)
v H / i

for all % = l , 2 , . . . , n ^ . By [II], Theorem 2.5, there is then a projection
n-l

r^ < 1— ^ a^ in Aj equivalent to /. Note that 2rank(r^)^ = 2 rank/^ >
^=1

rank(^/i;(r^_i)^+ d / 2 for all %. By increasing j even further we can assume
that there is an even number ^ in each of the intersections

] rank((^«_i)),+ d/2, 2rank(^«_i)),-d[F|

] rank(^«_i)),+ d/2, 2rank«),-d[ ,

i == 1, 2 , . . . , rij; . Let e be a projection in Aj with rank e^ = 1/2 ^ for all i.
Then e ^ ^-fc«-i) m Aj by [II], Theorem 2.5. Let ^ < ^;c«-i) be a
projection equivalent to e in Aj. Set ^ = ^j(q'n) and p^ = /^(r^_i)—g^.
Since 2rank(g^)^ == 2 ranker >_ rank0^/(;(r^_i)^+ ^/2 for all z, we see that
rank (0^«_i)-^)z+ ^/2 ^ rank(^), for all i. Thus ̂ «-i)-9n ^ Qn
in Aj, again by [II], Theorem 2.5. It follows thatp^ ^ qn in A. Furthermore,
since ranker < rank(r^)i—d/2 for all %, we have that q^ ~ e ^ r^ in Aj. Set

n
^ = ̂ -«)- Thenpn ^ Qn ^ rn, rn-i = ̂ «-i) = Pn+9n and ̂  r, < 1.

1=1
Since also 271 rank(r^)^ < e^ for all z = 1 ,2 , . . . , n^ it follows that we can
construct the desired sequences by induction. D

THEOREM 1.8. — Let A be the inductive limit C*-algebra of a
sequence of finite direct sums of trivial homogeneous G* -algebras, each
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of which has a primitive ideal spectrum which is a compact connected
Hausdorff space of covering dimension < d. Assume that A is unital and
that KQ(A) has large denominators.

If a = a* € A and 0{o) = 0 for all tracial states 6 on A, then there
d+7

are d+7 elements Xi, i = 1 ,2 , . . . , d+7, in A such that a = ̂  [^, ̂ ].
^=1

Proof. — The proof is a repetition of Thierry Fack's proof of [9],
Theorem 3.1, with 2-3 minor modifications. Since it does not consume
more paper we give the complete proof here rather that just indicate
the necessary changes. We use the notation established above and as in
[9] we denote by Bo the set of selfadjoint elements in the C*-algebra
B that are annihilated by all fractal states of B. The proof starts by
choosing sequences of projections {pn}, {<2n}/{^n} meeting the conditions
of Lemma 1.7. We can assume that ||a|| < 1. By [9], Lemma 3.4, there are
elements u^v e A such that a = [n,n*]+[v,v*]+ai, where ai € r\Ar\
and ||ai|| <_ 3. Clearly, ai e Ao, so a\ C (riAri)o by Lemma 1.5.
We will construct by induction sequences of elements u(i,n) C r^Ar^,
i = 1 ,2,3, . . . , d+1, an = (r^Ar^)o, Vn.Wn € (r^+rn+i)A(7n+7n+i),

d+l
such that an = Z; [^(^^),n(z,n)*]+[^,^]+[wn,w^]+an+i, ||a^|| ^ 3/n,

2=1
| |n(%,n)|| ^ 2v/37n, i = l ,2 , . . . ,d+l , \\Vn\\ ^ 2-^, |K|| ^ 2-n, n e N.
Suppose (a i , a2 , . . . , an) , (n (z , l ) ,n (^ ,2 ) , . . . ,u (z ,n - l ) ) , z = l ,2 , . . . ,d+l ,
(^i, ^2? • • • 5 ̂ n-i) and (wi, W 2 , . . . , Wn-i) have been constructed. Note that
there is a unitary c € A and a projection r e Ak for some k such that
cr^c* == /^;(r). Set 6 = ca^c*. Then b C (^fc(r)A^(^))o and ^MA/^M
is the inductive limit G*-algebra of the sequence

rAfcr -^ ^(r)Afc+i^(r) ̂  ^+2^(r)A,+2^+2,fc(r) (^ .. . .
Let 6 > 0 be so small that 13 V26 < 2-n. Since, by [3], there is a
sequence {cj C ^(?-)A/^(r) such that b -==- ^[c^,c^], we can find j ^ k

i
and y € (0^(r)A^fc(r))o such that \\y\\ < 2\\dn\\ and ||^(^/)-&| < 6.
By Lemma 1.4 we can find «i, 5 2 , . . . , Sd^i e (f)jk{r)Aj(t)jk(r) such that
I I ^ H < \^y\\ for all z and

1 1 d+l

||?/-E^'<] ^^
1=1

d+1
Set n(z,n)=c*^(s,)c and 2;=^- ̂  ['a(z,n),n(z,n)*]. Then ^e(r^Ar^)o

1=1
and H ^ l l < 26. By [9], Lemma 3.4, there are elements Vn^Wn € (rn+
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rn-(-i)A(rn-Hn+i) such that \\Vn\\ < 3-/FJ, \\Wn\\ < ^V^FH" and 0^+1 =
z-[vn,v^]-[wn,w^] € Tn+iArn+i, ||an+i|| < 3||^||. Since (rnArn)o C
((^n+7n+i)A(7^-K^+i))o, we see that a^+i € ((7n+rn-t-i)A(rn+7n+i))o.
But the conditions of Lemma 1.7 implies that we can use Lemma 1.5 to
conclude that each fractal state ofryi-nAr^+i extends to a positive bounded
trace on (7n+7n+i)A(7n-h7n-n). Thus On+i e (7n+iArn+i)o. By the choice
of 6 > 0, ||u(^n)[[ < 2^/3/n, i = 1,2,. . . ,cM-l, ||an+i|| < 3/(n+l)
and H ^ n l l , \\Wn\\ <: 2-n. Thus we can construct the desired sequences by

00

induction. Set x\ = u, x^ = v, xi = ^ u(z—2,n), z = 3,4, . . . , d4-3,
n=l

^d+4 = E ^ ^d+5 = E ^ ^d+6 = E w^ and ^+7 = E w^ • D

% even z odd i even t odd

Remark 1.9. — If A is an inductive limit C*-algebra of the type
considered in this section and if A is simple then Ko{A) has large denomi-
nators unless A is finite dimensional. Since this is an important point for
potential applications of our results, we include a proof here. On the other
hand we shall not need the fact in the following and since all arguments
are fairly standard we only sketch them.

Assume first that there is no N € N such that HI = 1 for all
i >_ N. By compressing the given sequence of trivial homogeneous (7*-
algebras we can then assume that ni > 2 for all i. For fixed i € N and
^ € { 1 , 2 , . . . , rii}, the projection /^(e^) is non-zero in A because we have
deleted redundant summands of A^. Since A is algebraically simple there
is a finite set of elements xjc^ Vk m A such that ^Xk^i(e^)yk = 1. By a

k
standard approximation argument this gives us j > i such that the ideal
in Aj generated by <^(e^) is all of Aj. Thus rank (^(e^)^ 7^ 0 for all
k e {1 ,2 , . . . ,rij}. This shows that we can compress the sequence even
further and obtain that rank <^i+i(e^)fc 7^ 0 for all i G N, £ 6 {1 ,2 , . . . , n^},
k € {1 ,2 , . . . ,?7^4-i}. Since we still have ni > 2 for all z, it follows
that min{rank<^(e^)fc : k = l , 2 , . . . , n f c } > 2J-^-1 for all j > z,
i e { 1 , 2 , . . . , 72^} in the compressed sequence. Hence JCo(A) has large
denominators by Lemma 1.6. In the remaining case we can assume that
rii = 1 for all i. By Lemma 1.6 all we have to show is that t(z, 1) tends
to infinity when i does. Assume not. Then A is the inductive limit of a
sequence with A^ = C{Xi) 0M^v for all %, where X^ is a compact Hausdorff
space and N € N is fixed. Since /zi(l (g) M^v) is a full matrix algebra
in A, it follows that A c^ M^(B) where B is the relative commutant of
/Ai(l0M^v) in A. The elements of B can be approximated by elements from
/Xfc((7(XA;)0l), k € N, and thus B must be abelian. But then the simplicity
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of A implies that B = C, which is impossible because A was assumed not
to be finite dimensional. This contradiction shows that t(l^i) —> oo . D

2. The commutator subgroup of G1(G(X) (g) Mn).

For a unital (7*-algebra A, we let Gin (A) and Un(A) denote the group
of invertibles and unitaries, respectively, in Mn 0 A. To simplify notation,
we set Gli (A) = G1(A) and £/i(A) = U(A).

LEMMA 2.1. — Let A be a unital C*-algebra and ^1,^2, . . . ^Xn €
G1(A) such that XnXn-iXn-2'' • ̂ 2^1 = 1. Set d = diag(a;i, x^,..., Xn) €
Gln(A). Then d = (x,y) for some x C Un(A)o, y e Gln(A). Ifx, <E U(A),
Gl(A)o or U(A)Q for all i, we can choose y in Un{A), G\n{A)o and Un(A)o,
respectively.

Proof.— Set di = diag(l, rz-i, x^x\, x^x^x\,... ,Xn-iXn-2 " •^i).
Then

dd-i = diag(a;i, x^x^, x^x^x^... ,Xn-iXn-2" ' ^i, l) •

For a suitably chosen permutation unitary v C Mn we have (1 (g) v)dd^(l (g)
v)* = di, i.e. d = u~ld-iud^l where u = 1 <S> v. The lemma then follows
from the fact that the unitary group of Mn is connected. D

LEMMA 2.2. — Let X be a compact Hausdorff space and A ==
C{X) 0 Mn. There is an e = e(n) > 0 such that every unitary u C A with

n
\\u—l\\ < e and det(u(x)) = 1 for all x G X is the product u = Y[ (vi\Wi)

i=l
for some z^, Wi e U(A)o, i = 1, 2 , . . . , n.

Proof. — Let e < l^^. After n—1 applications of [13], Lemme
5.16, we get vi^wi e [/(A)o, i = 1 ,2 , . . . , n—1, and unitaries Si G C7(X),

n-i
\\Si-l\\ < 1/3, i = l , 2 , . . . , n , such that u = Y[ (vi.Wi) diag(5i,52,... ,Sn).

i=l
Since det(u(x)) = 1 for all x G X, s-^s^ • • • Sn = 1 and we can apply Lemma
2.1 to diag(5i,52,. . . ,5n). D

LEMMA 2.3. — Let X be a compact Hausdorff space. There is an
e = e{n) > 0 such. that every invertible y G A = C(X) (g) Mn with
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||2/-1|| < e and det(y(x)) = 1, x € X\ is the product y = Y[ (^,w,)

for some Vi.Wi e Gli(A)o, i = 1,2, . . . ,2n-l.

Proof. — If we set e(n) = I/^IO, the lemma follows from n-1
applications of [13], Proposition 5.12. Q

PROPOSITION 2.4. — Let X be a compact Hausdorff space and
A=C(X)(g)Mn. Then

DU(A)o = [u e U(A)o : det(u(x)) = 1, x e X}

and
DGl(A)o = {z e Gl(A)o : det(z(x)) = 1, ^ e X} .

Proof. — Let z e Gl(A)o such that det(z{x)) = 1 for all x e X. Since
^ € Gl(A)o, z = e^e^ . • . e"- for some a, € A. Then Tr f ̂  a,(a:)) e 27nZ

1 vl=l /

for all :r C X. Set /, = -^(a^-)) C C(X) and 6, = a,-/, ^ 1 e A,
z = l , 2 , . . . ,m . Then

^ = diag (ehln, ehln,..., e/l/n)ebleb2 • . . e^ ,

( m x
where fa(.r) = Tr ^ a,(a;)J, .r € X. By Lemma 2.1 diag (e^, e'1/71,...,

e71/71) is a commutator of two elements of Gl(A)o so it suffices to show that
e^ G DGl(A)o for each i. Choose k e N so large that || exp6,/A;-l < e
where e = e(n) is the e of Lemma 2.3. Since Tr(bi(x)) = 0 for all x C X,
Lemma 2.3 implies that

^ =(eb^/k)k eDGl(A)o .

The unitary case follows in the same way by using Lemma 2.2 instead of
Lemma 2.3. Q

For the purpose of studying inductive limits of trivial homogeneous
G*-algebras, Proposition 2.4 suffers from the same weakness as Proposition
1.3 when compared with Lemma 1.4. We have too poor control over the
norms of the invertibles building up the commutators, or their distance to
1 to be precise. Furthermore, we have lost information about how many
commutators are involved. These weaknesses are removed by the following
lemmas which, however, forces us to restrict attention to a particular class
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of compact spaces. But first we make the following simple and general
observation.

LEMMA 2.5,—- Let X a compact Hausdorff space and set A =
C(X) (g) M^. There exists 0 < e < 1 such that whenever z e G1(A),
det2;(;r) = 1, x € X, and \ z-l\\ < e, then C(Log{z)) = 0 for all tracial
states of A.

Proof. — If e > 0 is small enough, \\z-l\\ < e implies that z = e°'
with | Tr(a(o-))| < 27T for all x e X. But detz{x) = 1 =^ Tr(a(:r)) e 2ml,
so Tr(a(:r)) == 0 for all a; e X in this case. D

LEMMA 2.6. — Let X be a compact Hausdorff space and f : X —>R
a continuous function. Set d = J | c G(X) 0 M^. There there are

elements y , z e G1(G(X) 0 M2)o such that e^ = (^) and \\y-l\\2 <
SHe^-lH, ||̂ -1||2 ^ Slle^-lll . Furthermore, d(a;) = 0 =^ z(x) = y(x) = 1,
x e x .

Proof. Write / = g-h where g.h^O and ^/i = 0. Set

ojp ^/ep-1
0 e-^y= e-^ 0

V^i e^

and
e^

0 e-^
e~29 0

v/e^-i e^

It is then straightforward to check that ed = { y ^ z ) . To get the norm
estimates, set A = e^9 and t = \/e9—l. Since A > 1 we have HA"1—!]] <
||A-1||. Furthermore, (A-l)2 < (A+1)(A-1) < A2-! = t2 and hence
||A-1|| < \\t\\. It follows that

e29
0

Ve^-l
e-^9

A-l t
0 A-1-!

^ v^||t|| = V3^e9~]

By dealing with the other factor in y in a similar way and by using
that gh = 0 we get ||T/-I|| < V'3 max {^/p^IH, ^He^-lH}. The same
argument applies to get

\\z-\\\ < v/3max{v/fi^'

The last quantity is exactly V^^/He^—lH . D
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LEMMA 2.7. — Let A = C(X) (g) Mn where X is a compact
Hausdorff space of covering dimension dim X = d < 2 and with H2(X, Z) =
0. Let v be a positive invertible element of A and assume that uj(Log{v)) = 0
for all tracial states uj of A. For any 0 < e < 1 there are 2(d+l) pairs, ^,
Zi 6 Gl(A)o, i = 1,2, . . . , 2(d+l), and vi € Gl(A)o, such that

2(d+l)

v = 11 (^^i ^
1=1

[|̂ -1|| < 2(||^-1|[)1/2,11^-111 < 2(|h-l||)l/2, z = 1,2, . . . , 2(^+1) ,

and

K-l||<5,

0(Log(z»i)) = 0 for all fractal states of A .

Proof. — By Lemma 2.5 it suffices (by taking a smaller e if neces-
sary) to produce 2(d+l) pairs, ^, ^, z = 1,2,... ,2(d+l), of elements in
G1(A) with distance to 1 dominated by 2||^—1[|1/2 such that

2(d4-l)1^- n ^Z4<£•1=1
We may assume that 1^—111 > 0. Choose 6 > 0 so small that 3(e<5||^;—l||+
( e ^ — l l ) < 4||z?—l||. Set a = Log(z»). Since a is selfadjoint we can choose
continuous functions ti : X —> [—[|a||J|a||], i == l ,2 ,3 , . . . ,n , such that
ti(x) < kW < • • • < tn{x) are the eigenvalues (counting multiplicities) of

n
a(x), x e X. Set b = diag(^i, t - z , . . . , tn} € A. For fixed x e X, ^ ^(a*) = 0,

i=i
so there is a permutation a e^n (depending on x) such that

k
ti{x) < ̂ t^(x) < tn(x), k = l ,2,3,. . . ,n .

%=i
By using the compactness of X we can find a finite open cover {Uz}i^j of X
and for each Vi a constant permutation unitary Wz e A and a permutation
o^ G S ,̂ such that

W^M^) =diag(4,(i)(2/),^(2)(2/),...,^(n)(2/)) ,
A;

and ti(2/)-^ < E^a)(2/) < tn(y)-}-8, y G ^, A: = 1,2,3,. . . ,n, z € J.
j=i

By Ornstein's theorem, cf. [7], Theorem 3.2.4, we may assume that J is
partitioned, J == Ji U Js U • • • U Jd+i, such that L^ D Uj = 0 when z 7^ j
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come from the same Jm- Let <^, i e J, be a partition of unity subordinate
to {E/JzeJ. Fix i C J. Set

bi{x) = ^(a;)lV,diag(^(i)(a;),^(2)(a;),...,^(^(a:))W,*, a: € X ,
fc

and^(^) =^(.r) E ^(j)^), a; EX, f c = l ,2 , . . . ,n . Then
j==i

W^biWi = diag(pi, -^1,^3, -^3, • • .)+diag(0,^2, -9^9^ -9^ • • -L

where the first diagonal ends with a 0 if n is odd and the second with a
0 if n is even. Thus we can apply Lemma 2.6 to get invertibles r^ C A,
k = 1,2,3,4, such that

(1) r^)=l, xiU,,

(2) exp(^)=(^,r?)(rf , rf) ,

and llr^-lH2 is dominated by 3sup{[et^(a;)±<$-l| : x € X, i = l,n} ^
3(e<5||eb-l||+|e6-l|) = 3(e<5||^-l||+|e6-l|). By the choice of 6

(3) K-l||^2(|h-l||)1/2,

z = 1,2,3,4. Since b = ^6% and the &^s commute, we have that
i

e^ == ]~[ e^. Set r(m, fc) = [] ^5 m = 1 ^ 2 ? • • • ? ^+1^ fc = 1,2,3,4. Since
j'eJ zeJm

(7, n Uj = 0 for i ̂  j in J^ it follows from (1) and (3) that ||r(m, A;)-l|| <
d+i

2(||^-1||)1/2. Furthermore, eb = \[ (r(m, l),r(m,2))(r(m,3),r(m,4)) by
m=l

(2). Finally, note that by [22], Theorem 1.2, there is a sequence {un} of
unitaries in A such that lim Unbu* = a. But then lim Un^u* == v and

n—»-oo n—>oo
the proof is complete. D

LEMMA 2.8. — Let A = C(X) 0 Mn where X is a compact
Hausdorff space of covering dimension dim X = d < 2 and with ̂ (X, Z) =
0. Let t; € ?7(A) with ||z'—l|| < 1 and assume that cc;(Log(z?)) = 0 for
all tracial states uj of A. For any 0 < e < 1 there are 2(d+l) pairs,
Vizi C U{A)o, i = 1 ,2 , . . . , 2(d+l), and v^ e £/(A)o, such that

2(d+l)

v = II (̂ ^1
2=1

and

||̂ -1|| < ^(|h-l||)1/2, ||̂ -1|| < V^dl^-lH)1/2, z = l ,2 , . . . ,2(d+l) ,

||2;i-l||<£,
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and
0(Log(^i)) = 0 for all tracial states of A

Proof. — The proof is essentially the same as the proof of Lemma
2.7, but with [13], Lemme 5.13, substituting for Lemma 2.6. We omit the
details. D

In analogy with Proposition 5.5 of [13] the unitary and positive case
dealt with in the preceding lemmas can be combined by using the polar
decomposition to yield the following.

LEMMA 2.9. — Let A = C(X) (g) Mn where X is a compact
Hausdorff space of covering dimension d <^ 2 and with ff^X.Z) = 0.
Let v € A and assume that \\v—l\\ < 1/4 and Tr(Log(v(x)) = 0 for all
x G X. Then, for any 0 < e < 1, there are 4(d+l) pairs, yz.Zi € Gl(A)o,
i = 1 ,2 ,3, . . . , 4(d+l), and v^ C Gl(A)o such that

4(d+l)

^= II (Vi^i)Vl ,
i=l

||̂ -1|| <2||^-1||1/2, ||̂ -1|| <2|h-l||1/2, z = l , 2 , . . . , 4 ( d + l ) ,

|hi-l|| < e ,

and
(9(Log(vi)) = 0 for all fractal states 0 of A . D

We conclude this section with a lemma which will be used several
times below.

LEMMA 2.10. — Let e, f be projections in C(X) 0M^, where X is
a compact connected Hausdorff space with dimX < 2 and H^^X, Z) = 0.

Then e and f are unitarily equivalent in C{X) (g) Mk if and only if
rank(e(.z*)) = rank(/(.z*)) for some (and hence all) x G X.

Proof. — This a special case of [22], Theorem 1.2. D
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3. The kernel of the de la Harpe-Skandalis determinant.

Now we consider an inductive limit C*-algebra A = lim (a^, <^) with
k—>oo

each Ai a finite direct sum Ai = C(X^) 0 M^I) © C{X^) 0 M^^) 9 • • • ©
(7(X^J 0 M^^i) ^d each X^ a compact connected Hausdorff space of
(covering dimension) dimX^ <: d <, 2 with ^(X^Z) = 0 for all z and A:.
Furthermore, we assume that A is unital, and can therefore assume that
each connecting *-homomorphism <^ is unital. Let /^ : A^ —^ A be the
canonical *-homomorphisms. Also recall that we assume that redundant
summands have been deleted so that for each i and i G { 1 , 2 , . . . , r^}, we
have that ^(e^) 7^ 0 where en is the unit of C(Xij) 0 M^(^) C A^.

We denote by Ay the universal determinant as introduced by de la
Harpe and Skandalis in [12]. The following two proofs present only slight
alterations of the corresponding arguments in [13].

LEMMA 3.1. — Let x C Gl(A)o and assume that A'r(a') = 1. Let
e > 0. Then there is a k € N and a finite set ai, 02 , . . . , ON ^ A^ and b e A
such that a; = /^(e^e"2 • • • e^e6, ||&|| < e and

(9(/^(ai+a2+ • • • +a^)+&) = 0

for all tracial states 0 on A.

Proof. — There is a k C N and a y C Gl(Afc) such that \\x-iJ.k(y)\\
is as small as we want. Since x € Gl(A)o we can choose y C Gl(A^)o, i.e.
y = e^e013'"e^ for some a^ C A^ and if ||a;-/^(^)|| is small enough,
x = f^k^y)^ for some b C A with ||6|| < £. Since AT^) = 1, there
is an element ^ e Ko(A) such that (27^^)-10(^(a2+a3+• • • +a7v)+&) =
0(^) for all tracial states 6 of A. By increasing A; we may assume that
^ = [AAfc(e)]-[^A;(/)] for projections e,/ € M^(Afe). By using Lemma
2.10 we see that there are integers A ; i , A ; 2 , . . . ^kn € Z and commuting

n
projections ei, 6 2 , . . . , en € AA; such that [e]-[/] = ̂  ^[e,] in JCo(Afc). Set

ai = -2m ̂  ^•e^ C Afc. Then e"1 = 1 and 0(/^(ai+a2+ • • • +an)+&) = 0
j=i

for all tracial states of A. Since x = /^(e^e"2 • • ' e a N ) e b , the proof is
complete. Q
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LEMMA 3.2. — Let x e Gl(A)o and assume that Ar(a;) = 0. For
any 0 < e < 1 there i s a y e D Gl(A)o and a y^ e Gl(A)o such that a; = yy^,
||2/i-l|| < £ and 0(Log(y^)) = 0 for all tracial states 0 of A.

Proof. — Let 0 < 6 < 1 be so small that when 5i, 52 are elements in
a C*-algebra such that ||̂ || < 6 for = 1,2, then He51-!]! < 1 for z = 1,2,
(l-||e^-l||)(l-||e^-l[|) > 1/2 and ||^e^-l|| < ^. By Lemma 3.1 there
is an integer k € N and elements 01,02,... .ON e Ak such that rr =
e^ .. • eb^eb where &, = ^(a,), ||6|| < 6 / 2 and 0(&i+&2+ • • • b^b) = 0
for all tracial states (9 of A. By using [3], Theorem 2.9, we can find a
fci > k G N and a finite set of elements uj, Vj e A^ such that

1 1 n

|pi+&2+ • • • 4-^+6-^ (^>,,̂ ]) 1 <6/2.
j'=i

Set 6^ = <^,fc(a,), c = -b[-b^-. • . -6^+ ̂  [u^y,] e A^ and r =
b' b' b' j=l

e ie 2 . . .e ^e0 e A^. By increasing A:i we may assume that ||c|| < 6.
In any irreducible representation of A^ the image of r has determinant 1,
so r € J9Gl(AfcJo by Proposition 2.4. We have that x = /^iMe'^i^e6,
/^iM € DGl(A)o and ||/^i(c)|| < 6, \\b\\ < 6. By our choice of 6 we can
apply [12], Lemme 3 b), to conclude that

e~p'kl^eb == e8

for some s e A with (9(5) = 0(b-^{c)) for all tracial states (9 on A. But
^fci (c)) = 6>(6), so (9(5) = 0. Set ^/ = /^ (r) and 2/1 = e-^i ̂ e6. n

LEMMA 3.3. — Let x e G1(A) such that ||.z;-l|| < 1/4 and
0(Log(x)) = 0 for all tracial states 6 of A. For any 0 < e < 1, there
are 4(d+l) pairs y^ z, e Gl(A)o, i = 1,2,3, . . . , 4(d+l), and ^ e Gl(A)o
such that

4(d+l)x= n (^'^)^i '
z=l

lbz-l||<4||z;-l||1/2, 11^-IH ^4||^-1||1/2, z = l , 2 , . . . , 4 ( d + l ) ,

lh-i||<^
and

(9(Log(^i)) = 0 for all tracial states 0 of A .
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Proof. — The proof is the same as de la Harpe and Skandalis^s proof
of Proposition 5.7 (b) of [13], with our Lemma 2.9 substituting for their
Proposition 5.5. We omit the repetition. D

THEOREM 3.4. — Let A be an inductive limit C*-algebra A =
lim (Ak^k) with each Ai a finite direct sum Ai == CYX^i) 0 M^i n (B

k—^oo v ' /

C'(Xi2)0M((^2)®' • 'Q)C(Xim)<S>Mt^^i)7 where Xik is a compact connected
space of (covering dimension) dimX^ ^ 2 and H2(Xik^} = 0 for all i
and k. Furthermore, assume that A is unital and that jKo(A) has large
denominators.

Then DG\(A)o = {x € Gl(A)o : Ar(^) = 0} and DU(A)o = [u €
[7(A)o : ArM = 0}.

Proof. — In the case of G1(A) the proof is the same as that of de la
Harpe and Skandalis for Proposition 6.1 of [13], with the obvious changes.
Our Lemma 1.7 substitutes for the lemma of Fack and Lemma 3.2 and
Lemma 3.3 for Proposition 5.7 (a) and (b) of [13], respectively. In the case
of unitaries we have in Lemma 2.8 the analog of Lemma 2.9 and using
that as a substitute the proof carries over with only the obvious changes
to the unitary case. (This is exactly as Proposition 5.14 of [13] substitutes
for Proposition 5.5 of that paper.) D

COROLLARY 3.5. — Let A be as in Theorem 3.4. Then DG1(A) =
DG\(A)o and DU{A) = DU{A)o.

Proof. — The idea is to show that D G1(A) C Gl(A)o and then show
that Ar annihilates DG1(A). Taking the inclusion DG1(A) C Gl(A)o
for granted, we can argue as follows : if x,y € G1(A), we have that
diag((a;,2/),l,l) = (diag(^-1, l),diagQ/, l,y~1)) € DGl3(A)o, so the
de la Harpe-Skandalis determinant certainly annihilates DG1(A). Hence
D G1(A) = D Gl(A)o by Theorem 3.4. The unitary case follows in the same
way. Thus all we have to show is that D G1(A) C Gl(A)o so that AT can
be applied to commutators. This means that we must show that 7To(Gl(A))
is abelian, a thing which is not automatic for (7*-algebras. To do this we
show that the natural map 7To(Gl(A)) —> JCi(A) is an isomorphism under
the present assumptions on A. In fact, we show that A is J^-stable in the
sense of [20]. Since the class of X-stable (7*-algebras is closed under direct
sums and inductive limits, Lemma 1.6 shows that the only thing we need
to prove is that C(X) (g) Mk is JC-stable when k > 2 and X is a compact
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Hausdorff space of dimension < 2. But this follows from Theorem 2.10 of
[19] since tsr(G(X)) < 2 by Proposition 1.7 of [18]. D

4. Essential simplicity of the commutator subgroup in G1(A).

THEOREM 4.1. — Let A be an inductive limit C*-algebra, A =
lim (Afc,<^), with each Ai a finite direct sum Ai = C(X^) 0 M^ î) ©

k—>oo
C{Xi<z) (g) M^2) 0 • • • 0 C{Xin,) 0 M^i^, such that each X^ is a
compact connected Hausdorff space of (covering dimension) dim Xuc <: 2
and H2(Xik^) = 0 for all i and k. Furthermore, assume that A is unital
and simple.

IfG is a subgroup ofGl(A) which is normalized by D Gl(A)o and not
contained in the center ofGl(A), then DG\{A) = DGl(A)o C G.

Proof. — It is an almost immediate consequence of Lemma 2.10 that
KQ^A) is a simple dimension group and therefore has large denominators
by [15], Proposition 2.3, unless we are in the trivial case where A is finite
dimensional. Thus the equality D G1(A) = D Gl(A)o follows from Corollary
3.5. The proof of Theoreme 8.7 from [14] can be recycled to prove that
DG1(A) C G', with Theorem 3.4 replacing the Proposition 6.1 referred to
in [14]. The only things which need comments are the existence of four

4
non-zero projections pi,p2^P3^P4: ^ A such that ^ pi = 1, p3+p4 ^ Pi+p2

z=l
and pi -^ pj-^-pk for all ^ and j ̂  k. Note that in

c(x,i) 0 M,̂ I) e c(x^) ® M .̂,2) e • • • © c(x^,) 0 M,(̂ .)
there are 5 projections qi, i = 1,2,3,4,5, such that q^ -^ q\ ~ q^ ~ 93 ~ 94

5
and ^ qi = 1 if maxt(^', k) > 4. But since A is simple, lim (min^(j, k)) =

^1 fc J'^oo k

oo as shown by Goodearl in [II], 2.2, (or use that Ko(A) has large
denominators together with Lemma 1.6), so we can certainly find such
q^s in some Aj for j large enough. Therefore, we can use p\ = ^(^1+^5)
and pi = /-Ajte), i = 2,3,4. Also, for the application of Theorem 3.4 in
the proof, we must show that if q 6 A is a projection, then qAq is still a
(7*-algebra in the class we consider. For this purpose we may assume, by
a wellknown approximation argument, that q == /-^(p) for some projection
p € AN . Then qAq is the inductive limit of the sequence

pA^p —^^(p)Ajv+l^+l(p) ̂  <^V+2,N(P)AA^-2<^V+2,N(P) — ^ ' "
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If / € C(X) (g) Mn is a projection, X is connected, dimX ^ 2 and
^(X.Z) = 0, then there is a unitary u C C(X) (g) Myi such that ufu*
is constant over X. This follows from Lemma 2.10. But if / is constant
over X , fC(X) (g) Mnf ^ C(X) (g) M^, where k = rank(/). Thus qAq is an
inductive limit G*-algebra of the same type as A. D

The analog of Theorem 4.1 for the unitary group is also true, and the
proof of [14], Theoreme 9.1, does carry over, but the following substitute
for the Proposition 9.10 of de la Harpe and Skandalis [14] requires some
elaboration.

LEMMA 4.2. — Let A be as in Theorem 4.1 and not finite dimen-
sional. Let G be a non central subgroup of U(A) which is normalized by
DU(A)Q. Then there is a finite-dimensional unital (7* -subalgebra F of A
such that F ^ M^ C M^ © • • • C M^ where mm ki > 9 and DU(F) C G.

Proof. — It is a standard fact from topology that if X is a compact
Hausdorff space of covering dimension < 2 and ^(X.Z) = 0, then any
closed subset of X has the same two properties. Hence we can write
A = lim (Bni^n) where the connecting 0^'s are unital and injective and

n—>oo

B, = C(Y^) 0 M Î) e C(Y^) 0 M ,̂2) e • • • e C(Y^) 0 M ,̂)
where each V^ is of dimension < 2 and has ^(Y^Z) = 0. (To simplify
notation we retain the notation (f>n and ^n for the connecting maps and
the canonical maps, respectively.) After we have passed to quotients in this
way to get the connecting *-homomorphisms injective, the spaces V^ need
no longer be connected. This will not affect us in the following, but we need
the observation that mint(j, z) tends to infinity with j because this was the

i
case in our original sequence.

By Lemme 9.3 of [14] there is a non central element x e G with
||a;—l|| < 1/2. Then x = e101 for some non scalar selfadjoint a. Let
i\ = max{5 : s C cr(o)}, ^2 = min{5 : s G cr(a)}, Ai = e^1 and
^2 = e^2. As in the proof of Lemme 9.2 of [14] we choose e > 0 such
that 0 < 48^ < (|Ai-A2|-2£)3. Let 6 > 0 be so small that He^-^H < e
whenever d = d* € A and ||^—(2|| < 2(5. Choose j e N and b = b* € Bj such
that ||/-^(&)—a|| < 6. Let

B, = C(Y^) ̂  M,^I) 9 C(Y^) ^) M,^2) © • • • © C(Y^) ̂  M,(^.) ,
and b = (&i, b ^ ^ . . . , bny) the corresponding decomposition of b. Then there
are A;i, k^ G {1 ,2 ,3 , . . . , nj} and points x\ G Yj^, x^ € Yjk^ such that

a(bk,(xi))n]ti-6,ti+6[ ^ 0 , i = 1,2 .
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Since A is simple and the connecting *-homomorphism are now injective,
it follows from a simplicity condition which has been observed by several
authors, cf. [2], p. 84, proof of Theorem 10 or [4], Proposition 2.1, that we
may map b further out in the sequence and in this way, by increasing j,
reach the situation where

^bi(x))n]t^-6,t^6[^ 0 and a(^))n]^-^2+^[ ̂  0 ,

for all x e Y,i and all i = l ,2, . . . ,n, . By [2], Theorem 4, we may
furthermore assume that b, (x) has t(j, i) distinct eigenvalues for all i and all
x. Thus there are continuous realvalued functions ^} < if;2 < ... < -0^^
on Yj, and orthogonal sets ^,g?,. . . ,q^ of projections of sum 1 in
C(Yji) (g) M^^i) such that

tU,i)

W = ̂  ^(x)q^(x)^ x 6 ̂  ,
r=l

i = 1,2,...,n,.. Note that ^(x) e}t^-6^6[ and ̂ \x) ̂ -6^6[
for all a; e Y^ and all %, so if we set

^)-i
^(^)= ^ ^Wq^x^qKx^q^^) ,

r=2

and c = (ci,C2,.. . ,^,) € B,, then ||^(c)-a|| < 2<5. Note that we may
assume that t(j,i) > 9 for all i = 1,2,...,^. By Lemma 2.10 we can
find matrix units {/^ : k^ = 1,2,.. . ,^(m,z) , z = 1,2,. . . ,n^} in A^
such that E^ = 1, /n = ^ and /^ = ̂ ), z = l , 2 , . . . , n - We let

i j "

F be the finite dimensional C*-algebra spanned by {^(f^)}i^i and set

Pi = /^E/n), P2 = ^-(E/22) ^ ̂  and ^/ = exp(^.(c)) e (7(A).

Since ||^(c)-a|| < 26, we have that \\y-x\\ < e. Furthermore, note that
VPi = ^iPi, i = 1,2, and that pi+p2 is equivalent to a subprojection of
P3 = 1-P1-P2. It follows that the arguments used by de la Harpe and
Skandalis in their proof of Proposition 9.6 of [14], with our Theorem 3.4
substituting for their Proposition 6.7, now give us an element z e (7(piApi)
such that a(z) H {-1,1} = 0 and

"^* 0 0 "
0 ^ 0 e G ,

.0 0 p3.

where the matrix representation is given relative to 1 = pi+p2+?3. Since
a(z) n {-1,1} = 0 there is a p, e T such that |ImA| > |Im^| for all
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A e (r{z) and ^4 7^ 1. By Proposition 2.4 above, every continuous function
a(z) —> SU(2) represents an element of DU{C(a{z}) 0 M2)o, so Lemme
9.7 of [14] applies to show that p'~2pl+p2p2+P3 e G. But then we see that
DU(F) C G because the groups SU{t(j, z)), i = 1,2,... , n^ do not contain
any non trivial non central normal subgroups. D

The proof of Theoreme 9.1 of [14] can now be used ad verbatim to
get the following unitary version of Theorem 4.1.

THEOREM 4.3. — Let A be an inductive limit C*-algebra, A =
lim (Afc,0fc) with each Ai a finite direct sum Ai = C{Xi\) (g) M^i) ©

k—>oo
C(X^) (g) Mf(^2) © • • • © C(Xim) 0 Mt^m), such that each Xn, is a
compact connected Hausdorff space of (covering dimension) dim Xuc < 2
and H^^Xik, Z) = 0 for all i and k. Furthermore, we assume that A is unital
and simple.

If G is a subgroup of U(A) which is normalized by DU(A)Q and is
not contained in the center ofU(A) = DU(A)o C G. D

Remark 4.4. — It follows from the preceding result that DU(A) =
DU(A)o modulo its center is a simple group (for the C^-algebras in
question). In this remark we want to point out that U(A)Q modulo its
center, which is T, is not even topologically simple unless A has real
rank 0. In fact DU(A) is not dense in U (A) o unless A has real rank
0. So see this, let S be the fractal state space of A where A is as in
Theorem 4.3. The de la Harpe-Skandalis determinant gives a surjective
homomorphism AT : U(A)o/DU(A)o —> Aff(5)/P, where Aff(5') denotes
the real continuous affine functions on S and P the closed span of the
functions represented by projections in A. Thus U (A) o = DU(A).Q implies
that P = Aff(5), i.e. that the projections of A separate the fractal states.
Hence the real rank of A must be 0 by [1]. It is easy to see that T C DU(A)o,
so £7(A)o/T is certainly not topologically simple unless the real rank of A
is 0. In the reverse direction it follows from a recent result of Elliott and
R0rdam, cf. Theorem 2.3 of [6], that £/(A)o/T is topologically simple if A
does have real rank 0.

To get an idea of how rich a structure of closed normal subgroups
i7(A)o may have when A does not have rear-rank 0, observe that by
[21] we can realize any metrizable Choquet simplex S as the fractal
state space of a simple unital inductive limit (7*-algebra B of a sequence
of interval algebras C[0,1] (8) Mn in such a way that the corresponding
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subspace P only consists of the constants IR C Aff(5'). Since the map
AT : U{B)o/DU(B)o —> Aff(S)/P is always continuous, U(B)o has at
least as many distinct closed normal subgroups as there are distinct closed
subspaces of Aff(5)/IR. D
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